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Abstract

Most of the analysis of optimal monetary policy is conducted with the Calvo model. This

paper studies optimal monetary policy when the slow adjustment of the price level is due to

imperfect information by decision-makers in firms. We consider two models: a model with ex-

ogenous dispersed information and a rational inattention model. In the model with exogenous

dispersed information, complete stabilization of the price level is optimal after aggregate pro-

ductivity shocks but not after markup shocks. By contrast, in the rational inattention model,

complete stabilization of the price level is optimal both after aggregate productivity shocks and

after markup shocks. Moreover, in the model with exogenous dispersed information, there is no

value from commitment to a future monetary policy. By contrast, in the rational inattention

model, there is value from commitment to a future monetary policy because then the private

sector can trust the central bank that not paying attention to certain variables is optimal.
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1 Introduction

Most of the analysis of optimal monetary policy is conducted with the Calvo (1983) model. In the

Calvo model, prices adjust slowly to shocks because in any given period only an exogenously given

fraction of firms can adjust their prices. This paper studies optimal monetary policy in models

where prices adjust slowly to shocks because of imperfect information by decision-makers in firms.

We consider two models: a model with exogenous dispersed information and a model with rational

inattention. In the rational inattention model, decision-makers in firms have limited attention and

decide how to allocate their attention.

The motivation for this analysis is threefold. First, conducting monetary policy analysis pre-

dominantly with one model may lead to correlated model mistakes. Second, the Calvo (1983) model

has difficulties matching the combination of slow and fast adjustment of prices to shocks found in

the empirical literature. For example, Christiano, Eichenbaum and Evans (1999), Leeper, Sims and

Zha (1996), and Uhlig (2005) find that the price level responds slowly to monetary policy shocks;

while Boivin, Giannoni and Mihov (2009) and Máckowiak, Moench and Wiederholt (2009) find

that prices respond very quickly to sector-specific shocks. The Calvo model has difficulties match-

ing this combination of slow and fast adjustment of prices to shocks, whereas certain models with

information frictions can match this combination of slow and fast adjustment of prices to shocks.

It therefore seems important to understand what these models imply for optimal monetary policy.

Third, monetary policy affects the optimal allocation of attention by decision-makers in firms. For

example, when due to the central bank’s actions the macroeconomic environment becomes more

stable, decision-makers in firms will probably pay less attention to the macroeconomy. For these

three reasons, it seems useful to study optimal monetary policy in a model with exogenous dispersed

information and in a model with rational inattention, and to point out similarities and differences

to optimal monetary policy in the Calvo model.

We model an economy with many firms, a representative household, and a government. Firms

supply differentiated goods. These goods are produced with labor. The representative household

consumes the different goods, supplies labor, and holds nominal government bonds and money.

Money demand is derived from a cash-in-advance constraint. The economy is hit by aggregate

productivity shocks and markup shocks (i.e., shocks that change the desired markup by firms).

In each period, all firms set prices for their goods. Prices respond slowly to shocks either due to
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exogenous dispersed information by firms or due to rational inattention by decision-makers in firms.

In the rational inattention model, decision-makers in firms choose the precision of their signals about

aggregate productivity and the desired markup, subject to a cost of information flow. The central

bank sets the money supply in response to shocks. The central bank aims to maximize expected

utility of the representative household. We derive optimal monetary policy under commitment.

The main results are the following. First, in the model with exogenous dispersed information

and in the rational inattention model, the optimal policy response to aggregate productivity shocks

is to fully stabilize the price level in response to aggregate productivity shocks. The reason is the

following. By offsetting fully the effect of aggregate productivity shocks on the profit-maximizing

price (i.e., by increasing the money supply in response to a positive productivity shock so that

the profit-maximizing price does not respond to an aggregate productivity shock), the central

bank can replicate the response of the economy to aggregate productivity shocks under perfect

information. Furthermore, the response of the economy to aggregate productivity shocks under

perfect information is efficient. Hence, this policy is the optimal monetary policy response to

aggregate productivity shocks. One feature of this policy is that prices do not respond to aggregate

productivity shocks. Second, in the model with exogenous dispersed information, it is not optimal

to fully stabilize the price level in response to markup shocks. By offsetting fully the effect of

markup shocks on the profit-maximizing price, the central bank can in principle replicate the

response of the economy to markup shocks under perfect information. However, the response of

the economy to markup shocks under perfect information is inefficient. In particular, there is

inefficient consumption variance. By offsetting only partially the effect of markup shocks on the

profit-maximizing price, the central bank increases inefficient price dispersion but reduces inefficient

consumption variance (relative to the perfect-information solution). Accepting some inefficient price

dispersion in exchange for reduced consumption variance turns out to be the optimal monetary

policy. At the optimal monetary policy, the profit-maximizing price, actual prices, and the price

level respond to markup shocks. By contrast, in the rational inattention model, it is optimal to fully

stabilize the price level in response to markup shocks. By counteracting the effect of markup shocks

on the profit-maximizing price (i.e., by reducing the money supply in response to a positive markup

shock), the central bank reduces the variance of the profit-maximizing price due to markup shocks,

which now reduces both inefficient price dispersion and the attention that decision-makers in firms
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devote to markup shocks. The latter reduces the response of the price level to markup shocks and

thereby reduces consumption variance due to markup shocks. Hence, the trade-off between price

dispersion and consumption variance due to markup shocks disappears. Reducing the money supply

more in response to a positive markup shock now reduces both price dispersion and consumption

variance. The optimal monetary policy is to counteract the effect of markup shocks on the profit-

maximizing price until the variance of the profit-maximizing price due to the markup shock is

sufficiently small so that decision-makers in firms pay no attention to markup shocks. Thus, at the

optimal monetary policy, prices do not respond to markup shocks. In summary, in the rational

inattention model, the trade-off between price dispersion and consumption variance due to markup

shocks disappears and therefore complete price level stability is optimal. This is important because

the trade-off between price dispersion and consumption variance due to markup shocks has been

emphasized a lot in the literature on optimal monetary policy in the New Keynesian model. Third,

in the model with exogenous dispersed information, there is no value from commitment to a future

monetary policy. By contrast, in the rational inattention model, there is value from commitment

to a future monetary policy because then the private sector can trust the central bank that not

paying attention to certain variables is optimal.

This paper is related to four papers that also study optimal monetary policy in models in which

price setting firms have imperfect information. First, Ball, Mankiw and Reis (2005) study optimal

monetary policy in the sticky information model of Mankiw and Reis (2002). The main difference

between their paper and our paper is that in their paper the information structure is exogenous.

In particular, in their paper the probability with which firms update their information sets is

independent of monetary policy. Second, Adam (2007) studies optimal monetary policy in a model

in which firms pay limited attention to aggregate variables. In his model the amount of attention

that firms devote to aggregate variables is exogenous; whereas in the rational inattention model

presented below the amount of attention that firms devote to aggregate variables is endogenous (and

depends on monetary policy). We show that this changes optimal monetary policy in a fundamental

way. Third, Lorenzoni (2010) and Angeletos and La’O (2008) study optimal monetary policy in

models with dispersed information. In Lorenzoni (2010), price setting firms observe the history of

the economy up to the previous period, the sum of aggregate and idiosyncratic productivity, and a

noisy public signal about aggregate productivity. There are several differences between his paper
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and our paper: (i) in his paper the “noise” in the private signal concerning aggregate productivity is

idiosyncratic productivity, while in our paper the noise arises from limited attention, (ii) in his paper

the information structure is exogenous, while in our paper the information structure is endogenous,

and (iii) in his paper the central bank has imperfect information, while we assume that the central

bank has perfect information about the state of the economy. We make this assumption to derive

the optimal monetary policy response to changes in fundamentals. Afterwards, we study whether

the central bank can also implement this optimal monetary policy response with less information.

Like in Lorenzoni (2010), agents in Angeletos and La’O (2008) observe the history of the economy

up to the previous period, the sum of aggregate and idiosyncratic productivity, and a noisy public

signal about aggregate productivity. In addition, in Angeletos and La’O (2008) agents observe

noisy signals concerning endogenous variables with exogenous variance of noise. This creates an

informational externality because a stronger response of agents to their private signals makes the

signals concerning endogenous variables more informative. Angeletos and La’O (2008) study how

this informational externality affects optimal fiscal and monetary policy. In summary, this paper is

the first paper that studies optimal monetary policy in a model in which agents choose the attention

that they allocate to aggregate variables.

This paper is also related to the literature on the social value of public information, for example,

Morris and Shin (2002), Hellwig (2005), and Angeletos and Pavan (2007). In this literature, the

main monetary policy question is whether the central bank should provide information about

economic fundamentals. We instead ask how the central bank should set the money supply or a

nominal interest rate in response to fundamentals. In addition, in the literature on the social value

of public information the information structure (i.e., what agents observe) is typically exogenous.

The paper is organized as follows. Section 2 presents the model. Section 3 describes the objective

of the central bank. Section 4 states the optimal monetary policy problem under commitment in

the model with exogenous dispersed information and in the rational inattention model. Sections 5-7

characterize optimal monetary policy in the two models. Section 5 derives the optimal monetary

policy response to aggregate productivity shocks. Section 6 derives the optimal monetary policy

response to markup shocks. Section 7 studies the value of commitment. Section 8 concludes.
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2 Model

The economy is populated by a representative household, firms and a government.

Household: There is a representative household. The household’s preferences in period t over

sequences of composite consumption and labor supply {Ct+τ , Lt+τ}∞τ=0 are given by

Et

" ∞X
τ=0

βτ

Ã
C1−γt+τ − 1
1− γ

−
L1+ψt+τ

1 + ψ

!#
, (1)

where Ct+τ is composite consumption and Lt+τ is labor supply in period t + τ . The operator Et

is the expectation operator conditioned on the entire history of the economy up to and including

period t. The parameter β ∈ (0, 1) is the discount factor. The parameter γ > 0 is the inverse of

the intertemporal elasticity of substitution and the parameter ψ ≥ 0 is the inverse of the Frisch

elasticity of labor supply. Composite consumption in period t is given by a Dixit-Stiglitz aggregator

Ct =

Ã
1

I

IX
i=1

C
1

1+Λt
i,t

!1+Λt
, (2)

where Ci,t is consumption of good i in period t. There are I different consumption goods. The

elasticity of substitution between consumption goods equals (1 + 1/Λt) in period t. Since Λt will

equal the desired markup by firms, we call Λt the desired markup. We assume that the log of the

desired markup follows a Gaussian first-order autoregressive process

ln (Λt) = (1− ρλ) ln (Λ) + ρλ ln (Λt−1) + νt, (3)

where the parameter Λ > 0, the parameter ρλ ∈ [0, 1), and the innovation νt is i.i.d.N
¡
0, σ2ν

¢
.

The flow budget constraint of the representative household in period t reads

Mt +Bt = Rt−1Bt−1 +WtLt +Dt − Tt +

Ã
Mt−1 −

IX
i=1

Pi,t−1Ci,t−1

!
, (4)

where Bt−1 are the household’s holdings of nominal government bonds between period t − 1 and

period t, Rt−1 is the nominal gross interest rate on those bond holdings, Wt is the nominal wage

rate, Dt are nominal aggregate profits, and Tt are nominal lump-sum taxes in period t. The term

in brackets on the right-hand side of equation (4) are unspent nominal money balances carried over

from period t− 1 to period t. The household can allocate his pre-consumption wealth in period t

(i.e. the right-hand side of equation (4)) between nominal money balances, Mt, and nominal bond
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holdings, Bt. We assume that the representative household faces the following cash-in-advance

constraint in every period
IX

i=1

Pi,tCi,t =Mt. (5)

Furthermore, the representative household faces a no-Ponzi-scheme condition.

In every period, the representative household chooses a consumption vector, labor supply, nom-

inal money balances, and nominal bond holdings. The representative household takes as given

the prices of all consumption goods, the nominal interest rate, the nominal wage rate, nominal

aggregate profits, and nominal lump-sum taxes.

Firms: There are I firms. Firm i supplies good i. The technology of firm i is given by

Yi,t = AtL
α
i,t, (6)

where Yi,t is output and Li,t is labor input of firm i in period t. The parameter α ∈ (0, 1] is the

elasticity of output with respect to labor input. The variable At denotes aggregate productivity in

period t. The log of aggregate productivity follows a Gaussian first-order autoregressive process

ln (At) = ρa ln (At−1) + εt, (7)

where the parameter ρa ∈ [0, 1) and the aggregate technology shock εt is i.i.d.N
¡
0, σ2ε

¢
. The

process {At} is independent of the process {Λt}.

Nominal profits of firm i in period t equal

(1 + τp)Pi,tYi,t −WtLi,t, (8)

where τp is a production subsidy paid by the government.

In every period, each firm sets a price and commits to supply any quantity at that price. The

firm takes as given the representative household’s composite consumption, the nominal wage rate,

and the following price index1

Pt = I1+Λt

Ã
IX

i=1

P
− 1

Λt
i,t

!−Λt
. (9)

1Dixit and Stiglitz (1977), in their original article, also assumed that there is a finite number of goods and that

firms take as given the price index. Moreover, it seems to be a good description of the U.S. economy that there is a

finite number of physical consumption goods and that firms take the consumer price index as given.
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Government: There is a monetary authority and a fiscal authority. The monetary authority

commits to set the money supply according to the following rule

ln (Ms
t ) = Ft (L) εt +Gt (L) νt, (10)

where Ms
t denotes the money supply in period t and Ft (L) and Gt (L) are infinite-order lag poly-

nomials which can depend on t. The last equation simply says that the log of the money supply in

period t can be any linear function of the sequence of shocks up to and including period t. We will

ask the question which linear function is optimal.

How is money injected into the economy and how does the money market clear? The household

can transform any fraction of his pre-consumption wealth in period t into nominal money balances

in period t. See equation (4). In equilibrium, the price level and the nominal interest rate will

adjust such that the demand for nominal money balances by the representative household will

equal the supply of nominal money balances by the monetary authority (i.e. Mt =Ms
t ).

The government budget constraint in period t reads

Tt +Bt = Rt−1Bt−1 + τp

Ã
IX

i=1

Pi,tYi,t

!
. (11)

The government has to finance interest on nominal government bonds and the production subsidy.

The government can collect lump-sum taxes or issue new nominal government bonds. We assume

that the government pursues a Ricardian fiscal policy. In particular, for ease of exposition, we

assume that the fiscal authority fixes nominal government bonds at some non-negative level

Bt = B ≥ 0. (12)

We assume that the fiscal authority sets the production subsidy so as to correct, in the non-

stochastic steady state, the distortion arising from firms’ market power in the goods market. For-

mally,

τp = Λ. (13)

Alternatively, one could assume that the fiscal authority sets the production subsidy so as to correct

fully at each point in time the distortion arising from firms’ market power in the goods market.

Formally,

τp,t = Λt. (14)
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However, since in the United States fiscal policy has to be approved by Congress while monetary

policy decisions by the Federal Reserve are implemented directly, we find it more realistic to assume

that the fiscal authority cannot adjust the production subsidy quickly while the monetary authority

can adjust the money supply quickly.

Information: The information set of the price setter of firm i in period t is given by any initial

information that the price setter may have as well as the sequence of all signals that the price setter

has received up to and including period t

Ii,t = Ii,−1 ∪ {si,0, si,1, . . . , si,t} , (15)

where Ii,−1 is the initial information set of the price setter of firm i in period minus one and si,t

is the signal that the price setter of firm i receives in period t. We assume that, in every period

t ≥ 0, the price setter of firm i receives a two-dimensional signal consisting of noisy signals about

aggregate productivity and the desired markup:

si,t =

⎛⎝ ln (At) + ηi,t

ln (Λt/Λ) + ζi,t

⎞⎠ , (16)

where the noise in the signal has the following properties: (i) the stochastic processes
©
ηi,t
ª
and©

ζi,t
ª
are independent of the stochastic processes {At} and {Λt}, (ii) the stochastic processes

©
ηi,t
ª

and
©
ζi,t
ª
are independent across firms and independent of each other, and (iii) the noise ηi,t is

i.i.d.N
¡
0, σ2η

¢
and the noise ζi,t is i.i.d.N

³
0, σ2ζ

´
.

Two remarks are in place before we proceed. First, we think of the noise in the signal as being

due to limited attention by decision-makers in firms. Therefore, we find it reasonable to assume

that the noise in the signal is idiosyncratic and will wash out in the aggregate. Second, the case

of noisy signals about aggregate productivity and the desired markup will turn out to be a useful

benchmark. Later we will also consider the case of noisy signals about other variables.

We assume that the monetary authority and the representative household have perfect infor-

mation (i.e. in every period t ≥ 0, the monetary authority and the representative household know

the entire history of the economy up to and including period t). We assume that the monetary

authority has perfect information because we are interested in the optimal conduct of monetary

policy. We assume that the representative household has perfect information to isolate the impli-

cations of imperfect information by price setters for the optimal conduct of monetary policy. Note
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that the monetary authority, which has perfect information, could announce in every period the

entire history of the economy. It is important to point out that this would make no difference so

long as we interpret the noise in the signal as arising from limited attention by decision-makers in

firms rather than lack of publicly available information.

Aggregation: When we aggregate prices set by individual firms, terms linear in 1
I

XI

i=1
ηi,t

and 1
I

XI

i=1
ζi,t appear. These two averages are random variables with mean zero and variance

1
IV ar

¡
ηi,t
¢
and 1

IV ar
¡
ζi,t
¢
, respectively. When we aggregate individual prices, we will neglect

those terms because these terms have mean zero and a variance that can be made arbitrarily small

by increasing the number of firms I.

3 Objective of the central bank

In this section, we state the central bank’s objective and we characterize the feasible allocation

that maximizes the central bank’s objective. We also derive a log-quadratic approximation to the

central bank’s objective.

We assume that the monetary authority aims to maximize expected utility of the representative

household:

E

" ∞X
t=0

βtU (Ct, Lt)

#
, (17)

where

U (Ct, Lt) =
C1−γt − 1
1− γ

− L1+ψt

1 + ψ
, (18)

Ct =

Ã
1

I

IX
i=1

C
1

1+Λt
i,t

!1+Λt
, (19)

and

Lt =
IX

i=1

µ
Ci,t

At

¶ 1
α

. (20)

Equation (18) is the period utility function, equation (19) is the definition of composite consump-

tion, and equation (20) is the feasibility constraint stating that the representative household has

to supply the labor that is required to produce the consumption vector.

By substituting equations (19) and (20) into the period utility function (18), one can express

period utility as a function only of the consumption vector in period t and the two exogenous
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variables At and Λt. More specifically, it will be convenient to express period utility as a function

only of composite consumption in period t, relative consumption of I − 1 goods in period t, and At

and Λt. In the following, Ĉi,t = (Ci,t/Ct) denotes relative consumption of good i in period t. One

can write equation (19) as

1 =
1

I

IX
i=1

Ĉ
1

1+Λt
i,t .

Rearranging yields

ĈI,t =

Ã
I −

I−1X
i=1

Ĉ
1

1+Λt
i,t

!1+Λt
. (21)

Substituting equations (20) and (21) into the period utility function (18) yields the following ex-

pression for expected utility of the representative household:

E

" ∞X
t=0

βtV
³
Ct, Ĉ1,t, Ĉ2,t, . . . , ĈI−1,t, At,Λt

´#
, (22)

with

V
³
Ct, Ĉ1,t, Ĉ2,t, . . . , ĈI−1,t, At,Λt

´
=

C1−γt − 1
1− γ

− 1

1 + ψ

µ
Ct

At

¶ 1
α
(1+ψ)

⎡⎣I−1X
i=1

Ĉ
1
α
i,t +

Ã
I −

I−1X
i=1

Ĉ
1

1+Λt
i,t

! 1
α
(1+Λt)

⎤⎦1+ψ . (23)

Equation (23) gives period utility as a function only of composite consumption in period t, the

consumption mix in period t, and the two exogenous variables At and Λt.

Definition 1 An efficient allocation in period t is a vector
³
Ct, Ĉ1,t, Ĉ2,t, . . . , ĈI−1,t

´
∈ RI

++ that

maximizes expression (23), where Ĉi,t = (Ci,t/Ct).

Maximizing expression (23) yields that the unique efficient allocation in period t is

C∗t =
³ α

I1+ψ

´ 1

γ−1+ 1
α (1+ψ) A

1
α (1+ψ)

γ−1+ 1
α (1+ψ)

t , (24)

and

∀i = 1, 2, . . . , I − 1 : Ĉ∗i,t = 1. (25)

The efficient composite consumption in period t is increasing in aggregate productivity in period

t. The efficient consumption mix in period t is to consume an equal amount of each good. The

efficient allocation in period t does not depend on Λt.
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In Sections 5-7, we work with a log-quadratic approximation to the central bank’s objective

(22)-(23). We compute the log-quadratic approximation around the non-stochastic steady state,

where a non-stochastic steady state is defined as an equilibrium of the non-stochastic version of

the economy with the property that real quantities, relative prices, the nominal interest rate and

inflation are constant over time. Let variables without time subscript denote values in the non-

stochastic steady state. It is straightforward to show that due to the subsidy (13) we have C = C∗

and Ĉi = Ĉ∗i , that is, in the non-stochastic steady state the equilibrium allocation equals the

efficient allocation. Let small variables denote log-deviations from the non-stochastic steady state,

that is, ct = ln (Ct/C), ĉi,t = ln
³
Ĉi,t

´
, at = ln (At) and λt = ln (Λt/Λ). Expressing the function

V given by equation (23) in terms of log-deviations from the non-stochastic steady state and using

C = C∗ and equation (24) yields the following expression for period utility at time t

v (ct, ĉ1,t, ĉ2,t, . . . , ĉI−1,t, at, λt)

=
C1−γe(1−γ)ct − 1

1− γ

−C
1−γe

1
α
(1+ψ)(ct−at)

1
α (1 + ψ)

⎡⎣1
I

I−1X
i=1

e
1
α
ĉi,t +

1

I

Ã
I −

I−1X
i=1

e
ĉi,t

1

1+Λeλt

! 1
α(1+Λe

λt)
⎤⎦1+ψ . (26)

Computing a second-order Taylor approximation to the function v around the origin yields the

following proposition.

Proposition 1 (Objective of the central bank) Let v denote the period utility function given by

equation (26). Let ṽ denote the second-order Taylor approximation to v at the origin. Let E denote

the unconditional expectation operator. Let xt, zt and ωt denote the following vectors

x0t =
³
ct ĉ1,t · · · ĉI−1,t

´
, (27)

z0t =
³
at λt

´
, (28)

ω0t =
³
x0t z0t 1

´
, (29)

and let ωn,t and ωk,t denote the nth and kth element of ωt. Suppose that there exist two constants

δ < (1/β) and φ ∈ R such that, for each period t ≥ 0 and for all n and k,

E |ωn,tωk,t| < δtφ. (30)
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Then

E

" ∞X
t=0

βtṽ (xt, zt)

#
−E

" ∞X
t=0

βtṽ (x∗t , zt)

#
=

∞X
t=0

βtE

∙
1

2
(xt − x∗t )

0H (xt − x∗t )

¸
, (31)

where the matrix H is given by

H = −C1−γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ − 1 + 1
α (1 + ψ) 0 · · · · · · 0

0 2 1+Λ−αI(1+Λ)α
1+Λ−α
I(1+Λ)α · · · 1+Λ−α

I(1+Λ)α
... 1+Λ−α

I(1+Λ)α

. . . . . .
...

...
...

. . . . . . 1+Λ−α
I(1+Λ)α

0 1+Λ−α
I(1+Λ)α . . . 1+Λ−α

I(1+Λ)α 2 1+Λ−αI(1+Λ)α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (32)

and the vector x∗t is given by

c∗t =
1
α (1 + ψ)

γ − 1 + 1
α (1 + ψ)

at, (33)

and

ĉ∗i,t = 0. (34)

Proof. See Appendix A.

After the quadratic approximation to the period utility function (26), the efficient composite

consumption in period t is given by equation (33) and the efficient consumption mix in period t is

given by equation (34). In addition, the loss in utility in period t in the case of a deviation from

the efficient allocation is given by the quadratic form in square brackets on the right-hand side of

equation (31). The upper-left element of the matrix H determines the loss in utility in the case

of inefficient composite consumption. The lower-right block of the matrix H determines the loss

in utility in the case of an inefficient consumption mix. The condition (30) ensures that, in the

expression for the expected discounted sum of period utility, after the quadratic approximation to

the period utility function (26), one can change the order of integration and summation and the

infinite sum converges.

4 Statement of the optimal policy problem

In this section, we state the central bank’s optimal policy problem under commitment. We state

the problem for the economy described in Section 2 (“exogenous dispersed information”) and for an
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economy that is identical apart from the fact that price setters in firms choose the precision of the

signal (16) subject to a cost function (“rational inattention”). In the rational inattention model, we

start from the assumption that price setters make their information choice after the central bank

has committed to a policy and the policy has become common knowledge.2

4.1 Exogenous dispersed information

When the central bank can commit, the central bank solves

max
{Ft(L),Gt(L)}∞t=0

E

" ∞X
t=0

βtV
³
Ct, Ĉ1,t, Ĉ2,t, . . . , ĈI−1,t, At,Λt

´#
, (35)

subject to (i) the household’s optimality conditions

PtCt =Mt, (36)

Ci,t =

Ã
Pi,t
1
IPt

!− 1+ 1
Λt

Ct, (37)

Pt = I1+Λt

Ã
IX

i=1

P
− 1

Λt
i,t

!−Λt
, (38)

Wt

Pt
=

Lψ
t

C−γt

, (39)

(ii) the firms’ optimality conditions and information sets

E

⎡⎢⎢⎢⎣− (1 + τp)
1

Λt
P
− 1

Λt
i,t

µ
1

I
Pt

¶ 1+Λt
Λt

Ct +
1 + Λt
Λt

Wt
1

α

⎡⎢⎢⎣
³
Pi,t
1
I
Pt

´− 1+Λt
Λt Ct

At

⎤⎥⎥⎦
1
α

|Ii,t

⎤⎥⎥⎥⎦ = 0, (40)

Ii,t = Ii,−1 ∪ {si,0, si,1, . . . , si,t} , (41)

si,t =

⎛⎝ ln (At) + ηi,t

ln (Λt/Λ) + ζi,t

⎞⎠ , (42)

(iii) the labor market clearing condition

Lt =
IX

i=1

µ
Ci,t

At

¶ 1
α

, (43)

2We think it would be interesting to study the firms’ incentive to learn the central bank’s policy choice.
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(iv) the laws of motion for aggregate productivity and the desired markup

ln (At) = ρa ln (At−1) + εt, (44)

ln (Λt/Λ) = ρλ ln (Λt−1/Λ) + νt, (45)

and (v) the equation for the money supply

ln (Mt) = Ft (L) εt +Gt (L) νt. (46)

The function V in objective (35) is given by equation (23), Ft (L) and Gt (L) in equation (46) are

infinite-order lag polynomials that can depend on t, and the innovations εt, νt, ηi,t and ζi,t have

the properties described in Section 2.

A log-quadratic approximation of objective (35) around the non-stochastic steady state and a

log-linear approximation of the equilibrium conditions (36)-(40) and (43) around the non-stochastic

steady state yields the following linear-quadratic optimal policy problem

max
{Ft(L),Gt(L)}∞t=0

−
∞X
t=0

βt
C1−γ

2
E

⎡⎢⎢⎣
³
γ − 1 + 1+ψ

α

´
(ct − c∗t )

2

+ 1+Λ−α
I(1+Λ)α

I−1X
i=1

Ã
ĉ2i,t + ĉi,t

I−1X
k=1

ĉk,t

!
⎤⎥⎥⎦ , (47)

subject to

pt + ct = mt, (48)

ci,t = −
µ
1 +

1

Λ

¶
(pi,t − pt) + ct, (49)

pt =
1

I

IX
i=1

pi,t, (50)

wt − pt = ψlt + γct, (51)

pi,t = E
£
p∗i,t|Ii,t

¤
, (52)

p∗i,t = pt +
1

1 + 1−α
α

1+Λ
Λ

(wt − pt) +
1−α
α

1 + 1−α
α

1+Λ
Λ

ct −
1
α

1 + 1−α
α

1+Λ
Λ

at +
Λ
1+Λ

1 + 1−α
α

1+Λ
Λ

λt, (53)

and

lt =
1

I

IX
i=1

1

α
(ci,t − at) , (54)

where c∗t is given by equation (33), Ii,t is given by equations (41)-(42), and at, λt and mt are given

by equations (44)-(46).
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The linear-quadratic optimal policy problem (47)-(54) can be stated more concisely. After

substituting equations (49)-(50) into objective (47) and after substituting equations (49)-(51) and

equation (54) into equation (53), the linear-quadratic optimal policy problem reads

max
{Ft(L),Gt(L)}∞t=0

−
∞X
t=0

βt
C1−γ

2
E

⎡⎢⎢⎣
³
γ − 1 + 1+ψ

α

´
(ct − c∗t )

2

+1+Λ−α
(1+Λ)α

¡
1 + 1

Λ

¢2 1
I

IX
i=1

(pi,t − pt)
2

⎤⎥⎥⎦ , (55)

subject to

ct = mt − pt, (56)

pt =
1

I

IX
i=1

pi,t, (57)

pi,t = E
£
p∗i,t|Ii,t

¤
, (58)

p∗i,t = pt + φcct − φaat + φλλt, (59)

where

c∗t =
φa
φc

at, (60)

Ii,t = Ii,−1 ∪ {si,0, si,1, . . . , si,t} , (61)

si,t =

⎛⎝ at + ηi,t

λt + ζi,t

⎞⎠ , (62)

at = ρaat−1 + εt, (63)

λt = ρλλt−1 + νt, (64)

mt = Ft (L) εt +Gt (L) νt, (65)

and

φc =
ψ
α + γ + 1−α

α

1 + 1−α
α

1+Λ
Λ

, (66)

φa =
ψ
α +

1
α

1 + 1−α
α

1+Λ
Λ

, (67)

φλ =
Λ
1+Λ

1 + 1−α
α

1+Λ
Λ

. (68)

In Sections 5-6, we characterize the solution to this problem.
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4.2 Rational inattention

In the rational inattention model, the precision of the signals (62) is endogenous. We assume that

firms choose the precision of the signals after the central bank has committed to a policy. The

attention problem of firm i reads

min
(σ2η,σ2ζ)∈R2+

nω
2
E
h¡
pi,t − p∗i,t

¢2i
+ μκ

o
, (69)

subject to

p∗i,t = pt + φcct − φaat + φλλt, (70)

pi,t = E
£
p∗i,t|Ii,t

¤
, (71)

si,t =

⎛⎝ at + ηi,t

λt + ζi,t

⎞⎠ , (72)

and in each period t ≥ 0,

1

2
log2

⎛⎝σ2
a|st−1i

σ2
a|sti

⎞⎠+ 1
2
log2

⎛⎝σ2
λ|st−1i

σ2
λ|sti

⎞⎠ ≤ κ. (73)

Here the coefficient ω > 0 is a non-linear function of the parameters appearing in the profit function,

μ ≥ 0 is the per-period marginal cost of attention, and sti is the sequence of signals received by firm

i up to and including period t.

5 Optimal policy response to aggregate productivity shocks

In this section, we derive the optimal monetary policy response to aggregate productivity shocks.

5.1 Exogenous dispersed information

To derive the optimal monetary policy response to aggregate productivity shocks, note the following.

First, solving for the optimal policy response to aggregate productivity shocks and solving for the

optimal policy response to markup shocks are two independent problems. Thus, in this section

we can assume without loss of generality that λt = 0 in every period. Second, suppose that price
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setters have perfect information. Equations (56)-(59) then imply

ct =
φa
φc

at

pi,t − pt = 0

pt = mt −
φa
φc

at.

Note that when price setters have perfect information, the equilibrium allocation equals the efficient

allocation. Equilibrium composite consumption equals efficient composite consumption and the

equilibrium consumption mix equals the efficient consumption mix. Furthermore, note that when

price setters have perfect information, monetary policy only affects the price level, which has no

effect on welfare. Third, suppose that price setters have imperfect information and that the central

bank chooses mt =
φa
φc
at. If mt =

φa
φc
at, the profit-maximizing price (59) does not depend on

aggregate productivity and equations (56)-(59) imply

ct =
φa
φc

at

pi,t − pt = 0

pt = 0.

Hence, when price setters have imperfect information, the central bank can replicate one of the

equilibria with perfect information: the one with stable prices. Since the allocation associated with

this equilibrium is efficient, the central bank can attain the efficient allocation. Fourth, when price

setters have imperfect information, no other monetary policy attains the efficient allocation. For

any other monetary policy the profit-maximizing price (59) depends on aggregate productivity,

implying that firms put some weight on the signal (62), which creates price dispersion. We arrive

at the following proposition.

Proposition 2 Consider the central bank’s optimal policy problem (55)-(68). If σ2η > 0, the unique

optimal monetary policy response to aggregate productivity shocks is

Ft (L) εt =
φa
φc

at. (74)

Under this policy, the price level does not respond to an aggregate productivity shock.

The derivation of this result hopefully also makes clear the limitations and the extensions of this

result. If the equilibrium response to aggregate productivity shocks under perfect information was
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not efficient (e.g., if we had assumed a consumption aggregator with the property that a constant

subsidy no longer suffices to correct the distortions due to market power in the goods market), then

complete stabilization of the price level in response to an aggregate productivity shock would no

longer be optimal. On the other hand, consider any shock with the property that the equilibrium

response to this shock under perfect information is efficient. Complete stabilization of the price level

in response to this shock is optimal. These examples show that the result stated in Proposition 2

has nothing to do with an aggregate productivity shock being a supply shock rather than a demand

shock.

5.2 Rational inattention

The same arguments as in Section 5.1 yield the following proposition.

Proposition 3 Consider the central bank’s optimal policy problem (55)-(68) with (69)-(73). If

μ > 0, the unique optimal monetary policy response to aggregate productivity shocks is

Ft (L) εt =
φa
φc

at. (75)

Under this policy, the price level does not respond to an aggregate productivity shock.

6 Optimal policy response to markup shocks

In this section, we study the optimal monetary policy response to markup shocks. We are interested

in markup shocks because a markup shock is a simple example of a shock with the property that

the response to this shock under perfect information is not efficient. To see this, suppose that price

setters have perfect information. Equations (56)-(59) then imply

ct =
φa
φc

at −
φλ
φc

λt

pi,t − pt = 0

pt = mt −
µ
φa
φc

at −
φλ
φc

λt

¶
.

If λt 6= 0, the equilibrium allocation under perfect information differs from the efficient allocation.

In this section, we assume without loss of generality that at = 0 in every period.
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6.1 Exogenous dispersed information

In this subsection, we study the optimal monetary policy response to markup shocks in the model

with exogenous dispersed information. We first solve for the optimal monetary policy analytically

in the case of ρλ = 0 and then we solve for the optimal monetary policy numerically in the case of

ρλ 6= 0.

Proposition 4 Consider the central bank’s optimal monetary policy problem (55)-(68). Suppose

σ2ε = a−1 = 0 and suppose ρλ = 0. Consider policies of the form Gt (L) νt = g0νt and equilibria of

the form pt = θλt. The unique equilibrium for given monetary policy is

pt =
φcg0 + φλ

φc +
σ2ζ
σ2λ

λt (76)

ct =

σ2ζ
σ2λ
g0 − φλ

φc +
σ2ζ
σ2λ

λt (77)

pi,t − pt =
φcg0 + φλ

φc +
σ2ζ
σ2λ

ζi,t. (78)

If σ2ζ > 0, the unique optimal monetary policy is

g0 =

γ−1+1+ψ
α

1+Λ−α
(1+Λ)α(1+

1
Λ)

2φλ − φcφλ

γ−1+1+ψ
α

1+Λ−α
(1+Λ)α(1+

1
Λ)

2

σ2ζ
σ2λ
+ φ2c

. (79)

Proof. See Appendix B.

In the model with exogenous dispersed information, when ρλ = 0, Gt (L) νt = g0νt and pt = θλt,

complete stabilization of the price level in response to markup shocks is not optimal. We will obtain

the opposite result in the rational inattention model.

Next, we solve the central bank’s optimal policy problem (55)-(68) numerically in the case

of ρλ 6= 0. When we solve the central bank’s optimal policy problem (55)-(68) numerically, we

turn this infinite-dimensional problem into a finite-dimensional problem by parameterizing the lag

polynomial Gt (L) as a lag-polynomial of an ARMA(2,2) process and by restricting Gt (L) to be

the same in each period.3 We solve the problem (55)-(68) for the following benchmark parameter

values: β = 0.99, γ = 1, ψ = 0, α = 2/3, and Λ = 0.1.
3We also worked with the lag-polynomial of an ARMA(3,3) process. We obtained very similar results.
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For comparison, we also solve for the optimal monetary policy response to markup shocks in the

Calvo model. In the Calvo model, firms have perfect information, and any given firm can adjust

its price in any given period with an exogenous probability equal to δ.4

Figure 1 depicts the optimal monetary policy response to a markup shock. The upper panels

depict the optimal monetary policy when ρλ = 0. The lower panels depict the optimal monetary

policy when ρλ = 0.9. The solid blue lines show the impulse responses of money, output and

inflation at the optimal monetary policy in the imperfect information model. For comparison, the

dashed red lines show the impulse responses of money, output and inflation at the optimal monetary

policy with commitment in the Calvo model.

We obtain the following results. First, full stabilization of the price level after a markup shock is

not the optimal monetary policy in the imperfect information model. Second, whether the optimal

monetary policy in the imperfect information model is similar to the optimal monetary policy with

commitment in the Calvo model depends on the persistence of the markup shock. For ρλ = 0.9,

the two policies appear to be identical, while for ρλ = 0 the two policies are quite different. When

ρλ = 0, in the imperfect information model it is optimal for the central bank to respond to the

shock only in the period of the shock, whereas in the Calvo model it is optimal for the central

bank to commit to respond to the shock also in future periods when the shock no longer affects the

desired markup.

6.2 Rational inattention

Proposition 5 Consider the optimal monetary policy problem (55)-(68) with (69)-(73). Suppose

σ2ε = ρa = 0 and suppose σ
2
λ > 0 and ρλ = 0. Consider monetary policies of the form mt = g0λt

and equilibria of the form pt = θλt. Assume μ > 0. Define

b ≡

s
ω (φcg0 + φλ)

2 σ2λ ln (2)

μ
. (80)

First, we characterize the set of equilibria for given monetary policy g0 ∈ R. If and only if b ≤ 1,

there exists an equilibrium with

κ∗ = 0. (81)

4See chapters 6 and 7 in Woodford (2003) for a detailed description of optimal monetary policy in the Calvo

model.
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If and only if φc ∈
¡
0, 12

¤
and b ≥

p
4φc (1− φc) or φc >

1
2 and b ≥ 1, there exists an equilibrium

with

κ∗ = log2

Ã
b+

p
b2 − 4φc (1− φc)

2φc

!
. (82)

If and only if φc ∈
¡
0, 12

¤
and b ∈

hp
4φc (1− φc), 1

i
, there exists an equilibrium with

κ∗ = log2

Ã
b−

p
b2 − 4φc (1− φc)

2φc

!
. (83)

Furthermore, in equilibrium

pt =
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
λt, (84)

ct =

"
g0 −

(φcg0 + φλ)
¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

#
λt, (85)

and

E
h
(pi,t − pt)

2
i
=

μ

ω ln (2)

³
1− 2−2κ∗

´
. (86)

Second, we characterize optimal monetary policy. If φc ∈
£
1
2 ,∞

¢
, there exists a unique equilibrium

for any policy g0 ∈ R and the unique optimal monetary policy is

g∗0 =

⎧⎨⎩ 0 if ωφ2λσ
2
λ ln(2)
μ ≤ 1

−φλ
φc
+ 1

φc

q
μ

ωσ2λ ln(2)
if ωφ2λσ

2
λ ln(2)
μ > 1

. (87)

At the optimal monetary policy, firms devote no attention to variation in the desired markup,

κ∗ = 0, and thus the price level does not respond to markup shocks.

Proof. See Appendix C.

Figure 2 depicts an example. This example illustrates how the optimal monetary policy, g∗0,

the price setters’ equilibrium attention at the optimal monetary policy, κ∗, and welfare vary with

μ/ω, where μ ≥ 0 is the price setters’ per-period marginal cost of attention and ω appears in the

price setters’ objective (69). At the optimal monetary policy, price setters devote no attention to

markup shocks and therefore prices do not respond to markup shocks. This result holds for any

strictly positive cost of attention. The cost of attention can be arbitrarily small so long as it is not

zero.
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7 The value of commitment

There is value of commitment in the Calvo model when there are markup shocks, σ2λ > 0. By

contrast, there is no value of commitment in the model with exogenous dispersed information

because in that model future monetary policy simply does not affect today’s price setting decisions.

Finally, there is value of commitment in the rational inattention model when there are markup

shocks, σ2λ > 0, but the value of commitment in the rational inattention model is qualitatively

different from the value of commitment in the Calvo model. In the rational inattention model,

there is value of commitment to a future monetary policy because then the private sector can trust

the central bank that not paying attention to variation in the desired markup is optimal.

8 Conclusion

This paper studies optimal monetary policy in a model with exogenous dispersed information and

in a rational inattention model. In the model with exogenous dispersed information, complete

stabilization of the price level is optimal after aggregate productivity shocks but not after markup

shocks. By contrast, in the rational inattention model, complete stabilization of the price level

is optimal both after aggregate productivity shocks and after markup shocks. Furthermore, in

the model with exogenous dispersed information, there is no value from commitment to a future

monetary policy, while in the rational inattention model there is value from commitment to a

future monetary policy because then the private sector can trust the central bank that not paying

attention to certain variables is optimal.
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A Proof of Proposition 1

First, we introduce notation. Let xt denote the vector of all arguments of the function v given by

equation (26) that are endogenous variables:

x0t =
³
ct ĉ1,t · · · ĉI−1,t

´
. (88)

Let zt denote the vector of all arguments of the function v given by equation (26) that are exogenous

variables:

z0t =
³
at λt

´
. (89)

Second, we compute a log-quadratic approximation to the expression for the expected discounted

sum of period utility (22). Let ṽ denote the second-order Taylor approximation to v at the non-

stochastic steady state. We have

E

" ∞X
t=0

βtṽ (xt, zt)

#

= E

" ∞X
t=0

βt
µ
v (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¶#
, (90)

where hx is the vector of first derivatives of v with respect to xt evaluated at the non-stochastic

steady state, hz is the vector of first derivatives of v with respect to zt evaluated at the non-

stochastic steady state, Hx is the matrix of second derivatives of v with respect to xt evaluated

at the non-stochastic steady state, Hz is the matrix of second derivatives of v with respect to zt

evaluated at the non-stochastic steady state, and Hxz is the matrix of second derivatives of v with

respect to xt and zt evaluated at the non-stochastic steady state. Third, we rewrite equation (90)

using condition (30). Let ωt denote the following vector

ω0t =
³
x0t z0t 1

´
. (91)

Let ωn,t and ωk,t denote the nth and kth element of ωt. Condition (30) implies that

∞X
t=0

βtE

¯̄̄̄
v (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¯̄̄̄
<∞. (92)
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It follows that one can change the order of integration and summation on the right-hand side of

equation (90):

E

" ∞X
t=0

βtṽ (xt, zt)

#

=
∞X
t=0

βtE

∙
v (0, 0) + h0xxt + h0zzt +

1

2
x0tHxxt + x0tHxzzt +

1

2
z0tHzzt

¸
. (93)

See Rao (1973), p. 111. Condition (30) also implies that the infinite sum on the right-hand side of

equation (93) converges to an element in R. Fourth, we define the vector x∗t . In each period t ≥ 0,

the vector x∗t is defined by

hx +Hxx
∗
t +Hxzzt = 0. (94)

We will show below that Hx is an invertible matrix. Therefore, one can write the last equation as

x∗t = −H−1
x hx −H−1

x Hxzzt. (95)

Hence, x∗t is uniquely determined and the vector ωt with xt = x∗t satisfies condition (30). Fifth,

equation (93) implies that

E

" ∞X
t=0

βtṽ (xt, zt)

#
−E

" ∞X
t=0

βtṽ (x∗t , zt)

#

=
∞X
t=0

βtE

∙
h0x (xt − x∗t ) +

1

2
x0tHxxt −

1

2
x∗0t Hxx

∗
t + (xt − x∗t )

0Hxzzt

¸
. (96)

Using equation (94) to substitute for Hxzzt in the last equation and rearranging yields

E

" ∞X
t=0

βtṽ (xt, zt)

#
−E

" ∞X
t=0

βtṽ (x∗t , zt)

#

=
∞X
t=0

βtE

∙
1

2
(xt − x∗t )

0Hx (xt − x∗t )

¸
. (97)

Sixth, we compute the vector of first derivatives and the matrices of second derivatives appearing

in equations (95) and (97). We obtain

hx = 0, (98)

Hx = −C1−γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ − 1 + 1
α (1 + ψ) 0 · · · · · · 0

0 2 1+Λ−αI(1+Λ)α
1+Λ−α
I(1+Λ)α · · · 1+Λ−α

I(1+Λ)α
... 1+Λ−α

I(1+Λ)α

. . . . . .
...

...
...

. . . . . . 1+Λ−α
I(1+Λ)α

0 1+Λ−α
I(1+Λ)α . . . 1+Λ−α

I(1+Λ)α 2 1+Λ−αI(1+Λ)α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (99)
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and

Hxz = C1−γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
α (1 + ψ) 0

0 0
...

...
...

...

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (100)

Seventh, substituting equations (98)-(100) into equation (94) yields the following system of I equa-

tions:

c∗t =
1
α (1 + ψ)

γ − 1 + 1
α (1 + ψ)

at, (101)

and, for all i = 1, . . . , I − 1,

ĉ∗i,t +
I−1X
k=1

ĉ∗k,t = 0. (102)

Finally, we rewrite equation (102). Summing equation (102) over all i 6= I yields

I−1X
i=1

ĉ∗i,t = 0. (103)

Substituting the last equation back into equation (102) yields

ĉ∗i,t = 0. (104)

Collecting equations (97), (99), (101) and (104), we arrive at Proposition 1.

B Proof of Proposition 4

Step 1: Substituting at = 0, the cash-in-advance constraint ct = mt − pt, the monetary policy

mt = g0λt, and pt = θλt into the equation for the profit-maximizing price (59) yields

p∗i,t = [(1− φc) θ + φcg0 + φλ]λt.

The price set by firm i in period t then equals

pi,t = [(1− φc) θ + φcg0 + φλ]E [λt|Ii,t]

= [(1− φc) θ + φcg0 + φλ]
σ2λ

σ2λ + σ2ζ

¡
λt + ζi,t

¢
.
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The price level in period t is then given by

pt = [(1− φc) θ + φcg0 + φλ]
σ2λ

σ2λ + σ2ζ
λt.

Thus, the unique rational expectations equilibrium of the form pt = θλt is given by the solution to

the equation

θ = [(1− φc) θ + φcg0 + φλ]
σ2λ

σ2λ + σ2ζ
.

Rearranging yields

θ =
(φcg0 + φλ)

σ2λ
σ2λ+σ

2
ζ

1− (1− φc)
σ2λ

σ2λ+σ
2
ζ

=
φcg0 + φλ

φc +
σ2ζ
σ2λ

.

Hence,

pt =
φcg0 + φλ

φc +
σ2ζ
σ2λ

λt (105)

ct =

σ2ζ
σ2λ
g0 − φλ

φc +
σ2ζ
σ2λ

λt (106)

pi,t − pt =
φcg0 + φλ

φc +
σ2ζ
σ2λ

ζi,t. (107)

Step 2: Substituting equations (106)-(107), equation (60) and at = 0 into the central bank’s

objective (55) yields

− 1

1− β

C1−γ

2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

³
γ − 1 + 1+ψ

α

´⎛⎝ σ2ζ

σ2
λ

g0−φλ

φc+
σ2
ζ

σ2
λ

⎞⎠2 σ2λ
+1+Λ−α
(1+Λ)α

¡
1 + 1

Λ

¢2⎛⎝φcg0+φλ

φc+
σ2
ζ

σ2
λ

⎞⎠2 σ2ζ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

If σ2ζ > 0, the g0 that maximizes this expression is

g0 =

γ−1+1+ψ
α

1+Λ−α
(1+Λ)α(1+

1
Λ)

2φλ − φcφλ

γ−1+1+ψ
α

1+Λ−α
(1+Λ)α(1+

1
Λ)

2

σ2ζ
σ2λ
+ φ2c

. (108)
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C Proof of Proposition 5

Step 1: Substituting at = 0, the cash-in-advance constraint ct = mt − pt, the monetary policy

mt = g0λt, and pt = θλt into the equation for the profit-maximizing price (59) yields

p∗i,t = [(1− φc) θ + φcg0 + φλ]λt.

The attention problem of firm i reads

min
κ∈R+

nω
2
E
h¡
pi,t − p∗i,t

¢2i
+ μκ

o
,

subject to

p∗i,t = [(1− φc) θ + φcg0 + φλ]λt,

pi,t = E
£
p∗i,t|sλ,i,t

¤
,

sλ,i,t = λt + ζi,t,

and
1

2
log2

Ã
σ2λ
σ2λ|sλ

!
≤ κ.

The solution to this attention problem is

κ∗ =

⎧⎪⎨⎪⎩
1
2 log2

µ
ω[(1−φc)θ+φcg0+φλ]2σ2λ

μ
ln(2)

¶
if ω[(1−φc)θ+φcg0+φλ]2σ2λ

μ
ln(2)

≥ 1

0 otherwise
. (109)

The price set by firm i in period t then equals

pi,t = [(1− φc) θ + φcg0 + φλ]E [λt|sλ,i,t]

= [(1− φc) θ + φcg0 + φλ]
σ2λ

σ2λ + σ2ζ

¡
λt + ζi,t

¢
= [(1− φc) θ + φcg0 + φλ]

³
1− 2−2κ∗

´ ¡
λt + ζi,t

¢
, (110)

where
σ2λ
σ2ζ
= 22κ

∗ − 1. (111)

The price level and composite consumption in period t are then given by

pt = [(1− φc) θ + φcg0 + φλ]
³
1− 2−2κ∗

´
λt, (112)
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and

ct =
h
g0 − [(1− φc) θ + φcg0 + φλ]

³
1− 2−2κ∗

´i
λt. (113)

Thus, the set of rational expectations equilibria of the form pt = θλt is given by the solutions to

the following two equations

θ = [(1− φc) θ + φcg0 + φλ]
³
1− 2−2κ∗

´
, (114)

and

κ∗ =

⎧⎪⎨⎪⎩
1
2 log2

µ
ω[(1−φc)θ+φcg0+φλ]2σ2λ

μ
ln(2)

¶
if ω[(1−φc)θ+φcg0+φλ]2σ2λ

μ
ln(2)

≥ 1

0 otherwise
. (115)

Step 2: Corner solution. We now study under which conditions there exists a solution to

equations (114)-(115) with the property κ∗ = 0. We call this a corner solution. It follows from

equation (114) that κ∗ = 0 implies θ = 0. Furthermore, it follows from equation (115) that for

θ = 0 we have κ∗ = 0 if and only if

ω (φcg0 + φλ)
2 σ2λ

μ
ln(2)

≤ 1. (116)

Thus, there exists a rational expectations equilibrium of the form pt = θλt with κ∗ = 0 if and only

if condition (116) is satisfied.

Step 3: Interior solutions. Next we study under which conditions there exists a solution to

equations (114)-(115) with the property

κ∗ =
1

2
log2

Ã
ω [(1− φc) θ + φcg0 + φλ]

2 σ2λ
μ

ln(2)

!
. (117)

We call this an interior solution. Solving equation (114) for θ yields

θ =
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
. (118)

Substituting the last equation into the equation before yields

κ∗ =
1

2
log2

⎛⎜⎜⎜⎝
ω

∙
1

1−(1−φc)(1−2−2κ
∗)

¸2
(φcg0 + φλ)

2 σ2λ

μ
ln(2)

⎞⎟⎟⎟⎠ . (119)
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Rearranging this equation yields a quadratic equation in 2κ
∗

φcx
2 −

vuutω (φcg0 + φλ)
2 σ2λ

μ
ln(2)

x+ 1− φc = 0, (120)

where

x ≡ 2κ∗ . (121)

An interior solution has to satisfy this quadratic equation as well as: x ∈ R and x ≥ 1. Define

b ≡

vuutω (φcg0 + φλ)
2 σ2λ

μ
ln(2)

. (122)

The quadratic equation (120) has two solutions:

x1 =
b+

p
b2 − 4φc (1− φc)

2φc
, (123)

and

x2 =
b−

p
b2 − 4φc (1− φc)

2φc
. (124)

We now check whether these two solutions satisfy x ∈ R and x ≥ 1. First, consider the case of

φc ∈
¡
0, 12

¤
. Then x1 and x2 are real if and only if b ≥

p
4φc (1− φc). At b =

p
4φc (1− φc), we have

x1 = x2 =
q

1
φc
− 1 ≥ 1. It is straightforward to show that x1 is increasing in b and thus x1 ≥ 1 for

all b ≥
p
4φc (1− φc), while x2 is decreasing in b and x2 ≥ 1 for all b ∈

hp
4φc (1− φc), 1

i
. Hence,

if φc ∈
¡
0, 12

¤
, then x1 is an equilibrium so long as b ≥

p
4φc (1− φc), while x2 is an equilibrium

so long as b ∈
hp
4φc (1− φc), 1

i
. Second, consider the case of φc ∈

¡
1
2 , 1
¤
. Again x1 and x2 are

real if and only if b ≥
p
4φc (1− φc). At b =

p
4φc (1− φc), we have x1 = x2 =

q
1
φc
− 1 < 1. It is

straightforward to show that x1 is increasing in b and x1 ≥ 1 for all b ≥ 1, while x2 is non-increasing

in b and thus x2 < 1 for all b ≥
p
4φc (1− φc). Hence, if φc ∈

¡
1
2 , 1
¤
, then x1 is an equilibrium so

long as b ≥ 1, while x2 is not an equilibrium. Third, consider the case of φc > 1. Then x1 and

x2 are real for all b ≥ 0. At b = 0, we have x1 =
q
1− 1

φc
< 1 and x2 = −

q
1− 1

φc
< 0. It is

straightforward to show that x1 is increasing in b and x1 ≥ 1 for all b ≥ 1, while x2 < 0 for all

b ≥ 0. Hence, if φc > 1, then x1 is an equilibrium so long as b ≥ 1, while x2 is not an equilibrium.

In summary, if and only if φc ∈
¡
0, 12

¤
and b ≥

p
4φc (1− φc) or φc > 1

2 and b ≥ 1, then x1 is

an equilibrium. Furthermore, if and only if φc ∈
¡
0, 12

¤
and b ∈

hp
4φc (1− φc), 1

i
, then x2 is an

equilibrium.
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Step 4: Consumption variance and price dispersion. We now derive expressions for

prices, the price level, composite consumption, the variance of composite consumption and price

dispersion that will be useful. Solving equation (114) for θ and substituting this equation for θ into

equations (110)-(113) yields

pi,t =
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

¡
λt + ζi,t

¢
, (125)

pt =
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
λt, (126)

ct =

"
g0 −

(φcg0 + φλ)
¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

#
λt, (127)

and
σ2λ
σ2ζ
= 22κ

∗ − 1. (128)

Equation (127) implies

E
£
c2t
¤
=

"
g0 −

(φcg0 + φλ)
¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

#2
σ2λ. (129)

Equations (125)-(126) imply

E
h
(pi,t − pt)

2
i
=

"
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)

#2
σ2ζ . (130)

In the case of an interior solution, equation (119) holds. Substituting equation (119) into equation

(130) yields

E
h
(pi,t − pt)

2
i
=

μ
ln(2)

ωσ2λ
22κ

∗
³
1− 2−2κ∗

´2
σ2ζ

=

μ
ln(2)

ωσ2λ

1

22κ∗

³
22κ

∗ − 1
´2

σ2ζ . (131)

Substituting equation (128) into the last equation yields

E
h
(pi,t − pt)

2
i
=

μ
ln(2)

ω

³
1− 2−2κ∗

´
. (132)

Hence, in the case of an interior solution, price dispersion can be expressed as a simple function of

(μ/ω) and the equilibrium attention κ∗. Furthermore, note that equation (132) also holds in the

case of a corner solution because E
h
(pi,t − pt)

2
i
= 0 at a corner solution.
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Step 5: Optimal monetary policy has to satisfy g0≥ −φλ
φc
. First, at g0 = −φλ

φc
, we

have b = 0 and thus the unique equilibrium is a corner solution. It follows that at g0 = −φλ
φc

price dispersion equals zero and consumption variance equals E
£
c2t
¤
=
³
φλ
φc

´2
σ2λ. Second, consider

g0 < −φλ
φc
. Consumption variance at g0 < −φλ

φc
is strictly larger than consumption variance at

g0 = −φλ
φc
. When the equilibrium at g0 < −φλ

φc
is a corner solution, this follows from the fact

that at a corner solution consumption variance equals E
£
c2t
¤
= g20σ

2
λ. When the equilibrium at

g0 < −φλ
φc
is an interior solution, this follows from the fact that consumption variance is given by

equation (129) and, for all g0 < −φλ
φc
, we have

g0 −
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
< −φλ

φc
. (133)

In addition, price dispersion at g0 < −φλ
φc
is weakly larger than price dispersion at g0 = −φλ

φc
. The

reason is that price dispersion is always weakly larger than zero. In summary, a policy g0 < −φλ
φc

yields strictly larger consumption variance and weakly larger price dispersion than the policy g0 =

−φλ
φc
. Hence, a policy g0 < −φλ

φc
cannot be optimal. This result implies that a policy that makes

the price level fall after a positive markup shock cannot be optimal. See equation (126).

Step 6: Uniqueness of equilibrium when φc ≥ 1
2 . When φc ≥ 1

2 , there exists a unique

equilibrium for any policy g0 ∈ R. In particular, if b < 1 then κ∗ = 0 is the unique equilibrium,

if b = 1 then κ∗ = log2 (x1) = 0 is the unique equilibrium, and if b > 1 then κ∗ = log2 (x1) is the

unique equilibrium. See steps 2 and 3.

Step 7: Optimal monetary policy when φc ≥ 1
2 . First, in the derivation of optimal

monetary policy we can focus on g0 ≥ −φλ
φc
, or equivalently φcg0 + φλ ≥ 0. See step 5. Second,

consider the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ ≤ 1. At the policy g0 = 0, we have b ≤ 1 and

thus κ∗ = 0 is the unique equilibrium. Therefore, at the policy g0 = 0, consumption variance

equals E
£
c2t
¤
= 0 and price dispersion equals E

h
(pi,t − pt)

2
i
= 0. Furthermore, at any policy

g0 6= 0, consumption variance equals E
£
c2t
¤
> 0 or price dispersion equals E

h
(pi,t − pt)

2
i
> 0. In

particular, if the equilibrium at the policy g0 6= 0 is an equilibrium with κ∗ = 0 then E
£
c2t
¤
> 0,

while if the equilibrium at the policy g0 6= 0 is an equilibrium with κ∗ > 0 then E
h
(pi,t − pt)

2
i
> 0.

See equations (129) and (132). It follows from objective (55) that in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ ≤ 1 the unique optimal monetary policy is g∗0 = 0. Third, consider the case of φc ≥ 1

2
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and ωφ2λσ
2
λ ln(2)
μ > 1. Define ḡ0 as the value of g0 ∈

h
−φλ

φc
,∞
´
at which b = 1. Formally,

ḡ0 = −
φλ
φc
+
1

φc

r
μ

ωσ2λ ln (2)
. (134)

Note that ωφ2λσ
2
λ ln(2)
μ > 1 implies ḡ0 < 0. Thus, to prevent firms from devoting attention to markup

shocks, the central bank has to lower the money supply after a positive markup shock. Which policy

is the optimal monetary policy among all policies g0 ∈
h
−φλ

φc
, ḡ0

i
? For all g0 ∈

h
−φλ

φc
, ḡ0

i
, we have

b ≤ 1 and thus κ∗ = 0 is the unique equilibrium. Therefore, for all g0 ∈
h
−φλ

φc
, ḡ0

i
, consumption

variance equals E
£
c2t
¤
= g20σ

2
λ and price dispersion equals E

h
(pi,t − pt)

2
i
= 0. It follows from

objective (55) that the unique optimal monetary policy among all policies g0 ∈
h
−φλ

φc
, ḡ0

i
is g0 = ḡ0

because this is the policy that causes the smallest consumption variance. Which policy is the

optimal monetary policy among all policies g0 ≥ ḡ0? For all g0 ≥ ḡ0, we have b ≥ 1 and thus

κ∗ = log2 (x1) is the unique equilibrium. We now show that, when g0 ≥ −φλ
φc
and κ∗ = log2 (x1),

composite consumption is given by a simple expression. Equation (127) states that in equilibrium

composite consumption equals

ct = ξλt, (135)

with

ξ = g0 −
(φcg0 + φλ)

¡
1− 2−2κ∗

¢
1− (1− φc) (1− 2−2κ

∗)
. (136)

Furthermore, when κ∗ = log2 (x1), equation (119) holds. Rearranging equation (119) using φcg0 +

φλ ≥ 0 yields
φcg0 + φλ

1− (1− φc) (1− 2−2κ
∗)
=

r
μ

ωσ2λ ln (2)
2κ
∗
. (137)

Substituting the last equation into the equation before yields

ξ = g0 −
r

μ

ωσ2λ ln (2)

³
2κ
∗ − 2−κ∗

´
. (138)

Using again κ∗ = log2 (x1), we arrive at

ξ = g0 −
r

μ

ωσ2λ ln (2)

µ
x1 −

1

x1

¶
, (139)

where

x1 =
b+

p
b2 − 4φc (1− φc)

2φc
, (140)

33



and

b =

vuutω (φcg0 + φλ)
2 σ2λ

μ
ln(2)

. (141)

In addition, solving equation (141) for g0 using φcg0 + φλ ≥ 0 yields

g0 = −
φλ
φc
+

b

φc

r
μ

ωσ2λ ln (2)
. (142)

Substituting equations (140) and (142) into equation (139) yields

ξ = −φλ
φc
+

r
μ

ωσ2λ ln (2)

⎡⎢⎣ b

φc
− b+

p
b2 − 4φc (1− φc)

2φc
+

1

b+
√
b2−4φc(1−φc)
2φc

⎤⎥⎦ . (143)

Finally, rearranging the term in square brackets in equation (143) yields

ξ = −φλ
φc
+

r
μ

ωσ2λ ln (2)

"
2

b+
p
b2 − 4φc (1− φc)

#
. (144)

Thus, when g0 ≥ −φλ
φc
and κ∗ = log2 (x1), composite consumption is given by equations (135) and

(144). Note that equation (144) implies: (i) if φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1 then ξ < 0 at b = 1, and

(ii) ξ is strictly decreasing in b for all b ≥ 1. Hence, if φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1 then consumption

variance E
£
c2t
¤
= ξ2σ2λ is strictly increasing in g0 for all g0 ≥ ḡ0. Moreover, equations (132),

κ∗ = log2 (x1), (140) and (141) imply that price dispersion E
h
(pi,t − pt)

2
i
is strictly increasing in

g0 for all g0 ≥ ḡ0. It follows from objective (55) that in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1, the

unique optimal monetary policy among all policies g0 ≥ ḡ0 is g0 = ḡ0. Finally, combining results

yields that in the case of φc ≥ 1
2 and

ωφ2λσ
2
λ ln(2)
μ > 1, the unique optimal monetary policy among

all policies g0 ∈ R is g0 = ḡ0. In summary, when φc ≥ 1
2 , there exists a unique equilibrium for any

policy g0 ∈ R and the unique optimal monetary policy is

g∗0 =

⎧⎨⎩ 0 if ωφ2λσ
2
λ ln(2)
μ ≤ 1

−φλ
φc
+ 1

φc

q
μ

ωσ2λ ln(2)
if ωφ2λσ

2
λ ln(2)
μ > 1

. (145)
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