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Abstract

A property of the Kiyotaki and Wright (1989) model of commodity money as a medium of exchange

is the multiplicity of dynamic equilibria as discussed in Kehoe et al. (1993). We adapt the model to

allow the meeting rate to depend on the length of the time period and focus on symmetric dynamic

equilibria in a symmetric environment. We characterize the set of points in the state-payoff space that

are consistent with equilibrium. With a time period of any fixed length, there is a large set of equilibria

that includes cycles, sunspots, and other non-Markovian strategies, while in the continuous time limit

there is a unique, rather simple, dynamic equilibrium. Despite the multiplicity, for short period lengths

all equilibrium paths are well approximated by the unique equilibrium of the continuous time limit.
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1 Introduction

In their seminal contribution, Kiyotaki and Wright (1989) introduced a search model of commodity

money in which goods with no intrinsic value can function as a store of value, sparking a robust

literature. Characterizing the dynamics of this model can be difficult because, as shown in Ke-

hoe et al. (1993), the set of dynamic equilibria is large and includes cycles, sunspots, and other

non-Markovian equilibria. The set of symmetric equilibria in a symmetric economy retains this

multiplicity, but in the continuous time limit there is a unique dynamic equilibrium.

The fact that there are multiple equilibria for any strictly positive period length but a unique

equilibrium in continuous time gives the impression that there is a qualitative difference between

discrete and continuous time. Many of the recent papers in the literature start in continuous time,

in part because the dynamics are significantly easier to characterize. If the relevant time period is

indeed discrete, one might think that a continuous time approximation may be ignoring potentially

interesting and relevant dynamics. We show that despite the qualitative difference, the unique

equilibrium in continuous time is ”close” to all of the equilibria in the discrete time model when

the period length is short.

We describe the role of the length of the time period in generating multiplicity. We focus on

symmetric equilibria in an economy with symmetric parameters and initial conditions, where both

the discount factor and the meeting rate are adapted to depend on the length of the time period.

We characterize the set of points in the state-payoff space that are consistent with a symmetric

equilibrium. The size of this set varies directly with the probability of meeting a trading partner

within a single period, decreasing monotonically as the period length shrinks.

We strengthen this result by showing that the set of equilibrium paths of the economy converges

1



uniformly to the equilibrium path of the continuous time limit of the model, as do a local average of

the actions played. This suggests that if the relevant period length is short, all dynamic equilibria

are well approximated by the unique equilibrium of the continuous time limit.

In a search model of commodity money, multiplicity of dynamic equilibria arises from several

sources. A natural source is asymmetric strategies potentially driven by differences in storage

costs across goods.1 A second source is an endogenous price level. Zhou (2003) shows that in

a search model of commodity money, the price level is indeterminate when the utility value of

the commodity money is small enough. The various equilibria that arise from these sources can

be helpful in thinking about currency substitution patterns. In contrast to those arising from

asymmetries, the equilibria arising from the length of the time period disappear when the economy

is modeled in continuous time, and the relevance of the multiplicity shrinks with the period length.

In a dynamic rational expectations equilibrium, actions generate and must be consistent with

the evolution of the economy. As time is divided into more subperiods, there are more restrictions

on behavior in a given equilibrium as the set of choices that must be consistent with equilibrium

expands. In the Kiyotaki and Wright (1989) model, this reduces the size of the set of potential

equilibrium paths and payoffs.

In some contexts, dividing time into more subperiods can increase the set of feasible payoffs.

The well known Folk theorem implies that decreasing period length can expand the set of possible

equilibrium payoffs because the increased number of restrictions can reinforce cooperation. Faingold

(2008) shows that in a game with imperfect monitoring, the set of possible payoffs available to a

long-lived player increases as periods are divided into shorter subperiods, allowing the player to

overcome commitment problems.

1Kehoe et al. (1993) discuss different steady states that can arise in the model. Renero (1998) discusses the
stability of these steady states.
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The role of the length of the time period has been studied in relation to cycles and sunspots in

the real business cycle literature. In these models, when the period length is short enough cycles

disappear. While superficially similar, the two models have disparate sources of multiplicity, and

consequently the relationship between period length and multiplicity differ. Multiplicity in the

RBC model stems from increasing returns or monopolistic competition (see Benhabib and Farmer

(1999)). As the period length shrinks, there is a critical period length below which multiplicity

disappears (see Boldrin and Montrucchio (1986) and Hintermaier (2005)). In contrast, in the Kehoe

et al. (1993) model, there is a large multiplicity of equilibria for any positive period length. The

multiplicity arises from the use of mixed strategies when agents are indifferent between two actions.

Cass and Shell (1983) and Azariadis and Guesnerie (1986) show that multiplicity and sunspots

are present in OLG models, while Lomeli and Temzelides (2002) and Lagos and Wright (2003) argue

that there is a strong relationship between these and search models. In a typical OLG model, as

the period length decreases two things change: the length of the life of the agents and also the total

number of transactions in a given unit of time. In contrast, in a search theoretic model one can

change the length of the time period leaving the average number of transactions unchanged. In a

sense the changes in the period length have different implications for the interpretation of the two

types of models.

Section 2 sets up the economic environment while Section 3 describes symmetric equilibria.

Section 4 gives examples of the many types of equilibria that can arise and shows that these exist

for any finite period length. We characterize the set of perfect foresight equilibria in Section 5 and

show how this varies with the period length. Section 6 extends these results to include sunspot

equilibria.
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2 Model

Time is discrete with h being the length of time elapsed between periods. There are three types of

individuals, indexed by the type of good they consume. An individual of type i gets instantaneous

utility u from consuming good i, and produces good i+ 1 (mod 3) at zero cost.

Each period, an individual has a random encounter with another individual with probability

α(h) and meeting each type of individual is equally likely. During this encounter, the two individuals

can exchange goods and consume. Immediately after consumption the individual produces a new

good at zero cost. The agent always stores a good at cost c per unit of time.

Even though there is never a double coincidence of wants, an individual may accept a good that

she does not want to consume in order to exchange it later for the good she desires. In this way,

the intermediate good acts as a store of value.

Individuals discount future flows with the discount factor β(h) < 1. We assume that β(h) is

strictly decreasing and that limh↓0 β(h) = 1. In addition, we assume that α(h) is strictly increasing,

and that limh↓0 α(h) = 0.

2.1 Strategies and Equilibrium

Let I be the set of types of individuals and T = {nh}∞n=0 denote the set of times at which trans-

actions can take place. Let pit ∈ [0, 1] be the fraction of individuals of type i that are storing good

i+ 1 at time t, summarized by the vector Pt ≡
{
pit
}
i∈I .

There may be equilibria in which individuals coordinate their actions using the realizations of a

sunspot variable. Let {zt}t∈T be an extrinsic sequence of random variables that have no direct effect

on the economic environment, and let zt = (z0, ...zt) be a history of realizations. The distribution
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of zt can depend on both the history of realizations and t, but it turns out that the specific random

process that drives zt plays no role in our characterization of the set of equilibria.2 Let Zt be the

support of zt.

A strategy at time t is a function τt : I × I × I × Zt → [0, 1] that gives the probability that

an individual is willing to exchange goods. τt(i, j, j
′, zt) is the strategy for an individual of type i

storing good j that meets another individual storing good j′ at time t after the sunspot history zt.

We restrict strategies so that τt(i, j, j
′, zt) = 1 − τt(i, j′, j, zt), so that preferences over good j and

j′ are consistent at a given point in time.

Following the accounting convention of Kehoe et al. (1993), let V i,j
t denote the present dis-

counted value for an individual of type i storing good j at the end of the period at time t.

V i,j
t

(
zt
)

= −ch+ max
{τt+nh(·)}∞n=1

E

{ ∞∑
n=1

β(h)n
(
uIut+nh − ch

)∣∣∣∣∣ zt
}

(1)

where Iut is an indicator that tells whether the individual consumes her good at time t and the

expectation operator accounts for the the uncertainty of meeting trading partners and the possible

realizations of the stochastic variable zt. Note that an individual of type i always consumes good

i as soon as she receives it.

Figure 1 describes the timing of the environment and the accounting of the model.

Definition 1 An Equilibrium is a sequence of strategies {τt} that satisfy (i) maximization: τt

maximizes expected utility (equation (1)) given strategies of others and the distribution of inventories

Pt, and (ii) rational expectations: given τt, Pt is the resulting distribution of inventories.

When an individual meets a trading partner with the good she wants to consume, she will always

2Formally, let zt ∼ µt(·; zt−h, h).
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Figure 1: Timeline
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At the beginning of period t, Pt describes the distribution of inventories and individual i is holding good j. The
individual meets a trading partner with probability α(h) and the sunspot variable zt is realized. If she meets a
trading partner, each chooses a trading strategy τt and trade may take place. If there is a trade, the individuals may

consume and produce new goods. V i,j̃
t denotes the present discounted value at this point, where j̃ is the good that

individual i is storing at the end of period t. The individual pays the storage cost and the period ends. Discounting
occurs in between periods.

want to make the trade. When she meets a trading partner that is storing the same good as her,

there are no gains from trade. Without loss of generality we set the trading strategy to be zero. The

only strategy that is not pinned down immediately is whether to trade one type of good in order

to store the other type of good. To simplify notation, let sit be the probability that an individual

of type i wants to exchange good i+ 1 for good i+ 2. Formally, sit
(
zt
)

= τt
(
i, i+ 1, i+ 2, zt

)
.

The probability of trade and the expected payoff from a meeting depend on the types of indi-

viduals that meet and the goods each is storing. Table 1 shows the strategies of both individuals

and the potential payoffs for all possible relevant meetings.

We can use the probabilities of trade in Table 1 to produce an equation describing the evolution
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Table 1: Strategies and Payoffs from Encounters
i holding i+ 1

Strategy of Probability Conditional Expected
Trading Partner i j of Trade Payoff Payoff

j = i+ 1 holding i+ 2 sit 1 sit V i,i+2
t − V i,i+1

t sit

(
V i,i+2
t − V i,i+1

t

)
j = i+ 1 holding i 1 1 1 u u

j = i+ 2 holding i 1 si+2
t si+2

t u si+2
t u

j = i+ 2 holding i+ 1 0 0 0 0 0

i holding i+ 2

Strategy of Probability Conditional Expected
Trading Partner i j of Trade Payoff Payoff

j = i+ 1 holding i+ 2 0 0 0 0 0

j = i+ 1 holding i 1 1− si+1
t 1− si+1

t u+ V i,i+1
t − V i,i+2

t

(
1− si+1

t

) (
u+ V i,i+1

t − V i,i+2
t

)
j = i+ 2 holding i 1 1 1 u+ V i,i+1

t − V i,i+2
t u+ V i,i+1

t − V i,i+2
t

j = i+ 2 holding i+ 1 1− sit 1 1− sit V i,i+1
t − V i,i+2

t (1− sit)
(
V i,i+1
t − V i,i+2

t

)
This table describes the strategies and payoffs from the perspective of an individual of type i. The top panel describes
these when the individual is storing good i+ 1 while the bottom panel describes these when storing i+ 2. Column 1
lists the trading partner. Columns 2 and 3 give the strategies of the individual and the trading partner respectively.
Column 4 gives the probability of trade, the product of columns 2 and 3. Column 5 gives the payoff to the individual if
the trade happens. Column 6 gives the expected payoff to the individual from the encounter, the product of columns
4 and 5.

of inventories pit as a function of the strategies chosen sit,

pit+h
(
zt
)

= pit
(
zt−h

) [
1− α(h)

3 pi+1
t

(
zt−h

)
sit
(
zt
)]

+
(
1− pit

(
zt−h

)) α(h)
3

[(
1− pi+1

t

(
zt−h

)) (
1− si+1

t

(
zt
))

+ pi+2
t

(
zt−h

)]
+
(
1− pit

(
zt−h

)) α(h)
3

[(
1− pi+2

t

(
zt−h

)) (
1− sit

(
zt
))]

(2)

The first term is the probability that an individual of type i was storing good i+ 1 at t and is still

storing good i + 1 at t + h. The second and third terms represent the probability that she was

storing good i+ 2 at t and is now storing i+ 1 at t+ h.

We can also rewrite the sequential problem in equation (1) with a recursive representation. For
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an individual of type i, there are two relevant cases, one for each good she can store. The value of

storing good i+ 1 is,

V i,i+1
t

(
zt
)

= E{−ch+ β(h)V i,i+1
t+h + β(h)α(h)

3 [pi+1
t+hs

i
t+h(V i,i+2

t+h − V
i,i+1
t+h )

+(1− pi+1
t+h)u+ pi+2

t+hs
i+2
t+hu]|zt}

(3)

while the value of holding i+ 2 is

V i,i+2
t

(
zt
)

= E
{
−ch+ β(h)V i,i+2

t+h + β(h)α(h)
3

[(
1− pi+1

t+h

) (
1− si+1

t+h

) (
u+ V i,i+1

t+h − V
i,i+2
t+h

)
+pi+2

t+h

(
u+ V i,i+1

t+h − V
i,i+2
t+h

)
+
(
1− pi+2

t+h

) (
1− sit+h

) (
V i,i+1
t+h − V

i,i+2
t+h

)]
|zt
}

(4)

If holding good i + 1 is more valuable than holding i + 2, the strategy si = 0 is optimal (and

si = 1 for the opposite case). If holding either good is equally valuable then any strategy can be

optimal. Let ∆i
t = V i,i+1

t − V i,i+2
t denote the difference in value between storing i+ 1 and storing

i+ 2. The optimal trading strategy sit can now be expressed as a function of ∆i
t,

sit
(
zt
)
∈



{0} if ∆i
t

(
zt
)
> 0

[0,1] if ∆i
t

(
zt
)

= 0

{1} if ∆i
t

(
zt
)
< 0

(5)

We now can refine the definition of an equilibrium.

Definition 2 For an initial condition, P0, an equilibrium is a sequence of inventories pit, trading

strategies sit, and value functions V i,i+1
t , V i,i+2

t denoted by

{
pit

(
zt−h

)
, sit
(
zt
)
, V i,i+1

t−h

(
zt−h

)
, V i,i+2

t−h

(
zt−h

)}
t∈T,i∈I
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such that (i) equation (2), equation (3), equation (4) and equation (5) are satisfied and (ii) the

transversality conditions limt→∞ β(h)t/hV i,j
t = 0 holds for j ∈ {i+ 1, i+ 2}, i ∈ I.

3 Symmetric Equilibria

We focus on symmetric equilibria and therefore we restrict the inventories so that pit = pt for all

i and trading strategies so that sit = st. In this case, the evolution of inventories in equation (2)

reduces to

pt+h
(
zt
)

= pt
(
zt−h

)
− α(h)

3 p2
t

(
zt−h

)
st
(
zt
)

+α(h)
3

(
1− pt

(
zt−h

)) [
2
(
1− pt

(
zt−h

)) (
1− st

(
zt
))

+ pt
(
zt−h

)] (6)

and the evolution of ∆t is

∆t

(
zt
)

= β(h)E


∆t+h + α(h)

3 u[st+h − pt+h]

−α(h)
3 [pt+hst+h + 2(1− pt+h)(1− st+h) + pt+h]∆t+h

∣∣∣∣∣∣∣∣ z
t

 (7)

The following lemma will assist in the characterization of equilibria. Of particular use, we show

that if {∆} corresponds to value functions that satisfy the sequence problem, then it must have a

uniform bound.

Lemma 1 A sequence
{
pt
(
zt−h

)
, st
(
zt
)
,∆t−h

(
zt−h

)}
zt∈Zt,t∈T represents a symmetric equilib-

rium if and only if (i) equation (5), equation (6), and equation (7) are satisfied and, (ii) there

exists B > 0 such that for every t, Pr
{∣∣∆t−h

(
zt−h

)∣∣ ≤ B} = 1.

Proof. See Appendix A.

Lemma 1 implies that we can look for equilibria in the space
{
pt
(
zt−h

)
, st
(
zt
)
,∆t−h

(
zt−h

)}
zt∈Zt,t∈T.
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3.1 Symmetric Steady State Equilibrium

In this section we show existence and uniqueness of symmetric steady state equilibria. Kehoe et al.

(1993) shows that with asymmetric storage costs there are a finite number of steady state equilibria.

We show that with symmetric costs there is a unique symmetric steady state.

In any steady state equilibrium
{
pt
(
zt−h

)
, st
(
zt
)
,∆t−h

(
zt−h

)}
= {pss, sss,∆ss} for all t ∈ T

and zt ∈ Zt. In this case equation (7) can be rearranged to get

∆ss =
u [sss − pss]

1−β(h)
β(h)

[
α(h)

3

]−1
+ pss + 2(1− pss)(1− sss) + pss

Since the denominator is positive, the value of ∆ss and hence the optimal trading strategy sss

depend on the sign of sss − pss. Consider first the possibility that ∆ss < 0: this would imply

sss = 1 and hence ∆ss ≥ 0, a contradiction. Consider next ∆ss > 0: this would imply sss = 0

and hence ∆ss ≤ 0, also a contradiction. The only remaining possibility is ∆ss = 0 which holds

only if sss = pss which would be consistent with the optimal choice of the trading strategy given

in equation (5). Using the evolution of inventories, equation (6), together with pt = st = pss for all

t ∈ T provides pss = sss = 2
3 .

3.2 The Zero Equilibrium

We next consider a special dynamic equilibrium and label it the the zero equilibrium. As we will

show below, an equilibrium of this type will be the unique surviving equilibrium as the period

length, h goes to zero. The strategies of the zero equilibrium will also be helpful in characterizing

the set of equilibria for any fixed h.

For any h, there exists a unique equilibrium for which ∆t

(
zt
)

= 0 for all t. This equilibrium is
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Markovian, and the strategy played is always st = pt. This conditions implies that the probability

of trading for the desired good is independent of the good the agent is holding.3 It is easy to see that

equation (5) and equation (7) are both satisfied. For any initial condition p0, one can find the se-

quence of inventories by iterating equation (6). Such a sequence of {pt
(
zt−h

)
, st
(
zt
)
,∆t−h

(
zt−h

)
}

satisfies the conditions of Lemma 1 and is therefore an equilibrium.

4 Indeterminacy

Kehoe et al. (1993) show that in a model with asymmetric parameters and asymmetric strategies

there is a large multiplicity of dynamic equilibria. Here we give examples to demonstrate that many

of these equilibria are also present in an environment with symmetric parameters and even with

the restriction of symmetric strategies and initial conditions.

First we show that there is a continuum of deterministic dynamic equilibria in the sense discussed

in section 6 of Kehoe et al. (1993).4 Given the initial condition p0, choose any s0. This gives ph.

From ph there exists strategies consistent with equilibrium such that ∆t = 0 for all t ∈ T (the

strategies of the zero equilibrium). Then, since ∆0 = 0 the choice of s0 is optimal independent of

the value of ∆−h. Because the choice of s0 was arbitrary, each different s0 corresponds to a different

dynamic equilibrium.

Second we can also construct cyclical equilibria. These are different from those discussed in

Kehoe et al. (1993) as the ones we discuss are symmetric, but the idea is similar. We provide an

example for the following parametrization: α(h) = 0.1, β(h) = 0.98, and u = 1. The economy

3If individual 1 is holding good 2 her probability of trading for good 1 with a type 2 is 1− p2 and with type 3 is
p3s3, so that the probability of trading for the desired good is 1− p2 + p3s3. If the individual 1 is holding good 3 her
probability of trading for good 1 with a type 2 is (1 − p2)(1 − s2) and with type 3 is p3, so that the probability of
trading for the desired good is (1−p2)(1− s2) +p3. In a symmetric equilibrium these values are equated when s = p.

4The idea for this type of equilibrium originates with a construction by Aiyagari and Wallace (1992) with fiat
money. Renero (1998) gives examples of equilibria of this type.
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cycles between two triples
{
pnh, snh,∆(n−1)h

}
. When n is odd the economy lies at {0.6737, 1, 0},

and at {0.6659, 0.3174,−0.0114} when n is even.

Figure 2: Example of a cyclical equilibrium


O

p
O

E

The equilibrium is characterized by {pt, st,∆t−h}. In this case: E = {0.6659, 0.3174,−0.0114} and O = {0.6737, 1, 0}.
Parametrization: α(h) = 0.1, β(h) = 0.98 and u = 1.

Third we can also construct non-Markovian equilibria, combining the two previous examples.

For the first 2N −1 periods, individuals play the strategies associated with the cyclical equilibrium

described above. From period 2N on, all individuals play the strategies associated with the zero

equilibrium, so that ∆t = 0. In fact, we can construct an equilibrium in which every odd period

there is a random variable that determines whether the individuals continue to play the cyclical

strategies or the economy reverts to the zero equilibrium.

5 Perfect Foresight Equilibria

In this section we discuss perfect foresight equilibria in which the strategies played are independent

of the realization of zt. While individuals still face uncertainty in terms of meeting trading partners,

pt, st and ∆t are no longer functions of zt and follow deterministic paths. We can therefore drop
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the expectation operator in equation (7).

5.1 Continuous Time Limit of the Perfect Foresight Model

The dynamics of the continuous time limit of the model are simple and easy to describe. There is

a unique equilibrium, in which agents choose s ∈ (0, 1) for all t > 0.

For the continuous time model to be well defined, we assume the following limits exist: Let r =

limh↓0
1
h

(
1

β(h) − 1
)

be the instantaneous discount rate and α0 = limh↓0
α(h)
h be the instantaneous

meeting rate.

As h→ 0, equation (6) and equation (7) simplify to

ṗt =
α0

3

[
−p2

t st + (1− pt) (2(1− pt)(1− st) + pt)
]

(8)

and

r∆t = ∆̇t +
α0

3
u [st − pt]−

α0

3
[ptst + 2(1− pt)(1− st) + pt] ∆t (9)

It is straightforward to show the only symmetric equilibrium is the zero equilibrium, i.e., ∆t = 0

for all t ≥ 0 and the optimal strategy must be st = pt. One can extend the definition of symmetric

equilibrium and Lemma 1 to the continuous case and show that for any equilibrium, {∆t}t≥0 must

have a uniform bound. First, note that ∆t > 0 implies ∆̇t > r∆t and similarly ∆t < 0 implies

∆̇t < r∆t. Together, these imply that if there is a t at which ∆t 6= 0 then |∆| will grow exponentially

and without bound, violating Lemma 1. Lastly, observe that if ∆t = 0, any strategy other than

st = pt will push the economy away from ∆ = 0. These dynamics are summarized by the phase

diagram in Figure 3.

Note also that the paths of pt and ∆t are continuous as the time derivatives of these objects
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are uniformly bounded. This is an important difference between discrete and continuous time as it

restricts the acceptable strategies that are consistent with equilibrium.

Figure 3: Phase diagram for the model in its continuous time formulation
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3
2

p
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The unique equilibrium strategy sets st = pt such that ∆t = 0 for all t. The equilibrium converges to the unique
steady state with pss = 2

3
.

5.2 Properties of the Set of Perfect Foresight Equilibria

In this section we will characterize the set of state-payoff combinations that are consistent with a

symmetric equilibrium for a fixed period length h. In order to do this, it is helpful to discuss the

timing of the model.

A strategy at a given point in time, st, affects both the fraction of individuals storing each type

of good and the relationship between current and future present discounted values. Inspection of

equation (6) and equation (7) reveals that st+h is relevant for the relationship between ∆t and ∆t+h
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on the one hand, and pt+h and pt+2h on the other. In other words, st+h determines the relationship

between (pt+h,∆t) and (pt+2h,∆t+h). Note that this is not an issue for the continuous time limit

of the model.

We now characterize the set of points that are consistent with a symmetric equilibrium.

Proposition 1 A sequence {pt, st,∆t−h}t∈T that satisfies equation (5), equation (6), and equa-

tion (7) is an equilibrium if and only if

∆t ∈
[
∆(pt+h),∆(pt+h)

]

where ∆(p) = −β(h)γ(h)p and ∆(p) = β(h)γ(h)(1− p) with γ(h) = α(h)
3 u.

Proof. See Appendix D.

Figure 4: Phase diagram for the model in its discrete time formulation for a fixed step size h
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Figure 4, a partial phase diagram for a given length of period, h, gives a graphical representation

of the main ideas in the proof of Proposition 1. Note that on the vertical axis we plot ∆
β(h) . This

corresponds to the value at the beginning of the next time period, so that both pt+h and ∆t
β refer

to values at the beginning of period t+ h.

The shaded area represents Γ(h) ≡
{

(p, ∆
β(h)) such that ∆ ∈

[
∆(p),∆(p)

]}
, the set of possible

state-payoff combinations of (pt+h,
∆t
β(h)) that are consistent with a symmetric equilibrium. One

notable feature is that any point (p, ∆
β ) in the shaded area is consistent with an equilibrium in

which (i) pt+h = p and ∆t = ∆ and (ii) ∆t+h = 0. In other words, the economy can go from that

point to ∆ = 0 in one period.

In fact, ∆(p) is the upper bound on the set of ∆’s such that the next period’s ∆ can be zero.

This means that if ∆ is above ∆(p), we can guarantee that the strategy s = 0 is played. Using this

we can show that the changes in ∆ and p are both positive, which means that the next point in the

sequence is also above ∆(p) (this can be seen from the slope of ∆(p)). Because ∆ is continually

increasing, such a sequence will eventually violate the uniform bound implied by Lemma 1.

Similarly, below the ∆(p), we can guarantee the strategy s = 1 is played. This implies that

∆ the next period is more negative. For p > 1/2, p shrinks, implying that the next point in the

sequence is also below ∆(p). For p < 1/2, p rises, so from the phase diagram alone it is unclear

whether the next point is below ∆(p). However, in the proof we show algebraically that this is

indeed the case. At one half, p is unchanged, but ∆ is decreasing. Again, because ∆ is continually

becoming more negative, such a sequence would eventually violate the bound on ∆t.
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5.3 Period Length and the Set of Perfect Foresight Equilibria

The height of set of points consistent with symmetric equilibrium Γ(h) is given by γ(h) = α(h)
3 u. As

h decreases, the area of this set shrinks in proportion to α(h). In the limit, α(h), and hence γ(h),

approaches zero. In this case Figure 4 coincides exactly with the phase diagram of the continuous

time model depicted in Figure 3. The only surviving equilibrium is the zero equilibrium.

The set of equilibrium points is increasing with α(h) because this set is determined by the range

of values from which the next period’s ∆ can be equal to zero. For a given strategy, the expected

change in value is increasing in the meeting rate, as the probability that the strategy is executed

is higher. The larger the expected change in value, the larger the set of initial values that are

consistent with a ∆t+h = 0. This can be seen easily by dividing equation (7) by α(h) and setting

∆t+h = 0.

We can also derive some properties of the sequence of inventories and trading strategies that

are consistent with equilibrium. We show that the for any equilibrium, the sequence of inventories

is ”close” to that of the zero equilibrium. More formally, the set of sequences of inventories that

are consistent with equilibrium converges uniformly to the sequence of inventories of the zero

equilibrium.

Proposition 2 For any h > 0 and p0, let
{
p0
t

}
denote the sequence of inventories for the zero

equilibrium. For any equilibrium, for all t ∈ T

∣∣pt − p0
t

∣∣ ≤ π(h) (10)

where limh→0 π(h) = 0.
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Proof. See Appendix C.1.

After the previous proposition, it may not be surprising that the strategies played will also be

”close” to those of the zero equilibrium. The next proposition shows that as h becomes small, the

local average of the trading strategies converges to the strategies of the zero equilibrium.

Proposition 3 For ε > 0, let N be the largest integer such that ε ≥ (2N + 1)h. Then in any

equilibrium, ∣∣∣∣∣
(

1

2N + 1

N∑
n=−N

st+nh

)
− pt

∣∣∣∣∣ ≤ σ(h, ε) (11)

holds for all t ∈ T, with the property that limε→0 (limh→0 σ(h, ε)) = 0

Proof. See Appendix C.2.

6 All Equilibria

The previous section discussed deterministic, perfect-foresight equilibria. Sunspots can occur if

particular strategies that are chosen depend on random variables that have no intrinsic effect

on the economy; individuals may use the realizations of the random variable to coordinate their

strategies.

Remarkably the set of state-payoff combinations that are consistent with any equilibria coincides

exactly with those of perfect foresight equilibria.

Proposition 4 A sequence
{
pt
(
zt−h

)
, st
(
zt
)
,∆t−h

(
zt−h

)}
zt∈Zt,t∈T is consistent with equilibrium

if and only if

Pr
{

∆t

(
zt
)
∈
[
∆
(
pt+h

(
zt
))
,∆
(
pt+h

(
zt
))]}

= 1

where ∆(p) = −β(h)γ(h)p and ∆(p) = β(h)γ(h)(1− p) with γ(h) = α(h)
3 u
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Proof. See Appendix D.

The idea behind the proof is similar to that of the perfect foresight case. We show that if

∆ is above ∆ then we can guarantee that the strategy s = 0 is played with positive probability.

With this, we can show if ∆ is above ∆ with positive probability, then there must be a positive

probability that the sequence of ∆’s eventually violate the uniform bound given by Lemma 1. For

any perfect foresight equilibrium, a special case, these positive probabilities are equal to 1.

We can also extend Proposition 2 and Proposition 3 to the set of all equilibria by adding

expectations operators to the left hand sides of equation (10) and equation (11). 5

7 Conclusion

In a model with commodity money as a medium of exchange, Kehoe et al. (1993) demonstrates

the existence of a large set of dynamic equilibria. We have argued that the period length is a

crucial determinant of the possible payoffs for any given initial condition. We analyze an economy

with symmetric parameters and focus on symmetric strategies in order to highlight the role of

the length of the time period. We characterize the set of state-payoff combinations are consistent

with equilibrium and show that this set varies directly with the period length. If the probability

of meeting another agent is proportional to the length of the time period, the set of state-payoff

combinations is proportional to the period length. The continuous time limit of the model has a

unique dynamic symmetric equilibrium with a simple characterization.

In some contexts multiplicity can give rise to vastly different long-run trajectories. We show

5One might think that would be possible to give a uniform bound |pt − p0t | for almost every zt. However, one can
find sunspot equilibria in which there is an arbitrarily small probability of an arbitrarily long sequence of any trading
strategies, as long as the ∆ at the end of the sequence is within the bounds at the end of the sequence. Because there
were no restrictions on the sequence of trading strategies, there are no restrictions on p at the end of the sequence.

19



that multiplicity arising from the length of the time in Kehoe et al. (1993) model does not have

this property when the period length is short. These arguments support the work that has followed

Kiyotaki and Wright (1989) and uses continuous time.
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Appendix

A Proof of Lemma 1

We first show that for any equilibrium that satisfies the conditions of Definition 2, {∆t}zt∈Zt,t∈T has

a uniform bound with probability 1. It is straightforward to show that value functions V i,j
t (zt) can

be bounded above and below by bounds that are independent of zt and t. For the upper bound, we
can assume that the individual is able to consume at every chance meeting. For the lower bound we
assume that the individual never consumes. The value function V i,j

t (zt) can therefore be bounded

by − ch
1−β(h) ≤ V i,j ≤ α(h)u−ch

1−β(h) . It follows that ∆t(z
t) is bounded above and below by bounds that

are independent of zt and t. The other conditions of Definition 2 are trivially satisfied.
Second, we show that if a sequence {pt, st,∆t−h}t∈T (i) satisfies equation (5), equation (6), and

equation (7) and (ii) {∆t(z
t)}zt∈Zt,t∈T is uniformly bounded, then we can construct a sequence of

{pt, st, V i,i+1
t−h , V i,i+2

t−h }t∈T that is a symmetric equilibrium. We need to show that one can construct
a sequence of value functions that satisfy the symmetric versions of equation (3) and equation (4)
and transversality.

For a given sequence, define M1
t (zt) and M2

t (zt) to be

M1
t (zt) = −ch+ β(h)

α(h)

3
[pt(z

t−h)(−∆t(z
t)) + (1− pt(zt−h))u+ pt(z

t−h)st(z
t)u]

and
M2
t = −ch+ β(h)α(h)

3

[(
1− pt(zt−h)

) (
1− st(zt)

) (
u+ ∆t(z

t)
)

+pt(z
t−h)

(
u+ ∆t(z

t)
)

+
(
1− pt(zt−h)

) (
1− st(zt)

) (
∆t(z

t)
)]

Iterating equation (3) and equation (4) and taking the limit as N →∞ gives

V i,i+1
−h = E−h

[∑∞
n=0 β(h)nM1

nh

]
+ limN→∞ E−h

[
β(h)N+1V i,i+1

Nh

]
V i,i+2
−h = E−h

[∑∞
n=0 β(h)nM2

nh

]
+ limN→∞ E−h

[
β(h)N+1V i,i+2

Nh

]
where Et (·) = E

(
· | zt

)
. Since {∆t(z

t)} is uniformly bounded, the terms E−h
[∑∞

n=0 β(h)nM1
nh

]
and

E−h
[∑∞

n=0 β(h)nM2
nh

]
are finite. If we set V i,i+1

0 = −E−h
[∑∞

n=0 β(h)nM1
nh

]
, then transversality

must be satisfied. Since equation (3) and equation (4) are satisfied by construction, this is an
equilibrium.

B Proof of Proposition 1

We develop the proof as a sequence of claims. Let {pt, st,∆t−h}t∈T be a sequence that satisfies
equation (5), equation (6), and equation (7).

Claim 1 If ∆t > ∆(pt+h) then ∆t+h > ∆(pt+2h) and ∆t+h ≥ ∆t/β(h). Similarly, if ∆t < ∆(pt+h)
then ∆t+h < ∆(pt+2h) and ∆t+h ≤ ∆t/β(h).
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Proof. Rearranging the perfect foresight version of equation (7) gives

∆t+h =
∆t − β(h)α(h)

3 u(st+h − pt+h)

β(h)Ωt+h

where Ωt = 1− α(h)
3 [ptst + 2(1− pt)(1− st) + pt] ∈ (0, 1]. ∆t > ∆(pt+h) guarantees that ∆t+h > 0

and hence st+h = 0. Similarly, ∆t < ∆(pt+h) guarantees that ∆t+h < 0 and hence st+h = 1.
Another rearrangement of equation (7) gives

β(h)∆t+h −∆t = −β(h)
α(h)

3
u(st+h − pt+h) + β(h)(1− Ωt+h)∆t+h

If ∆t+h > 0, then st+h = 0 and hence β(h)∆t+h ≥ ∆t. Similarly, if ∆t+h < 0, then st+h = 1 and
hence β(h)∆t+h ≤ ∆t.

We can also rearrange equation (6) to be

pt+2h − pt+h =
α(h)

3
{pt+h(1− 2pt+h)st+h + (2− pt+h)(1− pt+h)(1− st+h)}

If st+h = 0 then pt+2h ≥ pt+h. If st+h = 1 then the sign of pt+2h − pt+h depends on whether
pt+h ≷ 1/2.

Consider first the case of ∆t > ∆(pt+h). We have shown that ∆t+h ≥ ∆t and that pt+2h ≥ pt+h.
These, along with the fact that ∆ is decreasing in p imply that ∆t+h > ∆(pt+2h).

Now consider ∆t < ∆(pt+h). We have shown that ∆t+h ≤ ∆t. If in addition pt+h ≥ 1/2, then
pt+2h ≤ pt+h. These along with the fact that ∆ is decreasing in p imply that ∆t+h < ∆(pt+2h).

If, however, p < 1/2 then we cannot rely on this graphical argument because pt+2h > pt+h.
Instead we check algebraically that ∆t+h < ∆(pt+2h). We can write

∆t+h −∆t

pt+2h − pt+h
=

(1− β(h))∆t+h − β(h)
[
α(h)

3 u(1− pt+h)− α(h)
3 2pt+h∆t+h

]
α(h)

3 pt+h(1− 2pt+h)

< −β(h)u(1− pt+h)

pt+h(1− 2pt+h)

< −β(h)u
α(h)

3
= −β(h)γ(h)

where the last inequality follows as pt+h <
1
2 and α(h)

3 < 1.
Starting with ∆t < −β(h)γ(h)pt+h, we have that

∆t+h < −β(h)γ(h)pt+2h + β(h)γ(h)pt+h + ∆t

< −β(h)γ(h)pt+2h

< ∆(pt+2h)
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Claim 2 {pt, st,∆t−h}t∈T are consistent with equilibrium if and only if ∆t ∈
[
∆(pt+h),∆(pt+h)

]
for all t ∈ T

Proof. If ∆t 6∈
[
∆(pt+h),∆(pt+h)

]
for some t, then the previous claim implies that ∆t+Nh 6∈[

∆(pt+(N+1)h),∆(pt+(N+1)h)
]

for all N > 0. Therefore |∆t+Nh| ≥ β(h)−N |∆t|. This would violate
the uniform bound on {∆t}, so the sequence cannot be an equilibrium.

If, however, ∆t ∈
[
∆(pt+h),∆(pt+h)

]
for all t ∈ T then the sequence {∆t} has a uniform bound.

By Lemma 1, the sequence is consistent with equilibrium.

C Proofs of Proposition 2 and Proposition 3

We first prove a preliminary result that will help us prove Proposition 2 and Proposition 3. Let
{pt, st,∆t−h}t∈T be an sequence consistent with equilibrium.

Lemma 2 For any N > 0, the following inequality holds:

N∑
n=1

ωt,n,N (st+nh − pt+nh) ≤ 2
1− β(h) (1− α(h))

1− [β(h) (1− α(h))]N

where

ωt,n,N =

∏n−1
j=1 ρt+jh∑N

ñ=1

(∏ñ−1
j=1 ρt+jh

)
and ρt = β(h)

(
1− α(h)

3 [pt (1 + st) + 2 (1− pt) (1− st)]
)

.

Proof. equation (7) under perfect foresight can be written as

∆t = β(h)
α(h)

3
u (st+h − pt+h) + ρt+h∆t+h

We can iterate this equation to get

∆t = β(h)
α(h)

3
u

N∑
n=1

n−1∏
j=1

ρt+jh

 (st+nh − pt+nh) +

(
N∏
n=1

ρt+nh

)
∆t+Nh

where
∏0
j=1 is defined to be 1.

Reordering terms, dividing by
∑N

n=1

(∏n−1
j=1 ρt+jh

)
, and using the definition of ωt,n,N provides

β(h)
α(h)

3
u

N∑
n=1

ωt,n,N (st+nh − pt+nh) =
∆t −

(∏N
n=1 ρt+nh

)
∆t+Nh∑N

n=1

(∏n−1
j=1 ρt+jh

)
Since ρt ∈

(
β(h)

(
1− 2

3α(h)
)
, β(h)

]
, we can bound the right hand side of this equation. The

denominator is greater than
∑N

n=1

[
β(h)(1− 2

3α(h))
]n−1

, while the magnitude of the numerator is
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less than 2β(h)γ(h). These give the following bound:

N∑
n=1

ωt,n,N (st+nh − pt+nh) ≤ 2
1− β(h)

(
1− 2

3α(h)
)

1−
[
β(h)

(
1− 2

3α(h)
)]N (12)

We can also use the bounds on ρ to bound each individual ω

ωt,n,N ∈

([
1− 2

3α(h)
]N

N
,

1

N
[
1− 2

3α(h)
]N
)

(13)

C.1 Proof of Proposition 2

In any equilibrium, the sequence of inventories follows the equation

pt+h = pt +
α

3

[
−p2

t st + 2(1− pt)2(1− st) + pt(1− pt)
]

Similarly, the sequence of inventories for the zero equilibrium must also follow the law of motion.
Combining these equations give

pt+h − p0
t+h = Φt(st − pt)− λt(pt − p0

t )

where Φt and λt are defined and bounded as follows

Φt = 1− α

3

{
−
[
3(pt + p0

t )− 4
]
p0
t − 3 + (pt + p0

t ) + p2
t + 2(1− pt)2

}
∈
[
1− 5

3
α, 1− 2

3
α

]
(14)

and

λt =
α

3

[
p2
t + 2(1− pt)2

]
∈
[

2

9
α,

2

3
α

]
(15)

We can iterate this equation over N periods to get

pt+Nh − p0
t+Nh =

N−1∑
n=0

 N−1∏
j=n+1

Φt+jh

λt+nh(st+nh − pt+nh) +

(
N−1∏
n=0

Φt+nh

)
(pt − p0

t ) (16)

where again the product
∏N−1
n=N is defined to be one.

We now provide a bound on the divergence of inventories from those of the zero equilibrium
among the first N periods. Since p0 = p0

0 and |st − pt| ≤ 1 we can use equation (16) and the upper
bounds on Φ and λ given by equation (14) and equation (15) to get:

∣∣pNh − p0
Nh

∣∣ ≤ 2

3
α
N−1∑
n=0

(
1− 2

3
α

)n
= 1−

[
1− 2

3
α

]N
Define π̃0(h,N) ≡ 1−

[
1− 2

3α
]N

to be this bound.
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We next provide a bound on the subsequent divergence of inventories from those of the zero
equilibrium. We can write equation (16) as

pt+Nh − p0
t+Nh =

(
1−

N−1∏
n=0

Φt+nh

)
χt,N

N−1∑
n=0

λt+nh
λt

φt,n,N (st+nh − pt+nh) +

(
N−1∏
n=0

Φt+nh

)
(pt − p0

t )

(17)
where χ and φ are defined by

χt,N = λt

∑N−1
ñ=0

(∏N−1
j=ñ+1 Φt+jh

)
1−

∏N−1
n=0 Φt+nh

φt,n,N =

∏N−1
j=n+1 Φt+jh∑N−1

ñ=0

(∏N−1
j=ñ+1 Φt+jh

)
We will show that the term χt,N

∑N−1
n=0

λt+nh

λt
φt,n,N (st+nh−pt+nh) can be bounded by a function

π̃1(h,N). This is useful because equation (17) would then imply that if
∣∣pt − p0

t

∣∣ ≤ ε for some
ε ≥ π1(N,h), then we also have

∣∣pt+Nh − p0
t+Nh

∣∣ ≤ ε.
To do this, we first show that |χt,N | ≤ 1. Since χ is increasing in each Φt, we can use the upper

bounds on λ and Φ to get

|χt,N | ≤

∣∣∣∣∣23α
∑N−1

n=0

(
1− 2

3α
)n

1−
(
1− 2

3α
)N

∣∣∣∣∣ = 1

Next we can bound
∑N−1

n=0
λt+nh

λt
φt,n,N (st+nh − pt+nh) by decomposing it into three parts using

λt+nh
λt

φt,n,N =

(
λt+nh − λt

λt
φt+nh

)
+ (φt,n,N − ωt,n,N ) + (ωt,n,N )

Using |st − pt| ≤ 1 and φt,n,N > 0 gives

∣∣∣∣∣
N−1∑
n=0

λt+nh
λt

φt,n,N (st+nh − pt+nh)

∣∣∣∣∣ ≤
N−1∑
n=0

∣∣∣∣λt+nh − λtλt

∣∣∣∣φt,n,N +

N−1∑
n=0

|φt,n,N − ωt,n,N )|

+

∣∣∣∣∣
N−1∑
n=0

ωt,n,N (st+nh − pt+nh)

∣∣∣∣∣
We will bound each of these three terms separately. First, note that equation (6) implies

|pt+h − pt| =
α

3
|(1− 2pt) ptst + (2− pt) (1− pt) (1− st)| ≤

2

3
α

and hence |pt+nh − pt| ≤ n
(

2
3α
)
. We can also use the definition of λ to write∣∣∣∣λt+nh − λtλt

∣∣∣∣ =

∣∣∣∣ α3 (pt+nh − pt) (3(pt+nh + pt)− 4)

λt

∣∣∣∣ ≤ α
3

(
n2

3α
)

4
2
9α

≤ 4Nα
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Since
∑N−1

n=0 φt,n,N = 1, we have∣∣∣∣∣
N−1∑
n=0

∣∣∣∣λt+nh − λtλt

∣∣∣∣φt,n,N
∣∣∣∣∣ ≤ 4Nα(h)

We can use the bound on Φ given by equation (14) to get upper and lower bounds for φ:

φt,n,N ∈

 1

N

(
1− 5

3α

1− 2
3α

)N
,

1

N

(
1− 2

3α

1− 5
3α

)N
This, in combination with the bounds on ω from equation (13) imply that

|φt,n,N − ωt,n,N | ≤
1

N
max

ι∈{−1,1}

∣∣∣∣∣∣
(

1− 2

3
α

)ιN
−

(
1− 2

3α

1− 5
3α

)ιN ∣∣∣∣∣∣ =

(
1− 2

3
α

)N ((
1− 5

3
α

)−N
− 1

)

Lastly, the third term can be bounded using Lemma 2. In total, these give the result that

χt,N

N−1∑
n=0

λt+nh
λt

φt,n,N (st+nh − pt+nh) ≤ π̃1(h,N)

with

π̃1(h,N) ≡ 4Nα(h) +

(
1− 2

3
α(h)

)N ((
1− 5

3
α(h)

)−N
− 1

)
+ 2

1− β(h)
(
1− 2

3α(h)
)

1−
[
β(h)

(
1− 2

3α(h)
)]N

At this point we have shown that for any N , inventories in the first N periods are within
π̃0(h,N) of those of the zero equilibrium. We have also shown that if inventories in the first N
periods are within ε of those of zero equilibrium for any quantity ε ≥ π̃1(h,N), then inventories in
all subsequent periods are as well. We can combine these two statements to arrive at a uniform
bound for the entire sequence. Define π̃(h,N) = max{π̃0(h,N), π̃1(h,N)}. We therefore have that
for any N > 0 and any t ∈ T, inventories are within π̃(N,h) of those of the zero equilibrium:∣∣pt − p0

t

∣∣ ≤ π̃(h,N)

Let π(h) = minN π̃(h,N). This will be a bound for
∣∣pt − p0

t

∣∣.
Lastly, we can show that limh→0 π(h) = 0. Let ν(h) = h−1/2. From the definitions of π̃0

and π̃1 it is straightforward to show that limh→0 π̃0(h, ν(h)) = limh→0 π̃1(h, ν(h)) = 0. Since
π(h) ≤ π̃(h, ν(h)), these imply that limh→0 π(h) = 0.

C.2 Proof of Proposition 3

In a similar way, we can show that, at least locally, the average trading strategy played coincides
with that of the zero equilibrium.

For ε > 0, let N be the largest integer such that ε ≥ (2N + 1)h. We can form a bound on the
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local average trading strategy:∣∣∣∣∣
(

1

2N + 1

N∑
n=−N

st+nh

)
− pt

∣∣∣∣∣ ≤
∣∣∣∣∣

N∑
n=−N

(
1

2N + 1
− ωt−N,n+N,2N+1

)
(st+nh − pt+nh)

∣∣∣∣∣
+

∣∣∣∣∣
N∑

n=−N
ωt−N,n+N,2N+1 (st+nh − pt+nh)

∣∣∣∣∣
+

∣∣∣∣∣ 1

2N + 1

N∑
n=−N

(pt+nh − pt)

∣∣∣∣∣
The first sum can be bounded using the bound on ω given by equation (13)∣∣∣∣∣

N∑
n=−N

(
1

2N + 1
− ωt−N,n+N,2N+1

)
(st+nh − pt+nh)

∣∣∣∣∣ ≤
N∑

n=−N

∣∣∣∣ 1

2N + 1
− ωt−N,n+N,2N+1

∣∣∣∣
≤

(
1− 2

3
α

)−(2N+1)

− 1

The second summation can be bounded using equation (12). The third term can be bounded
using the fact that |pt+h − pt| ≤ α(h), which can be seen from equation (6). This implies that∣∣∣∣∣ 1

2N + 1

N∑
n=−N

(pt+nh − pt)

∣∣∣∣∣ ≤ Nα(h)

We can combine these to form a single bound for a fixed ε:

σ(ε, h) =

(
1− 2

3
α

)−ε/h
− 1 + 2

1− β(h)
(
1− 2

3α(h)
)

1−
[
β(h)

(
1− 2

3α(h)
)]ε/h +

ε

2
α(h)

For a fixed ε, each of these three bounds goes to a finite number as h→ 0:

lim
h→0

σ(ε, h) = e
2
3
α0ε − 1 +

ε

2
α0

It follows that limε→0 (limh→0 σ(ε, h)) = 0.

D Proof of Proposition 4

We develop the proof as a sequence of claims. For ease of exposition we drop the argument z from
pt, st, and ∆t.

Let {pt, st,∆t−h}zt∈Zt,t∈T be a sequence that satisfies equation (5), equation (6), and equa-
tion (7). Also, Let Gt,n be the event that ∆t−jh 6∈ [∆(pt−(j−1)h),∆(pt−(j−1)h)] for all j ∈ (0, ..., n).
We can make the following claims about the sequence:

Claim 3 If Pr (Gt,n) > 0 then Pr
(
Gt+h,n+1 and |∆t+h| ≥ |∆t|

β(h)

)
> 0
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Proof. The following definitions will assist in the exposition of the proof. As before, let Ωt =
α(h)

3 [ptst + 2(1− pt)(1− st) + pt]. Note that Ωt ∈ [0, 1]. Also let Xt+h = −∆t + β(h)∆t+h +

β(h)α(h)
3 (st+h − pt+h)u − β(h)Ωt+h∆t+h. equation (7) can be rewritten as 0 = Et [Xt+h], where

Et(·) = E(· | zt). This implies both that Pr
(
Xt+h ≥ 0|zt

)
> 0 and also that Pr

(
Xt+h ≤ 0|zt

)
> 0 for

all zt. We therefore have that if Pr (Gt,n) > 0 then either Pr
(
Gt,n and ∆t > ∆(pt+h) and Xt+h ≥ 0

)
>

0 or Pr (Gt,n and ∆t < ∆(pt+h) and Xt+h ≤ 0) > 0. We will show that in either case

Pr

(
Gt+h,n+1 and |∆t+h| ≥

|∆t|
β(h)

)
> 0

.
First, consider the event in which ∆t > ∆(pt+h). If ∆t+h ≤ 0, then it must be that Xt+h < 0,

because ∆t > ∆(pt+h) ≥ β(h)α(h)
3 (st+h − pt+h)u. Consequently, if Xt+h ≥ 0, then ∆t+h > 0 and

therefore st+h = 0. The combination of Xt+h ≥ 0 and st+h = 0 imply that ∆t+h ≥ ∆t
β(h) and

pt+2h > pt+h. Since ∆(p) is decreasing in p, these also imply that ∆t+h > ∆(pt+2h). We therefore
have that in the event that ∆t > ∆(pt+h) and Xt+h ≥ 0, then ∆t+h 6∈ [∆(pt+2h),∆(pt+2h)] and

|∆t+h| ≥ |∆t|
β(h) .

Now we turn to the event in which ∆t < ∆(pt+h), Xt+h ≤ 0, and ∆t+h < 0. We will show that
in this case ∆t+h < ∆(pt+2h). This is more difficult because the change in p is not a monotonic
function of p. If ∆t < ∆(pt+h) then in a similar manner as above we can show that ∆t+h < 0 and
st+h = 1. This means that we can write

∆t ≥ β(h)

[
∆t+h +

α(h)

3
u(1− pt+h)− Ωt+h∆t+h

]
and

pt+h = pt +
α(h)

3
pt(1− 2pt)

We take two cases separately. For each we will show that if ∆t is below the bound, than
∆t+h is below the bound as well. (i) If pt+h ≥ 1

2 , then we can show this in a similar manner as
above. Since pt+2h ≤ pt+h and ∆t+h < ∆t < 0, the fact that ∆(p) is decreasing in p implies that
∆t+h < ∆(pt+2h). (ii) If pt+h < 1/2 then we can write

∆t+h −∆t

pt+2h − pt+h
≤

(1− β(h))∆t+h − β(h)
[
α(h)

3 u(1− pt+h)− Ωt+h∆t+h

]
α(h)

3 pt+h(1− 2pt+h)

< −β(h)u(1− pt+h)

pt+h(1− 2pt+h)

< −β(h)u
α(h)

3
= −β(h)γ(h)

where the last inequality follows because pt+h <
1
2 and α(h)

3 < 1. We start with ∆t < −β(h)γ(h)pt+h.
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We then have that

∆t+h < −β(h)γ(h)pt+2h + β(h)γ(h)pt+h + ∆t

< −β(h)γ(h)pt+2h

< ∆(pt+2h)

For both cases we also know that Xt+h ≤ 0. This, in combination with st+h = 1, implies that
∆t+h ≤ ∆t

β(h) .

If ∆t+h ≥ 0 then we know that Xt+h > 0 because ∆t < ∆(pt+h) ≤ β(h)α(h)
3 (st+h − pt+h)u.

This implies that if Xt+h ≤ 0, then ∆t+h < 0. We have therefore shown that if ∆t < ∆(pt+h) and

Xt+h ≤ 0, then ∆t+h 6∈ [∆(pt+2h),∆(pt+2h)] and |∆t+h| ≥ |∆t|
β(h) .

Claim 3 shows that if ∆t 6∈
[
∆(pt+h),∆(pt+h)

]
, then the following ∆ is outside the bounds with

positive probability and the magnitude grows exponentially.

Claim 4 If Pr
(
∆t 6∈ [∆(pt+h),∆(pt+h)]

)
> 0 then

{
pt
(
zt−h

)
, st
(
zt
)
,∆t−h

(
zt−h

)}
zt∈Zt,t∈T is not

consistent with equilibrium.

Proof. Let B be the uniform bound implied by Lemma 1. Assume that there exists a t0
such that Pr

(
∆t0 6∈ [∆(pt0+h),∆(pt0+h)]

)
> 0. This implies that there exists ε > 0 such that

Pr
(
∆t0 6∈ [∆(pt0+h),∆(pt0+h)], |∆t0 | > ε

)
> 0. Iterating Claim 3 gives the result

Pr

(
∆t0+nh 6∈ [∆(pt0+(n+1)h),∆(pt0+(n+1)h)], |∆t0+nh| ≥

|∆t0 |
β(h)n

≥ ε

β(h)

)
> 0

Since there exists an N > 0 such that ε
β(h)N

> B, we have Pr (|∆t+Nh| > B) > 0.
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