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1 Introduction

Most, if not all, tests for unit roots in panels are based on the idea of an underlying para-

metric model, which is almost always assumed to be first-order autoregressive in nature.

Take for example the well-known first-generation tests developed by Levin et al. (2002) and

Im et al. (2003), which are designed to test for a unit autoregressive root in the special case

when the errors are cross-sectionally uncorrelated. However, they may still be serially cor-

related, which then calls for some kind of adjustment to get rid of the associated nuisance

parameters. The test of Im et al. (2003) uses lag augmentation in the spirit of the augmented

Dickey–Fuller test, while the test of Levin et al. (2002) uses both lag augmentation and long-

run variance estimation as in the Phillips–Perron test. The usual rationale for carrying out

the adjustment in this way is that if the errors admit to an autoregressive representation of

known order, then this can be mimicked in sample.

In practice, of course, one cannot rule out the possibility that the errors are dependent

also across the cross-section, in which case the size properties of the first-generation tests are

known to be suspect, see for example Wagner and Hlouskova (2006). Numerous attempts

have therefore been made in order to relax the rather unrealistic assumption of cross-section

independence. One approach is to assume that the dependence can be represented by means

of a common time effect, which can be eliminated by simply subtracting the cross-sectional

mean from the data. In general, however, with differing pair-wise cross-section correlations,

this approach is not expected to work.

The second-generation approach allows for more general types of cross-section depen-

dencies, and can be seen as a response to these considerations. However, as with all para-

metric approaches, this greater generality creates the need to be precise about the allow-

able dependencies. Some tests assume that the dependence can be restricted to the con-

temporaneous covariance matrix of the errors. There is for example the test of O’Connell

(1998), which uses seemingly unrelated regressions techniques to allow for a completely

unrestricted covariance matrix. However, this requires the time series dimension T being

substantially larger than the cross-section dimension N, a condition that is rarely fulfilled in

practice. Another possibility is therefore to follow for example Bai and Ng (2004), Moon and

Perron (2004), Pesaran (2007), and Phillips and Sul (2003), to mention a few, and to assume

that the covariances can be modeled using a small number of common factors, which, pro-
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vided that the true number of factors is known, can be estimated and subtracted from the

data. To also account for the presence of serial correlation, some kind of lag augmentation or

long-run variance estimation is typically required, either before or after the removal of the

factors.

Clearly, whether first- or second-generation, these tests all require the researcher to make

an explicit assumption regarding the underlying parametric model. This poses a problem

because once one deviates from this assumption, the ensuing tests will no longer be invariant

with respect to the data generating process. But this is not all. There is also the problem

that the true number of common factors, lag length and optimal bandwidth to use in the

long-run variance estimation are never available in practice, and different choices can have

a significant impact on test performance.

Motivated by these problems, the purpose of the current paper is to develop new tests,

which, unlike most existing panel unit root tests, are based on the cointegrating rank of the

N-dimensional vector of stacked observations. This makes them suitable for testing a variety

of hypotheses and not just that of a common unit root. Another special feature of the new

tests is that they are constructed such that one does not have to parametrically specify the

underlying model, nor do the statistics involve adjustment factors for the inherent nuisance

parameters, which of course significantly reduces both the number and the complexity of the

computations required. This is achieved by considering simple variance ratios that eliminate

these nuisance parameters from the asymptotic distributions of the test statistics.

Despite their simplicity, the new tests are remarkably general. In fact, except for some

mild regulatory conditions, there are no restrictions at all. The data could be both serially

and cross-sectionally independent, but they could also involve complex dynamic interrela-

tionships including cointegration and Granger causality. These allowances make our tests

some of the most widely applicable.1 They are also very powerful, even in comparison to

first-generation tests that are implemented in absence of cross-sectional dependence, sug-

gesting that the cost of not requiring any prior knowledge regarding the dependence is very

low. Moreover, the derivation of the asymptotic distributions of the test statistics as T → ∞

for a fixed N, as opposed to joint or sequential asymptotics in which both T and N are taken

1In fact, as far as we are aware the only other tests that are comparable ours in terms of generality and ease
of parametrization are those of Palm et al. (2009). The main difference is that while our tests are completely
adjustment-free, the tests of Palm et al. (2009) requires bootstrapping, which makes them computationally rela-
tively burdensome. They are also not suitable for testing hypotheses other than that of a common unit root.
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to infinity (see Phillips and Moon, 1999), makes the tests valid for any N, thus adding to

their applicability.

The rest of the paper is organized as follows. Section 2 presents the assumptions, which

are used in Section 3 to derive the asymptotic distributions of our rank test statistics. Section

4 then discusses some of the distinctive features of the new tests, and sets them out against

the factor-based tests of Bai and Ng (2004), which represents the closest parametric alterna-

tive around. The asymptotic properties of the tests are verified using both simulated and

real data in Sections 5 and 6, respectively. Section 7 concludes.

2 Assumptions

We consider an N-dimensional vector yt = [y1t, . . . , yNt]′ given by

yt = αpdp
t + ut, (1)

where dp
t = [1, t, . . . , tp]′ with p ≥ 0 is a polynomial trend function satisfying d0

t = 1, with

αp being the associated matrix of trend coefficients. The typical elements of dp
t include a

constant and a linear time trend, corresponding to p = 0 and p = 1, respectively, and these

are also the specifications considered here.

The main variable of interest is ut = [u1t, . . . , uNt]′, which represents the stochastic part

of yt. In order to describe its unit root and cointegration properties, we introduce an N × N

orthogonal matrix C = [C1, C2], which is such that C′C = CC′ = IN and whose component

matrices C1 and C2 are of dimension N × N1 and N × N2 with N2 = N − N1, respectively.

C1 gives a basis for the cointegrating space of ut, while C2, which is such that is such that

C′
2C1 = 0 and C′

1C2 = 0, gives the common trends. The matrix C allows us to rotate ut into

stationary and unit root subsystems as

wt = C′ut =

[
C′

1ut

C′
2ut

]
=

[
w1t

w2t

]
, (2)

where the first N1 units in w1t are stationary, while the remaining N2 units in w2t are non-

stationary. As usual, N1 is referred to as the cointegrating rank, while N2 count the number

of common trends. The vector of stationary innovations is given by

vt =

[
w1t

∆w2t

]
=

[
v1t

v2t

]
, (3)
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whose long-run covariance matrix is going to be key in this paper. For arbitrary stochastic

processes at and bt with absolutely summable covariance function we define

Ωab =
∞

∑
s=−∞

E(atb′t−s) = Σab + Γab + Γ′ab,

where Σab = E(atbt) and Γab = ∑∞
s=1 E(atb′t−s) are the contemporaneous and one-sided

long-run covariance matrices, respectively. The long-run covariance matrix of vt is parti-

tioned in the following way:

Ωvv =

[
Ωv1v1 Ωv1v2

Ωv2v1 Ωv2v2

]
=




ω2
v1

ωv1v2 . . . ωv1vN

ωv2v1 ω2
v2

. . . ωv2vN
...

...
. . .

...
ωvNv1 ωvNv2 . . . ω2

vN




.

Assumption 1 is enough to obtain our main results.

Assumption 1. As T → ∞,

1√
T

bsTc
∑
t=1

vt →w B(s) = Ω1/2
vv W(s) =

[
Ω1/2

v1.v2
Ωv1v2 Ω−1/2

v2v2

0 Ω1/2
v2v2

] [
W1(s)
W2(s)

]
,

where Ωvv is positive definite, →w and bxc signify weak convergence and integer part of x, respec-

tively, Ωv1.v2 = Ωv1v1 −Ωv1v2 Ω−1
v2v2

Ωv2v1 and W(s) = [W1(s), . . . , WN(s)]′ is an N-dimensional

vector standard Brownian motion on s ∈ [0, 1] that is partitioned conformably with vt.

Assumption 1 is stated directly in terms of the required invariance principle rather than

primitive regularity conditions. This is convenient because it is this result that drives the

distribution theory and we are not interested here in the regularity conditions under which

it holds. It may be noted, however, that there are a variety of conditions that lead to Assump-

tion 1. For example, Phillips and Durlauf (1986) give conditions requiring that vt be weakly

stationary with finite moment greater than second order and that it satisfies well-known

α-mixing conditions. Phillips and Solo (1992) give other sets of conditions based on linear

processes. In any case, since we are considering the entire N-vector this means that we can

allow for very general forms of dependencies between the elements of vt. It also means that

we can allow for heterogeneous variances that may vary freely across the elements, but also

to some extent across t. Needless to say, these allowances represent a much more general

consideration than is usually the case in the non-stationary panel literature.
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The unit root and cointegration behavior of ut is governed by the rank of Ω∆u∆u, the

long-run covariance matrix of ∆ut. This can be seen by studying the long-run covariance

matrix of the corresponding rotated vector ∆wt. In particular, by using (2) and (3), and the

fact that ∆v1t is over-differenced with zero long-run variance, we obtain

Ω∆u∆u = CΩ∆w∆wC′ = C

[
Ω∆v1∆v1 Ω∆v1v2

Ωv2∆v1 Ωv2v2

]
C′ = C

[
0 0
0 Ωv2v2

]
C′ = C2Ωv2v2 C′

2.

The rank of Ω∆u∆u can either full or reduced. If rk(Ω∆u∆u) = N, so that the rank is full,

then C = C2 = IN , meaning that now all the elements of ut are unit root non-stationary. If, in

addition, Ω∆u∆u is diagonal, then we are back in the first-generation unit root scenario with

N uncorrelated random walks. If, on the other hand, the rank is reduced, then rk(Ω∆u∆u) =

N2 < N, suggesting that now there are only N2 unit roots. This can be due to genuine

stationarity, or cointegration, or a combination. The extreme case being when rk(Ω∆u∆u) =

0, in which C = C1 = IN , suggesting that now all the elements of ut are stationary.

Clearly, the rank of Ω∆u∆u is related to the cointegration rank concept of Johansen (1995).

However, there is a conceptual difference in that here cointegration does not refer to coin-

tegration among variables, but rather to cointegration across units. Let us clarify what we

mean by this. Denote by H an N × n1 diagonal selection matrix comprised of zeros and

ones that picks the individually stationary units of ut. For example, if uit is stationary, then

H has as one of its columns the vector [0, . . . , 0, 1, 0, . . . , 0]′ with the one located at the ith

position. Note also that n1 ≤ N1. The cross-unit cointegrating space of ut is given by the

space spanned by D = (IN −H(H′H)−1H′)C1. That is, the cross-unit cointegrating space is

the span of the projection of the cointegrating space C1 of ut on the orthogonal complement

of H, which includes all cointegrating relationships that are not made up of linear combi-

nations of unit-specific processes that are already stationary (Wagner and Hlouskova, 2010).

The cross-unit cointegrating rank is the dimension of the space spanned by D. Altogether

we have rk(Ω∆u∆u) = N − n1 − rk(D).

3 The tests

3.1 The rank statistics and their limiting distributions

The cointegration rank tests that we consider are based on two ingredients. One is the

asymptotic theory of regressions involving superfluous trend terms (see Park, 1990; Park
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and Choi, 1988) and the other is long-run variance estimation based on untruncated kernels

(see Kiefer et al., 2000).

Let us start by discussing the variance components. In particular, consider the least

squares residual

ûp
t = yt −

T

∑
t=1

ytd
p′
t

(
T

∑
t=1

dp
t dp′

t

)−1

dp
t ,

whose estimated long-run variance under stationarity is given by

Ω̂p =
1
T

M

∑
j=−M

k(j/M)
T

∑
t=j+1

ûp
t ûp′

t−j =




ω̂2
1p ω̂12p . . . ω̂1Np

ω̂21p ω̂2
2p . . . ω̂2Np

...
...

. . .
...

ω̂N1p ω̂N2p . . . ω̂2
Np




,

where k(x) is a kernel function and M is the bandwidth. It has been shown by Kiefer et al.

(2000) that if untruncated such that M = T, under stationary, Ω̂p converges to a random

variable that is proportional to Ω and whose precise shape depend on the choice of k(x). In

case of the Bartlett kernel k(x) = 1− |x|
T , Kiefer and Vogelsang (2002) show that the formula

for Ω̂p reduces to

Ω̂p =
2

T2

T

∑
t=1

Ŝp
t Ŝp′

t .

where Ŝp
t = ∑t

s=1 ûp
s .

The problem is that while the first N1 units of ŵp
t = C′ûp

t = [ŵp′
1t , ŵp′

2t ]
′, contained in ŵp

1t,

are asymptotically stationary, the remaining ones in ŵp
2t are unit root non-stationary, sug-

gesting that a different normalization with respect to T is needed. Let us therefore introduce

the normalization matrix DT = diag(IN1 ,
√

TIN2). By using Assumption 1, rotation by C and

standard results for least squares detrended processes it is possible to show that as T → ∞

1
T

D−1
T Ω̂pD−1

T = 2C
1

T3

T

∑
t=1

[
R̂p

1tR̂
p′
1t T−1/2R̂p

1tR̂
p′
2t

T−1/2R̂p
2tR̂

p′
1t T−1R̂p

2tR̂
p′
2t

]
C′

→w 2C

[
0 0
0

∫ 1
0 Rp

2(s)Rp
2(s)′ds

]
C′, (4)

where R̂p
t = ∑t

s=1 ŵp
s , Rp(s) =

∫ s
0 Bp(r)dr and Bp(s) = Ω1/2

vv Wp(s) with

Wp(s) = W(s)−
∫ 1

0
W(r)dp(r)′dr

(∫ 1

0
dp(r)dp(r)′dr

)−1

dp(s)
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denoting the residual from projecting W(s) onto dp(s) = [1, s, . . . , sp]′ with d0(s) = 1. All

vectors are partitioned conformably with C.

The contemporaneous variance estimator,

Σ̂p =
1
T

T

∑
t=1

ûp
t ûp′

t =




σ̂2
1p σ̂12p . . . σ̂1Np

σ̂21p σ̂2
2p . . . σ̂2Np

...
...

. . .
...

σ̂N1p σ̂N2p . . . σ̂2
Np




,

must also normalized in order to achieve convergence:

D−1
T Σ̂pD−1

T = C
1
T

T

∑
t=1

[
ŵp

1tŵ
p′
1t T−1/2ŵp

1tŵ
p′
2t

T−1/2ŵp
2tŵ

p′
1t T−1ŵp

2tŵ
p′
2t

]
C′

→w C

[
Σv1v1 0

0
∫ 1

0 Bp
2(s)Bp

2(s)′ds

]
C′. (5)

The convergence results in (4) and (5) imply that asymptotically nuisance parameter free

test statistics can be constructed using nothing but appropriately normalized ratios of Σ̂p

and Ω̂p. The first test statistic of this type that we will consider can seen as a multivariate

version of the $̂T statistic introduced by Breitung (2002). It is given by

MB =
1

2T
tr(Ω̂pΣ̂−1

p ).

The asymptotic distribution of this statistic under the null hypothesis H0 : rk(Ω∆u∆u) = N2

is easily derived from the above results. Indeed, by using the cyclical property of the trace,

MB = tr
(

1
2T

D−1
T Ω̂pD−1

T (D−1
T Σ̂pD−1

T )−1
)

→w tr


C

[
0 0
0

∫ 1
0 Rp

2(s)Rp
2(s)′ds

]
C′

(
C

[
Σv1v1 0

0
∫ 1

0 Bp
2(s)Bp

2(s)′ds

]
C′

)−1



→w tr

(∫ 1

0
Rp

2(s)Rp
2(s)′ds

(∫ 1

0
Bp

2(s)Bp
2(s)′ds

)−1
)

= tr

(∫ 1

0
Qp

2(s)Qp
2(s)′ds

(∫ 1

0
Wp

2(s)Wp
2(s)′ds

)−1
)

, (6)

where Qp(s) =
∫ s

0 Wp(r)dr is again partitioned conformably with C.

The second test statistic that we will consider is based on the properties of regressions

including superfluous trend regressors. Towards this end, suppose that the data are gen-

erated as before via (1) but that the trend polynomial used in the least squares detrending
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is now of degree q > p. If ut is stationary, then the coefficients corresponding to the su-

perfluous trends tp+1, . . . , tq are estimated consistently to zero. A coefficient restriction test

like the Wald test is therefore going to have a well-defined limiting distribution in this case,

although not necessarily free of nuisance parameters. If ut is non-stationary, however, then

(1) is spurious and the coefficients corresponding to the superfluous regressors will not go

to zero, and this has implications for the asymptotic behavior of the Wald statistic, which is

then of order Op(T). This led Park and Choi (1988) to consider as a unit root test statistic the

Wald statistic divided by T. Our test statistic can be seen as a multivariate version of this

statistic, and is given by

MJ = tr(Σ̂pΣ̂−1
q − IN),

where Σ̂q is the estimated residual variance from (1) when the fitted trend polynomial is of

degree q > p. Vogelsang (1998) studied the Wald statistic of Park and Choi (1988) and found

that it has strongly rising power up until q = 9, after which the power increments dropped

off. In the current paper we therefore only consider this value of q. In any case, similarly to

before, under the rank-N2 null,

MJ = tr
(

D−1
T Σ̂pD−1

T (D−1
T Σ̂qD−1

T )−1 − IN

)

→w tr

(
C

[
Σv1v1 0

0
∫ 1

0 Bp
2(s)Bp

2(s)′ds

]
C′

×
(

C

[
Σv1v1 0

0
∫ 1

0 Bq
2(s)Bq

2(s)′ds

]
C′

)−1

− IN

)

= tr

([
IN1 0
0

∫ 1
0 Bp

2(s)Bp
2(s)′ds(

∫ 1
0 Bq

2(s)Bq
2(s)′ds)−1

]
− IN

)

= tr

(∫ 1

0
Wp

2(s)Wp
2(s)′ds

(∫ 1

0
Wq

2(s)Wq
2(s)′ds

)−1

− IN2

)
(7)

as T → ∞, with obvious definitions of Bq(s) and Wq(s).

A special case of the above results arises when the null is tested against rk(Ω∆u∆u) = 0,

which is the conventional stationary alternative hypothesis considered by for example Levin

et al. (2002). Because 1√
T

R̂p
1t →w Bp

1(s) and since C = C1 = IN under this alternative, we

get Ω̂p = 2
T2 ∑T

t=1 R̂p
1tR̂

p′
1t →w 2

∫ 1
0 Bp

1(s)Bp
1(s)′ds and Σ̂p = 1

T ∑T
t=1 ŵp

1tŵ
p′
1t →p Σv1v1 , and

therefore

T MB →w tr
(∫ 1

0
Bp

1(s)Bp
1(s)′ds Σ−1

v1v1

)
, (8)
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or MB = Op(T−1), whereas

MJ →w tr(Σv1v1 Σ−1
v1v1

− IN) = 0. (9)

Hence, in this case both statistics degenerate to zero under the alternative. For any other

alternative 0 < rk(Ω∆u∆u) < N2, the statistics converge to the trace of the same random

matrices as under the null but with a different dimension. Thus, given this randomness, MB

and MJ will generally not be consistent, only unbiased.

This leads us to consider the following multivariate inverse Breitung (2002) statistic:

MIB = 2T tr(Σ̂pΩ̂−1
p ),

whose asymptotic distribution under the null hypothesis is given by

MIB →w tr

(∫ 1

0
Wp

2(s)Wp
2(s)′ds

(∫ 1

0
Qp

2(s)Qp
2(s)′ds

)−1
)

, (10)

which follows directly from our previous results. The analysis of this statistic under the

alternative hypothesis is, however, not as straightforward. In particular, consider testing

the null against rk(Ω∆u∆u) < N2. The problem here is that, unlike Σ̂p, Ω̂p is singular and

therefore cannot be inverted. However, note that under the full rank hypothesis, MIB can

also be written as MIB = 2T ∑N
i=1 λ̂i, where λ̂1 ≥ . . . ≥ λ̂N are the eigenvalues of the matrix

Σ̂pΩ̂−1
p arranged in descending order. Suppose now that rk(Ω∆u∆u) = N2 < N. Then,

1
T

MIB = 2
N1

∑
i=1

λ̂i + op(1) →w 2
N1

∑
i=1

λi = tr

(
Σv1v1

(∫ 1

0
Bp

1(s)Bp
1(s)′ds

)−1
)

, (11)

where λi is an eigenvalue of the matrix Σv1v1(
∫ 1

0 Bp
1(s)Bp

1(s)′ds)−1. Thus, MIB = Op(T),

suggesting that, unlike the other tests, MIB is consistent against all alternatives rk(Ω∆u∆u) <

N, and not just against rk(Ω∆u∆u) = 0, which is of course a great advantage. The problem

is that because the first N1 eigenvalues are diverging this statistic cannot be used when the

rank under the null is not full. To circumvent this we may use the following modified MIB

statistic:

MMIB = 2T
N

∑
i=N1+1

λ̂i,

which coincides with the Λq statistic studied by Breitung (2002).

This eigenvalue interpretation of MMIB suggests a natural procedure that can be applied

to determine the rank of Ω∆u∆u from the data. The idea is to proceed as in Johansen (1995)
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by successively testing down the rank of Ω∆u∆u. We begin by applying MMIB. If the null

of rk(Ω∆u∆u) = N is not rejected, we conclude that all the cross-sectional units are non-

stationary and non-cointegrated, and proceed no further. If the null is rejected, however,

the testing proceeds by testing whether rk(Ω∆u∆u) = N − 1 using MMIB based on the

N − 1 smallest eigenvalues. The testing then continues by sequentially dropping the largest

eigenvalue until the null cannot be rejected or zero rank is reached.

The advantage of doing the testing in this way is that if the significance level at each

stage is α, while the probability of selecting the true rank approaches to 1− α, the probability

of selecting a smaller rank converges to zero. This property is generic of successive testing

procedures, including the Johansen (1995) trace test for the cointegrating rank. The result is a

consequence of the fact that the test is applied to the same variable and thus not independent

across stages.

Note also that although the same sequential procedure can in principle be applied also

to the MB and MJ tests, this is generally not recommended. The reason is that the resulting

procedures will only be able to discriminate between full and zero rank, and not between

intermediate cases.2

3.2 Critical values

Response surface regressions are to obtain the 5% critical values for the tests. We exper-

imented with a variety of specifications and opted for a linear regression model of the

form q = δ′x + η, where q is the simulated 5% critical value and η is an error term. The

choice of regressors to include was dictated by overall significance subject to the require-

ment that the R2 of the regression be no smaller than 0.999. The set of regressors that

we retained for the MIB and MJ tests is x = (1, N1/4,
√

N, N, N2, N3, N2

T , N3

T , 1
T , 1

T2 , N2

T2 )′,

while for the MB test, x = (1, 1
N1/4 , 1√

N
, 1

N , 1
N2 , 1

N3 , 1
TN2 , 1

TN3 , 1
T , 1

T2 , 1
T2N2 )′. The simulated crit-

ical values are based on making 1, 000 draws from the limiting distribution of each of the

three test statistics with normal random walks of dimension N = 1, 2, . . . , 50 and length

T = max{30, 2N}, max{30, 2N}+ 5, . . . , 300 in place of the vector Brownian motion W(s).

This means that there is a total of 2,165 observations available for each regression. The re-

sulting estimated response surface coefficients are reported in the top panel of Table 1.

2Another possibility is to consider a maximum eigenvalue type statistic. However, unreported simulation
results suggest that the trace statistics perform better in small samples, and we therefore only consider these.
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Unreported simulation results suggest that the fit of the response surface regressions can

be poor when N is close to the sample endpoints. To compensate for this we simulate critical

values for specific values of N ≤ 5 when T = 1, 000. These are reported in the bottom panel

of Table 1.

3.3 First-generation analogues

In this section we ask how the absence of cross-section dependence is going to affect the re-

sults obtained so far. Intuitively, independence is expected to simplify not only the asymp-

totic analysis but also the calculations needed in order to obtain nuisance parameter free

test statistics. As usual with first-generation tests, the null and alternative hypotheses are

formulated as H0 : rk(Ω∆u∆u) = N versus H1 : rk(Ω∆u∆u) < N. Thus, since C = C2 = IN

under this null, 1√
T

ûp
t →w Ω1/2

vv Wp(s) as T → ∞, where Ωvv = Ωv2v2 = diag(ωv1 , ..., ωvN ),

suggesting that nuisance parameter free test statistics can be constructed using nothing but

simple sums of unit-specific variance estimates. Consider as an example the MB statistic.

An easy way to get rid of ω2
vi

is to take the ratio before summing over the cross-sectional

dimension. This gives rise to the following between version of the MB statistic:

BMB =
1

2TN

N

∑
i=1

ω̂2
ip

σ̂2
ip

.

By using the same steps as before, this statistic has the following limiting null distribution

as T → ∞:

BMB →w
1
N

N

∑
i=1

∫ 1
0 (Qp

i (s))2ds
∫ 1

0 (Wp
i (s))2ds

, (12)

which depends on N, but where the individual limiting random variables are otherwise in-

dependent and identically distributed with constant mean and variance, written in a generic

notation as µ and σ2, respectively, with the dependence on p suppressed. This result is very

convenient, because it lends itself to simple large-N asymptotics. In particular, by using the

sequential limit theory discussed in Phillips and Moon (1999),
√

N(BMB− µ)
σ

→w N(0, 1) (13)

as T → ∞ and then N → ∞. Under the alternative hypothesis the same statistic is op(1).
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Another possibility is to sum over the cross-sectional dimension before taking the ratio,

which results in the following within type MB statistic:

WMB =
1

2T
∑N

i=1 ω̂2
ip

∑N
i=1 σ̂2

ip

,

which also attains a limiting normal distribution after appropriate mean and variance nor-

malization. The same applies to the normalized within and between versions of the MJ

and MIB statistics, which are constructed in an analogous fashion. The appropriate mean

and variance adjustment terms, obtained from simulations based on 100, 000 draws of scalar

Brownian motions of length T = 1, 000, are provided in Table 2.

Note that, in contrast to the rank tests, with these test there is just one critical value for all

values of N. These tests are therefore even simpler to implement. However, this advantage

comes at a relatively high price. Firstly, cross-sectional independence has to be assumed.

Secondly, the tests can only be used to test the null hypothesis of full rank. Thirdly, the

large-N limiting normal distribution may provide a poor approximation in panels where N

is only small to moderately large.

4 Distinctive features

4.1 Local power

Instead of investigating the behavior of the test statistics under a fixed formulation of the

alternative hypothesis, we can consider the local asymptotic power of the tests. In partic-

ular, consider the local alternative of N2 roots close to unity given in Phillips (1988), which

amounts to replacing ∆w2t = v2t in (2) with

∆w2t =
1
T

cw2t−1 + v2t, (14)

where c is a N2 × N2 drift parameter matrix that measure the extent of the deviation from

the rank-N2 null. If c = 0, then ∆w2t = v2t and we are back in the scenario with N1 station-

ary and N2 non-stationary unit root units. If, on the other hand, c = diag(c1, . . . , cN2), then

the units in w2t may be unit root non-stationary, locally stationary, or even locally explo-

sive, depending on whether ci is zero, negative or positive, respectively. It is also possible

to specify c as a non-diagonal but nonzero matrix, in which case the units of w2t may be
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near-integrated of different orders. In any case, by using the invariance principle for near-

integrated processes given in Phillips (1988, Lemma 3.1), we obtain

1√
T

bsTc
∑
t=1

v2t →w Ω1/2
v2v2

Jc(s)

as T → ∞, where Jc(s) =
∫ s

0 exp((s − r)c)dW2(r) is a standard vector diffusion process.

This means that in order to obtain the local power functions of the rank statistics W2(s) in

the limiting null distributions should be replaced by Jc(s). For example, in case of the MB

statistic,

MB →w tr

(∫ 1

0
Kp

c (s)Kp
c (s)′ds

(∫ 1

0
Jp

c (s)Jp
c (s)′ds

)−1
)

(15)

as T → ∞, where Kp
c (s) =

∫ s
0 Jp

c (r)dr with Jp
c (r) being the detrended version of Jc(r).3

It is interesting to compare the power of our rank tests with the power of some of the

existing first-generation panel unit root tests when the cross-section dependence is absent.

Intuitively, since these tests make use of the fact that in this case Ω∆u∆u is a diagonal matrix,

they should have higher power.

Bowman (1999) studies the exact power of the popular first-generation unit root tests of

Im et al. (2003) and Levin and Lin (1992) under a fixed alternative. He characterizes the class

of admissible panel unit root tests, and shows that in absence of unknown nuisance parame-

ters, while the Im et al. (2003) test is inadmissible, the Levin and Lin (1992) test is admissible,

and in fact uniformly most powerful when alternative is homogenous. He also shows, via

simulations, that these results are not substantially altered by the presence of unknown nui-

sance parameters, such as deterministic constant and trend terms. When the alternative is

heterogeneous Bowman (1999) shows that while the Levin and Lin (1992) test tends to per-

form better for near-homogenous alternatives, for more heterogeneous alternatives the Im et

al. (2003) test performs best.

This discussion suggests that the Im et al. (2003) and Levin and Lin (1992) tests possess

some optimality property, which makes them interesting as a comparison.4 Suppose there-

fore that Ωvv = IN , so that the trend coefficients in αp are the only nuisance parameters.

The drift parameters are homogenous such that c = cIN . Under these assumptions it can be

3Note that in the scalar case the above limiting distribution coincides with the one given in Appendix B of
Breitung (2002) for his $̂T test.

4Of course, being sample-specific, the results of Bowman (1999) are not expected to hold in the present T-
asymptotic context. However, this is not necessary.
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shown that the Im et al. (2003) and Levin and Lin (1992) statistics, henceforth denoted IPS

and LL, respectively, have the following local power functions as T → ∞:

IPS →w
1

σ
√

N

N

∑
i=1


c

√∫ 1

0
(Jp

ci(s))2ds +

∫ 1
0 Jp

ci(s)dW2i(s)ds√∫ 1
0 (Jp

ci(s))2ds
− µ


 ,

LL →w
1
σ


c

√∫ 1

0
Jp

c (s)′Jp
c (s)ds +

∫ 1
0 Jp

c (s)′dW2(s)ds√∫ 1
0 Jp

c (s)′Jp
c (s)ds

− µ


 ,

where, as before, µ and σ2 are certain mean and variance adjustment terms, and Jp
ci(s) and

dW2i(s) are the units of Jp
c (s) and dW2(s), respectively.

Given the local power functions that we have derived, the asymptotic local power can be

simulated using methods similar to those used to obtain the asymptotic critical values, that

is, by using simulated diffusions in place of Jc(s). The results for N = 10 and varying c are

reported in Figure 1 for the case when p = 0 and in Figure 2 for the case when p = 1.

Figure 1: Local power for different values of c when p = 0.
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The first thing to notice is that prior knowledge regarding the cross-section dependence

does not seem to be very helpful in improving the relative power of the IPS and LL tests. In

fact, on the contrary, we see that the MJ test is uniformly more powerful than the other tests,
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Figure 2: Local power for different values of c when p = 1.
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and that the difference in power can sometimes be substantial, especially when c is close to

zero. Take for example the case when p = 0 and −3 ≤ c < 0, in which the power of MJ

is almost twice as large as that of LL, the best performing first-generation test. Of course,

power gains are less impressive for more distant alternatives, but at least it is not possible to

do better than the MJ test.

As for the other tests we see that while MB ends up in second place when p = 0, when

p = 1, LL is more powerful. The LL test in turn dominates the IPS test, which is to be

expected given the homogenous specification of the alternative hypothesis used here. The

MIB test is least powerful, and only rarely rejects more than 5% of the time. We also see that

power is generally lower when there is a trend in the model, which is in agreement with the

well-known incidental trends problem, see Moon et al. (2007).5

Summarizing this section, we find that, except for MIB, the rank tests generally enjoy

good local asymptotic power, and that they compare favorably against the IPS and LL tests.

These results appear to be quite robust, and extend to all values of N considered. It should

5Strictly speaking, since N is fixed here the theory of the incidental trends problem does not apply, and there-
fore the radial order of the shrinking neighborhoods around unity for which asymptotic power is nonnegligible
should not be affected. However, there might still be small-sample effects.
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also be noted that since the results are asymptotic, the adverse effect that lag augmentation

has on power is not accounted for. The rank tests are therefore expected to compare even

more favorably in small samples, especially when a high augmentation lag is needed.

4.2 Generality

Most panel unit root tests around are designed to test the null hypothesis that all the units are

unit root non-stationary versus the alternative that there is at least some units that are trend-

stationary, which equivalent to testing the hypothesis of rk(Ω∆u∆u) = N versus rk(Ω∆u∆u) <

N. Clearly, while reasonable in some situations, this hypothesis must be considered as a

rather limited consideration. The new rank tests are much more flexible and is suitable for

testing a variety of hypotheses, including that of full rank.

Another drawback of most existing tests is the way they handle cross-section depen-

dence. At the one end of the scale we have the first-generation tests, which assume that the

dependence is absent altogether. But this approach is not expected to work in general, and

second-generation tests that relax the independence assumption have therefore been devel-

oped. The factor-based approach of Bai and Ng (2004) is one of the most general. It assumes

that ut admits to the following components representation:

ut = Λ′ft + et, (16)

where ft is an r-dimensional vector of common factors with Λ being the associated matrix of

loading coefficients, here assumed to be non-random. Together ft and Λ represent the com-

mon component of ut, while et represents the idiosyncratic component. By assuming that

the units of et are independent of each other and also of the common factors, it is possible to

decompose the long-run covariance matrix of ∆ut as

Ω∆u∆u = Λ′Ω∆ f ∆ f Λ + Ω∆e∆e (17)

where Ω∆ f ∆ f is of dimension r × r and Ω∆e∆e is an N × N diagonal matrix. This illustrates

the main difference when compared to our approach; factor models achieve complexity re-

duction by assuming that ft is the only source of dependence.6

6In approximate factor models, such as the one considered by Bai and Ng (2004), the individual idiosyncratic
component does not necessarily have to be cross-sectionally independent. For simplicity, however, in this section
we keep the cross-sectional independence assumption.
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In terms of allowances, however, the two approaches are very similar. Consider for ex-

ample the cross-unit cointegrating space. Let us denote by G = [G1, G2] an orthogonal r× r

matrix that rotates the factor space into its stationary and non-stationary components. In par-

ticular, suppose that the r1 units in G′
1ft = f1t are stationary, while the remaining r2 = r− r1

units contained in G′
2ft = f2t are non-stationary. The integratedness of et is also allowed to

differ amongst the cross-sectional units. However, since Ω∆e∆e is diagonal, C′
1et cannot be

stationary unless the elements of et are already stationary. The long-run covariance matrix

of ∆w1t = C′
1∆ut = C′

1Λ′GG′∆ft + C′
1∆et can therefore be written as

Ω∆w1∆w1 = C′
1Λ′GΩ∆ f ∆ f G′ΛC1 = C′

1Λ′G2Ω∆ f2∆ f2 G′
2ΛC1,

where Ω∆ f2∆ f2 is the long-run covariance matrix of ∆f1t. It follows that rk(Ω∆w1∆w1) = r1.

The cointegrating space C1 is given by the orthogonal complement of Λ′G2, because only

then will it be true that C′
1Λ′G2 = 0, which in turn implies Ω∆w1∆w1 = 0. Of course, this

does not rule out the possibility that the elements of Λ may be zero for some units, which

would then be stationary but non-cointegrated. It is therefore convenient to let P be an N× r1

matrix that selects those units that correspond to zero loadings. The cross-unit cointegrating

space can now be defined as the space spanned by (IN − P(P′P)−1P′)C1.

Clearly, these reduced rank restrictions correspond exactly to those that apply to our

nonparametric model. Thus, as far as the long-run unit root and cointegration properties

are concerned, the factor and nonparametric models are the same, see Banerjee and Wagner

(2009, Appendix B) for a further discussion. In fact, there is very little to separate the two

models, even in terms of short-run dynamics.

The problem here is that the common factor representation in (16) may not exist. But even

if it does, there is the problem of consistent estimation of both factors and loadings, which

requires additional assumptions. In classical factor analysis, ft and et are generally assumed

to be serially and cross-sectionally uncorrelated, which then allows for consistent estimation

of Λ as T → ∞. However, since N is fixed, consistent estimation of ft is usually not possible.

The only way to ensure consistent estimation of both quantities is therefore to assume that N

goes to infinity with T. More precisely, since Λ and ft are not separately identifiable, the best

that one can hope for here is consistent estimation of the spaces spanned by these quantities.

That is, instead of estimating Λ and ft, we estimate (R−1)′Λ and Rft, where R is an r × r
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rotation matrix of full rank.7 Identification of the whole factor structure requires not only

that N, T → ∞, but also that 1
N Λ′Λ converges to a positive definite matrix, suggesting that

if a variable has only a finite number of nonzero loadings, then it does not qualify as a factor,

but is absorbed in the idiosyncratic component.

Hence, the factor model approach not only assumes a particular parametric structure for

the cross-section dependence, but also imposes other restrictions to ensure that the structure

is identified and hence estimable. The requirement that N should go to infinity is especially

problematic in the sense that it puts a limit on the applicability of the factor-based tests.

This is especially true in applied macro and finance, where N is typically rather small. The

rank tests are N-specific and completely nonparametric, and therefore more general in this

regard.

It should also be mentioned that the particular factor model considered here, the one

of Bai and Ng (2004), is the most general one out there, and that most factor-based test

approaches are even more restrictive. For example, the tests of Moon and Perron (2004),

Pesaran (2007), and Phillips and Sul (2003) all assume that the common and idiosyncratic

components have the same order of integration, see Bai and Ng (2010) for a detailed discus-

sion.

4.3 Simplicity

It is interesting to compare our rank statistics with those that would arise had the previously

discussed second-generation factor-based approach been used. Suppose therefore that (1)

holds and that the errors have the factor structure in (16). The idea of Bai and Ng (2004) is

to first estimate the common and idiosyncratic components in (16), and then to test for unit

roots in both, which can be done using the following step-wise procedure:

1. Let us rewrite (1) in first differences as

∆yt = αpD′(DD′)−1D∆dp
t + ∆ut = αp−1dp−1

t + ∆ut,

where αp−1 = αpD′(DD′)−1, dp−1
t = D∆dp−1

t and D is a p × (p + 1) matrix chosen

to exclude the first element in ∆dp
t , which is equal to zero as the constant in dp

t is

eliminated when taking differences. The first step in the Bai and Ng (2004) approach is

to obtain the least squares residuals, ∆ûp−1
t say, from the above regression.

7Since R has r2 free elements, identification of Λ and ft requires r2 restrictions. A common way to accomplish
this is to assume that 1

T ∑T
t=1 ftf′t = Ir and that Λ′Λ is diagonal.
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2. The first-step residuals are then used to obtain estimates ∆f̂t and Λ̂ of ∆ft and Λ, re-

spectively, which can be done by using the method of principal components. But before

this method can be applied, we need to estimate the number of common factors, r, and

for this reason we may use any of the information criteria developed by Bai and Ng

(2002).

3. From ∆f̂t and Λ̂ we construct ∆êp−1
t = ∆ûp−1

t − Λ̂′∆f̂t, which can be cumulated to

obtain êp−1
t = ∑T

s=2 ∆êp−1
s . This variable is then regressed onto dp

t , which yields the

pth-order detrended residuals, êp
t .

4. The final step is to test for unit roots in et and ft. To test for unit roots in et we can

apply to êp
t the same within and between tests as discussed in Section 3.1. Similarly, to

determine the rank of ft we can apply to f̂t any of the rank tests developed in Section

3.1.

Clearly, when compared to our rank test statistics, the statistics discussed here have no

apparent computational advantage. On the contrary, the factor-based test statistics are actu-

ally quite difficult to compute. Then there is also the problem of small-sample bias, which in

a step-wise approach like the one just described, can be rather serious as the bias from one

step gets imported in subsequent steps.8

5 Small Sample Performance

In this section we report the findings of a small set of simulations using (1)–(3) to generate

the data. By assuming that αp = 0, C1 = [IN1 , 0]′ and C2 = [0, IN2 ]
′, so that the stationary

units are ordered first, we have yt = wt. The vector of stationary innovations is assumed to

be generated as
[

w1t

∆w2t

]
=

[
v1t

v2t

]
=

[
ρIN1 0

0 0

] [
v1t−1

v2t−1

]
+ ηt,

with |ρ| < 1, which implies that yt has the canonical data generating process of Toda (1994).

The error ηt is allowed to be both serially and cross-sectionally correlated through ηt =

8Tests like those of Moon and Perron (2004), Pesaran (2007), and Phillips and Sul (2003), which restrict the
order of integration of the common and idiosyncratic components to be the same, are simpler to implement
because there is only one source of potential non-stationarity. These tests are therefore designed to test for a unit
root in the idiosyncratic component only.
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Θηt−1 + εt with εt ∼ N(0, Σ) and Θ = diag(θ1, . . . , θN), where θi is either set to zero or made

a draw from U(−0.3, 0.3). To ensure that Σ is a symmetric positive definite matrix, we follow

Chang (2004) and set Σ = PVP′, where V = diag(λ1, . . . , λN) is a matrix of eigenvalues such

that λ1 = 0.1, λN = 1 and λ2, . . . , λN−1 ∼ U(0.1, 1). Also, P = U(U′U)−1/2, where the

elements of the N × N matrix U are all drawn from U(0, 1). The number of replications is

set to 3,000, where N and T are chosen to reflect roughly the sample sizes considered in our

empirical applications. In addition, for each cross-section we generate 100 presample values,

starting with an initial value of zero. For brevity, we only report the size and power at the

5% level.9 Some results on the sequential rank selection procedure are also reported.

Consider first the size results for testing H0 : rk(Ω∆u∆u) = N, which are reported in

Table 3. As expected, we see that the tests perform well with good size accuracy in most

experiments. The effect of the serial correlation is, however, not completely removed, and

some distortions seem to remain, especially for the MIB test. However, in most cases that

we have considered there is a significant improvement as T increases. Increasing N does not

have the same effect, though, which is to be expected given our large-T, fixed-N asymptotic

theory.

Table 3 also contains some results for testing H0 : rk(Ω∆u∆u) = N
2 when ρ = 0.1. The

first thing to notice is the size of the MIB test, which grossly distorted in all experiments

considered. The reason is that because the rank under the null is no longer full, as explained

in Section 3.1, the MIB statistic is now divergent. Being a right-tailed test, this causes MIB to

reject too often, which is just what we observe. The results for the other tests are, however,

more encouraging. In fact, except for the tendency to underreject when N increases, the

performance of MB and MJ remain just as good as before.

Consider next the power results when testing the full rank null against H1 : rk(Ω∆u∆u) =

N2 < N, which are reported in Tables 4 and 5 for ρ fixed and varying values of N2, and in

Table 6 for N2 = 0.8N fixed and varying ρ. The information content of these tables may be

summarized as follows:

1. The power of MB and MJ generally improves as T increases, and as N2 departs from

its hypothesized value of N, which is presumably a reflection of the unbiasedness of

these tests. We also see that although the power is generally increasing in N, this is not

9The power results are not size corrected because such a correction is generally not available in practice.
Hence, a test is useful for applied work only if it respects roughly the nominal significance level.
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always the case, which is also not expected.

2. In agreement with the consistency of MIB, we see that the rate at which its power

increases with T is generally much faster than for the other tests. The power is also

increasing in ρ but not necessarily in N2 and N.

3. The MB and MJ tests generally outperform the MIB test. One exception is when the

deviation of ρ from one is relatively large, in which case the latter test is more powerful.

The extreme case being when ρ = 0, in which the MIB test is vastly superior.

4. There is little difference in power depending on whether there is a constant or a con-

stant and trend in the model, which is somewhat unexpected given the theory of the

incidental trends problem. Of course, since we are considering a fixed alternative here,

this theory, which refers to the local power, is not really applicable.10

5. As expected, all three tests generally perform rather poorly when N2 and ρ are close to

their respective values under the null.

Some results of the correct rank selection frequencies for the sequential MMIB test are

reported in Figure 3 when T = 100 and in Figure 4 when T = 200. Both figures are for

the case with p = 0, θi = 0 and N = 10. Although we expect a reduction in the accuracy

of inference as the true rank becomes more distant to the full rank null, we see that the

magnitudes displayed in Figures 3 and 4 can sometimes be substantial. For example, when

T = 100 and ρ = 0.9 the correct selection frequency decreases from about 95% to 0% as

N2 decreases from 10 to eight. However, these magnitudes naturally decrease with ρ and

inversely with T. Indeed, with T = 200 and ρ = 0 the correct selection frequency never falls

below 75%.

6 Empirical applications

In this section we examine two empirical applications of the tests developed in this study.

The first employs a multi-country panel of real exchange rate data to examine purchasing

power parity (PPP). The second employs a multi-country panel of log per-capita GDP data

to test whether income is converging over time.

10The difference in the results when compared to a local alternative hypothesis is easily seen from Figures 1
and 2, where the effect of the trend is more pronounced.
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Figure 3: Correct rank selection frequency of the MMIB test when T = 100.
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6.1 PPP

A common way of testing PPP is to apply to the real exchange rate any conventional first-

generation panel unit root test that allows for a non-zero mean. A time trend is usually not

included, as this is deemed inconsistent with PPP theory. Panel tests of this kind were ini-

tially motivated by their potential for power gains over univariate tests. However, because

of the cross-country dependence, some of these power gains are more likely to reflect size

distortions.

A large part of the dependence typically originates with the numeraire country, which

can be given a common factor interpretation, and this has motivated the use of factor-based

second-generation tests. However, such studies typically end up estimating a large number

of factors, suggesting that the factor model might not be appropriate, see Wagner (2008) for a

discussion and some empirical results. Then there is also the issue of the omitted time trend,

which, in view of the well-known Balassa–Samuelson argument that countries with high
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Figure 4: Correct rank selection frequency of the MMIB test when T = 200.
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productivity in traded goods will have appreciating exchange rates, is equally problematic.

In this section, we try to address both these problems simultaneously by using our rank

tests, which, in addition to not requiring that the cross-country dependence is of the com-

mon factor type, have good power when there are deterministic trends present under the

stationary alternative. The data that we use are the same as in Wagner (2008), and comprise

four panels of monthly bilateral real exchange rates, which are constructed from consumer

price indices with the United States dollar as the numeraire currency. A brief description is

provided in Table 7.11 It is seen that in this application N is rather small, especially in the

Euro area and CEEC panels. This means that factor-based approaches are likely to be biased,

and that our finite-N approach might be more appropriate.

The results of the rank tests are reported in Table 8. The first thing to notice is that, except

when we apply the MB test to the World wide panel, there seem to be no violations of the

full rank null, suggesting that PPP fails for all countries considered. We also see that this

11See Wagner (2008) for a more detailed description of the data.
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result is the same regardless of whether there is a constant, or a constant and trend in the

model, suggesting that, to the extent that productivity differences can be captured by the

deterministic trends, the PPP failure cannot be attributed to the Balassa–Samuelson effect.

These results are confirmed by the sequential MMIB test, which in all four panels leads to a

full rank estimate.

6.2 Income convergence

Our analysis of the convergence of income is rooted in the definition of Evans (1998). To

formalize the idea, suppose that yit, the income for country i at time t, is non-stationary.

Then the panel is said to convergence if, for any pair of countries i 6= j, yit − yjt is stationary,

and that yit and yjt are thereby cointegrated. Hence, if the convergence hypothesis holds, the

cross-unit cointegrating rank is one, whereas if it fails, the rank is N.

As Evans (1998) points out this definition is fairly general, and even allows for the pos-

sibility of different convergence clubs. However, this is not what empirical researchers tend

to focus on. Indeed, most researchers assume that the countries have the same stochastic

trend. The main reason for this is that if the trend can be well-measured by the overall cross-

sectional average, yt say, then the definition of convergence is equivalent to the condition

that yit − yt is stationary for all i, which is easily tested by using any first-generation panel

unit root test. However, if one would like to entertain the possibility of convergence clubs,

then one needs to allow for more than one cross-country cointegrating relationship. Our

rank tests are ideally suited for this.

The data that we are going to use to assess the convergence hypothesis are taken from

Maddison (2007), and comprise annual observations on the log per-capita GDP for 22 coun-

tries over the period 1870–2001.12 The rank test results are reported in Table 9. We see that

while MIB and MB are able to reject the full rank null, MJ is not. The results for this null are

thus inconclusive, and we therefore proceed to test the null of rank 21. In this case it is only

the MIB test that rejects. But since the rank under the null is not necessarily full, this result

should be interpreted with caution. It is better to use the MMIB test, which leads to a rank

estimate of 20 in case of a constant, and 21 in case of a constant and trend. A majority of the

evidence therefore leans towards a reduced rank that is close to being full, suggesting that

12The included countries are Australia, Austria, Belgium, Brazil, Canada, Denmark, Finland, France, Germany,
Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sri Lanka, Sweden, United Kingdom, United
States, Switzerland, and Uruguay.
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the convergence must be rejected.

7 Conclusions

In this paper we introduce new rank tests for panel data that have a number of advantages

when compared to existing panel unit root tests. First, since the serial and cross-sectional

correlations do not affect the asymptotic null distributions of the test statistics, the tests are

robust against deviations from the usual assumption of a factor model with linear short-run

dynamics. This property is important not only in theory but also in small samples, where

deviations from these parametric assumptions may have a substantial effect on the behavior

of the parametric test statistic. Second, despite these allowances, the rank tests do not require

any treatment of nuisance parameters. Hence, with these tests there is no need for any lag

augmentation, or estimation of common factors. Implementation is therefore very simple.

Third, the tests have relatively high power, even when compared to first-generation tests in

cases when the cross-sectional independence restriction holds. Finally, since the asymptotic

results do not require N → ∞, the tests are ideally suited for applications with the typical

macro or finance panel, in which N is rather small.
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Table 2: Mean and variance adjustment terms for the between and within tests.

Between tests Within tests
Adjustment BMIB BMB BMJ WMIB WMB WMJ

p = 0
µ 33.35913 0.05080 13.38137 14.98190 0.13349 12.33025
σ2 1358.83596 0.00074 198.41452 51.60810 0.00410 157.30748

p = 1
µ 125.32524 0.01083 4.67848 76.51020 0.02614 4.31645
σ2 7694.99507 0.00003 15.50459 1569.08434 0.00018 12.53802

Notes: p = 0 refers to the model with an intercept, while p = 1 refers to the model with intercept
and trend. The standard normal transformation of for example the BMB statistic is given by√

N(BMB− µ)/σ.
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Table 4: Power at the 5% level for ρ = 0.9 fixed and varying values of N2.

p = 0 p = 1
T N MIB MB MJ MIB MB MJ

N2 = 0.1N
100 10 7.5 96.3 90.3 12.6 71.6 76.1
100 20 8.3 99.6 98.0 23.3 90.3 90.4
100 40 6.6 98.9 99.7 36.1 79.9 97.8
200 10 24.5 100.0 96.4 25.4 99.7 96.6
200 20 27.0 100.0 99.4 35.3 100.0 100.0
200 40 14.8 100.0 100.0 47.0 100.0 100.0

N2 = 0.3N
100 10 6.3 69.5 58.4 6.2 40.6 44.1
100 20 7.9 86.5 74.4 8.2 61.4 59.7
100 40 6.4 67.6 89.6 6.1 38.4 81.2
200 10 18.0 95.3 73.7 15.2 82.7 73.2
200 20 21.7 99.8 88.7 20.0 97.8 91.4
200 40 11.9 100.0 96.9 11.5 99.9 98.2

N2 = 0.7N
100 10 4.6 17.6 14.2 4.6 12.2 11.1
100 20 6.0 23.8 16.6 6.5 15.1 12.6
100 40 5.4 4.9 25.0 5.2 3.4 20.4
200 10 6.1 27.6 19.9 5.5 19.7 19.9
200 20 11.3 41.0 25.5 10.8 30.9 25.9
200 40 7.9 50.5 32.1 7.9 59.5 34.5

Notes: N2 refers to the number of unit roots under the alternative, while
ρ refers to the autoregressive coefficient of the remaining stationary units.
hypothesis. p = 0 and p = 1 refer to the model with constant, and constant
and trend, respectively. The null hypothesis is that of full rank.
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Table 5: Power at the 5% level for ρ = 0 fixed and varying values of N2.

p = 0 p = 1
T N MIB MB MJ MIB MB MJ

N2 = 0.5N
100 10 100.0 99.5 67.8 100.0 99.5 77.4
100 20 100.0 100.0 84.9 100.0 100.0 93.3
100 40 100.0 100.0 95.7 100.0 100.0 98.9
200 10 100.0 99.6 74.6 100.0 99.8 84.5
200 20 100.0 100.0 92.1 100.0 100.0 97.5
200 40 100.0 100.0 99.2 100.0 100.0 100.0

N2 = 0.8N
100 10 99.9 40.6 18.7 99.9 39.5 23.1
100 20 100.0 84.6 24.5 100.0 81.3 30.2
100 40 99.8 92.1 38.2 99.7 91.4 46.9
200 10 100.0 41.2 22.9 100.0 39.4 28.6
200 20 100.0 88.4 32.4 100.0 88.4 41.6
200 40 100.0 100.0 47.8 100.0 100.0 58.8

N2 = 0.9N
100 10 90.0 17.3 9.7 85.6 16.0 10.4
100 20 93.3 38.1 11.1 92.1 33.6 11.4
100 40 77.9 25.5 16.6 73.2 24.8 19.6
200 10 99.8 17.5 13.1 99.8 15.7 14.1
200 20 100.0 37.3 14.6 100.0 35.9 16.8
200 40 100.0 80.1 19.2 100.0 90.8 22.2

Notes: See Table 4 for an explanation.
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Table 6: Power at the 5% level for N2 = 0.8N fixed and varying values of ρ.

p = 0 p = 1
T N MIB MB MJ MIB MB MJ

ρ = 0.9
100 10 3.9 12.1 9.0 4.1 8.7 7.7
100 20 5.9 15.2 10.0 6.2 9.7 8.3
100 40 5.5 2.5 15.7 4.9 1.6 12.6
200 10 4.7 16.0 13.0 4.2 11.4 13.4
200 20 9.8 21.6 14.9 8.9 17.5 14.9
200 40 7.4 26.7 18.9 7.5 38.6 18.8

ρ = 0.7
100 10 14.9 23.4 12.4 12.9 19.0 13.8
100 20 13.0 39.6 14.6 12.9 31.0 15.0
100 40 9.1 15.2 21.5 7.9 11.3 24.1
200 10 53.0 29.9 18.0 45.3 25.7 20.6
200 20 60.3 56.8 21.6 54.0 51.0 26.2
200 40 30.7 81.8 28.9 29.1 89.7 33.9

ρ = 0.5
100 10 53.1 30.9 15.3 46.7 27.8 17.8
100 20 44.9 59.4 18.2 43.3 52.2 20.3
100 40 24.8 42.1 26.9 22.6 37.8 31.5
200 10 97.4 35.4 20.7 95.9 32.6 24.2
200 20 99.7 74.1 26.4 99.2 72.1 33.1
200 40 95.4 97.8 36.0 93.9 99.1 43.6

Notes: See Table 4 for an explanation.

Table 7: PPP panels.

Panel Start date End date T N
Euro area 1980:1 1998:12 228 11
CEEC 1993:1 2004:6 138 11
Industrial 1980:1 1998:12 228 29
World wide 1981:1 2004:4 280 57
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Table 8: Rank test results for the PPP panels.

p = 0 p = 1
Panel MIB MB MJ MIB MB MJ
Euro area 14593.7 0.14422 143.1 16713.4 0.04997 71.2
CEEC 10553.7 0.14392 568.2 13389.2 0.04813 291.2
Industrial 202626.8 0.15799 645.6 219843.8 0.05861 350.8
World wide 1260710.9 0.16223∗ 4393.8 1307459.6 0.06252 1178.1

Notes: A ∗ superscript denotes significance at the 5% level when testing the null
hypothesis of full rank, whereas p = 0 and p = 1 refer to the model with constant,
and constant and trend, respectively.

Table 9: Rank test results for the income panel.

p MIB MB MJ
0 100010.6∗ 0.15483∗ 2724.7
1 109378.4∗ 0.05558∗ 252.0

Notes: See Table 8 for an explanation.
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