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Abstract
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1 Introduction

Most, if not all, tests for unit roots in panels are based on the idea of an underlying para-
metric model, which is almost always assumed to be first-order autoregressive in nature.
Take for example the well-known first-generation tests developed by Levin et al. (2002) and
Im et al. (2003), which are designed to test for a unit autoregressive root in the special case
when the errors are cross-sectionally uncorrelated. However, they may still be serially cor-
related, which then calls for some kind of adjustment to get rid of the associated nuisance
parameters. The test of Im et al. (2003) uses lag augmentation in the spirit of the augmented
Dickey-Fuller test, while the test of Levin et al. (2002) uses both lag augmentation and long-
run variance estimation as in the Phillips—Perron test. The usual rationale for carrying out
the adjustment in this way is that if the errors admit to an autoregressive representation of
known order, then this can be mimicked in sample.

In practice, of course, one cannot rule out the possibility that the errors are dependent
also across the cross-section, in which case the size properties of the first-generation tests are
known to be suspect, see for example Wagner and Hlouskova (2006). Numerous attempts
have therefore been made in order to relax the rather unrealistic assumption of cross-section
independence. One approach is to assume that the dependence can be represented by means
of a common time effect, which can be eliminated by simply subtracting the cross-sectional
mean from the data. In general, however, with differing pair-wise cross-section correlations,
this approach is not expected to work.

The second-generation approach allows for more general types of cross-section depen-
dencies, and can be seen as a response to these considerations. However, as with all para-
metric approaches, this greater generality creates the need to be precise about the allow-
able dependencies. Some tests assume that the dependence can be restricted to the con-
temporaneous covariance matrix of the errors. There is for example the test of O’Connell
(1998), which uses seemingly unrelated regressions techniques to allow for a completely
unrestricted covariance matrix. However, this requires the time series dimension T being
substantially larger than the cross-section dimension N, a condition that is rarely fulfilled in
practice. Another possibility is therefore to follow for example Bai and Ng (2004), Moon and
Perron (2004), Pesaran (2007), and Phillips and Sul (2003), to mention a few, and to assume

that the covariances can be modeled using a small number of common factors, which, pro-



vided that the true number of factors is known, can be estimated and subtracted from the
data. To also account for the presence of serial correlation, some kind of lag augmentation or
long-run variance estimation is typically required, either before or after the removal of the
factors.

Clearly, whether first- or second-generation, these tests all require the researcher to make
an explicit assumption regarding the underlying parametric model. This poses a problem
because once one deviates from this assumption, the ensuing tests will no longer be invariant
with respect to the data generating process. But this is not all. There is also the problem
that the true number of common factors, lag length and optimal bandwidth to use in the
long-run variance estimation are never available in practice, and different choices can have
a significant impact on test performance.

Motivated by these problems, the purpose of the current paper is to develop new tests,
which, unlike most existing panel unit root tests, are based on the cointegrating rank of the
N-dimensional vector of stacked observations. This makes them suitable for testing a variety
of hypotheses and not just that of a common unit root. Another special feature of the new
tests is that they are constructed such that one does not have to parametrically specify the
underlying model, nor do the statistics involve adjustment factors for the inherent nuisance
parameters, which of course significantly reduces both the number and the complexity of the
computations required. This is achieved by considering simple variance ratios that eliminate
these nuisance parameters from the asymptotic distributions of the test statistics.

Despite their simplicity, the new tests are remarkably general. In fact, except for some
mild regulatory conditions, there are no restrictions at all. The data could be both serially
and cross-sectionally independent, but they could also involve complex dynamic interrela-
tionships including cointegration and Granger causality. These allowances make our tests
some of the most widely applicable.! They are also very powerful, even in comparison to
first-generation tests that are implemented in absence of cross-sectional dependence, sug-
gesting that the cost of not requiring any prior knowledge regarding the dependence is very
low. Moreover, the derivation of the asymptotic distributions of the test statistics as T — oo

for a fixed N, as opposed to joint or sequential asymptotics in which both T and N are taken

n fact, as far as we are aware the only other tests that are comparable ours in terms of generality and ease
of parametrization are those of Palm et al. (2009). The main difference is that while our tests are completely
adjustment-free, the tests of Palm ef al. (2009) requires bootstrapping, which makes them computationally rela-
tively burdensome. They are also not suitable for testing hypotheses other than that of a common unit root.



to infinity (see Phillips and Moon, 1999), makes the tests valid for any N, thus adding to
their applicability.

The rest of the paper is organized as follows. Section 2 presents the assumptions, which
are used in Section 3 to derive the asymptotic distributions of our rank test statistics. Section
4 then discusses some of the distinctive features of the new tests, and sets them out against
the factor-based tests of Bai and Ng (2004), which represents the closest parametric alterna-
tive around. The asymptotic properties of the tests are verified using both simulated and

real data in Sections 5 and 6, respectively. Section 7 concludes.

2 Assumptions
We consider an N-dimensional vector y; = [y1;,...,ynt|” given by
yt = a,d} +uy, (1)

where df = [1,t,...,tP) with p > 0 is a polynomial trend function satisfying d) = 1, with
&, being the associated matrix of trend coefficients. The typical elements of d} include a
constant and a linear time trend, corresponding to p = 0 and p = 1, respectively, and these
are also the specifications considered here.

The main variable of interest is u; = [uyy, ..., un:)/, which represents the stochastic part
of y;. In order to describe its unit root and cointegration properties, we introduce an N x N
orthogonal matrix C = [C;, C;], which is such that C'C = CC' = Iy and whose component
matrices C; and C; are of dimension N x Nj and N x N, with N, = N — Nj, respectively.
C; gives a basis for the cointegrating space of u;, while C;, which is such that is such that
C,C; = 0 and C|C;, = 0, gives the common trends. The matrix C allows us to rotate u; into
stationary and unit root subsystems as

/
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where the first N; units in wy; are stationary, while the remaining N, units in wy; are non-

stationary. As usual, Nj is referred to as the cointegrating rank, while N, count the number

of common trends. The vector of stationary innovations is given by
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whose long-run covariance matrix is going to be key in this paper. For arbitrary stochastic
processes a; and b; with absolutely summable covariance function we define

Qab - Z E(atb:‘fs) - Z‘ab + ruh + r;b/

s=—o00
where L, = E(a;b;) and T, = Yooy E(asb}_,) are the contemporaneous and one-sided

long-run covariance matrices, respectively. The long-run covariance matrix of v; is parti-

tioned in the following way:
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Assumption 1 is enough to obtain our main results.
Assumption 1. As T — oo,
= Vi —uw B(s) = Q. “W(s) = 1.02 1222 ,
\/T t=1 0 0 sz/vz WZ(S)

where Oy is positive definite, —, and | x| signify weak convergence and integer part of x, respec-
tively, Qv, 0, = Qoo — Doy, Qo Voo, and W(s) = [Wy(s), ..., Wn(s)]" is an N-dimensional

0202

vector standard Brownian motion on s € [0, 1] that is partitioned conformably with v;.

Assumption 1 is stated directly in terms of the required invariance principle rather than
primitive regularity conditions. This is convenient because it is this result that drives the
distribution theory and we are not interested here in the regularity conditions under which
it holds. It may be noted, however, that there are a variety of conditions that lead to Assump-
tion 1. For example, Phillips and Durlauf (1986) give conditions requiring that v; be weakly
stationary with finite moment greater than second order and that it satisfies well-known
a-mixing conditions. Phillips and Solo (1992) give other sets of conditions based on linear
processes. In any case, since we are considering the entire N-vector this means that we can
allow for very general forms of dependencies between the elements of v;. It also means that
we can allow for heterogeneous variances that may vary freely across the elements, but also
to some extent across t. Needless to say, these allowances represent a much more general

consideration than is usually the case in the non-stationary panel literature.



The unit root and cointegration behavior of u; is governed by the rank of Q. the
long-run covariance matrix of Au;. This can be seen by studying the long-run covariance
matrix of the corresponding rotated vector Aw;. In particular, by using (2) and (3), and the

fact that Avy; is over-differenced with zero long-run variance, we obtain

0 0
0 Oy,
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szAvl 00202

QAuAu = CQAwAwC/ =C C/ = CQQU2U2C‘/2.

The rank of Qp,a, can either full or reduced. If rk(Qa,a,) = N, so that the rank is full,
then C = C; = Iy, meaning that now all the elements of u; are unit root non-stationary. If, in
addition, Oy, is diagonal, then we are back in the first-generation unit root scenario with
N uncorrelated random walks. If, on the other hand, the rank is reduced, then rk(Qaya,) =
N, < N, suggesting that now there are only N, unit roots. This can be due to genuine
stationarity, or cointegration, or a combination. The extreme case being when rk(Qaya,) =
0, in which C = C; = Iy, suggesting that now all the elements of u; are stationary.

Clearly, the rank of O,y is related to the cointegration rank concept of Johansen (1995).
However, there is a conceptual difference in that here cointegration does not refer to coin-
tegration among variables, but rather to cointegration across units. Let us clarify what we
mean by this. Denote by H an N x n; diagonal selection matrix comprised of zeros and
ones that picks the individually stationary units of u;. For example, if u; is stationary, then
H has as one of its columns the vector [0,...,0,1,0,...,0]" with the one located at the it"
position. Note also that 7; < Nj. The cross-unit cointegrating space of u; is given by the
space spanned by D = (Iy — H(H'H) 'H’)C;. That is, the cross-unit cointegrating space is
the span of the projection of the cointegrating space C; of u; on the orthogonal complement
of H, which includes all cointegrating relationships that are not made up of linear combi-
nations of unit-specific processes that are already stationary (Wagner and Hlouskova, 2010).
The cross-unit cointegrating rank is the dimension of the space spanned by D. Altogether

we have rk(Qa,ay) = N — np — k(D).

3 The tests
3.1 The rank statistics and their limiting distributions

The cointegration rank tests that we consider are based on two ingredients. One is the

asymptotic theory of regressions involving superfluous trend terms (see Park, 1990; Park



and Choi, 1988) and the other is long-run variance estimation based on untruncated kernels
(see Kiefer et al., 2000).
Let us start by discussing the variance components. In particular, consider the least
squares residual
T T -1
=y Lyl (Larar) ol
t=1 t=1

whose estimated long-run variance under stationarity is given by
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where k(x) is a kernel function and M is the bandwidth. It has been shown by Kiefer et al.
(2000) that if untruncated such that M = T, under stationary, ﬁp converges to a random
variable that is proportional to Q and whose precise shape depend on the choice of k(x). In
case of the Bartlett kernel k(x) =1 — m , Kiefer and Vogelsang (2002) show that the formula

for flp reduces to
a 2 &L
0= 5 18

where 87 =Y, af
The problem is that while the first N7 units of w; = C't ut = [wf;, wgt] contained in W’ft,

are asymptotically stationary, the remaining ones in Wgt are unit root non-stationary, sug-
gesting that a different normalization with respect to T is needed. Let us therefore introduce
the normalization matrix D7 = diag(Iy,, V' TIy, ). By using Assumption 1, rotation by C and

standard results for least squares detrended processes it is possible to show thatas T — oo
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where R} =Y\ W, RF(s) = [; BF(r)dr and BP(s) = Q}/>WP(s) with
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denoting the residual from projecting W(s) onto d?(s) = [1,s,...,s?] with d%(s) = 1. All
vectors are partitioned conformably with C.

The contemporaneous variance estimator,

AD A~ ~
Ulp (712]0 Ule
~ AD ~
1 T PP Ule UZp UZNp
T e = :
T t ot . . .
=1 N
~ ~ AD
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must also normalized in order to achieve convergence:

T AP WP 1/2.4,P o P!
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The convergence results in (4) and (5) imply that asymptotically nuisance parameter free

/
t
wl
0

—p C )

C. )

test statistics can be constructed using nothing but appropriately normalized ratios of £,
and ﬂp. The first test statistic of this type that we will consider can seen as a multivariate
version of the 0t statistic introduced by Breitung (2002). It is given by
MB = (0,81,
2T Zp

The asymptotic distribution of this statistic under the null hypothesis Hp : rk(Qaua,) = N2

is easily derived from the above results. Indeed, by using the cyclical property of the trace,

1 2 A
MB = tr<2TDT10pDT1(DT12pDT1)1>

0 /
Ji RE ()R (s ] y (C
—y tr (/01 R} (s)R} (s)'ds </01 Bé’(s)Bé’(s)ﬂs) _l>
1
tr ( /O L QU(5)Ql(s)'ds ( /01 WS (s)W) (s>/ds> ) , ©6)

where QF(s fo WP (r)dr is again partitioned conformably with C.

—w tr| C

The second test statistic that we will consider is based on the properties of regressions
including superfluous trend regressors. Towards this end, suppose that the data are gen-

erated as before via (1) but that the trend polynomial used in the least squares detrending
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is now of degree q > p. If u; is stationary, then the coefficients corresponding to the su-
perfluous trends tP+1 .., #1 are estimated consistently to zero. A coefficient restriction test
like the Wald test is therefore going to have a well-defined limiting distribution in this case,
although not necessarily free of nuisance parameters. If u; is non-stationary, however, then
(1) is spurious and the coefficients corresponding to the superfluous regressors will not go
to zero, and this has implications for the asymptotic behavior of the Wald statistic, which is
then of order O,(T). This led Park and Choi (1988) to consider as a unit root test statistic the
Wald statistic divided by T. Our test statistic can be seen as a multivariate version of this

statistic, and is given by
M] = tr(E,2, " —Iy),

where )f.q is the estimated residual variance from (1) when the fitted trend polynomial is of
degree g > p. Vogelsang (1998) studied the Wald statistic of Park and Choi (1988) and found
that it has strongly rising power up until g = 9, after which the power increments dropped
off. In the current paper we therefore only consider this value of 4. In any case, similarly to

before, under the rank-N, null,

M] = tr(D;lﬁngl(Dglﬁqul)—l—IN>

—w tr<C
) 0 B
c| n | -1
8 ( 0 folsg(s)sg(s)'ds] ) N)

= ’cr([IN1 0 ]—IN>
0 Jy BY(s)BY(s)'ds( [, BY(s)B(s)'ds) !
-1
— ( /0 "W (s WE (s)ds < /0 1 wg(s)wg(s)’ds) - 1N2> @)

as T — oo, with obvious definitions of BI(s) and W1(s).

C/

A special case of the above results arises when the null is tested against rk(Qa,a,) = 0,
which is the conventional stationary alternative hypothesis considered by for example Levin
et al. (2002). Because %f{i —w Bf(s) and since C = C; = Iy under this alternative, we

A A A pl 1 & ~ A P!
get ), = %ZL thth —w 2f0 Bf(s)Bf(s)’ds and X, = %Zthl wftwft —p Ly, and

therefore
1
T MB —sy tr (/ B (s)B! (s)'ds }:;11vl> , (8)
0
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or MB = O,(T '), whereas
M] = tr(Eo0, 2y 5, — In) = 0. )

Hence, in this case both statistics degenerate to zero under the alternative. For any other
alternative 0 < rk(Qaua,) < Np, the statistics converge to the trace of the same random
matrices as under the null but with a different dimension. Thus, given this randomness, M B
and M] will generally not be consistent, only unbiased.

This leads us to consider the following multivariate inverse Breitung (2002) statistic:

A

MIB = 2T tr(£,60, 1),

whose asymptotic distribution under the null hypothesis is given by

MIB — tr (/01 W5 (s)W5(s)'ds (/01 Qg(s)Qg(S)'dS> _1> 4 {10

which follows directly from our previous results. The analysis of this statistic under the
alternative hypothesis is, however, not as straightforward. In particular, consider testing
the null against rk(Qayay) < Nz. The problem here is that, unlike ):“.p, flp is singular and
therefore cannot be inverted. However, note that under the full rank hypothesis, MIB can
also be written as MIB = 2T Zf\g A;, where A; > ... > Ay are the eigenvalues of the matrix

N A

Zpﬂrjl arranged in descending order. Suppose now that rk(Qayua,) = N2 < N. Then,

1 N Ny 1 -1
= MIB =2 Y Ai+0p(1) =0 2) Ai=tr (zvm </O Bf(s)Bf(s)’ds) ) , (11)
j i=1

i=1

where A; is an eigenvalue of the matrix X, o, (fol B! (s)B!(s)'ds)~1. Thus, MIB = O,(T),
suggesting that, unlike the other tests, MIB is consistent against all alternatives rk(Qa,a,) <
N, and not just against rk(Qa,a,) = 0, which is of course a great advantage. The problem
is that because the first N; eigenvalues are diverging this statistic cannot be used when the
rank under the null is not full. To circumvent this we may use the following modified MIB

statistic:
N ~
MMIB =2T Y A,
i=Nj+1
which coincides with the A, statistic studied by Breitung (2002).
This eigenvalue interpretation of MMIB suggests a natural procedure that can be applied

to determine the rank of Q,a, from the data. The idea is to proceed as in Johansen (1995)
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by successively testing down the rank of Qa,a,. We begin by applying MMIB. If the null
of rk(Qayuay) = N is not rejected, we conclude that all the cross-sectional units are non-
stationary and non-cointegrated, and proceed no further. If the null is rejected, however,
the testing proceeds by testing whether rk(Qayay,) = N — 1 using MMIB based on the
N — 1 smallest eigenvalues. The testing then continues by sequentially dropping the largest
eigenvalue until the null cannot be rejected or zero rank is reached.

The advantage of doing the testing in this way is that if the significance level at each
stage is a, while the probability of selecting the true rank approaches to 1 — a, the probability
of selecting a smaller rank converges to zero. This property is generic of successive testing
procedures, including the Johansen (1995) trace test for the cointegrating rank. The resultis a
consequence of the fact that the test is applied to the same variable and thus not independent
across stages.

Note also that although the same sequential procedure can in principle be applied also
to the MB and M] tests, this is generally not recommended. The reason is that the resulting
procedures will only be able to discriminate between full and zero rank, and not between

intermediate cases.?

3.2 Critical values

Response surface regressions are to obtain the 5% critical values for the tests. We exper-
imented with a variety of specifications and opted for a linear regression model of the
form q = &'x + 1, where g is the simulated 5% critical value and 7 is an error term. The
choice of regressors to include was dictated by overall significance subject to the require-
ment that the R? of the regression be no smaller than 0.999. The set of regressors that
we retained for the MIB and M] tests is x = (1, N'/%, V/'N,N, N2, N3, NTZ, NTS,%,%,%Z)’,
while for the MB test, x = (1, 5171, —~, %, 72+ 35, Taz 7155+ T+ 72, 7oz ) - The simulated crit-
ical values are based on making 1,000 draws from the limiting distribution of each of the
three test statistics with normal random walks of dimension N = 1,2,...,50 and length
T = max{30,2N}, max{30,2N} +5,...,300 in place of the vector Brownian motion W(s).
This means that there is a total of 2,165 observations available for each regression. The re-

sulting estimated response surface coefficients are reported in the top panel of Table 1.

2 Another possibility is to consider a maximum eigenvalue type statistic. However, unreported simulation
results suggest that the trace statistics perform better in small samples, and we therefore only consider these.
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Unreported simulation results suggest that the fit of the response surface regressions can
be poor when N is close to the sample endpoints. To compensate for this we simulate critical
values for specific values of N < 5 when T = 1,000. These are reported in the bottom panel

of Table 1.

3.3 First-generation analogues

In this section we ask how the absence of cross-section dependence is going to affect the re-
sults obtained so far. Intuitively, independence is expected to simplify not only the asymp-
totic analysis but also the calculations needed in order to obtain nuisance parameter free
test statistics. As usual with first-generation tests, the null and alternative hypotheses are
formulated as Hy : tk(Qayua,) = N versus Hy : tk(Qayua,) < N. Thus, since C = C, = Iy
under this null, Tuf —u O2ZWP(s) as T — oo, where Qyy = Qyyp, = diag(wy,, ..., Woy ),
suggesting that nuisance parameter free test statistics can be constructed using nothing but
simple sums of unit-specific variance estimates. Consider as an example the MB statistic.
An easy way to get rid of w3 is to take the ratio before summing over the cross-sectional
dimension. This gives rise to the following between version of the MB statistic:

A,

N

1
BMB = ——
2T

[\12

Il
—_

l

By using the same steps as before, this statistic has the following limiting null distribution

as T — oo:

2
BMB —y L 2 - o (QU(5))%s. 12)

o (W (s))2ds”

which depends on N, but where the individual limiting random variables are otherwise in-
dependent and identically distributed with constant mean and variance, written in a generic
notation as u and 02, respectively, with the dependence on p suppressed. This result is very
convenient, because it lends itself to simple large-N asymptotics. In particular, by using the
sequential limit theory discussed in Phillips and Moon (1999),

VN(BMB — )

o

—» N(0,1) (13)

as T — co and then N — co. Under the alternative hypothesis the same statistic is 0,(1).

12



Another possibility is to sum over the cross-sectional dimension before taking the ratio,

which results in the following within type MB statistic:

1 IARYS i2p

2Ty ¢ 2

which also attains a limiting normal distribution after appropriate mean and variance nor-
malization. The same applies to the normalized within and between versions of the M]
and MIB statistics, which are constructed in an analogous fashion. The appropriate mean
and variance adjustment terms, obtained from simulations based on 100,000 draws of scalar
Brownian motions of length T = 1,000, are provided in Table 2.

Note that, in contrast to the rank tests, with these test there is just one critical value for all
values of N. These tests are therefore even simpler to implement. However, this advantage
comes at a relatively high price. Firstly, cross-sectional independence has to be assumed.
Secondly, the tests can only be used to test the null hypothesis of full rank. Thirdly, the
large-N limiting normal distribution may provide a poor approximation in panels where N

is only small to moderately large.

4 Distinctive features
4.1 Local power

Instead of investigating the behavior of the test statistics under a fixed formulation of the
alternative hypothesis, we can consider the local asymptotic power of the tests. In partic-
ular, consider the local alternative of N, roots close to unity given in Phillips (1988), which
amounts to replacing Awy; = vy in (2) with

1
AWy = TCW2t-1 + v, (14)

where ¢ is a N> x N drift parameter matrix that measure the extent of the deviation from
the rank-N, null. If ¢ = 0, then Awy; = vy; and we are back in the scenario with Nj station-
ary and N, non-stationary unit root units. If, on the other hand, ¢ = diag(cy,...,cn,), then
the units in wy; may be unit root non-stationary, locally stationary, or even locally explo-
sive, depending on whether c; is zero, negative or positive, respectively. It is also possible

to specify ¢ as a non-diagonal but nonzero matrix, in which case the units of wy; may be
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near-integrated of different orders. In any case, by using the invariance principle for near-

integrated processes given in Phillips (1988, Lemma 3.1), we obtain

ﬁ Vo —w szvzlc(s)
t=1

as T — oo, where Jc(s) = [;exp((s —r)c)dWy(r) is a standard vector diffusion process.
This means that in order to obtain the local power functions of the rank statistics W(s) in
the limiting null distributions should be replaced by J.(s). For example, in case of the MB

statistic,

MB >y tr ( [ KRy ds ( [ oo s) 1) a1s)

as T — oo, where K (s) = [ JF (r)dr with JZ (r) being the detrended version of J.(r).3

It is interesting to compare the power of our rank tests with the power of some of the
existing first-generation panel unit root tests when the cross-section dependence is absent.
Intuitively, since these tests make use of the fact that in this case Q,a, is a diagonal matrix,
they should have higher power.

Bowman (1999) studies the exact power of the popular first-generation unit root tests of
Im et al. (2003) and Levin and Lin (1992) under a fixed alternative. He characterizes the class
of admissible panel unit root tests, and shows that in absence of unknown nuisance parame-
ters, while the Im et al. (2003) test is inadmissible, the Levin and Lin (1992) test is admissible,
and in fact uniformly most powerful when alternative is homogenous. He also shows, via
simulations, that these results are not substantially altered by the presence of unknown nui-
sance parameters, such as deterministic constant and trend terms. When the alternative is
heterogeneous Bowman (1999) shows that while the Levin and Lin (1992) test tends to per-
form better for near-homogenous alternatives, for more heterogeneous alternatives the Im et
al. (2003) test performs best.

This discussion suggests that the Im ef al. (2003) and Levin and Lin (1992) tests possess
some optimality property, which makes them interesting as a comparison.* Suppose there-
fore that (3,, = Iy, so that the trend coefficients in &) are the only nuisance parameters.

The drift parameters are homogenous such that ¢ = cIy. Under these assumptions it can be

3Note that in the scalar case the above limiting distribution coincides with the one given in Appendix B of
Breitung (2002) for his gt test.

4Of course, being sample-specific, the results of Bowman (1999) are not expected to hold in the present T-
asymptotic context. However, this is not necessary.
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shown that the Im et al. (2003) and Levin and Lin (1992) statistics, henceforth denoted IPS

and LL, respectively, have the following local power functions as T — oo:

N / 5)dWa;(s)d
IPS —, 1;; )2ds +f0 2i(8)ds —ul,
i=1 ))2ds

¢ (8) dWy(
LL Sy — \// ]c /Jc fO] 2(8 ) —]4 ,

W 1(s)7(s

where, as before, i and 0 are certain mean and variance adjustment terms, and J”,(s) and

dWy;(s) are the units of J¥ (s) and dW;(s), respectively.

Given the local power functions that we have derived, the asymptotic local power can be
simulated using methods similar to those used to obtain the asymptotic critical values, that
is, by using simulated diffusions in place of J.(s). The results for N = 10 and varying c are

reported in Figure 1 for the case when p = 0 and in Figure 2 for the case when p = 1.

Figure 1: Local power for different values of c when p = 0.
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The first thing to notice is that prior knowledge regarding the cross-section dependence
does not seem to be very helpful in improving the relative power of the IPS and LL tests. In

fact, on the contrary, we see that the M] test is uniformly more powerful than the other tests,
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Figure 2: Local power for different values of c when p = 1.
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and that the difference in power can sometimes be substantial, especially when c is close to
zero. Take for example the case when p = 0 and —3 < ¢ < 0, in which the power of M]
is almost twice as large as that of LL, the best performing first-generation test. Of course,
power gains are less impressive for more distant alternatives, but at least it is not possible to
do better than the M] test.

As for the other tests we see that while MB ends up in second place when p = 0, when
p = 1, LL is more powerful. The LL test in turn dominates the IPS test, which is to be
expected given the homogenous specification of the alternative hypothesis used here. The
MIB test is least powerful, and only rarely rejects more than 5% of the time. We also see that
power is generally lower when there is a trend in the model, which is in agreement with the
well-known incidental trends problem, see Moon et al. (2007).

Summarizing this section, we find that, except for MIB, the rank tests generally enjoy
good local asymptotic power, and that they compare favorably against the IPS and LL tests.

These results appear to be quite robust, and extend to all values of N considered. It should

SStrictly speaking, since N is fixed here the theory of the incidental trends problem does not apply, and there-
fore the radial order of the shrinking neighborhoods around unity for which asymptotic power is nonnegligible
should not be affected. However, there might still be small-sample effects.
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also be noted that since the results are asymptotic, the adverse effect that lag augmentation
has on power is not accounted for. The rank tests are therefore expected to compare even

more favorably in small samples, especially when a high augmentation lag is needed.

4.2 Generality

Most panel unit root tests around are designed to test the null hypothesis that all the units are
unit root non-stationary versus the alternative that there is at least some units that are trend-
stationary, which equivalent to testing the hypothesis of rk(Qa,a,) = N versus rk(Qayay) <
N. Clearly, while reasonable in some situations, this hypothesis must be considered as a
rather limited consideration. The new rank tests are much more flexible and is suitable for
testing a variety of hypotheses, including that of full rank.

Another drawback of most existing tests is the way they handle cross-section depen-
dence. At the one end of the scale we have the first-generation tests, which assume that the
dependence is absent altogether. But this approach is not expected to work in general, and
second-generation tests that relax the independence assumption have therefore been devel-
oped. The factor-based approach of Bai and Ng (2004) is one of the most general. It assumes

that u; admits to the following components representation:
u = A,ft + ey, (16)

where f; is an r-dimensional vector of common factors with A being the associated matrix of
loading coefficients, here assumed to be non-random. Together f; and A represent the com-
mon component of u;, while e; represents the idiosyncratic component. By assuming that
the units of e; are independent of each other and also of the common factors, it is possible to

decompose the long-run covariance matrix of Au; as
Qpuau = NOpparA + Qpene 17)

where Qafay is of dimension r X r and Qaeae is an N X N diagonal matrix. This illustrates

the main difference when compared to our approach; factor models achieve complexity re-

duction by assuming that f; is the only source of dependence.®

®In approximate factor models, such as the one considered by Bai and Ng (2004), the individual idiosyncratic
component does not necessarily have to be cross-sectionally independent. For simplicity, however, in this section
we keep the cross-sectional independence assumption.
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In terms of allowances, however, the two approaches are very similar. Consider for ex-
ample the cross-unit cointegrating space. Let us denote by G = [G1, G;] an orthogonal r x r
matrix that rotates the factor space into its stationary and non-stationary components. In par-
ticular, suppose that the r1 units in G| f; = fy; are stationary, while the remaining r, =r —r;
units contained in G,f; = fy; are non-stationary. The integratedness of e is also allowed to
differ amongst the cross-sectional units. However, since Q. is diagonal, C}e; cannot be
stationary unless the elements of e; are already stationary. The long-run covariance matrix

of Awy; = CjAu; = CjA'GG'Af; + C] Ae; can therefore be written as
Qg per = CYAN GO pfG'ACT = CA'GoO 0, GHAC,

where Qaf,ay, is the long-run covariance matrix of Afy;. It follows that rk(Qaw,Aw,) = 11
The cointegrating space C; is given by the orthogonal complement of A’G,, because only
then will it be true that C{A’Gy = 0, which in turn implies Qaz,aw, = 0. Of course, this
does not rule out the possibility that the elements of A may be zero for some units, which
would then be stationary but non-cointegrated. It is therefore convenient to let Pbe an N x rq
matrix that selects those units that correspond to zero loadings. The cross-unit cointegrating
space can now be defined as the space spanned by (Iy — P(P'P)~'P’)C;.

Clearly, these reduced rank restrictions correspond exactly to those that apply to our
nonparametric model. Thus, as far as the long-run unit root and cointegration properties
are concerned, the factor and nonparametric models are the same, see Banerjee and Wagner
(2009, Appendix B) for a further discussion. In fact, there is very little to separate the two
models, even in terms of short-run dynamics.

The problem here is that the common factor representation in (16) may not exist. But even
if it does, there is the problem of consistent estimation of both factors and loadings, which
requires additional assumptions. In classical factor analysis, f; and e; are generally assumed
to be serially and cross-sectionally uncorrelated, which then allows for consistent estimation
of A as T — co. However, since N is fixed, consistent estimation of £; is usually not possible.
The only way to ensure consistent estimation of both quantities is therefore to assume that N
goes to infinity with T. More precisely, since A and f; are not separately identifiable, the best
that one can hope for here is consistent estimation of the spaces spanned by these quantities.

That is, instead of estimating A and f;, we estimate (R‘l)/ A and Rf;, where Risanr x r
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rotation matrix of full rank.” Identification of the whole factor structure requires not only
that N, T — oo, but also that 3;A’A converges to a positive definite matrix, suggesting that
if a variable has only a finite number of nonzero loadings, then it does not qualify as a factor,
but is absorbed in the idiosyncratic component.

Hence, the factor model approach not only assumes a particular parametric structure for
the cross-section dependence, but also imposes other restrictions to ensure that the structure
is identified and hence estimable. The requirement that N should go to infinity is especially
problematic in the sense that it puts a limit on the applicability of the factor-based tests.
This is especially true in applied macro and finance, where N is typically rather small. The
rank tests are N-specific and completely nonparametric, and therefore more general in this
regard.

It should also be mentioned that the particular factor model considered here, the one
of Bai and Ng (2004), is the most general one out there, and that most factor-based test
approaches are even more restrictive. For example, the tests of Moon and Perron (2004),
Pesaran (2007), and Phillips and Sul (2003) all assume that the common and idiosyncratic
components have the same order of integration, see Bai and Ng (2010) for a detailed discus-

sion.
4.3 Simplicity

It is interesting to compare our rank statistics with those that would arise had the previously
discussed second-generation factor-based approach been used. Suppose therefore that (1)
holds and that the errors have the factor structure in (16). The idea of Bai and Ng (2004) is
to first estimate the common and idiosyncratic components in (16), and then to test for unit

roots in both, which can be done using the following step-wise procedure:
1. Let us rewrite (1) in first differences as
/ -1 P p—1
Ay; = a,D'(DD’) 'DAd; + Au; = ap_1d;  + Auy,

where a,_1 = «,D'(DD’)"}, art = DAdf*1 and D is a p x (p + 1) matrix chosen
to exclude the first element in Ad}, which is equal to zero as the constant in d} is
eliminated when taking differences. The first step in the Bai and Ng (2004) approach is

to obtain the least squares residuals, Aa} ! say, from the above regression.

7Since R has 12 free elements, identification of A and f; requires 72 restrictions. A common way to accomplish
this is to assume that % YL | fif; = I, and that A’A is diagonal.
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2. The first-step residuals are then used to obtain estimates Af; and A of Af; and A, re-
spectively, which can be done by using the method of principal components. But before
this method can be applied, we need to estimate the number of common factors, r, and
for this reason we may use any of the information criteria developed by Bai and Ng

(2002).

3. From Af; and A we construct Aé! = At ~' — A’A%,, which can be cumulated to
obtain éf — Zstz Aef ~! This variable is then regressed onto d?, which yields the

pth-order detrended residuals, &!.

4. The final step is to test for unit roots in e; and f;. To test for unit roots in e; we can
apply to &/ the same within and between tests as discussed in Section 3.1. Similarly, to
determine the rank of f; we can apply to f; any of the rank tests developed in Section

3.1.

Clearly, when compared to our rank test statistics, the statistics discussed here have no
apparent computational advantage. On the contrary, the factor-based test statistics are actu-
ally quite difficult to compute. Then there is also the problem of small-sample bias, which in
a step-wise approach like the one just described, can be rather serious as the bias from one

step gets imported in subsequent steps.®

5 Small Sample Performance

In this section we report the findings of a small set of simulations using (1)—(3) to generate
the data. By assuming that a, = 0, C; = [Iy,,0]' and C; = [0,Iy,]’, so that the stationary

units are ordered first, we have y; = w;. The vector of stationary innovations is assumed to

wip | _ | Ve | _ | Pl O Vi1
Awy; Vot 0 0 V2r—1

with |p| < 1, which implies that y; has the canonical data generating process of Toda (1994).

be generated as

The error 7; is allowed to be both serially and cross-sectionally correlated through 77; =

8Tests like those of Moon and Perron (2004), Pesaran (2007), and Phillips and Sul (2003), which restrict the
order of integration of the common and idiosyncratic components to be the same, are simpler to implement
because there is only one source of potential non-stationarity. These tests are therefore designed to test for a unit
root in the idiosyncratic component only.
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Oni_1 + € withe; ~ N(0,Z) and © = diag(f, . ..,0x), where 0; is either set to zero or made
a draw from U(—0.3,0.3). To ensure that X is a symmetric positive definite matrix, we follow
Chang (2004) and set & = PVP’, where V = diag(A4, ..., Ay) is a matrix of eigenvalues such
that Ay = 0.1, Ay = 1 and Ay,...,An_1 ~ U(0.1,1). Also, P = U(U'U)"/2, where the
elements of the N x N matrix U are all drawn from U(0,1). The number of replications is
set to 3,000, where N and T are chosen to reflect roughly the sample sizes considered in our
empirical applications. In addition, for each cross-section we generate 100 presample values,
starting with an initial value of zero. For brevity, we only report the size and power at the
5% level.” Some results on the sequential rank selection procedure are also reported.

Consider first the size results for testing Hy : rk(Qayay) = N, which are reported in
Table 3. As expected, we see that the tests perform well with good size accuracy in most
experiments. The effect of the serial correlation is, however, not completely removed, and
some distortions seem to remain, especially for the MIB test. However, in most cases that
we have considered there is a significant improvement as T increases. Increasing N does not
have the same effect, though, which is to be expected given our large-T, fixed-N asymptotic
theory.

Table 3 also contains some results for testing Hp : rk(Qayay) = % when p = 0.1. The
first thing to notice is the size of the MIB test, which grossly distorted in all experiments
considered. The reason is that because the rank under the null is no longer full, as explained
in Section 3.1, the MIB statistic is now divergent. Being a right-tailed test, this causes MIB to
reject too often, which is just what we observe. The results for the other tests are, however,
more encouraging. In fact, except for the tendency to underreject when N increases, the
performance of MB and M] remain just as good as before.

Consider next the power results when testing the full rank null against Hy : rk(Qa,au) =
N> < N, which are reported in Tables 4 and 5 for p fixed and varying values of N, and in
Table 6 for N, = 0.8N fixed and varying p. The information content of these tables may be

summarized as follows:

1. The power of MB and M] generally improves as T increases, and as N, departs from
its hypothesized value of N, which is presumably a reflection of the unbiasedness of

these tests. We also see that although the power is generally increasing in N, this is not

9The power results are not size corrected because such a correction is generally not available in practice.
Hence, a test is useful for applied work only if it respects roughly the nominal significance level.
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always the case, which is also not expected.

2. In agreement with the consistency of MIB, we see that the rate at which its power
increases with T is generally much faster than for the other tests. The power is also

increasing in p but not necessarily in N> and N.

3. The MB and M] tests generally outperform the MIB test. One exception is when the
deviation of p from one is relatively large, in which case the latter test is more powerful.

The extreme case being when p = 0, in which the MIB test is vastly superior.

4. There is little difference in power depending on whether there is a constant or a con-
stant and trend in the model, which is somewhat unexpected given the theory of the
incidental trends problem. Of course, since we are considering a fixed alternative here,

this theory, which refers to the local power, is not really applicable.°

5. As expected, all three tests generally perform rather poorly when N, and p are close to

their respective values under the null.

Some results of the correct rank selection frequencies for the sequential MMIB test are
reported in Figure 3 when T = 100 and in Figure 4 when T = 200. Both figures are for
the case with p = 0, §; = 0 and N = 10. Although we expect a reduction in the accuracy
of inference as the true rank becomes more distant to the full rank null, we see that the
magnitudes displayed in Figures 3 and 4 can sometimes be substantial. For example, when
T = 100 and p = 0.9 the correct selection frequency decreases from about 95% to 0% as
N> decreases from 10 to eight. However, these magnitudes naturally decrease with p and
inversely with T. Indeed, with T = 200 and p = 0 the correct selection frequency never falls

below 75%.

6 Empirical applications

In this section we examine two empirical applications of the tests developed in this study.
The first employs a multi-country panel of real exchange rate data to examine purchasing
power parity (PPP). The second employs a multi-country panel of log per-capita GDP data

to test whether income is converging over time.

19The difference in the results when compared to a local alternative hypothesis is easily seen from Figures 1
and 2, where the effect of the trend is more pronounced.

22



Figure 3: Correct rank selection frequency of the MMIB test when T = 100.

Power

6.1 PPP

A common way of testing PPP is to apply to the real exchange rate any conventional first-
generation panel unit root test that allows for a non-zero mean. A time trend is usually not
included, as this is deemed inconsistent with PPP theory. Panel tests of this kind were ini-
tially motivated by their potential for power gains over univariate tests. However, because
of the cross-country dependence, some of these power gains are more likely to reflect size
distortions.

A large part of the dependence typically originates with the numeraire country, which
can be given a common factor interpretation, and this has motivated the use of factor-based
second-generation tests. However, such studies typically end up estimating a large number
of factors, suggesting that the factor model might not be appropriate, see Wagner (2008) for a
discussion and some empirical results. Then there is also the issue of the omitted time trend,

which, in view of the well-known Balassa—Samuelson argument that countries with high
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Figure 4: Correct rank selection frequency of the MMIB test when T = 200.

Power

productivity in traded goods will have appreciating exchange rates, is equally problematic.

In this section, we try to address both these problems simultaneously by using our rank
tests, which, in addition to not requiring that the cross-country dependence is of the com-
mon factor type, have good power when there are deterministic trends present under the
stationary alternative. The data that we use are the same as in Wagner (2008), and comprise
four panels of monthly bilateral real exchange rates, which are constructed from consumer
price indices with the United States dollar as the numeraire currency. A brief description is
provided in Table 7.!! It is seen that in this application N is rather small, especially in the
Euro area and CEEC panels. This means that factor-based approaches are likely to be biased,
and that our finite-N approach might be more appropriate.

The results of the rank tests are reported in Table 8. The first thing to notice is that, except
when we apply the MB test to the World wide panel, there seem to be no violations of the

full rank null, suggesting that PPP fails for all countries considered. We also see that this

11See Wagner (2008) for a more detailed description of the data.
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result is the same regardless of whether there is a constant, or a constant and trend in the
model, suggesting that, to the extent that productivity differences can be captured by the
deterministic trends, the PPP failure cannot be attributed to the Balassa—Samuelson effect.
These results are confirmed by the sequential MMIB test, which in all four panels leads to a

full rank estimate.

6.2 Income convergence

Our analysis of the convergence of income is rooted in the definition of Evans (1998). To
formalize the idea, suppose that y;;, the income for country i at time ¢, is non-stationary.
Then the panel is said to convergence if, for any pair of countries i # j, yi: — yj; is stationary,
and that y;; and y; are thereby cointegrated. Hence, if the convergence hypothesis holds, the
cross-unit cointegrating rank is one, whereas if it fails, the rank is N.

As Evans (1998) points out this definition is fairly general, and even allows for the pos-
sibility of different convergence clubs. However, this is not what empirical researchers tend
to focus on. Indeed, most researchers assume that the countries have the same stochastic
trend. The main reason for this is that if the trend can be well-measured by the overall cross-
sectional average, ¥, say, then the definition of convergence is equivalent to the condition
that y;; — v, is stationary for all i, which is easily tested by using any first-generation panel
unit root test. However, if one would like to entertain the possibility of convergence clubs,
then one needs to allow for more than one cross-country cointegrating relationship. Our
rank tests are ideally suited for this.

The data that we are going to use to assess the convergence hypothesis are taken from
Maddison (2007), and comprise annual observations on the log per-capita GDP for 22 coun-
tries over the period 1870-2001.12 The rank test results are reported in Table 9. We see that
while MIB and MB are able to reject the full rank null, M] is not. The results for this null are
thus inconclusive, and we therefore proceed to test the null of rank 21. In this case it is only
the MIB test that rejects. But since the rank under the null is not necessarily full, this result
should be interpreted with caution. It is better to use the MMIB test, which leads to a rank
estimate of 20 in case of a constant, and 21 in case of a constant and trend. A majority of the

evidence therefore leans towards a reduced rank that is close to being full, suggesting that

12The included countries are Australia, Austria, Belgium, Brazil, Canada, Denmark, Finland, France, Germany,
Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sri Lanka, Sweden, United Kingdom, United
States, Switzerland, and Uruguay.
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the convergence must be rejected.

7 Conclusions

In this paper we introduce new rank tests for panel data that have a number of advantages
when compared to existing panel unit root tests. First, since the serial and cross-sectional
correlations do not affect the asymptotic null distributions of the test statistics, the tests are
robust against deviations from the usual assumption of a factor model with linear short-run
dynamics. This property is important not only in theory but also in small samples, where
deviations from these parametric assumptions may have a substantial effect on the behavior
of the parametric test statistic. Second, despite these allowances, the rank tests do not require
any treatment of nuisance parameters. Hence, with these tests there is no need for any lag
augmentation, or estimation of common factors. Implementation is therefore very simple.
Third, the tests have relatively high power, even when compared to first-generation tests in
cases when the cross-sectional independence restriction holds. Finally, since the asymptotic
results do not require N — oo, the tests are ideally suited for applications with the typical

macro or finance panel, in which N is rather small.
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Table 2: Mean and variance adjustment terms for the between and within tests.

Between tests Within tests
Adjustment BMIB BMB BM] WMIB WMB WM]
p=0
U 33.35913 0.05080  13.38137 14.98190 0.13349  12.33025
o? 1358.83596 0.00074 198.41452 51.60810 0.00410 157.30748
p=1
U 125.32524  0.01083 4.67848 76.51020 0.02614 4.31645
o? 7694.99507 0.00003  15.50459 1569.08434 0.00018  12.53802

Notes: p = 0 refers to the model with an intercept, while p = 1 refers to the model with intercept

and trend. The standard normal transformation of for example the BMB statistic is given by

VN(BMB — ) /0.
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Table 4: Power at the 5% level for p = 0.9 fixed and varying values of Nj.

p=0 p=1
T N MIB MB  M]J MIB MB  M]J
N, = 0.1IN
100 10 75 963 903 126 716 761
100 20 83 996 980 233 903 904
100 40 6.6 989 99.7 361 799 97.8
200 10 245 1000 964 254  99.7  96.6
200 20 270 1000 994 353 100.0 100.0
200 40 14.8 100.0 100.0 470 100.0 100.0
N, = 0.3N
100 10 6.3 695 584 6.2 406 441
100 20 79 865 744 82 614 597
100 40 64 676 896 6.1 384 812

200 10 180 953 737 152 827 732
200 20 217 998 887 200 978 914
200 40 119 100.0 96.9 115 999 982

N, = 0.7N
100 10 46 176 142 46 122 111
100 20 60 238 16.6 65 151 12.6
100 40 54 49 250 52 34 204
200 10 61 276 199 55 197  19.9
200 20 113 410 255 108 309 259
200 40 79 505 321 79 595 345

Notes: N, refers to the number of unit roots under the alternative, while

p refers to the autoregressive coefficient of the remaining stationary units.
hypothesis. p = 0 and p = 1 refer to the model with constant, and constant
and trend, respectively. The null hypothesis is that of full rank.
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Table 5: Power at the 5% level for p = 0 fixed and varying values of N,.

p=0 p=1
T N MIB MB M] MIB MB M]
N, = 0.5N
100 10 100.0 995 67.8 100.0 995 774
100 20 100.0 100.0 84.9 100.0 100.0 93.3
100 40 100.0 100.0 95.7 100.0 100.0 98.9
200 10 100.0 996 746 100.0 99.8 84.5
200 20 100.0 100.0 92.1 100.0 100.0 97.5
200 40 100.0 100.0 99.2 100.0 100.0 100.0

N, = 0.8N
100 10 999 406 18.7 999 395 231
100 20 1000 846 245 1000 813 302
100 40 99.8 921 382 99.7 914 469

200 10 100.0 412 229 1000 394 286
200 20 100.0 884 324 100.0 884 416
200 40 100.0 100.0 47.8 100.0 100.0  58.8

N, = 09N
100 10 90.0 173 9.7 856 160 104
100 20 933 381 111 921 336 114
100 40 779 255 16.6 732 248 19.6
200 10 998 175 13.1 99.8 157 141

200 20 100.0 373 146 100.0 359 16.8
200 40 100.0 80.1 19.2 100.0 908 222

Notes: See Table 4 for an explanation.
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Table 6: Power at the 5% level for N, = 0.8N fixed and varying values of p.

p=0 p=1
T N MIB MB M] MIB MB M]
=09
100 10 39 121 9.0 4.1 8.7 7.7
100 20 59 152 10.0 6.2 9.7 8.3
100 40 5.5 25 157 49 1.6 126
200 10 47 16.0 13.0 42 114 134
200 20 98 216 149 89 175 149
200 40 74 267 189 75 386 188
p=07
100 10 149 234 124 129 19.0 138
100 20 13.0 39.6 14.6 129 31.0 15.0
100 40 91 152 21.5 79 113 241

200 10 53.0 299 18.0 453 257 20.6
200 20 60.3 56.8 21.6 54.0 51.0 26.2
200 40 30.7 81.8 289 291 89.7 339
p=05
100 10 531 309 153 46.7 278 17.8
100 20 449 594 182 433 522 203
100 40 248 421 269 226 378 315
200 10 974 354 207 95.9 326 242
200 20 99.7 741 264 99.2 721 33.1
200 40 954 978 36.0 93.9 99.1 436

Notes: See Table 4 for an explanation.

Table 7: PPP panels.

Panel Start date Enddate T N
Euro area 1980:1 1998:12 228 11
CEEC 1993:1 2004:6 138 11

Industrial 1980:1 1998:12 228 29
World wide 1981:1 2004:4 280 57
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Table 8: Rank test results for the PPP panels.

p=0 p=1
Panel MIB MB M]J MIB MB M]J
Euro area 145937  0.14422  143.1 167134  0.04997 712
CEEC 10553.7  0.14392  568.2 13389.2  0.04813 291.2
Industrial ~ 202626.8  0.15799  645.6 219843.8  0.05861  350.8

World wide 12607109 0.16223* 4393.8 1307459.6  0.06252 1178.1

Notes: A * superscript denotes significance at the 5% level when testing the null
hypothesis of full rank, whereas p = 0 and p = 1 refer to the model with constant,

and constant and trend, respectively.

Table 9: Rank test results for the income panel.

p  MIB MB M]
0 100010.6* 0.15483* 2724.7
1 1093784* 0.05558*  252.0

Notes: See Table 8 for an explanation.
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