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Abstract

This paper examines the consequences for the term structure of stock market

risk of the significance of demographics in capturing the time varying mean of the

dividend-price ratio and in predicting stock market returns. A potential role for de-

mographic variables has never been considered in the ongoing debate on the slope

of the term structure of stock market risk. Intuitive reasoning, formal modeling

and empirical evidence show that demographic trends are a slow-moving informa-

tion variable, that determines the slow moving mean of the dividend-price ratio

and has a forecasting power for stock market returns that icreases with the hori-

zon. We show that the forward solution of the dynamic dividend growth model

augmented with demographics delivers a negtive sloping term structure of stock

market risk.Direct regressions of returns at different horizon on the relevant predic-

tors are much better suited to capture this feature of the model than VAR based

multi-period iterated forecasts. These results are very little affected by parameters’

uncertainty, as a parsimoniuos parameterization is very precisely estimated in the

relevant empirical model. Moreover, they are robust to the existence of "imperfect

predictors" as forecast of returns in the direct regression approach involve only

currently observable variables and no projections of future variables.
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1 Introduction

This paper examines the consequences for the term structure of stock market risk, defined

as the per period conditional variance of cumulative returns, of the significance of demo-

graphics in capturing the time varying mean of the dividend-price ratio and in predicting

stock market returns. To our knowledge demographic variables has never been considered

in the ongoing debate on the slope of the term structure of stock market risk. This is

a surprising omission as demographic data, by their nature, have a predictive power for

stock market returns that increases with the horizon.

The term structure of stock market risk is of special relevance to strategic asset allo-

cation when risk is measured on the basis of a predictive model for returns at different

horizons. There are two basic elements determining the shape of risk as the horizon at

which returns are defined gets larger. On the one hand, the longer the horizon the more

distant is the future to predict and therefore the more uncertainty should matter. On

the other hand, if the "information" in fundamentals for stock market returns emerges

only in the long-run, while the short-run is dominated by "noise", then the longer is the

horizon the less is the "noise" in the variable to be predicted.1 Demographic trends are

by the nature very smooth, they do not contribute to the short-run noise but they are a

natural candidate to capture the information that emerges in the long-run.

The empirical evidence on stock market return predictability associated with demo-

graphic information is already fairly extensive in the empirical literature (see Geanako-

plos, Magill and Quinzii(2004), Ang and Maddaloni(2005), Favero, Gozluklu and Ta-

moni(2010)), but the term structure of stock market risk is not simply the other side of

the coin of predictability of returns.

The strategic asset allocation literature (e.g. Campbell and Viceira (2002), (2005)),

is based on a stationary Vector Autoregressive (VAR) specification for predictors and

returns that captures time-variation in the investment opportunity set, and constitutes

the input into the optimal asset allocation decision of a long-horizon investor. In prac-

tice, long-horizon returns are predicted via multi-step ahead projections of a VAR model

in which the dividend-price ratio is used as a predictor of returns and no demographic

variables are included. Importantly Campbell and Viceira (2005, CV) and more recently

Schotman et al. (2008) have shown that whereas absence of predictability entails a flat

term structure of risk, predictability per se does not lead to a downward sloping term

structure of risk. In fact, risk at the different horizons is determined by three compo-

nents: i.i.d uncertainty, mean reversion, uncertainty about future predictors. Without

predictability the entire term structure is flat at the level determined by i.i.d uncertainty.

This is the classical situation where portfolio choice is independent of the investment hori-

1The use of the terms “noise” and “information” has been inspired by our reading of Chapter 3 of
Taleb (2001).
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zon. In the presence of predictability the mean reversion component is naturally down-

ward sloping with the horizon, while the uncertainty about future predictors increases

with the horizon. A negative slope of the term structure of risk then emerges only when

the effect of the mean reversion component compensates that of the uncertainty about

future predictors. The relative importance of these two effect is only an emprical issue.

Overall, the slope of the term structure of risk depends on the significance of predictors

in explaining returns, on the contemporaneous correlation between the innovations in the

equations for predictors and returns, on the variance of returns and predictors, and on

the persistence of the predictors. High negative contemporaneous correlation between

innovations in the returns and in the predictors, paired with significant predictability

and low persistence in the predictors generate a steeply declining term structure of stock

market risk. CV find that empirically a very high negative correlations between inno-

vations compensate the high persistence in the predictors (the dividend-price ratio) to

generate a negatively sloping term structure of risk. Pastor and Stambaugh(2008, 2009,

PS) extend the framework of CV to consider two additional sources of risk: one reflecting

uncertainty around the mean of the process generating returns and one reflecting para-

meters’ uncertainty. Within this extended framework, PS do find a positive slope for the

term structure of stock market risk, despite the evidence of predictability.

The contribution of our paper to this debate is twofold.

First, following Geanakoplos, Magill, and Quinzii (2004) and Favero, Gozluklu and

Tamoni (2010), we augment the set of predictors of stock market returns by considering

the dividend-price ratio together with a demographic variable, MY , the ratio of middle-

aged to young population, that captures the slow moving but time-varying mean of the

US dividend-price ratio. The quick mean reversion of the dividend-price ratio towards

a time varying mean determined by demographics has important implications for the

predictability of returns and the slope of the term structure of stock market risk.

Second, we argue that the importance of such variable can be best understood in

the framework of the dynamic dividend growth model (Campbell-Shiller(1988)) with a

time varying linearization point driven by demographics, and that in this context direct

regression rather than multi-step ahead forecasting is the natural way to predict long-

horizon returns.

The best way to introduce our work is to refer the reader to Figures 1.1-1.3. Figure

1.1 illustrates, over about one century of US data, the relationship between 1-year real

stock market returns and MY . Figure 1.2 relates again demographics and stock market

fluctuations, but 20-year real annualized returns are now considered instead of 1-year

return. The comovement between demographics and stock market returns is negligible

for annual returns and remarkable for 20-year returns. Figure 1.3 rationalizes the positive

relation between long-horizons stock market returns and the demographic variable in

terms of the negative relation between the dividend-price ratio andMY . IfMY captures
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the time varying-mean of the dividend price ratio, being negatively related to it2, and

stock market returns react to correct deviations of the dividend-price from its equilibrium

level, then future stock market returns are positively related to MY .

[Insert Figure 1.1-1.3 about here.]

When demographic trends are used to model the slow moving fluctuations in the

dividend-price ratio a natural decomposition of this variable into an high volatility “noise”

component, and a low-volatility “information” component naturally emerges.

This paper embeds the decomposition in a small “structural” model that allows for

an explicit role for demographics in the dynamic dividend growth model. In particular,

the dividend-price ratio is made a function of a temporary “noise” component and of a

persistent “information” component related to demographics. The term structure of stock

market risk is then derived by the simultaneous estimation of a system for stock market

returns at different horizons obtained by the forward solution of the model. We show

that the forward solution of the dynamic dividend growth model (Campbell-Shiller(1988))

augmented with demographics does naturally progressively eliminate the noise component

as the horizon increases. The explicit comparison of our results with the traditional

VAR-based methods to derive the term structure of stock market risk shows that the

combination of direct regressions methods and the inclusion of the demographic variable

in the information set relevant for long-horizon regressions makes the term structure of

stock market risk steeply downward sloping.

Importantly, the slope of the term structure of stock market estimated within our

proposed framework remains downward sloping even when the two additional sources of

risk proposed by PS are considered.

The paper is organized as follows. The first section places our contribution in the

literature. In the second section a simple structural model linking demographics and

the dynamic dividend growth model is introduced to derive the term structure of stock

market risk via direct estimation of a system for returns at different horizons. In the third

section, the term structure of stock market risk derived from the forward-looking solution

of the model and estimated via direct regressions is compared with the one derived from

the backward solution of the VAR adopted by the CV and estimated via the multi-step

iterated forecast. We then consider the impact on our results of considering the two

additional sources of uncertainty introduced by PS. The last section concludes.

2We shall discuss the sign of this relation and provide an intepretation for it in the next section of
the paper.
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2 Related Literature

This paper adds to a considerable literature on the relation between the predictability of

stock market returns and the term structure of stock market risk.

In describing the “verdict of history” on asset returns on a long-sample (1802-1996)

of US historical data J.J.Siegel(1998,pp.32), pointed out that "...stocks are riskier than

fixed-income investment over short-term holding periods. But once the holding period

increases to between 15 and 20 years, the standard deviation of average annual returns,...,

becomes lower than the standard deviation of average bond and bill returns...".

This statement on unconditional second moments has been strengthened by Campbell-

Viceira(2002, 2005) who exploited the predictability of returns by estimating VARmodels

for returns and predictors and by using VAR-based multi-period iterated forecasts to

find that the conditional variance of stock return does not grow in proportion with the

investment horizon but it grows more slowly. As a consequence the term-structure of

stock market risk is downward sloping and the findings by Siegel on the property of

the unconditional distribution of stocks returns are extended and strengthened when the

conditional distribution of returns is used to measure stock market risk.

However, the downward sloping term-structure of stock market risk, has been recently

questioned by Pastor-Stambaugh(2008,2009) who show that, allowing for coefficient un-

certainty and imperfect predictors in a Campbell-Viceira type of VAR, makes the con-

ditional variance of stock returns increasing with the horizon as it can even exceed both

the unconditional variance and the one period ahead conditional variance.

The VAR-based approach to measure the term structure of stock market risk uses

the (log) dividend-price ratio as the predictor for stock market returns at different hori-

zons. This specification has its foundation in the dynamic dividend growth (DDG) model

proposed by (Campbell and Shiller 1988). In fact, the DDG model predicts that (log)

dividends and prices share a common stochastic trend and that deviations of (log) prices

from the common trend in (log) dividends summarize expectations of either stock market

returns, or dividend growth or some combination of the two. The empirical investigation

of the DDG has established a number of relevant results.

First, the log dividend-price ratio, dpt, does not have important long-horizon fore-

casting power for future discounted dividend-growth (Campbell (1991), Cochrane (1991),

Campbell, Lo, and Mackinlay (1997), Cochrane (2001) and Cochrane (2008a)). Second,

dpt is a very persistent time-series and forecasts stock market returns and excess returns

over horizons of many years (Fama and French (1988), Campbell and Shiller (1988),

Cochrane (2001, Ch. 20), and Cochrane (2008a)). Third, the very high persistence of

dpt has led some researchers to question the evidence of its forecasting power for returns,

especially at short-horizon. Indeed careful statistical analysis that takes full account of

the persistence in dpt provides little evidence in favour of stock market returns forecasta-
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bility (Nelson and Kim (1993); Stambaugh (1999); Ang and Bekaert (2007); Valkanov

(2003); Goyal and Welch (2003) and Welch and Goyal (2008)). Structural breaks have

also been found in the relation between dpt and future returns (Neely and Weller (2000)

and Weller(2000) and Paye and Timmermann (2006), Rapach and Wohar (2006)). A

recent strand of the empirical literature has related the contradictory evidence on the

dynamic dividend growth model to the potential weakness of its fundamental hypothe-

sis that log dividend-price ratio is a stationary process (Lettau and Van Nieuwerburgh

(2008), LVN henceforth). LVN use a century of US data to show evidence on the breaks

in the constant mean dp . The potential time-variation of the linearization point creates

a link between demographics and the DDG model.

Favero, Gozluklu and Tamoni(2010) have explained the structural breaks found by

LVN in the dividend-price process with demographic trends. They point out that theo-

retical model by Geneakoplos et al.(2004) (GMQ) predicts that a specific demographic

variable, MY , the ratio of middle-aged to young population, determines fluctuations in

the dividend yield.

GMQ consider an overlapping generation model in which the demographic structure

mimics the pattern of live births in the US, that have featured alternating twenty-year

periods of boom and busts. They conjecture that the life-cycle portfolio behavior (Bakshi-

Chen, 1994), which suggests that agents should borrow when young, invest for retirement

when middle-aged, and live off their investment once they are retired, plays an important

role in determining equilibrium asset prices. Consumption smoothing by the agents, given

the assumed demographic structure requires that when theMY ratio is small (large), there

will be excess demand for consumption (saving) by a large cohort of retirees (middle-aged)

and for the market to clear, equilibrium prices of financial assets should adjust, i.e. de-

crease (increase), so that saving (consumption) is encouraged for the middle-aged. As

the dividend-price ratio is negatively related to fluctuations in prices, the model predicts

a negative relation between this variable and MY. When the GMQ model is taken to the

data via the conjecture that fluctuations in MY could capture a slowly evolving mean in

dpt within the dynamic dividend growth model (Favero, Gozluklu and Tamoni (2010)),

strong evidence is found in favour of using this variable together with the dividend-price

ratio in long-run forecasting regressions for stock market returns. Interestingly, the fluc-

tuations in MY match very well the break-points in the mean of dpt identified by LVN in

the fifties and the nineties. This paper differs from Favero, Gozluklu and Tamoni (2010)

in that it concentrates on the implications of the relation between demographics and the

dividend-price ratio for the term structure of stock market risk. To our knowledge, this

step has never been taken in the available literature. We propose an empirical strategy

potentially capable of identifying separately the importance of demographic variables

for high-frequency and low-frequency fluctuations in asset prices. Investigations on the

interaction between asset prices and demographic variables have traditionally concen-
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trated either on high-frequency or low frequency fluctuations but have never considered

an empirical framework based on the dynamic dividend growth model, capable of ac-

commodating both of them, with a different role (see Erb, Harvey, and Viskanta (1997),

Poterba (2001), Goyal (2004), Ang and Maddaloni (2005) and DellaVigna and Pollet

(2005)).

3 The Dynamic Dividend GrowthModel, Demograph-

ics and the Term Structure of Stock Market Risk.

The objective of this section is to propose a new model to measure the term structure of

stock market risk.

Consider the continuously compounded stock market return from time t to time t+1,

rt+1 . Define μt, the conditional expected log return given information up to time t, as

follows:

rt+1 = μt + ut+1

where ut+1 is the unexpected log return. Define the k-period cumulative return from

period t+ 1 through period t+ k, as follows:

rt,t+k =
kX
i=1

rt+i

The term structure of risk is defined as the conditional variance of cumulative returns,

given the investor’s information set, scaled by the investment horizon

Σr(k) ≡
1

k
V ar(rt,t+k | Dt) (1)

where Dt ≡ σ{zk : k ≤ t} consists of the full histories of returns as well as predictors
that investors use in forecasting returns.

In the light of the results of the empirical investigations on the DDG model and on

the evidence of the relation between demographics and the dividend price ratio dpt, we

consider the following small “structural” model3:

3The model representation omits constants that have been included in the estimated version.
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∆dt+1 = ε1,t+1 (2)

dpt+1 = ϕ22dpt + ϕ23MYt+1 + ε2,t+1 (3)

rst+1 = ∆dt+1 − ρ
£
dpt+1 − dpt+1

¤
+
£
dpt − dpt

¤
+ ε3,t+1 (4)⎡⎢⎣ ε1,t

ε2,t

ε3,t

⎤⎥⎦ ∼

⎡⎢⎣
⎛⎜⎝ 0

0

0

⎞⎟⎠ ,

σ21 0 0

0 σ22 0

0 0 σ23

⎤⎥⎦
Equation (2) specifies the process forthe dividend growth as a white noise, where we

label ε1,t+1 the innovation to real dividend growth ε1,t+1. This simple parameterization

is fully consistent with the evidence of very little predictability of dividend growth4.

Equation (3) specifies the process for the dividend-price ratio as fluctuating around

a time-varying mean determined by the age structure of the population, MY, a slowly

evolving highly predictable variable (the Bureau of Census makes available through its

web page projections of this variable up to 2050). Such a modification is justified by

the theoretical model of Geanakoplos, Magill, and Quinzii (2004) and by the empirical

evidence provided in Favero, Gozluklu, and Tamoni (2010). MY constitutes the infor-

mation component of the dividend price ratio and there is no uncertainty attached to

it: we take it as an exogenous variable whose path for the relevant future is known.

However, the dividend-price is also affected by some short-term idiosyncratic noise ε2,t+1.

If |ϕ22| < 1,then the dividend-price is mean reverting toward a long-run trend deter-

mined by the information variable and the effect of the noise shock on the process is

only temporary. In fact, our empirical results will show that the speed of mean rever-

sion of the dividend-price ratio toward its long-run mean determined by demographic

trends is much higher than that of the dividend-price process itself. Importantly, stabil-

ity analysis conducted via the Quandt-Andrews test (see Andrews, 1993) for unknown

breakpoints confirms the evidence of instability discussed in LVN for the parameters of

a simple autoregressive process for dpt+1, while the null of no-break cannot be rejected

when the autoregressive model is augmented with MYt+1
5. This reduced persistence in

the financial ratio is important for two reasons. First, it makes inference less problematic,

as there is little doubt on the stationarity of dividend-price ratio around a demographic

trend. Second, the reduced half-life of the shocks to the short-term idiosyncratic noise in

4Following the approach of Lacerda and Santa-Clara (2010) we also tried a specification where agents
forecast the dividend growth rate from the average of past dividend growth rates, i.e. Et[∆dt+k] = ḡt.
Results are unaffected and available upon requests.

5The Quandt-Andrews test for unknown breakpoints (with a trimming of 10 per cent of the observa-
tions) takes a Maximum Wald statistic of 20.06 in 1954 with a tail probability of 0.001 for the parameters
in the autoregeressive process for dpt. When the same test is applied to equation (??) the Maximum
Wald statistic takes a value 11.68 with a tail probability of 0.076 and the null of parameters stability
cannot be rejected.
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dividend-price ratios has a direct impact on the term structure of stock market risk.

Equation (4) is a version of the extension of the Campbell-Shiller log linear approxi-

mation of real returns proposed by Lettau&VanNieuwerburgh (2008) to allow for time-

varying steady-state growth rates and returns.

In Appendix B of their paper, Lettau&VanNieuwerburgh (2008) derive the following

log-linear approximation of returns6:

¡
rst+1 − rt+1

¢
=
¡
∆dt+1 −∆dt+1

¢
− ρt

£
dpt+1 − dpt+1

¤
+
£
dpt − dpt

¤
+∆dpt+1 (5)

We obtain our equation (4) from (5) by assuming that of the three processes for returns,

dividend growth and the dividend-price ratio only the last one is persistent
¡
rt = ∆dt = const

¢
,

that the time-varying mean of the dividend-price ratio is very slowly evolving, i.e. ∆dpt+1 ≈
0 and that the linearization parameter is constant, ρt=ρ.

7 We introduce an error term

ε3,t+1 to capture the effect of our approximation.

We report in Figure 2.1 the three endogenous time series in our small structural model.

Insert Figure 2.1 here

The graphical evidence is suggestive that the speed of mean reversion towards a

constant mean of the dividend-price ratio is very different from that of annual real returns

and annual real dividend growth. We model this feature of the data by introducing a

time-varying mean for the dividend-price ratio, driven by demographics. The figure

makes clear that wothout this step it would be very hard to reconcile the time-series

properties of dpt with those of rst and ∆dt+j. We believe that his feature of the data,

rather overlooked in the literature, is at the heart of the controversy on the predictive

power of the dividend-price ratio for stock market returns.

By solving eq. (4) forward we obtain:

mX
j=1

ρj−1
¡
rst+j

¢
=

£
dpt − dpt

¤
+

mX
j=1

ρj−1 (∆dt+j)− ρm
£
dpt+m − dpt+m

¤
(6)

+
mX
j=1

ρj−1 (ε1,t+j + ε3,t+j)

Eq. (6) clearly shows that deviations of the dividend/price ratio from its equilibrium

value at time t have a predictive power for m-period ahead stock market returns (and/or

6rst+1 = ln
³
Pt+1+Dt+1

Pt

´
,

dpt = ln
³
Dt

Pt

´
7Rytchkov (2008) estimates a system of equation similar to ours and study how sensitive ML para-

meters are to variation in this parameter. He concludes that there is almost no sensitivity to the choice
of ρ (see Table 1 in his paper).
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dividend growth) that increases with the horizon, as the larger is m the smaller is the

effect of future noise in the dividend-price ratio
£
dpt+m − dpt+m

¤
. However, this term

cannot be ignored in the computation of the term structure of stock market risk that

considers typically horizons from 1-year onwards. To bring (6) to the data, an observable

counterpart of the time varying linearization value for the dividend-price must be consid-

ered. Consistently with (3), we assume that the relevant linearization value for computing

returns from time t to time t+m is the conditional expectation of the dividend-yield for

time t+m, given the information available at time t. We then have

mX
j=1

ρj−1
¡
rst+j

¢
= dpt −

"
ϕm
22dpt +

mX
j=1

ϕj−1
22 ϕ23MYt+m+1−j

#
+ ut+m (7)

= (1− ϕm
22) dpt −

mX
j=1

ϕj−1
22 ϕ23MYt+m+1−j + ut+m

ut+m =
mX
j=1

ρj−1 (ε1,t+j + ε3,t+j)− ρm
mX
j=1

ϕj−1
22 ε2,t+m+1−j

Note that the relevance of the noisy component ε2,t+m+1−j of the dividend-price ratio in

the distribution of m-period returns decreases with the horizon: as the horizon gets longer

the mean-reversion of the dividend-yield process around the information variable makes

the informative content of this variable dominant. The speed at which the effect of the

noise is dampened depends on the speed of mean reversion of the dividend process and on

the discount parameter ρ. However, even for values of ρ close to unity, the mean reversion

in dividend-prices is sufficient to cause a dampening over the horizon of the effect of the

noise ε2,t . The second and the third component of the noise in m-period returns are the

uncertainty in the dividend process and the real returns that die out much more slowly

than the effect of the noise ε2,t+j and they become persistent when ρ approaches the unit

value. Eq. (7) implies that the fit of direct predictive regressions projecting returns at

different horizon on the information available at time t should improve with the horizon.

It also predicts that the residuals of such predictive regressions have a moving-average

component that should be taken care of in estimation. This is a well-known result (see

for example, Valkanov (2003)). Interestingly, the model also predicts that the coefficient

on the dividend-yield in the projections of long-horizon returns on this variable should

be increasing with the horizon.

We measure the term structure of stock market risk by estimating the following “struc-

tural” system of eleven equations8:

8Our “structural” estimation is similar to that by Van Binsbergen and Koijen (2009) with two main
differences: equations at all relevant horizons are simultaneously estimated and all variables included in
the model are observable.
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1√
m

mX
j=1

¡
rst+j

¢
= δ0,m +

1√
m
(1− ϕm

22) dpt −
ϕ23√
m

Ã
mX
j=1

ϕj−1
22 MYt+m+1−j

!
+ ut+m (8)

m = 1, ..., 10

dpt+1 = ϕ20 + ϕ22dpt + ϕ23MYt+1 + ε2,t+1

The specification of (8) slightly differs from the model in that we use as a dependent

variable the unweighted annualized period-returns (ρ = 1). This is because the objective

of our exercise is to compare the term structure of stock market risk obtained by direct

regression and by iterative multi-step iterated VAR based forecasts. To assess the poten-

tial cost of the several approximations we have also estimated an unrestricted version of

(8) to perform a test of the validity of the relevant restrictions:

1√
m

mX
j=1

¡
rst+j

¢
= δ0,m +

δ1m√
m
dpt +

δ2m√
m

Ã
mX
j=1

ϕj−1
22 MYt+m+1−j

!
+ ut+m (9)

m = 1, ..., 10

dpt+1 = ϕ20 + ϕ22dpt + ϕ23MYt+1 + ε2,t+1

Note that (8) and (9) are both specified with 1√
m

mX
j=1

¡
rst+j

¢
as the dependent variable

to obtain directly the conditional annualized standard error of returns from the standard

error of the regression.

We estimate the model on a dataset of annual observations for the period 1910-2009.

The data are fromWelch and Goyal (2008)9, who provide detailed descriptions of the data

and their sources. Stock returns are measured as continuously compounded returns on

the S&P 500 index, including dividends. To compute real returns we calculate inflation

rate from the CPI (all urban consumers). The predictor for the equity premium is the

dividend-price ratio, computed as the difference between the log of dividends paid on the

S&P 500 index and log of stock prices (S&P 500 index), where dividends are measured

using a one-year moving sum.

The results of the estimation are reported in Table 1. The GMM method allows

to estimate the restricted model parameters ϕ22 and ϕ23 by taking into account the

MA(h-1) structure of the error terms in computing standard errors. We also report

estimates of the standard error that uses the SURE method proposed by Pesaran, Pick

and Timmermann(2010) to account for serial correlation in the residuals of the multi-

period direct forecasting model10. The Table shows an highly significant effect of MY

9The data are available at www.bus.emory.edu/AGoyal/Research.html.
10See the Appendix on Robustness for a full description of the results.

11



both in the equation for dpt and in all ten predictive regressions. The performance of the

restricted model, that estimates only two parameters in addition to eleven constants, is

very similar in term of adjusted R2 and standard error of the equations to that of the

unrestricted model that estimates twenty more parameters and the restrictions are not

rejected by the relevant chi-square test.

[Insert Table 1 about here.]

The estimates of the parameters ϕ22 and ϕ23 show that demographics are strongly

significant in explaining the dividend-price ratio and that the dividend-price ratio is

clearly mean reverting around a mean determined byMY. Figure 2.2 brings more evidence

on this issue by reporting dpt along with the time-varying linearization point used in the

model and the breaks identified by LVN.

[Insert Figure 2.2 about here.]

Finally, the term structure of stock market risk described by the estimation of the

structural system of direct regression is steeply downward sloping as it can be read directly

off the standard errors of regressions reported in Table 1.

4 Direct regression versus VARmultistep-ahead fore-

casts

Our empirical results on the term structure of stock market risk differ rather importantly

from those derived in the literature based on VAR models. To illustrate the point, we

consider first a simple representation of the VAR adopted by CV by estimating a model for

continuously compounded total stock market returns, rst , and the log dividend price,dpt:

(zt −Ez) = Φ1 (zt−1 −Ez) + νt

νt ∼ N (0,Σν)

where

zt =

"
rst
dpt

#
, Ez =

"
Ers

Ed−p

#

Φ1 =

"
0 ϕ1,2

0 ϕ2,2

#
"
v1,t

v2,t

#
∼

"Ã
0

0

!
,
σ21 σ12

σ12 σ22

#
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The bivariate model for returns and the predictor features a restricted dynamics such

that only the lagged predictor is significant to determine current returns
¡
ϕ1,1 = 0

¢
and

the predictor is itself a strongly exogenous variable
¡
ϕ2,1 = 0

¢
.

Given the VAR representation and the assumption of constant Σν

V art [(zt+1 + ...+ zt+k) | Dt] = Σν + (I + Φ1)Σν(I + Φ1)
0 + (10)

(I + Φ1 + Φ21)Σν(I + Φ1 + Φ21)
0 + ...

+(I + Φ1 + ...+ Φk−1
1 )Σν(I + Φ1 + ...+ Φk−1

1 )0

from which we can derive:

Σr(k) =
1

k

k−1X
i=0

DiΣD
0
i

Di = I + Φ1Ξi−1 i > 0

Ξi = Ξi−1 + Φi
1 i > 0

D0 ≡ I, Ξ0 ≡ I

Note that, under the chosen specification of the matrix Φ1 we can write the generic term

DiΣD
0
i, as follows:

DiΣD
0
i =

Ã
M11 M12

M 0
12 M22

!
(11)

M11 = Σ1,1 + Φ1,2Ξ
(22)
i−1Σ

0
1,2 + Σ1,2Ξ

(22)0
i−1 Φ

0
1,2 + Φ1,2Ξ

(22)
i−1Σ2,2Ξ

(22)0
i−1 Φ

0
1,2

M 0
12 = Ξ

(22)
i Σ01,2 + Ξ

(22)
i Σ2,2Ξ

(22)0
i−1 Φ

0
1,2

M22 = Ξ
(22)
i Σ2,2Ξ

(22)0
i

where we have used the fact that

Ξi =
iX

j=0

Φi
1

=

⎛⎝0 φ1,2
Xi−1

j=0
φj2,2

0
Xi

j=0
φj2,2

⎞⎠
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and

Di = I + Φ1Ξi−1

=

⎛⎝I φ1,2
Xi−1

j=0
φj2,2

0
Xi

j=0
φj2,2

⎞⎠
Eq. (11) implies that, in our simple bivariate example, the term structure of stock

market risk takes the form

σ2r(k) = σ21 + 2ϕ1,2σ1,2ψ1(k) + ϕ21,2σ
2
2,2ψ2(k) (12)

where

ψ1(k) =
1

k

k−2X
l=0

lX
i=0

ϕi
2,2 k > 1

ψ2(k) =
1

k

k−2X
l=0

Ã
lX

i=0

ϕi
2,2

!2
k > 1

ψ1(1) = ψ2(1) = 0

The total stock market risk can be decomposed in three components: i.i.d uncertainty,

mean reversion, uncertainty about future predictors. Without predictability
¡
ϕ1,2 = 0

¢
the entire term structure is flat at the level σ21. This is the classical situation where

portfolio choice is independent of the investment horizon. The possible downward slope of

the term structure of risk depends on the second term, and it is therefore crucially affected

by predictability and a negative correlation between the innovations in dividend price

ratio and in stock market returns (σ1,2) , the third term is always positive and increasing

with the horizon when the autoregressive coefficient in the dividend yield process is

positive. Overall, the slope of the term structure of risk depends on the significance

of the dividend-price in explaining returns, on the contemporaneous correlation between

the innovations in the equations for the dividend-price and returns, on the variance of

returns and the dividend-price, and on the persistence of the dividend-price.

[Insert Table 2 about here.]

Table 2 summarizes the results of the estimation of the system. The estimation

results confirm the noisy nature of 1-year stock market returns and the high persistence

of the dividend-price ratio. The covariance structure of the innovations is such that the

unexpected log excess stock returns are highly negatively correlated with the innovations

in the log dividend price ratio. Figure 3 plots the term structure of risk resulting from

the estimation of the restricted VAR and its decomposition. The evidence of a downward
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sloping curve with risk halving from the one-year to the thirty year horizon replicates

the results in Campbell and Viceira (2002), based on the estimation of a larger model

including bond and stock excess returns, the nominal and real risk free rate together with

the dividend-yield and the yield spread as predictors.

[Insert Figure 3 about here.]

The slope of the term structure of the stock market risk estimated within a traditional

VAR features a much smaller decline than that obtained by direct regression of our

structural model with demographics. In fact, risk at one year horizon is estiamted at

about the same level in both models, as the one-period ahead standard deviation is of

abont 20 per cent . However, from the one-year horizon onward the term structure

based on the structural model with demographics declines much more steeply to reach

an annualized standard deviation of about 11 per cent at the 10-year horizon against an

estimate fifty per cent larger of about 16 per cent from the VAR model.

4.1 Understanding the difference

Why are our results so different from those based on traditional VAR analysis? There

are two reasons: the inclusion of MYt in the investor’s information set relevant for long-

horizon and the derivation of the term structure of risk via direct regression.

To assess the first effect we estimate the standard Campbell-Viceira VAR augmented

with the exogenous MY variable. Results are reported in Table 4.

[Insert Table 4 about here.]

The comparison of Tables 2 and 4 illustrates clearly that the inclusion of MY in the

Campbell-Viceira VAR model would cause a downward shift and a steepening of the

term structure of stock market risk as it reduces the persistence of dpt with respect to

the traditional specification omitting demographics (the parameter ϕ2,2 of the own lag

of dpt is reduced from .89 to .73 when MYt is included in the VAR specification) and it

also reduces its conditional and unconditional variance (the one-step ahead volatility σ2

goes from .22 to .21). Interestingly, the correlation between the residuals of the equation

for one-year returns and the equation for the dividend- price ratio is very little affected

by the inclusion of MYt in the specification for the dynamics of the predictor (as it goes

from -.86 to -.85).

As for the second effect, the use of the direct regression rather than iterative multi-step

ahead forecast from the VAR has a less immediate implication that is however empirically

and theoretically relevant. To illustrate this point we re-write, consistently with equation

(7), the term structure of stock market risk implied by the direct regression of returns at

different horizons on the relevant predictors as follows:
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σ2r(k) = ψ1(k)
¡
σ21 + σ23

¢
+ ψ2(k)σ

2
2 (13)

ψ1(k) =
1

k

kX
j=1

ρ2(j−1)

ψ2(k) =
ρ2k

k

kX
j=1

ϕ
2(j−1)
22

This term structure is downward sloping as the effect of the noisy component of the

dividend-price dies out as the horizon m increases.

Consider now the case in which a VAR is fitted to the data generated by eqs. (2)-(4):

rst+1 = ϕ10 + ϕ12dpt + ϕ13MYt+1 + ε1,t+1 + ε3,t+1 − ρε2t+1

dpt+1 = ϕ20 + ϕ22dpt + ϕ23MYt+1 + ε2,t+1

As noted by Cochrane (2008b), deliciously, the regression and “structural ”model match

almost perfectly.11 However, the term structure of stock market risk derived by backward

projection of the VAR on the information available at time t delivers a different shape

from that obtained by the direct regression:

σ2r(k) =
¡
σ21 + σ23 + ρ2σ22

¢
− 2ϕ1,2ρσ22ψ1(k) + ϕ21,2σ

2
2ψ2(k) (14)

ψ1(k) =
1

k

k−2X
l=0

lX
i=0

ϕi
22 k > 1

ψ2(k) =
1

k

k−2X
l=0

Ã
lX

i=0

ϕi
22

!2
k > 1

ψ1(1) = ψ2(1) = 0

Note that, as long-run returns are obtained by aggregating high-frequency returns and the

relevant model is solved backward, the effect of the noisy component does not decrease

with the forecasting horizon. Direct comparison of (13) with (14) shows that the VAR

based backward-looking term structure of risk produces biased estimates of DDG based

forward looking term structure of stock market risk.

In order to assess the empirical relevance of the two effects, i.e. the inclusion of

the demographic variable in the information set and the use of direct estimation of a

forward-looking model rather than iterative multi-step forecast, we compare in Figure 4

the term structure of risk derived by direct estimation of a model including MYt, with

the term structure of risk based on the recursive iteration of two VARs, one with and

11Recall that MY is an exogenous variable and therefore we can use MYt+1 in the VAR.
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the other without MYt. The results show clearly that MYt plays an important role in

determining the conditional mean of the system but also that the use of direct estimation

of a forward-looking model rather than iterative recursive multi-step forecast is a source of

a major shift in the measured term structure of stock market risk. Consistently with the

prediction of the dynamic dividend growth model, such shift is far from being a parallel

one.

[Insert Figure 4 about here.]

5 Adding two more sources of uncertainty

Pastor and Stambaugh (2008, 2009) illustrate how the possibility of “imperfect predic-

tors” in the predictive system adds two more sources of uncertainty to the VAR based

estimation of the term structure of stock market risk and it empirically changes the slope

estimated by Campbell-Viceira. The traditional VAR setup is modified by PS by intro-

ducing a predictive relationship linking stock market returns to an unobserved variable

μt, that in turns is only imperfectly related to the observed dividend-price. In this case,

the relevant empirical model can be written as follows:

(rst −Ers) =
¡
μt−1 −Ers

¢
+ u1,t (15)

(dpt −Edp) = ϕ22 (dpt−1 −Edp) + u2,t

(μt −Ers) = ϕ32 (dpt −Edp) + u3,t⎡⎢⎣ u1,t

u2,t

u3,t

⎤⎥⎦ ∼

⎡⎢⎣
⎛⎜⎝ 0

0

0

⎞⎟⎠ ,

σ21 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ23

⎤⎥⎦
from which the following VAR representation is derived:

(zt −Ez) = Φ1 (zt−1 −Ez) + νt (16)

νt ∼ N (0,Σν)
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where

zt =

⎡⎢⎣ rst
dpt

μt

⎤⎥⎦ , Ez =

⎡⎢⎣ Ers

Edp

Ers

⎤⎥⎦

Φ1 =

⎡⎢⎣ 0 0 1

0 ϕ22 0

0 ϕ32ϕ22 0

⎤⎥⎦
⎡⎢⎣ v1,t

v2,t

v3,t

⎤⎥⎦ ∼

⎡⎢⎣
⎛⎜⎝ 0

0

0

⎞⎟⎠ ,

σ21 σ12 ϕ32σ12 + σ13

σ12 σ22 ϕ32σ
2
2 + σ23

ϕ32σ12 + σ13 ϕ32σ
2
2 + σ23 ϕ232σ

2
2 + σ23 + 2ϕ32σ23

⎤⎥⎦
the term structure of stock market risk takes now the form

σ2r(k) = σ21 + 2σ13 + σ23 + 2ϕ3,2(σ12 + σ23)ψ1(k) + ϕ22,2σ
2
2,2ψ2(k)

where

ψ1(k) =
1

k

k−2X
l=0

lX
i=0

βi22 k > 1

ψ2(k) =
1

k

k−2X
l=0

Ã
lX

i=0

βi22

!2
k > 1

ψ1(1) = ψ2(1) = 0

Note that the specification of the relevant VAR to project the term structure of

risk involves an unobservable variable. VAR estimation needs that to deal with this

problem that it is best solved within a Bayesian framework. Such a framework in turn

generates naturally another source of volatility, namely parameters uncertainty. In the

PS framework the term-structure of risk can be decomposed into five components: the

original three in eq. (12) plus other two, one reflecting uncertainty around the mean of

the process generating returns and one reflecting parameters’ uncertainty.

Table 3 shows the results from the estimation of the three-variate predictive system.

Within this Bayesian framework the prior beliefs on the correlation between innovations

in the equation for returns and innovations in the equation for expected returns (i.e.

ρν1,ν3 , the Stambaugh Correlation) substantially affects estimates of expected returns as

well as various inferences about predictability. In our estimation we impose the belief

ρν1,ν3 < 0 following the evidence of Campbell (1991) and of Van Binsbergen and Koijen

(2009). Interestingly, Robertson and Wright (2009) show that for a plausible range of

ARMA parameters the Stambaugh Correlation is bounded away from zero and very close
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to (minus) unity. This leads us to specify an informative prior on ρν1,ν3 that the implied

prior on ρ2ν1,ν3 has 99.9% of its mass above 0.5, with a mean of about 0.77.12 The Table

3 reports the R2 in the regression of rt+1 on E[rt+1|Dt] for the predictive system and

shows that this R2 is higher than the R2 in Table 2 because dpt ∈ Dt and therefore the

estimates of the expected returns from the predictive system are at least as precise as

the estimates from the predictive regression and VAR. Moreover the R2 (not reported)

from a regression of μt on dpt larger than 0.5 receive very little posterior probability

suggesting that the predictor is not perfectly correlated with the latent expected return

and therefore the predictive system has superior ability in extracting information and

forming the proxy for the true unobservable μt.

[Insert Table 3 about here.]

Figure 5 plots the conditional variance V ar[rt,t+k|Dt] and its components for the

three-variate predictive system with the dividend price as an observable predictor. It

is interesting to note that the three components of V ar[rt,t+k|μt,Θ,Dt]
13, namely the

i.i.d. (top right panel), the mean reverting (mid left panel) and the uncertainty about

future values of μt (mid right panel) are fairly similar to the one we compute under

the VAR approach (see Figure 3). Therefore the sum of these three contribution, namely

V ar[rt,t+k|μt,Θ, Dt] is almost identical under the CV and the PS approaches. Nevertheless

Pastor and Stambaugh (2009) show that other two important blocks affect the conditional

variance V ar[rt,t+k|Dt]: one is the predictor imperfection that reflects the uncertainty

about the current conditional expected returns and the other is the estimation risk that

reflects uncertainty about parameters in Φ1. In particular, when we add the predictor

imperfection component to the V ar[rt,t+k|μt, φ,Dt] we obtain the dashed line in top-left

panel of Figure 5 which shows no evidence for a downward sloping term structure of

stock-market risk.

[Insert Figure 5 about here.]

In the light of these results it important to evaluate the effect of the introduction of

the new sources of risk on the term structure measured by direct regression within our

small structural model. The imperfect predictors problem would affect the interpretation

of the error term in the ten estimated equations for returns at horizon from 1-year to

10-year but it would not change their estimated standard deviations. In fact in the direct

regression approach the term structure of stock market risk is obtained by projecting

returns at different horizon t +m on observable variables at time t. If these observable
12As noted in PS 2008 this prior reflects the belief that at least half of the variance of market returns

is due to discount rate news.
13We indicate with Θ the full set of parameters.
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variables are imperfect predictors, then the variance of the direct regression residual will

reflect this feature of the data.

Parameter uncertainty could be an issue, as in the previous section we derived the

term structure of stock market risk by keeping the estimated parameters fixed with-

out considering uncertainty surrounding them. We have therefore recomputed the term

structure by allowing for parameter uncertainty both in the restricted and unrestricted

version of our model. The results, reported in Figure 6, show that parameters uncer-

tainty add very little uncertainty to the conditional distribution of stock market returns

in our framework. This evidence is not surprising, as the estimation results reported

in Table 1 document that the term structure of risk derived from our structural system

is based on the estimation of very few parameters, all them very well determined. To

provide further evidence on the relative performance of our small structural model with

demographics and the three-variable VAR with one imperfect predictor proposed by PS

we report in Figure 7 actual and predicted returns at the 1-year and 10-year horizon. At

the shor-end of the term structure the information from fundamentals is totally blurred

by the "noise" and the structural model with demographics does not overperfrom the

three-variate VAR. However, at the long-end the “information” generated by using the

predictor determined by demographics in the structural model prevails and generates a

sizeable overperformance. More precisely at the horizon of 10 years, the mean square er-

ror (MSE) and mean absolute error (MAE) for the predictive system are equal to 0.0023

and 0.0409, respectively, whereas the MSE and MAE for the direct regression are equal

to 0.0012 and 0.0280, respectively.

[Insert Figures 6 and 7 about here.]

6 Conclusions

We started this paper by arguing that the emergence of relative importance of “infor-

mation” versus “noise” in the determination of stock market returns at different horizon

could generate a downward sloping term structure of stock market risk. We have shown

that this is indeed the case when i) a demographic variable is used to capture the slow-

moving information component in the dividend-price ratio and in stock market returns

and ii) direct regressions based on the structural estimation of a forward-looking specifica-

tion consistent with the dynamic dividend growth model is adopted. We have also shown

that the use of backward-looking iterated multi-step forecasts to derive the term structure

of risk leads to an underestimation of the importance of the emergence of “information”

as the horizon increases.
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A Robustness

The effect of overlapping observations in the system described in equation (7) is that

the error term is serially correlated, as it features a moving average structure, and there-

fore conventional OLS standard errors are incorrect. In Table 1 the reported standard

errors are corrected for the presence of serial correlation, using a Generalised Method

of Moments (GMM) estimator. As an additional test, we examined non-overlapping re-

gression for the unrestricted system. This approach of course does not capture all of the

information in the data but it has the advantage of being transparent and providing a

baseline estimate. The results, available upon request from the corresponding author,

show that the parameters δ1m and δ2m are all significant and very close to the values

reported in Table 1. The problem now is that, e.g. at horizon m = 10 we have only

ten observations. To deal with this problem we hav adopted the approach proposed by

Pesaran, Pick, and Timmermann (2010) that allows to capture all of the information

in the data by choosing the appropriate weighting matrix to accommodate overlapping

obsevations. In particular, following the notation of Pesaran, Pick, and Timmermann

(2010), for the fixed horizon m we can estimate β = {δ1m, δ2m} from pooled regressions

of m non-overlapping regressions:

yj+(i−1)m = βxj+(i−1)m−m + vi,j i = 1, 2, . . . ,
T

m
and j = 1, 2, . . . ,m

where yj+(i−1)m is the series of m-period cumulated returns sampled every m period with

offset j and analogously xj+(i−1)h−h are the sampled regressors MY and dpt. Now we

can view the m regressions as a set of seemingly unrelated regression equations, allowing

for cross dependence of the errors. For each horizon m we estimate β̂ = (δ0m, δ1m, δ2m)

as [W 0Σ−1u W ]−1W 0Σ−1u ỹ and V ar(β̂) = [W 0Σ−1u W ]−1 where ỹ and W are the reordered

matrices of regressand and regressors and Σu is the appropriate GLS covariance matrix

whose analytic form is reported in Pesaran, Pick, and Timmermann (2010). Importantly

as Pesaran, Pick, and Timmermann (2010) highlight, since the direct regression is de-

rived from the forward solution of the Campbell-Shiller return log-linearization, the GLS

covariance matrix and the MA coefficients of the errors term can be linked to a set of

deeper parameters, namely {ϕ22, ρ} by just recalling the following

ut+m =
mX
j=1

ρj−1 (ε1,t+j)− ρm
mX
j=1

ϕj−1
22 ε2,t+m+1−j

The corrected t-statistics obtained by imposing the above error terms structure when

we estimate the GLS covariance matrix are reported in Table 1 in the line GLS-PPT.

Alternatively we also estimate the GLS covariance matrix Σu without these restrictions.

Results are almost identical.
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Table 1: System Estimation (1910-2009)
dpt+1 = ϕ20 + ϕ22dpt + ϕ23MYt−j + ε2t+1

UM: 1√
m

mX
j=1

rst+j = δ0m +
δ1m√
m
dpt +

δ2m√
m

Ã
mX
j=1

ϕj−1
22 MYt+m+1−j

!
+ ut+m m = 1, .., 10

RM: 1√
m

mX
j=1

rst+j = δ0m +
1√
m
(1− ϕm

22) dpt −
ϕ23√
m

Ã
mX
j=1

ϕj−1
22 MYt+m+1−j

!
+ ut+m

horizon m in years
UM 1 2 3 4 5 6 7 8 9 10

δ1m
(t−stat)

(GLS−PPT )

0.18
(3.87)
(−)

0.38
(5.57)
(4.54)

0.48
(5.61)
(5.21)

0.61
(6.96)
(5.77)

0.70
(7.99)
(7.43)

0.73
(7.17)
(5.19)

0.78
(7.25)
(7.03)

0.86
(8.73)
(8.61)

0.89
(7.63)
(7.57)

0.89
(6.15)
(2.67)

δ2m
(t−stat)

(GLS−PPT )

0.41
(3.23)
(−)

0.52
(3.69)
(3.85)

0.56
(3.85)
(3.50)

0.64
(4.28)
(3.87)

0.69
(4.55)
(4.21)

0.70
(4.69)
(4.10)

0.74
(4.78)
(4.06)

0.78
(4.93)
(4.10)

0.81
(4.94)
(4.19)

0.83
(5.01)
(4.84)

ϕ22
(t−stat)

0.61
(9.21)

ϕ23
(t−stat)

−0.83
(−3.79)

RM
ϕ22

(t−stat)
0.76

(19.31)

ϕ23
(t−stat)

−0.53
(4.41)

χ212 13.45
(0.34)

χ220 17.19
(0.64)

σDepV ar 0.195 0.198 0.187 0.185 0.181 0.174 0.172 0.173 0.171 0.168
σut+m UM 0.188 0.179 0.164 0.152 0.140 0.131 0.125 0.118 0.112 0.109
σut+m RM 0.189 0.179 0.164 0.152 0.141 0.133 0.127 0.120 0.115 0.112
adjR2 UM − 0.18 0.24 0.33 0.41 0.44 0.48 0.54 0.57 0.58
adjR2 RM 0.06 0.18 0.23 0.32 0.40 0.42 0.46 0.52 0.54 0.55

Table 1: This table compares the univariate OLS long-horizon regression coefficients, to
the GMM estimates that impose the restrictions suggested by the present-value model
with demographics. The estimation is by GMM, where the moments are the OLS nor-
mal conditions. Standard errors are by Newey-West with optimal bandwidth selection.
The first-stage weighting matrix is the identity matrix. GLS − PPT is the t-stat that
explicitly accounts for the MA(m-1) errors structure by using a GLS covariance matrix
as suggested in Pesaran, Pick and Timmermann (2010). σDepV ar is the annualized un-
conditional standard deviation. σut+m is the annualized conditional standard deviation
of the compounded (over m periods) returns, i.e. our measure of stock market risk. The
effective sample period is 1910-2009.
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Table 2: A simple bivariate VAR (1910-2009)¡
rst+1 −Ers

¢
= ϕ12 (dpt −Edp) + ν1,t+1

(dpt+1 −Edp) = ϕ22 (dpt −Edp) + ν2,t+1

ϕ12
(t−stat)

ϕ22
(t−stat)

χ22
ϕ11=0,ϕ21=0

σ1 σ2
σ12

σ11σ22
adjR2rst+1 adjR2dpt+1

0.067 0.892 5.673 0.194 0.219 -0.856 0.02 0.78
(1.70) (18.80) (0.06)

Table 2: The table reports coefficient estimates (with t-statistics in parentheses) and the
R2 statistic for each equation. We also report the standard deviations and correlations
of residuals.

Table 3: A three-variate VAR with imperfect predictors (1910-2009)¡
rst+1 −Ers

¢
= (μt −Ers) + ν1,t+1

(dpt+1 −Edp) = ϕ22 (dpt −Edp) + ν2,t+1¡
μt+1 −Ers

¢
= ϕ33 (μt −Ers) + ν3,t+1

ϕ22
(low−upp)

ϕ33
(low−upp)

σ1 σ2 σ3

0.847 0.939 0.187 0.285 0.171
[0.757 0.934] [0.811 0.993] [0.166 0.214] [0.251 0.327] [0.088 0.335]

Pred R2 σ12
σ11σ22

σ13
σ11σ33

σ23
σ22σ33

0.04 -0.631 -0.655 0.451
[-0.732 -0.502] [-0.841 -0.325] [0.205 0.623]

Table 3: This table shows the posterior median and [0.025 0.975] quantile obtained with
the predictive system described in Pastor and Stambaugh (2008). The sample period is
1910-2009.
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Table 4: A bi-variate VAR with MY (1910-2009)
rst+1 = ϕ10 + ϕ12dpt + ϕ13MYt+1 + ν1,t+1
dpt+1 = ϕ20 + ϕ22dpt + ϕ23MYt+1 + ν2,t+1

ϕ12
(t−stat)

ϕ13
(t−stat)

ϕ22
(t−stat)

ϕ23
(t−stat)

χ22
ϕ11=0,ϕ21=0

σ1 σ2
σ12

σ11σ22
adjR2rst+1 adjR2dpt+1

0.179 0.410 0.728 -0.603 4.74 0.188 0.207 -0.846 0.07 0.80
(3.07) (2.67) (11.33) (-3.56) (0.09)

Table 4: The table reports coefficient estimates (with t-statistics in parentheses) and the
R2 statistic for each equation. We also report the standard deviations and correlations
of residuals.
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Figure 1.1: 1-year real US stock market returns and demographic trends
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Figure 1.2: 20-year real US stock market returns and demographic trends (ex

post-returns over the period t− (t+ j) are plotted along MYt+j).
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Figure 1.3: MY and the log dividend-price ratio
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Figure 2.1: the three endogenous variable in our structural model
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Figure 2.2: dpt, the time varying linearization point used in our model, and the breaks

identified by LVN.
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Figure 3: The TS of stock market risk from a bi-variate VAR
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Figure 4: Three alternative measures of the TS of stock market risk
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Figure 5: The TS of US stock market risk from a three-variate VAR with an

unobservable component

Figure 6: The term structure of stock market risk in a structural model with and

without parameters’uncertainty.
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Figure 7: Noise and Information reconsidered
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