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1. Introduction

In this paper, we propose a method to evaluate the effect of a counterfactual change in

the unconditional distribution of a single component of a vector of explanatory variables

X on the unconditional distribution of an outcome variable Y , holding all other features

of the system that relates Y and X constant. Both fixed and marginal (infinitesimal)

counterfactual changes can be considered. Such unconditional ceteris paribus effects

are of interest in many areas of applied policy analysis. For example, one might be

interested what the distribution of wages in 2010 would be if workers’ age structure was

still as in 1980, but all other characteristics of the labor force were the same as today;

or how the distribution of wages would react to a marginal increase in the proportion

of unionized workers, holding again all other characteristics of the labor force constant.

These questions are straightforward to address for the mean of Y in a linear model. If

Y = β0 + β1X1 + β2X2 + ε, and we write E(X1) = µ1, then mechanically a change in

the distribution of X1 to another one with mean µ∗ increases the expectation of Y by

(µ∗−µ1)β1. This is the main idea behind the popular Oaxaca-Blinder procedure (Oaxaca,

1973; Blinder, 1973) to decompose intra-group differences in means. On the other hand,

the effect of a marginal increase in µ1 is easily seen to be equal to ∂E(Y )/∂µ1 = β1.

The main contribution of this paper is to introduce a class of parameters called Par-

tial Distributional Policy Effects (PPEs) that generalize these ideas in three important

directions: First, they allow for general, both fixed and marginal, changes in one of the

covariates’ distribution, and not only location shifts. Second, they allow for arbitrarily

complex nonlinear relationships between the outcome variable and the covariates, instead

of relying on the linear model. And third, they measure the impact on general distribu-

tional features of the distribution Y , such as its variance, quantiles or Gini coefficient,

and not only on the mean. The paper thus extends earlier work on distributional policy

effects in Rothe (2010), which considers the effect of fixed changes in the entire covariate

distribution. Building on the literature on nonseparable models (e.g. Matzkin, 2003), we

formalize the ambiguous notion of a ceteris paribus change in one of the components of

the covariate distribution by imposing a rank invariance condition. That is, we construct

the counterfactual experiment in such a way that the joint distribution of covariates’
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ranks remains unaffected. This is equivalent to holding the copula function of the covari-

ate distribution constant, and thus preserves the dependence structure. We show that

under a conditional exogeneity condition the distribution of the counterfactual outcome

variable can be obtained by integrating the conditional CDF of Y given X with respect to

the new counterfactual covariate distribution, and one can thus directly calculate distri-

butional features of interest. We also discuss both parametric and nonparametric sample

analogue estimators based on this result.

A particular complication arises for discrete covariables. In this case, the rank of

an individual in the respective unconditional distribution is not uniquely determined by

the data. Due to this particular form of interval-censoring, the corresponding policy

parameters are typically only partially identified. That is, the data generating process

reveals some nontrivial information about these effects, but does not allow for an exact

quantification. This finding should not be seen as a weakness of our approach, but

points to the difficulties to define such effects in general nonlinear models. Following the

literature on partially identified parameters (e.g. Manski, 2003, 2007), we derive bounds

on the PPEs in this case.

This paper contributes to an extensive literature on the analysis of counterfactual

distributions. The impact of fixed changes in the entire covariate distribution is studied

for example by Stock (1989), DiNardo, Fortin, and Lemieux (1996), Gosling, Machin,

and Meghir (2000), Donald, Green, and Paarsch (2000), Barsky, Bound, Charles, and

Lupton (2002), Machado and Mata (2005), Melly (2005), Chernozhukov, Fernandez-Val,

and Melly (2009a) and Rothe (2010). For the special case of a dummy variable, DiNardo

et al. (1996) also propose a reweighting procedure to quantify the the effect of a change

in the conditional distribution of one of the covariates given the remaining covariates.

Machado and Mata (2005) consider a related reweighting scheme, which alters both

the dependence structure and the unconditional distribution of remaining covariates.

None of these papers provides a general method to quantify the effect of changes in

the unconditional distribution of a single explanatory variable, holding everything else

constant. In a framework similar to ours, Firpo, Fortin, and Lemieux (2009) consider the

impact of marginal location shifts in continuously distributed covariates, and of marginal

changes in the conditional distribution of a binary covariate given the remaining covariates
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via their so-called RIF-regression approach. While the former parameter is a special case

of our PPEs, the latter is substantially different from the unconditional effects we consider

in this paper. A similar comment applies to the Marginal Policy-Relevant Treatment

Effect studied by Carneiro, Heckman, and Vytlacil (2010), which corresponds to the effect

of a marginal change in the conditional probability of receiving a (binary) treatment given

a vector of instruments. The aim of our paper is also similar to that of Firpo, Fortin, and

Lemieux (2007; 2010), who, using their RIF-regression techniques, propose a procedure to

determine the effect of changes in the distribution of a single covariate on general features

of the outcome distribution. Their approach relies on a particular linearity restriction on

RIF-regression function, which implies that the respective distributional feature of the

outcome variable depends on the distribution of the covariates only through its vector

of means. Such a condition does not hold for common distributional features other than

the mean, e.g. quantiles or variances, even for simple data generating processes like linear

models. In contrast, our paper does not impose shape restrictions on the conditional

distribution of the outcome given the explanatory variables.

The remainder of the paper is organized as follows. In the next section, we introduce

our model and the parameters of interest. Section 3 contains the identification analysis,

and Section 4 discusses estimation and inference. Section 5 concludes. All proofs are

collected in Appendix A. Further details are discussed in Appendix B–E.

2. Model and Parameters of Interest

We observe an outcome variable Y and a d-dimensional vector of covariates X , which are

related through a general nonseparable structural model

Y = m(X, η), (2.1)

where η ∈ Rdη is an unobserved error term. Since we do not impose any restrictions

on neither the dimension of the unobservables nor the way they enter the structural

function m, the model in (2.1) allows for flexible forms of unobserved heterogeneity. In

the following, we index distribution and quantile functions by the random variables they

refer to, so that FY denotes the CDF of Y , etc.
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Our aim in this paper is to study the effect of a counterfactual (fixed or marginal)

change in the unconditional distribution of one of the covariates on some feature of the

distribution of Y , holding everything else, in particular the dependence structures and

the distribution of the remaining covariates constant. To formalize the ambiguous notion

of a ceteris paribus change in one of the components of a multivariate distribution, we

partition the covariate vector as X = (W,Z), where W is the one-dimensional random

variable whose unconditional distribution is going to be changed in the counterfactual

experiment, and Z is the d′-dimensional vector of remaining covariates. We then write

the observed covariates X in terms of their marginal quantile functions and a vector

U = (U1, . . . , Ud) of standard uniformly distributed latent variables, i.e.

X = (QW (U1), QZ1
(U2), . . . , QZd′

(Ud)) (2.2)

for some Ui ∼ U [0, 1] and i = 1, . . . , d. We refer to U in the following as the vector

of rank variables, and denote its joint CDF, which is also the copula function of FX ,

by C. If W is continuously distributed, the latent rank variable U1 constitutes a one-

to-one transformation of W , since the quantile function QW is strictly increasing and

thus injective in this case. If W is binary, e.g. an indicator of union membership, the

relationship W = QW (U1) = I{U1 > Pr(W = 0)} can be thought of as a threshold

crossing model. However, it is important to stress that (2.2) is not a “model”, but simply

a representation that can be assumed without loss of generality.

It is evident from (2.2) that the quantile functions only determine the shape of the

marginal distributions of X , whereas the vector of rank variables U determines its depen-

dence structure. It is therefore natural to define the outcome YH of the counterfactual

experiment in which the unconditional distribution of W has been changed to some CDF

H , but everything else has been held constant, as

YH = m(XH , η),

where XH = (H−1(U1), QZ1
(U2), . . . , QZd′

(Ud)) = (H−1(U1), Z) is the corresponding

counterfactual covariate vector, and H−1(τ) = inf{w : H(w) ≥ τ} is the quantile func-

tion corresponding to H . Depending on the application, H could either be a fixed CDF,

such as the distribution of W in a different population, or part of a sequence of CDFs
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{Ht, t ∈ R} that tends to FW from a particular direction as t → 0. Note that our

definition is equivalent to imposing a rank invariance condition, since the unconditional

distribution of W is changed in such a way that the joint distribution of ranks of X

remains unaffected.

Our aim is to learn about various features ν(FH
Y ) of the distribution FH

Y of YH , and to

compare them to the corresponding features ν(FY ) of the distribution of Y . We refer to

any difference between these quantities as a Partial Distributional Policy Effect (PPE).

Here ν : F → R is a functional from the space of all one-dimensional distribution functions

to the real line. One example for such a feature would be the mean of YH, which can

be written as E(YH) = µ(FH
Y ) for µ : F 7→

∫

ydF (y). Other examples are higher-order

centered or uncentered moments, quantiles and related statistics like interquantile ranges

or quantile ratios, and inequality measures such as the Gini coefficient.1 Our parameters

of interest are formally defined as follows.

Definition 1. (a) Let H be a fixed CDF. Then the Fixed Partial Distributional Policy

Effect (FPPE) is given by

αW (ν) = ν(FH
Y )− ν(FY ).

(b) Let H = Ht be an element of a continuum of CDFs indexed by t ∈ R such that

Ht → FW as t → 0, and denote the CDFs of the corresponding counterfactual outcome

distributions by F t
Y . Then the Marginal Partial Distributional Policy Effect (MPPE) is

given by

βW (ν) = lim
t→0

ν(F t
Y )− ν(FY )

t
= ∂tν(F

0
Y ),

provided that the limit exists.

Following Firpo et al. (2009), we will focus on MPPEs corresponding to either marginal

location shiftsHt(w) = FW (w−t) or marginal perturbationsHt(w) = FW (w)+t(GW (w)−
FW (w)) in some fixed direction GW .

1See Chernozhukov et al. (2009a) or Rothe (2010) for further examples and an extensive discussion.
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3. Identification

Following the literature on counterfactual distributions, we establish our identification

results assuming a form of conditional exogeneity (e.g. Firpo et al., 2009; Chernozhukov

et al., 2009a; Rothe, 2010). All issues concerning identification that we address in this

paper are not specific to this setting, but would appear in the same fashion in a nonsep-

arable model with endogeneity (e.g. Chesher, 2003; Imbens and Newey, 2009). We first

obtain two useful representations of the counterfactual outcome distribution FH
Y .

Lemma 1. Assume that (a) the unobserved heterogeneity η is independent of U1 condi-

tional on Z, i.e. η⊥U1|Z, and (b) the support of H is a subset of the support of W condi-

tional on Z, i.e. supp(H) ⊂ supp(W |Z = z) for all z ∈ supp(Z). Then the counterfactual

outcome distribution FH
Y can be either written as (i) FH

Y (y) = E(FY |X(y|H−1(U1), Z)),

or as (ii) FH
Y (y) =

∫

FY |X(y|w, z)dC(H(w), FZ1
(z1), . . . , FZd′

(zd′)).

Condition (a) of the Lemma is sufficient but not necessary for conditional exogeneity

of W = QW (U1) if W is discrete, and equivalent to conditional exogeneity if W is con-

tinuously distributed. It is substantially weaker than assuming full exogeneity of X . In

the context of identification in nonseparable models, a similar assumption is employed by

Hoderlein and Mammen (2007). Condition (b) ensures that the support of XH is a subset

of the support of X , and thus that the function FY |X is identified over the area of integra-

tion. Since we treat the structural function m in a nonparametric fashion, extrapolation

outside the range of observed covariates is not possible in our setting.

Lemma 1 shows that identification of our PPEs hinges upon knowledge of the rank

variable U1 or, equivalently, the copula function C. Such knowledge is not available

when W is discrete, and thus there are generally several CDFs that can be written as

F (y) = E(FY |X(y|H−1(Ũ1), Z)) for some Ũ1 ∼ U [0, 1] such that (QW (Ũ1), Z)
d
= (W,Z),

and can thus not be ruled out as possible values of FH
Y from the data. We denote the set

of all such feasible counterfactual outcome distributions by FH
Y . Note that this set could

be defined equivalently via the copula representation in Lemma 1(ii).

3.1. Fixed Partial Policy Effects. When W is continuously distributed, the quantile

function QW is strictly increasing, and establishes a one-to-one relationship between
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W = QW (U1) and the latent rank variable U1. Thus, by Lemma 1 the counterfactual

outcome distribution FH
Y is point identified, as are of course all distributional features of

the form ν(FH
Y ), and thus the FPPE. The next theorem formalizes this result.

Theorem 1. Assume the conditions of Lemma 1 hold. Then we have that FH
Y (y) =

E(FY |X(y|H−1(FW (W )), Z))), and the FPPE αW (ν) is identified for any functional ν.

When W is not continuously distributed, the quantile function QW is piecewise con-

stant, and it can thus only be deduced from observing W that FW (W−) < U1 ≤ FW (W ),

where the notation f(x−) denotes the left limit of the function f at the point x. Interval-

censoring of covariates is well-known to lead to identification problems in various contexts

(Manski and Tamer, 2002), and prevents point identification of the FPPE in our context.

In order to derive the identified set, we make use of the following lemma.

Lemma 2. For every F ∈ FH
Y there exists a random variable V called a rank allocator

satisfying the relationship V |W = w ∼ U [0, 1] for all w ∈ supp(W ), such that F (y) =

E(FY |X(y,H
−1(F̃W (W,V )), Z)), with F̃W (w, v) = v(FW (w)− FW (w−)) + FW (w−).

The role of the rank allocator, which is allowed to depend on Z, is to assign a unique

rank to each individual in case that FW is not continuous everywhere. The idea behind

this construction is that since we only know that FW (W−) < U1 ≤ FW (W ), all uniform

allocations of ranks within these bounds are observationally equivalent, and thus lead to

a feasible value of the counterfactual outcome distribution.

Using Lemma 2, we now derive sharp bounds on ν(FH
Y ) for linear functionals ν by

explicitly constructing appropriate rank allocators. For simplicity, we focus on the impor-

tant special case that FW and H are supported on {0, 1}. To illustrate the idea, suppose

for the moment that p1 := Pr(W = 1) > Pr(H−1(U1) = 1) =: p2. Roughly speaking, this

means that we have to “move” a fraction of (p1−p2)/p1 of the p1 individuals with W = 1

to the group with W = 0 in the counterfactual experiment. When ν is linear, upper

and lower bounds on ν(FH
Y ) can then be obtained by ranking all individuals with W = 1

according the individual effect ν(FY |X(·|1, Z)) − ν(FY |X(·|0, Z)) of such a “move”, and

selecting those at the top and the bottom of the ranking, respectively. More specifically,
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Lemma 2 and linearity of ν implies that for any F ∈ FH
Y we have that

ν(F ) = E[ν(FY |X(·|I{V > (p1 − p2)/p1}, Z))|W = 1]p1

+ E[ν(FY |X(·|0, Z))|W = 0](1− p1),
(3.1)

for some rank allocator V .2 The second term on the right-hand side of (3.1) does not

depend on V and can thus be neglected. Depending on the realization of V , the term

ν(FY |X(·|I{V > (p1−p2)/p1}, Z)) is equal to either ν(FY |X(·|1, Z)) or ν(FY |X(·|0, Z)). In
order to maximize the right-hand side of (3.1), the rank allocator must thus be defined in

such a way conditionally onW = 1 the event V < (p1−p2)/p1 corresponds to a realization

of Ṽ = ν(FY |X(·|1, Z))− ν(FY |X(·|0, Z)) below its conditional (p1−p2)/p1-quantile. This

can be achieved by defining V as an appropriately normlized version of Ṽ . A lower bound

on the expression in (3.1) can be constructed by replacing Ṽ by its negative version and

proceeding analogously. In general, we thus first define the random variable

Ṽν = ν(FY |X(·|H−1(FW (W )), Z))− ν(FY |X(·|H−1(FW (W−)), Z)).

Next, let V U
ν be a one-to-one transformation of Ṽν normalized to be standard uniformly

distributed conditional on W via the (generalized) distributional transform,3 and define

V L
ν = 1−V U

ν . Then the two CDFs built from the rank allocators V L
ν and V U

ν , respectively,

are those which yield the lowest and highest feasible value of ν(FH
Y ).

Theorem 2. Suppose that the conditions of Theorem 1 hold, and let ν be a linear

functional. Then αL
W (ν) ≤ αW (ν) ≤ αU

W (ν), where αr
W (ν) = ν(F r) − ν(FY ) and

ν(F r) = E(ν(FY |X(·|Sr
ν(W,Z), Z))) with Sr

ν(W,Z) = H−1(F̃W (W,V r
ν )) for r ∈ {U, L}.

In the absence of further information, these bounds are sharp.

When the structural function satisfies a separability condition of the formm(w, z, e) =

mA(w, e)+mB(z, e), the upper and lower bound coincide since ν is linear, and the FPPE

2The last equality follows from the fact that for p2 < p1 we have that QW (u) = I{u > 1 − p1},
H−1(u) = I{u > 1− p2}, F̃W (0, V ) = V (1 − p1) < 1− p2 and F̃W (1, V ) = (1− p1) + V p1.

3A random variable Q is said to be a normalized version of a random variable R conditional on a

random vector S on via the generalized distributional transform if Q = G(R,S, T ), where G(r, s, t) =

Pr(R < r|S = s) + tPr(R = r|S = s) and T ∼ U [0, 1] is some random variable independent of (R,S).

See Rüschendorf (2009) for details.
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is thus point identified irrespective of whether W is continuously distributed or not.

Hence there are for example no identification issues related to discrete covariables in

the classical Oaxaca-Blinder procedure, which is based on the linear model m(w, z, e) =

α + βw + γ′z + e. Furthermore, one can show that the Theorem also holds in the non-

binary case, assuming that the function H−1 takes at most two values on the interval

(FW (w−), FW (w)] for every w ∈ R.

With the exception of the mean, most distributional features commonly used in em-

pirical applications cannot be written as linear functionals of the underlying CDF. As a

first step to extend the result in Theorem 2, note that for every fixed y ∈ R the mapping

F 7→ F (y) is linear. The value FH
Y (y) can thus be bounded pointwise using the approach

described above, by constructing appropriate rank allocators V L
y and V U

y depending on

y ∈ R. Let GU(y) and GL(y) be the corresponding lower and upper bounds, respectively.

Then we have that

GU(y) ≤ FH
Y (y) ≤ GL(y) for all y ∈ R. (3.2)

Since the rank allocation schemes V L
y and V U

y depend on the point of evaluation y, the

functions GL and GU are not necessarily feasible counterfactual outcome distributions

themselves, and thus constitute only pointwise but not uniformly sharp bounds. However,

one can show that both are proper distribution functions that constitute best possible

bounds on FH
Y with respect to the partial ordering induced by first-order stochastic dom-

inance. Using results in Stoye (2010), who derives identification regions for a large class

of distributional features when the underlying CDF is restricted by first-order stochastic

dominance bounds, we then obtain bounds on the FPPE if ν is either aD1-parameter (e.g.

mean, median, fixed quantile), a D2-parameter (e.g. variance, Gini coefficient, Theil’s in-

dex, Lorenz share), or a quantile contrast (e.g. interquantile range). To state the bounds,

we also require the notion of compressed and dispersed distributions, which are those

CDFs satisfying (3.2) that allocate as much probability mass as possible to their center

and the tails, respectively. Exact definitions of the just-mentioned concepts are given in

Appendix B.

Theorem 3. Assume the conditions of Theorem 1 hold, and that ν is either a D1-

parameter, D2-parameter, or quantile contrast. Then αL
W (ν) ≤ αW (ν) ≤ αU

W (ν), where
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the upper and lower bounds are given as follows:

(i) For ν a D1-parameter, we have αr
W (ν) = ν(Gr)− ν(FY ) for r ∈ {U, L}.

(ii) For ν a D2-parameter, assume that µ(FH
Y ) = µ̄ for some µ̄ ∈ (µL

H , µ
U
H), and let GU

µ̄

and GL
µ̄ be the unique compressed and dispersed distributions (relative to GU and

GL) with expectation µ(GL
µ̄) = µ(GU

µ̄ ) = µ̄. Then we have αr
W (ν) = ν(Gr

µ̄)− ν(FY )

for r ∈ {U, L}.

(iii) For ν an (α, β)-quantile contrast, choose any γ ∈ (α, β) and m̄ ∈ (GL(γ), GU(γ)),

let GL
m̄ be the compressed distribution with threshold value a = m̄, and GU

γ be the

dispersed distribution with threshold value a = γ. Then we have αL
W (ν) = ν(GL

m̄)−
ν(FY ) and αU

W (ν) = ν(GU
γ )− ν(FY ).

Since the functions GL or GU may not be feasible values of FH
Y themselves, the bounds

in Theorem 3 may not be sharp.4 It should in principle be possible to tighten these bounds

by tailoring the construction of the rank allocator to the respective functional of interest.

However, except for the important special case of linear parameters discussed in detail

above, there seems to be no straightforward analytical solution to this problem. Note

that the result in Theorem 3(ii) does not require the mean of FH
Y to be point identified

(which would generally not be the case in our setting). Instead, together with Theorem 2

it establishes a joint identification region for the mean and any D2-parameter, whose

shape is typically not rectangular.

3.2. Marginal Partial Policy Effects. Using the copula representation of the coun-

terfactual outcome distribution in Lemma 1(ii), it is easy to see that for continuously

distributed W the MPPE is identified if the functional ν and the copula function C sat-

isfy appropriate smoothness conditions. The result is analogous to findings in Firpo et al.

(2009), and stated for completeness.

4Stoye (2010) notes that even if GL and GU are feasible distributions of YH , one could possibly

improve upon the above bounds if there is additional information available about the structural function

m, that e.g. implies that YH is discrete. Such additional information could be easily included in our

analysis at the price of a substantially more involved notation.
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Theorem 4. Suppose that (a) the conditions of Theorem 1 hold with H replaced by Ht for

all t ∈ R sufficiently close to zero, (b) ν is Hadamard differentiable5 at FY with derivative

ν ′, (c) the partial derivative ∂C/∂u1 = C1 of the copula function C exists, and (d) the

unconditional distribution of W is continuous. Then the MPPE βW (ν) is identified:

(i) For Ht a marginal perturbation, i.e. Ht(w) = (1− t)FW (w) + tGW (w), we have

βW (ν) =

∫

ν ′(FY |X(y|w, z))d(C1(FW (w), FZ(z))(GW (w)− FW (w))).

(ii) For Ht a marginal location shift, i.e. Ht(w) = FW (w − t), we have

βW (ν) = ν ′
(

E(∂wFY |X(·|W,Z))
)

.

When W is not continuously distributed, a marginal location shift does not satisfy

the support condition in Lemma 1, and hence we only consider marginal perturbations

in this case. While the formula in Theorem 4(i) remains valid, the MPPE is typically no

longer point identified for discrete W , as one is unable to learn the partial derivative of

the copula function in this context. To see this, we focus on the case that W is supported

on {0, 1}, and consider a perturbation Ht which implies an increase in the probability of

observing W = 1 by t, i.e. Ht(w) = I{0 ≤ t < 1}(FW (0)− t) + I{t ≥ 1}. Then it follows

from direct calculations that

βW (ν) =

∫

(ν ′(FY |X(·|1, z))− ν ′(FY |X(·|0, z)))dC1(FW (0), FZ(z)).

By Sklar’s Theorem (Sklar, 1959; Nelsen, 2006, Theorem 2.3.3), the copula C is only

identified on the range of the marginal CDFs of X = (W,Z). When W is binary, the

function C(a, ·) is thus identified for a ∈ {0, FW (0), 1} only. This in turn implies that

the function C1(FW (0), ·) is not point identified, since identification of a derivative at a

fixed point requires knowledge of the function at least in some small neighborhood. In

order to still obtain bounds on the MPPE, we show in the Appendix that the set of

all possible values of the function C1(FW (0), ·) that are compatible with the distribution

of observables is the set of all multivariate distribution functions with support RZ =

5A formal definition of Hadamard differentiability is given in Appendix B.
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{(FZ1
(z1), . . . , FZd′

(zd′)) : z ∈ Z}, where Z denotes the support of Z. The identified set

of the MPPE is thus the set of all density-weighted averages of the function

gν(z) = ν ′(FY |X(·|1, z))− ν ′(FY |X(·|0, z)),

and sharp upper and lower bounds are thus given by the extrema of this function over

the support of Z.

Theorem 5. Suppose that the conditions (i)–(iii) of Theorem 4 hold. Then we have that

βL
W (ν) ≤ βW (ν) ≤ βU

W (ν), where βU
W (ν) = supz∈Z gν(z) and βL

W (ν) = infz∈Z gν(z).

It is an immediate consequence of Theorem 5 that βW (ν) is identified if and only

if gν(z) is constant for all z ∈ Z. This would e.g. be the case if ν = µ is the mean

functional, which implies that gν(z) = E(Y |W = 1, Z = z)−E(Y |W = 0, Z = z), and the

structural functionm satisfies the separability conditionm(w, z, e) = mA(w, e)+mB(z, e).

In contrast to the FPPE however, the separability condition alone is not sufficient to

obtain point identification of the MPPE for distributional features other than the mean,

such as e.g. quantiles: if ν(F ) = F−1(τ) we have that gν(z) = −(FY |X(QY (τ)|1, z) −
FY |T,X(QY (τ)|0, z))/fY (QY (τ)), which generally varies with z.

4. Estimation and Inference

In this section, we discuss both parametric and nonparametric estimation of partial pol-

icy effects. Under point identification, both FPPEs and MPPEs can be estimated by

simple “plug-in” procedures, replacing unknown quantities in the respective expressions

in Theorem 1 and 4 with suitable sample counterparts. Under partial identification, esti-

mates of the identified set can be obtained through “plug-in” estimates of the respective

boundaries for FPPEs, and via the approach in Chernozhukov, Lee, and Rosen (2009b)

for MPPEs.

4.1. Fixed Partial Policy Effects. We assume that the data consist of an i.i.d.

sample of size n, i.e. we observe (Yi,Wi, Zi)
n
i=1 . For many applications, such as Oaxaca-

Blinder-type decompositions, the counterfactual covariate distribution H is not going to

be known exactly, but estimated from a sample (W ∗
i )

n∗

i=1 of size n
∗ = n/λ for some λ > 0.
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When W is continuously distributed, the identification result in Theorem 1 suggests to

estimate the FPPE by

α̂W (ν) = ν(F̂H
Y )− ν(F̂Y ).

Here F̂H
Y (y) = (1/n)

∑n
i=1 F̂Y |X(y, Ĥ

−1(F̂W1(Wi)), Zi), where F̂Y , F̂W and Ĥ−1 denote

the empirical CDF and quantile function of Y , W and W ∗, respectively, and F̂Y |X is

an estimate of the conditional CDF of Y given X . The latter can be estimated by

either of the parametric methods discussed in Chernozhukov et al. (2009a), e.g. by first

estimating a linear quantile regression model QY |X(τ, x) = x′β(τ), and then inverting the

corresponding conditional quantile quantile function, or by a fully nonparametric CDF

estimator, e.g. a kernel estimator as in Rothe (2010).

Under partial identification, we obtain estimates ÂW (ν) of the identified set of the

FPPE by estimating the respective upper and lower boundaries, i.e. we have that ÂW (ν) =

[α̂L
W (ν), α̂U

W (ν)], where

α̂r
W (ν) =







































ν(F̂ r)− ν(F̂Y ) if ν is a linear functional,

ν(Ĝr)− ν(F̂Y ) if ν is a D1 parameter,

ν(Ĝr
µ̄)− ν(F̂Y ) if ν is a D2 parameter,

ν(Ĝr
m̄)− ν(F̂Y ) if ν is a quantile contrast.

for r ∈ {U, L}. When ν is linear, we have ν(F̂ r) = (1/n)
∑n

i=1 ν(F̂Y |X(·, Ŝr
ν(Wi, Zi), Zi))

for r ∈ {U, L}, where ŜU
ν (w, z) = Ĥ−1(F̂W (w−) + V̂ U

ν (w, z)(F̂W (w) − F̂W (w−))) and

the estimated rank allocator V̂ U
ν (w, z) is the value of the empirical distribution func-

tion of the variables ˆ̃Vν,i = ν(F̂Y |X(·|Ĥ−1(F̂W (Wi)), Zi))−ν(F̂Y |X(·|Ĥ−1(F̂W (Wi−)), Zi)),

in the group of observations with Wi = w, evaluated at ν(F̂Y |X(·, Ĥ−1(F̂W (w)), z)) −
ν(F̂Y |X(·, Ĥ−1(F̂W (w−)), z)). The function ŜL

ν (w, z) is defined analogously, and all other

quantities are as given above. For nonlinear functionals ν, estimates of the stochastic

dominance bounds GL and GU are given by Ĝr(y) = (1/n)
∑n

i=1 F̂Y |X(y|Ŝr
y(W,Z), Zi) for

r ∈ {U, L}, where ŜU
y and ŜL

y can be obtained in the same way as ŜU
ν and ŜL

ν . When

ν is a D2-parameter or a quantile contrast, we compute the respective dispersed and

compressed CDFs in Theorem 3 (ii)–(iii) from the estimates ĜL and ĜU , denoting the

result by ĜL
µ̄ , Ĝ

U
µ̄ , Ĝ

L
m̄ and ĜU

γ , respectively.
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In Appendix C, we provide a complete asymptotic theory for our estimators, adapt-

ing arguments used in Chernozhukov et al. (2009a) or Rothe (2010). We show that

under point identification our estimate of the counterfactual outcome CDF converges

to a Gaussian process. Normality of FPPE estimates then follows from the functional

delta method. A similar approach is used to establish joint asymptotic normality of the

estimated bounds under partial identification. An ordinary bootstrap procedure can be

shown to give asymptotically valid approximations to the various Gaussian limit distri-

bution, allowing to circumvent direct estimation of their (often complicated) covariance

functions. Then standard methods can be used to construct confidence intervals for the

FPPE under point identification. In case of interval-identified parameters, one can use

general results in Imbens and Manski (2004) and Stoye (2009).

4.2. Marginal Partial Policy Effects. Under point identification, estimates of the

MPPE can be obtained by “plug-in” estimators in a similar fashion as described above.

Since these parameters are very similar to the ones discussed in Firpo et al. (2009), we

omit a detailed discussion. When W is binary, the MPPE falls into the class of partially

identified parameters restricted by intersection bounds, and one can use the methodology

proposed by Chernozhukov et al. (2009b). Their approach consist of adding a precision-

correction term to a suitable estimate z 7→ ĝν(z) of the bound-generating function in

Theorem 5 before applying the supremum and and infimum operators in order to obtain

median unbiased estimates. To be specific, the estimate of the identified set given by

B̂W (ν) = [β̂L
W (ν), β̂U

W (ν)], where

β̂U
W (ν) = max

z∈ẐU

[ĝν(z)− k1/2s(z)] and β̂L
W (ν) = min

z∈ẐL

[ĝν(z) + k1/2s(z)].

Here ĝν(z) is an estimate of the bound generating function gν(z), s(z) is the corresponding

pointwise standard error, the critical value k1/2 is an estimate of the median of the

maximum of the stochastic process Zn(z) := (ĝν(z)−gν(z))/s(z), and the sets ẐU and ẐL

are both (random) subsets of the support of Z that contain the points where the maximum

and minimum is achieved with probability tending to one, respectively. The estimator

ĝν can be fully nonparametric or impose parametric restrictions. Its specific form (and

thus the choice of s and kp) depends on the functional ν, and is explicitly described in
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Appendix D for the case of the mean and the quantile functional. Chernozhukov et al.

(2009b) show that a similar idea can be used to a construct confidence intervals for the

parameter of interest, which is valid uniformly with respect to the location of the MPPE

within the bounds. We discuss the details in Appendix D.

5. Concluding Remarks

In this paper, we propose a method to evaluate the effect of a counterfactual change

in the marginal distribution of a single covariate on the unconditional distribution of

an outcome variable of interest. We show that such effects are point identified under

general conditions if the covariate affected by the counterfactual change is continuously

distributed, but typically only partially identified if its distribution is discrete. For the

latter case, we derive informative bounds making use of the available information.

In Appendix E, we present an illustrative empirical application of our methodology,

that investigates the role of composition effects in the polarization of the US labor market

observed since the mid 1980s (Autor, Katz, and Kearney, 2006). We use our FPPEs to

quantify to what extend changes in the unconditional distribution of various observable

characteristics of the labor force contributed to the rise in wages at both the top and

bottom end of the wage distribution. The results suggest that changes in education and

labor market experience only had a minor impact. De-unionization is shown to have

contributed to the increase in both overall wage inequality and inequality at the top-end

of the wage distribution. However, due to the binary nature of individual union coverage,

the effect is only partially identified and thus can only be bounded.
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A. Proofs of Theorems

Proof of Lemma 1. We only prove part (i). The proof of (ii) is similar. Using the

conditional exogeneity condition in Assumption 1, we find that

FH
Y (y) = Pr(m(XH , η) ≤ y)

=

∫

Pr(m(H−1(u), z, η) ≤ y|U1 = u, Z = z)dFUZ(u, z)

=

∫

Pr(m(w, z, η) ≤ y|Z = z)dFUZ(H(w), z)

=

∫

Pr(m(w, z, η) ≤ y|QW (U1) = w,Z = z)dFUZ(H(w), z)

=

∫

Pr(m(W,Z, η) ≤ y|W = w,Z = z)dFUZ(H(w), z)

=

∫

FY |X(y, w, z)dFUZ(H(w), z)

=

∫

FY |X(y,H
−1(u), z)dFUZ(u, z)

= E(FY |X(y,H
−1(U1), Z)),

as claimed.

Proof of Theorem 1. Under the conditions of the Theorem, there exists a one-to-

one relationship between W and U1 over the range on which H−1 is not constant. Hence

we have that FH
Y (y) = E(FY |X(y,H

−1(FW (W )), Z)). Assumption 1 (ii) ensures that

that FY |X is identified over the area of integration on the right-hand side of the last

equation. Hence FH
Y is identified, and so are of course population parameters of the form

νH = ν(FH
Y ).

Proof of Lemma 2. The set FH
Y of feasible counterfactual outcome distributions is

defined as the set of all CDFs F which can be written as F (y) = E(FY |X(y,H
−1(Ũ1), Z))

for some random variable Ũ1 ∼ U [0, 1] such that (QW (Ũ1), Z)
d
= (W,Z). Let Ũ1 be any

random variable satisfying these two conditions, and let V = Ũ1/(FW (W )−FW (W−))−
FW (W−). Then V is a rank allocator in the sense of the Lemma, since Ũ1|W = w ∼
U [FW (w−), FW (w))]. On the other hand, it is easy to see that F̃W (W,V ) ∼ U [0, 1]

and (QW (F̃W (W,V )), Z)
d
= (W,Z) for any rank allocator V . In particular, the latter

statement follows from the fact that QW is constant on the interval [FW (w−), FW (w))]

for all w ∈ supp(W ).
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Proof of Theorem 2. The proof for the case that both H and the distribution of W

are binary is given in the main text. The proof for the general case is completely analogous

and thus omitted. Sharpness of the bounds follows from the fact that by Lemma 2 every

valid rank allocator corresponds to a feasible counterfactual outcome distribution, and

vice versa.

Proof of Theorem 3. We first show that GL and GU are proper distribution func-

tions, that constitute best possible bounds with respect to first-order stochastic domi-

nance ordering, in the sense that

GU �1 F �1 G
L for all F ∈ FH

Y , (A.1)

and that there do not exist distribution functions G̃L and G̃U such that GU ≻1 G̃
U ≻1 F

or F ≻1 G̃L ≻1 GL for all F ∈ FH
Y . From Theorem 2, it follows directly that GU(y) ≤

F (y) ≤ GL(y) for all F ∈ FH
Y and all y ∈ R, since the functional ν with ν(F ) = F (y) is

linear. This proves the claim in (A.1).

Next, we show that GL and GU are CDFs. It is immediate by construction that both

functions are right-continuous and tend to zero and one as the point of evaluation tends

to ±∞. It thus remains to be shown that they are nondecreasing. To see this, note that

by the sharpness result in Theorem 2, for any ȳ ∈ R there exists a feasible counterfactual

outcome distribution F̄ȳ ∈ FH
Y such that F̄ȳ(y) = GU(y) for y = ȳ. Now suppose GU was

not everywhere nondecreasing, i.e. GU(y′) < GU(y) for some y′ > y. This would imply

that GU(y) > F̄y′(y
′) ≥ F̄y′(y) since F̄y′ is a proper CDF, which violates the fact that

GU(y) ≤ F (y) for all F ∈ FH
Y and all y ∈ R. Hence GU must be nondecreasing. An

analogous argument applies to GL.

Finally, we show that GL and GU are best possible bounds with respect to the (partial)

ordering induced by stochastic dominance. Suppose there exists a function G̃U such

that G̃U(y) ≥ GU(y) for all y ∈ R, and G̃U(ȳ) > GU(ȳ) for some ȳ ∈ R. Then by

Theorem 2, there exists a feasible counterfactual outcome distribution F ∈ FH
Y such that

GU(ȳ) = F (ȳ). Hence it cannot be the case that G̃U(y) ≤ F (y) for all F ∈ FH
Y and all

y ∈ R. An analogous argument applies to GL.

With these arguments, the statement of the Theorem follows directly from Theorem

1 and 2 in Stoye (2010).
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Proof of Theorem 4. This follows from application of the chain rule and the repre-

sentation of FH
Y in Lemma 2(ii).

Proof of Theorem 5. First, note that whenever the distribution of W is not degen-

erate, i.e. FW (0) ∈ (0, 1), we have that C1(FW (0), ·) ∈ S, where S is the set of all

multivariate distribution functions with support RZ = {(FZ1
(z1), . . . , FZd′

(zd′)) : z ∈ Z},
where Z denotes the support of X . For the case that the dimension of (W,Z) is equal to

two, i.e. d′ = 1, this follows from Theorem 2.2.7 in Nelsen (2006). The extension of his

result to the general multivariate case is immediate.

Next, let T = {T : T (z) = s(FZ1
(z1), . . . , FZd′

(zd′)), s ∈ S}. Note that it follows from

the properties of S that T is the set of all distribution functions with support Z. It then

follows directly that

inf
z∈Z

gν(z) ≤ sup
T∈T

∫

gν(z)dT (z) ≤ sup
z∈Z

gν(z).

Since T is the set of all distribution functions with support Z, these bounds are sharp.

B. Additional Definitions

In this section, we give the precise definition of three important concepts, which are

omitted from the main body of the paper for brevity: the distributional features covered

by Theorem 3, the notion of a compressed and dispersed distribution necessary to state

the bounds in Theorem 3(ii)–(iii), and that of Hadamard differentiability.

Definition 2 (Distributional Features (Stoye, 2010)). Consider a functional ν : F → R.

i) ν is a D1-parameter if it increases with first-order stochastic dominance, i.e F �1 G

implies that ν(F ) ≥ ν(G).

ii) ν is a D2-parameter if it increases with second-order stochastic dominance for any

two distributions that have the same mean, i.e. µ(F ) = µ(G) and F �2 G implies

ν(F ) ≥ ν(G).

iii) ν is an (α, β)-quantile contrast if ν(F ) = g(F−1(α), F−1(β)) for α ≤ β and a known

function g : R2 → R that is non-increasing in the first and nondecreasing in the

second argument.
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Definition 3 (Compressed and Dispersed Distributions (Stoye, 2010)). The distribution

function FC(·) = FC(·|a, FU , FL) is called compressed relative to two other distribution

FL and FU with threshold value a ∈ R if

FC(y) =











FU(y), y < a

FL(y), y ≥ a.

The distribution function FD(·) = FD(·|a, FU , FL) is called dispersed relative to two other

distributions FL and FU with threshold value a ∈ [0, 1] if

FD(y) =



























FL(y), y < QL(a)

a, QL(a) ≤ y < QU(a)

FU(y), y ≥ QU(a).

Definition 4 (Hadamard Differentiability (Van der Vaart, 2000)). The functional ν :

F → R is called Hadamard differentiable at F if there exists a continuous map ν ′
F : F →

R such that
∣

∣

∣

∣

ν(F + tht)− ν(F )

t
− ν ′

F (h)

∣

∣

∣

∣

→ 0

as t → 0, for every ht → h such that F + tht is contained in the domain of ν for all

values of t sufficiently close to zero.

C. Asymptotic Theory for Fixed Partial Policy Effect

Estimators

In this section, we investigate the asymptotic properties of the estimators proposed in

Section 4.1. For our asymptotic analysis, we adapt arguments used in Chernozhukov et al.

(2009a) or Rothe (2010) for estimators of distributional policy effects corresponding to

changes in the entire covariate distribution. We show that under point identification our

estimate of the counterfactual outcome CDF converges to a Gaussian process. Normal-

ity of sufficiently smooth population parameters then follows from the functional delta

method. A similar approach is used to establish joint asymptotic normality for the es-

timates of the upper and lower bounds of the various identified sets. Such results can

be used to construct asymptotically valid confidence regions for the objects of interest.
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In order to account for both nonparametric and parametric estimates of the conditional

CDF FY |X , we conduct our analysis under general “high-level” assumptions, that can be

verified for a wide range of estimation procedures under standard regularity conditions.

The assumptions are stated in such a way that the respective theorems follow by straight-

forward arguments, using the Donsker Theorem, the Functional Delta Method and the

Continuous Mapping Theorem (Van der Vaart, 2000). We thus omit all proofs.

A word on notation: we denote the support of Y , W , Z, X and W ∗ by Y , W, Z, X
and W∗, respectively. The space ℓ∞(A) is the space of all uniformly bounded functions

mapping from A to R, equipped with the metric induced by the supremum norm. We

also write “
d→” to denote convergence in distribution of a sequence of random variables,

and “⇒” to denote weak convergence of a sequence of random functions.

C.1. Estimators under Point Identification. To avoid notational complications,

we assume that both FW and H are continuous and strictly increasing. We derive our

results under the following high-level conditions.

Assumption 1. (i) Let GH
Y (y) =

∫

FY |X(y,H
−1(FW (w)), z)dFX(w, z), where we write

FY |X(y, w, z) =
√
n(F̂Y |X(y, w, z) − FY |X(y, w, z)), and define the processes FX(w, z) =

√
n(F̂X(w, z)− FX(w, z)), FW (w) =

√
n(F̂W (w)− FW (w)), and Q∗

W (τ) =
√
n(Ĥ−1(τ)−

H−1(τ)). Then

(GH
Y ,FX ,FW ,Q∗

W ) ⇒ (GH
Y ,FX ,FW ,

√
λQ∗

W )

in the space ℓ∞(Y)×ℓ∞(X )×ℓ∞(W)×ℓ∞([0, 1]), where the right hand side is a mean zero

Gaussian process. (ii) The function class {(w, z) 7→ FY |X(y,H
−1(FW (w)), z), y ∈ R} is

FX-Donsker. (iii) The partial derivative ∂wFY |X(y, w, z) exists for all (y, w, x) ∈ Y×W×
X and is uniformly bounded. (iv) sup(y,w,x) |∂wF̂Y |X(y, w, z)− ∂wFY |X(y, w, z)| = op(1).

The first part of Assumption 1 can e.g. be verified using results in Chernozhukov et al.

(2009a), who establish convergence in distribution of F̂Y |X to a Gaussian process for a

variety of different CDF estimators involving certain parametric restrictions. The condi-

tion then follows directly from the continuous mapping theorem, and the fact that the

2nd–4th component of the process are just empirical CDFs and quantile functions in our

case. Assumption 1(i) can also be verified by direct arguments if F̂Y |X is a nonparametric
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estimator converging at a rate slower than n−1/2 to a limit process which is not tight.

For example, Rothe (2010) proves such a condition for a kernel-based estimator of the

conditional CDF, using the theory of U-processes. We conjecture that the assumption

could also be verified for other nonparametric estimators, such as e.g. those based on

sieves or orthogonal series. Assumption 1(ii) is a weak regularity condition fulfilled by

various classes of functions (e.g. Van der Vaart, 2000, Chapter 19). Finally, Assump-

tion 1(iii)-(iv) are weak smoothness conditions on the estimated CDF and its population

counterpart.

Theorem 6. Suppose that Assumption 2 holds. Then the process FH
Y =

√
n(F̂H

Y − FH
Y )

converges weakly to the following mean zero Gaussian process:

FH
Y ⇒ FH

Y,A + FH
Y,B + FH

Y,C =: FH
Y

where

FH
Y,A(y) =

∫

FY |X(y,H
−1(FW (w)), z)dFX(w, z),

FH
Y,B(y) =

∫

FY |X(y,H
−1(FW (w)), z)dFX(w, z),

FH
Y,C(y) =

∫

∂wFY |X(y,H
−1(FW (u)), z)

×
(

∂τH
−1(FW (u))FW (u) +

√
λQ∗

W (FW (u))
)

dFX(u, z),

and the convergence is in ℓ∞(Y).

Corollary 1. Suppose that the conditions of Theorem 6 hold, and that the functional

ν : F → G is Hadamard differentiable at FH
Y with derivative ν ′. Then

√
n(α̂W (ν)− αW (ν))

d→ ν ′(FH
Y − FY ),

where the right-hand side is a Normal distribution with mean zero.

C.2. Bounds on Linear Functionals. In this subsection, we assume that both W

and W ∗ are discretely distributed, ruling out the mixed discrete-continuous case to avoid

notational complications. We make the following assumptions.
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Assumption 2. (i) Using the notation introduced in Assumption 1, and defining GH
Y,s =

∫

FY |X(y, S
s
ν(w, z), z)dFX(w, z) for s ∈ {U, L}, have that

(GH
Y,U ,G

H
Y,L,FX) ⇒ (GH

Y,U ,G
H
Y,L,FX)

in the space ℓ∞(Y) × ℓ∞(Y) × ℓ∞(X ), and the right hand side is given by a mean zero

Gaussian process. (ii) The function class {(w, z) 7→ FY |X(y, S
s
ν(w, z), z), y ∈ R, s ∈

{U, L}} is FX-Donsker. (iii) Pr(Ŝ
s
ν(W,Z) = Ss

ν(W,Z)) → 1 as n → ∞ for s ∈ {U, L}.

Assumption 2 (i)–(ii) is similar to Assumption 1 (i)–(ii) but otherwise analogous, and

hence the same comments apply. Assumption 2 (iii) naturally holds in our setting, since

W ∗ is discrete and the rank allocator variables are estimated consistently. To see this,

note that for the empirical quantile function of a discrete random variable it holds that

Pr(Q̂∗
W (τ) = Q∗

W (τ)) → 1 as n → ∞ for all τ except those in a set of measure zero.

Theorem 7. Suppose that Assumption 2 holds, and that ν is linear. Then the terms

Ns =
√
n(α̂s

W (ν) − αs
W (ν)), s ∈ {U, L}, jointly converge in distribution to a Normal

distribution with mean zero:

√
n(NL,NU)

d→ (ν(FL), ν(FU))

where Fs = Fs
A + Fs

B, s ∈ {U, L} is a mean zero Gaussian process with

Fs
A(y) =

∫

FY |X(y, S
s
ν(w, z), z)dFX(w, z),

Fs
B(y) =

∫

FY |X(y, S
s
ν(w, z), z)dFX(w, z),

and the convergence is in ℓ∞(Y).

C.3. Bounds on Smooth Functionals. To obtain asymptotic properties for the

estimated boundaries of the identified set based on the result in Theorem 3, we maintain

the assumption that W and W ∗ are discretely distributed. We also maintain the first

part of Assumption 2, modifying the remainder as follows.

Assumption 3. (i) Using the notation introduced in Assumption 1, and defining GH
Y,s =

∫

FY |X(y, S
s
y(w, z), z)dFX(w, z) for s ∈ {U, L}, have that

(GH
Y,U ,G

H
Y,L,FX) ⇒ (GH

Y,U ,G
H
Y,L,FX)
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in the space ℓ∞(Y) × ℓ∞(Y) × ℓ∞(X ), and the right hand side is given by a mean zero

Gaussian process. (ii) The function class {(w, z) 7→ FY |X(y, S
s
y(w, z), z), y ∈ R, s ∈

{U, L}} is FX-Donsker. (iii) Pr(Ŝs
y(W,Z) = Ss

y(W,Z) for all y ∈ Y) → 1 as n → ∞ for

s ∈ {U, L}.

Assumption 3 only constitutes a minor modification of Assumption 2, adjusting for

the fact that the rank allocator variable used to construct the upper and lower bounding

functions varies with the point of evaluation.

Theorem 8. Suppose that Assumption 3 holds. Then the processes Gs =
√
n(Ĝs − Gs)

converge weakly to mean zero Gaussian processes, jointly over s ∈ {U, L}:

Gs ⇒ Gs
A +Gs

B =: Gs, s ∈ {U, L}

where

Gs
A(y) =

∫

FY |X(y, S
s
y(w, z), z)dFX(w, z)

Gs
B(y) =

∫

FY |X(y, S
s
y(w, z), z)dFX(w, z)

and the convergence is in ℓ∞(Y).

To use this result to derive asymptotic properties of the estimated boundaries of the

identified set, we introduce the following assumption concerning the smoothness of the

population parameter of interest with respect to the underlying distribution.

Assumption 4. (i) The functional the functional ν : F → R is Hadamard differentiable

at FH
Y with derivative ν ′. (ii) Let a∗C = a∗C(µ̄, G

U , GL) and a∗D = a∗D(µ̄, G
U , GL) be

threshold values yielding a compressed or dispersed distribution relative to GU and GL

with mean µ̄, respectively. That is,

∫

ydFC(y|a∗C, GU , GL) = µ̄ and

∫

ydFD(y|a∗D, GU , GL) = µ̄.

Then the map (F1, F2) 7→ T s
µ̄(F1, F2) = ν(F s(·|a∗s(µ̄, F1, F2), F1, F2)) is Hadamard differ-

entiable at (GL, GU) with derivative T s
µ̄
′(F1, F2) for s ∈ {C,D}.

Assumption 4(i) can be verified for most common distributional features of inter-

est under standard regularity condition, e.g. moments, quantiles, or the Gini coefficient
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(Rothe, 2010). Assumption 4(ii) is necessary to analyze the estimated bounds on D2-

parameters, since e.g. the mapping that transforms two CDFs into a compressed distri-

bution with a particular mean is not Hadamard differentiable due to the discontinuity at

the threshold value. A sufficient condition for Assumption 4(ii) is that Assumption 4(i)

holds, that GU and GL are continuous, and that for a compressed or dispersed dis-

tribution F the parameter ν(F ) does not depend on the value of F at the threshold

value. Using the notation that SC(y|a, f1, f2) = f1(y)I{y < a} + f2(y)I{y ≥ a} and

SD(y|a, f1, f2) = f2(y)I{y < f−1
2 (a)} + aI{f−1

2 (a) ≤ y < f−1
1 (a)} + f1(y)I{y ≥ f−1

1 (a)},
we can now state the final corollary, which follows directly Theorem 8 and the Functional

Delta Method.

Corollary 2. Suppose that Assumption 4(i) and the conditions of Theorem 8 hold. Then

the terms Ns =
√
n(α̂s

W (ν) − αs
W (ν)), s ∈ {U, L}, jointly converge in distribution to a

Normal distribution with mean zero:

i) If ν is a D1-parameter, then

√
n(NL,NU)

d→ (ν ′(GL − FY ), ν
′(GU − FY )).

ii) If ν is a quantile contrast, then

√
n(NL,NU)

d→ (ν ′(SC(·|m̄,GU ,GL)− FY ), ν
′(SD(·|γ,GU ,GL)− FY )).

iii) If ν is a D2-parameter and Assumption 4(ii) holds, then

√
n(NL,NU)

d→ (TC
µ̄

′
(GU ,GL)− ν ′(FY ), T

D
µ̄

′
(GU ,GL)− ν ′(FY )).

In each case, the right-hand side is a bivariate Normal distribution with mean zero.

C.4. Inference. Our results in the previous subsections imply that under general

conditions our objects of interest are asymptotically normal. Under point identification,

this insight can be used to construct confidence intervals for identified features in the

usual fashion. Under partial identification, our results imply that confidence regions for

the various identified sets can be formed by computing one-sided confidence regions for its

upper and lower boundaries. This can be done in the same way as in the point identified
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case. If the interest is in obtaining a confidence region for the population parameter of

interest, as opposed to the identified set, this can be accomplished by using the general

results on inference for interval-identified parameters in Imbens and Manski (2004) and

Stoye (2009).

In both cases, the major complication is that the covariance function of the limiting

Gaussian distributions can be quite complicated to compute directly. However, it fol-

lows from results in Chernozhukov et al. (2009a) or Rothe (2010) that under both point

identification and partial identification an ordinary bootstrap procedure can be used to

approximate the various limiting distributions of the previous subsection in finite samples.

This result can be shown to hold for parametric and nonparametric estimation procedures

of the conditional CDF FY |X , and thus provides a straightforward and tractable way to

conduct inference in empirical applications.

We also remark that our results in the previous subsections immediately generalize to

function-valued population parameters, allowing researchers conduct uniform inference

on the counterfactual outcome distribution under essentially the same conditions. That

is, it is not only possible to compute confidence intervals for a real-valued population

parameter, but also to compute uniform confidence regions for function valued parame-

ters, such as the CDF itself, or the corresponding quantile process. This is an important

feature of our results, as it allows applied researchers to test hypotheses that cannot be

adequately addressed by considering only a fixed number of isolated points. An example

would be an hypothesis such as “The change in the marginal distribution of W to that

of W ∗ did not affect the outcome distribution”.

D. Asymptotic Theory for Marginal Partial Policy Effect

Estimators

In this section, we describe some of the details about how to construct estimates of our

Marginal Partial Policy Effects, and how to derive their theoretical properties. We focus

on the partially identified case of a binary covariate, since under point identification

such results follow from standard arguments. In particular, when W is continuous a

nonparametric sample analogue estimator based on the identification result in Theorem 4
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would be very similar to an average derivative estimator, which can e.g. be analyzed using

results in Newey (1994). See also Firpo et al. (2009) for a similar analysis.

As one can see from Theorem 5, the identified set of the MPPE in case of a binary

covariate is restricted by the extrema of the “bound generating function” z 7→ gν(z). The

problem thus falls into the general class of models with partially identified parameters

restricted by intersection bounds. A general theory for estimation and inference in this

setting is provided by Chernozhukov et al. (2009b), henceforth abbreviated CLR. Our

paper does not contain new insights on this issue. In the following, we simply show how

to apply their main results to our context.

The basic idea of CLR is to add suitable precision-correction terms to a standard

estimate of the bound generating function gν before applying the maximum or minimum

operator. To explain this in detail, we first have to introduce some notation.6 For any

p ∈ (0, 1), we define

β̂U
W (ν; p) = max

z∈ẐU

[ĝν(z)− kps(z)] and β̂L
W (ν; p) = min

z∈ẐL

[ĝν(z) + kps(z)].

Here ĝν(x) is an estimate of the bound generating function gν(x), which can be fully

nonparametric or impose parametric restrictions, s(x) is the corresponding standard error,

the critical value kp is an estimate of the p-quantile of the maximum of the stochastic

process

Zn(z) :=

(

ĝν(z)− gν(z)

s(z)

)

,

and the sets ẐU and ẐL are both (random) subsets of the support of Z that contain the

points where the maximum and minimum is achieved with probability tending to one,

respectively. Specifically, CLR recommend to set

ẐU = {z ∈ Z : ĝν(z) ≥ max
z∈Z

ĝν(z)− 2
√

log(n) sup
z∈Z

s(z)}

ẐL = {z ∈ Z : ĝν(z) ≤ min
z∈Z

ĝν(z) + 2
√

log(n) sup
z∈Z

s(z)}.

6Note that our notation slightly differs from the one in CLR since in their paper the upper bound

of the identified set is given by the infimum of the bound generating function, whereas in our case it

is given by its supremum. One could simply transfer our notation back into theirs by considering the

negative version of the bound generating function
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The specific choices of ĝν , s and kp (and thus also those of ẐU and ẐL) depend on the

Hadamard derivative of the functional ν, and are explicitly described below for the case

of the mean and the quantile functional. Finally, define the interval B̂W (ν, p) as

B̂W (ν, p) = [β̂L
W (ν; p), β̂U

W (ν; p)].

With this notation, the estimate of the identified set of the FPPE is then given by

B̂W (ν; 1/2). In particular, using the choices described below, Theorem 1 in CLR implies

that β̂U
W (ν; 1/2) is a consistent and asymptotically median unbiased estimate of the upper

bound βU
W (ν) of the identified set, in the sense that

Pr(βU
W (ν) ≤ β̂U

W (ν; 1/2)) = 1/2 + o(1).

An analogous result applies for the lower bound. It is furthermore possible to con-

struct two-sided confidence intervals for the true parameter value as follows: Let ∆+
n =

∆nI{∆n > 0}, where ∆n = β̂U
W (ν; 1/2)− β̂L

W (ν; 1/2), and p̂n = Φ(τn∆
+
n )c, where Φ(·) is

the standard normal CDF and τn = log(n)/max[β̂U
W (ν; 3/4) − β̂U

W (ν; 1/4), β̂L
W (ν; 3/4) −

β̂L
W (ν; 1/4)]. Then B̂W (ν; p̂n) provides an asymptotic 1 − c confidence interval for the

parameter of interest, such that

inf
β∈BW (ν)

Pr(β ∈ B̂W (ν; p̂n)) ≥ 1− c+ o(1).

These confidence intervals are thus valid uniformly with respect to the location of the

true parameter value βW (ν) within the bounds. This follows from Theorem 3 in CLR.

We now illustrate the choice of ĝν and s for the case that the functional ν maps a

CDF into either its mean or one of its quantiles. Given these choices, CLR describe how

to obtain the critical value kp via simulation methods or an analytical formula. We refer

to their Appendix C for a detailed description of the practical implementation.

We start by consider the case where the functional of interest is the mean functional

µ : F 7→
∫

ydF (y). Since µ is linear, it is also Hadamard differentiable, with the derivative

being equal to µ itself. It follows that the function gµ is given by

gµ(z) = E(Y |W = 1, Z = z)− E(Y |W = 0, Z = z).
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This is simply the difference between two conditional expectations, which, depending

on the application, can estimated by a variety of parametric, semiparametric and non-

parametric methods. The calculation of standard errors is also straightforward in this

case.

We now consider the case where the functional of interest is the quantile functional

νQ,τ : F 7→ inf{y ∈ R : F (y) ≥ τ} := Q(τ), which maps a CDF into the corresponding

τ -quantile. If FY is continuously differentiable in some open neighborhood of QY (τ), and

its derivative fY is strictly positive, it follows from Lemma 21.4 in Van der Vaart (2000)

that νQ,τ is Hadamard differentiable with derivative

ν ′
Q,τ : φ 7→ −

(

φ

fY

)

◦QY .

In this case, the bound generating function gν simplifies to

gν(z) = −FY |X(QY (τ)|1, z)− FY |X(QY (τ)|0, z)
fY (QY (τ))

,

which can be estimated by substituting sample analogues for all unknown quantities:

ĝν(z) = − F̂Y |X(Q̂Y (τ)|1, z)− F̂Y |X(Q̂Y (τ)|0, z)
f̂Y (Q̂Y (τ))

.

Here Q̂Y is the empirical sample quantile function of the observed outcomes, and f̂Y is a

nonparametric kernel density estimator given by

f̂Y (y) =
1

n

n
∑

i=1

Kh(Yi − y),

where Kh(·) = K(·/h)/h, K is a standard symmetric kernel function that integrates to

one, and h = h(n) is the bandwidth chosen such that as h → 0 we have nh → ∞. Finally,

the conditional distribution function FY |X can be estimated by either of the parametric

methods discussed in Chernozhukov et al. (2009a), e.g. by first estimating a linear quantile

regression model QY |X(τ, x) = x′β(τ), and then inverting the corresponding conditional

quantile quantile function, or by a fully nonparametric CDF estimator, e.g. a kernel

estimator as in Rothe (2010).

The construction of appropriate standard errors depends on the choice of conditional

CDF estimator. When FY |X is estimated by fully nonparametric methods, its rate of

convergence is typically going to be slower than that of either Q̂Y and f̂Y , and hence the
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sampling variation in the latter two quantities can be ignored. When FY |X is estimated

by parametric methods, such as the ones described in Chernozhukov et al. (2009a), it

converges at the same
√
n-rate as the quantile function Q̂Y , which is faster than the one-

dimensional nonparametric rate of the density estimator f̂Y . From an asymptotic point

of view, it would thus be valid to compute standard errors that only account for the

sampling variation in f̂Y . In practice, it can still be advisable to include “higher-order”

components into the standard errors, which account for the uncertainty in Q̂Y and FY |X .

Those can be obtained via the usual Delta method, and shown to satisfy the conditions

in CLR.

E. Empirical Illustration

In this section, we illustrate the application of our methodology, in particular the estima-

tion of FPPEs, by analysing changes in the distribution of male wages in United States

from 1985 to 2005. There is now extensive evidence that wage inequality has been rising

over this period particularly in top end of the wage distribution, but slightly decreased in

the bottom end (e.g. Autor et al., 2006; Lemieux, 2008). Figure 1 illustrates this trend,

showing that the change in (log real) wages at each quantile of the wage distribution

follows a U-shape. Various explanations have been put forward for this so-called polar-

ization of the labor market, including reduced returns to skilled but “routine” occupations

due to the introduction of new information technology (e.g. Autor et al., 2006; Goos and

Manning, 2007), and simple mechanical effects due to changes in the composition of the

labor force (e.g. Lemieux, 2006, 2008).

In this application, we consider the workforce composition effect as a partial explana-

tion of the polarization of the labor market in greater detail. During the period covered

by the data, unionization among US male workers fell from 27% to 15%. On average,

the workforce also became older and better educated. Our aim is to quantify to what

extend these changes contributed to the overall change of the wage distribution, both

individually and as a whole.

Our analysis employs the same dataset as in Firpo et al. (2010)7, extracted from

7I would like to thank Nicole Fortin for making the data from Firpo et al. (2010) available.
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Figure 1: Differences between τ -quantiles of the distribution of US males’ log real wages in the

1985 and 2005 for τ ∈ (.05, .95).

the the 1983—1985 and 2003–2005 Outgoing Rotation Group (ORG) supplements of the

Current Population Survey (CPS). It contains information on 232,784 and 170,693 males,

respectively, that were employed in the relevant periods. The data from 1983—1985 play

the role of (Y,X), whereas data from 2003–2005 will be used to estimate the directionH of

the counterfactual change. The outcome variable Y is the natural logarithm of the hourly

wage in 1985 dollars. The covariates X include a dummy for union coverage, years of

education, years of potential labor market experience, and dummies for race and marital

status, and part-time status. Following common practice, we weigh the observations by
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Table 1: Descriptive Statistics

1985 2005

Mean Std. Dev. Mean Std. Dev.

Log Wage 1.785 0.524 1.849 0.583

Education 12.871 2.906 13.420 2.787

Experience 17.199 12.308 19.473 11.486

Married 0.670 0.470 0.620 0.486

Nonwhite 0.113 0.318 0.130 0.336

Union Covered 0.268 0.443 0.153 0.361

Part Time 0.089 0.286 0.093 0.290

Note: Observations are weighted by the product of CPS sample weights and the number of hours worked.

the product of the CPS sampling weights and the hours worked to obtain a representative

sample of the total hours worked in the economy. Some descriptive statistics are provided

in Table 1.

Estimation is carried out using the procedures described in Section 4.1 of the paper.

We estimate the conditional CDF of Y given X by a flexible parametric approach due to

Foresi and Peracchi (1995), modeling the conditional probability of the event (Y ≤ y) sep-

arately for each y ∈ R via a logistic regression. That is, we set FY |X(y, x) = Λ(t(x)′β(y)),

where Λ is the Logistic distribution function, t(·) is a known transformation used to

generate quadratic, cubic, or interaction terms, and β(y) is a finite dimensional param-

eter indexed by y ∈ R, that can be estimated by maximum likelihood. This estimator

is straightforward to implement and numerically stable. In addition to the covariates

mentioned above, we use quadratic terms in education and experience and a full set of

interaction terms to estimate FY |X (37 parameters in total). We estimate the (identi-

fied set of the) fixed partial distributional policy effect αW (ν) for various functionals ν,

with the role of W and W ∗ being taken by eduction, experience and union coverage,

respectively. Results for other covariates are omitted for brevity. We treat the former

two quantities as continuously distributed, and derive bounds only for the effect of union

coverage. We also estimate the effect of a change in the entire distribution of the ex-

planatory variables (from that in 1983–1985 to that in 2003–2005) using the method in
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Figure 2: Relative change in τ -quantile of US male wages from 1985–2005 for τ ∈ (.1, .9): full

distributional policy effect calculated using the method in Chernozhukov et al. (2009a) (bold

line); FPPE of changes in education (dashed line); FPPE of changes in experience (dotted line);

identified set of FPPE of change in unionization (shaded area).

Chernozhukov et al. (2009a). Results are given in Figure 2– 3 and Table 2– 3. Due to the

large size of the data set, those estimates have virtually no relevant sampling variation.

We thus omit standard errors, t-statistics and the like.

Figure 2 shows estimates of the full distributional policy effect (as defined in Rothe,

2010) and of the FPPE for various quantiles of the (log real) wage distribution. The

full effect can be seen to have contributed to the increase in wage inequality. It has
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Table 2: Decomposition Results: Location Measures

Mean Q10 Q25 Q50 Q75 Q90

Total Change 0.064 0.058 -0.002 0.008 0.085 0.191

Full Policy Effect 0.058 0.013 0.026 0.061 0.077 0.100

Partial Policy Effect:

Education -0.015 -0.021 -0.019 -0.022 -0.019 -0.030

Experience 0.026 0.011 0.015 0.021 0.024 0.040

Union Coverage

Upper bound -0.001 -0.009 -0.016 -0.024 0.000 0.027

Lower bound -0.035 -0.038 -0.074 -0.063 -0.026 -0.005

Note: Sampling variation of estimates is negligible due to large sample size.

positive impact on each quantile, with the magnitude of the effect gradually increasing

with the quantile under consideration. Accordingly, Table 3 shows that the full distri-

butional policy effect accounts for about two thirds of the increase in the “90-10 gap”

(the difference between the 90% and the 10% quantile). However, it does not explain the

U-shaped pattern in Figure 1, which must thus be driven by changes in the structural

wage functions.

We now consider the FPPEs of individual covariates. From Figure 2, we see that

changes in education alone would have both led to a left shift and a compression of

the (real log) wage distribution. Accordingly, Table 2–3 show a decrease in both mean

log wages and overall wage inequality being associated with education. However, the

magnitude of these effects is reasonably small. For example, education effects can explain

only about 4% of the observed reduction in the “10–50 gap”. The effect of changes in the

distribution of potential labor market experience on the quantiles of the wage distribution

turns out to be roughly the opposite of that of education, and is thus rather small in

magnitude as well.

Since union coverage is measured by a binary indicator, the corresponding FPPE is

not point identified. The estimated identified sets turn out to be wide, thus making a

precise quantification of the role of the decline in unionization difficult. For example,

Table 3 shows that deunionization could have contributed anything between 0.004 to
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Table 3: Decomposition Results: Inequality Measures

Variance Q90-Q10 Q90-Q50 Q50-Q10 Gini

Total Change 0.065 0.133 0.183 -0.050 0.020

Full Policy Effect 0.024 0.087 0.039 0.048 0.068

Partial Policy Effect:

Education -0.005 -0.010 -0.008 -0.002 -0.017

Experience 0.008 0.030 0.019 0.011 0.029

Union Coverage

Upper bound 0.021 0.065 0.090 0.015 -0.001

Lower bound -0.004 0.004 0.019 -0.054 -0.031

Note: Sampling variation of estimates is negligible due to large sample size.

0.065 to the observed change of 0.133 in the “90-10 gap”. However, since the identified

set does not include zero, it can be concluded that deunionization contributed to the rise

in inequality, even though the precise magnitude remains unclear. Similarly, we see that

deunionization increased inequality at the top-end of the wage distribution as measured

by the “90-50 gap” (between 0.019 and 0.090 of the totally observed 0.183). Due to the

width of the identified set, its role in the evolution of low-end wage inequality remains

unclear. Our estimates suggest that deunionization alone could have shifted the “10–50”

gap by anything between −0.054 and 0.015, thus allowing for both positive and negative

influence.

As a final remark, we note that the bounds on the FPPE of unionization on the

variance and the Gini coefficient given in Table 3 have been obtained by maximizing

and minimizing the bounds given a fixed value for the mean in Theorem 3 over the

estimated identified region of µ(FH
Y ). These estimated bounds are thus conservative. For

the purpose of illustration, Figure 3 shows an estimate of the joint identification region

of αW (Var) and αW (µ). The identified set has the shape of two intersecting parabolas.

The distance between the upper and lower bound on the variance effect decreases when

moving away from the center of the identified set of αW (µ), and vanishes at the boundary.
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Figure 3: Joint identification region for αW (Var) and αW (µ) in case of union coverage.
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Rüschendorf, L. (2009): “On the distributional transform, Sklar’s theorem, and the

empirical copula process,” Journal of Statistical Planning and Inference, 139, 3921–

3927.
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