Understanding BER's "Understanding Booms and Busts in Housing Market"

Franck Portier
Toulouse School of Economics

Rome Conference
"The Future of Monetary Policy",

September 2010

• Hard to generate observed protracted booms and busts in house prices.

- Hard to generate observed protracted booms and busts in house prices.
- Assume that the proportion of "optimistic agents" in the economy moves up and down in a protracted way \leadsto protracted boom-bust dynamics.

- Hard to generate observed protracted booms and busts in house prices.
- Assume that the proportion of "optimistic agents" in the economy moves up and down in a protracted way \leadsto protracted boom-bust dynamics.
- This is done in a very innovative and clean way by mixing some social interactions that endogenize believes with matching model of the housing market

- Hard to generate observed protracted booms and busts in house prices.
- Assume that the proportion of "optimistic agents" in the economy moves up and down in a protracted way \leadsto protracted boom-bust dynamics.
- This is done in a very innovative and clean way by mixing some social interactions that endogenize believes with matching model of the housing market

I have a set of comments.

A House price is an asset price:

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t, t+j)}.$$

A House price is an asset price:

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t, t+j)}.$$

 S_t : value of house services ("fundamentals"),

A House price is an asset price:

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t, t+j)}.$$

 S_t : value of house services ("fundamentals"),

R(t, t+j): discount factor between t and t+j,

A House price is an asset price:

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t, t+j)}.$$

 S_t : value of house services ("fundamentals"),

R(t, t+j): discount factor between t and t+j,

 Ω_t : information set of period t.

A House price is an asset price:

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t, t+j)}.$$

 S_t : value of house services ("fundamentals"),

R(t, t+j): discount factor between t and t+j,

 Ω_t : information set of period t.

• Those three objects fluctuate to explain fluctuations in P_t .

A House price is an asset price:

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t, t+j)}.$$

 S_t : value of house services ("fundamentals"),

R(t, t+j): discount factor between t and t+j,

 Ω_t : information set of period t.

- Those three objects fluctuate to explain fluctuations in P_t .
- BER explain boom-bust fluctuations in P_t without changes in S nor R.

2.1. Fluctuations in
$$S_t$$

2.1. Fluctuations in
$$S_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

2.1. Fluctuations in
$$S_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

• Obviously, if one assumes (say) predictable protracted fluctuations for S_t , we'll have protracted boom-bust cycles for P_t .

2.1. Fluctuations in
$$S_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- Obviously, if one assumes (say) predictable protracted fluctuations for S_t , we'll have protracted boom-bust cycles for P_t .
- BER: "for many episodes it is difficult to find observable fundamentals that are correlated with home price movements."

2.1. Fluctuations in
$$S_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- Obviously, if one assumes (say) predictable protracted fluctuations for S_t , we'll have protracted boom-bust cycles for P_t .
- BER: "for many episodes it is difficult to find observable fundamentals that are correlated with home price movements."
- •: Well, S_t is (really) not an exogenous object (contrarily to a firm dividend), so that it is unlikely to find any observable (of the type of a TFP-like non embodied increase in houses "comfort").

2.1. Fluctuations in
$$S_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- Obviously, if one assumes (say) predictable protracted fluctuations for S_t , we'll have protracted boom-bust cycles for P_t .
- BER: "for many episodes it is difficult to find observable fundamentals that are correlated with home price movements."
- •: Well, S_t is (really) not an exogenous object (contrarily to a firm dividend), so that it is unlikely to find any observable (of the type of a TFP-like non embodied increase in houses "comfort").
- What about other shocks that impact S_t ?

• Think of model in which

$$U=U(c_t,s_t),$$

and budget constraint is

$$c_t + w_t s_t = y_t$$

Think of model in which

$$U = U(c_t, s_t),$$

and budget constraint is

$$c_t + w_t s_t = y_t$$

 c_t : consumption, s_t : house services, w_t : price of house services, y_t : income;

Think of model in which

$$U = U(c_t, s_t),$$

and budget constraint is

$$c_t + w_t s_t = y_t$$

 c_t : consumption, s_t : house services, w_t : price of house services, y_t : income;

•: Solve for optimal behavior:

$$S(w_t, Y_t) = \frac{U_s'}{U_c'} s_t^{\star}$$

Think of model in which

$$U = U(c_t, s_t),$$

and budget constraint is

$$c_t + w_t s_t = y_t$$

 c_t : consumption, s_t : house services, w_t : price of house services, y_t : income;

Solve for optimal behavior:

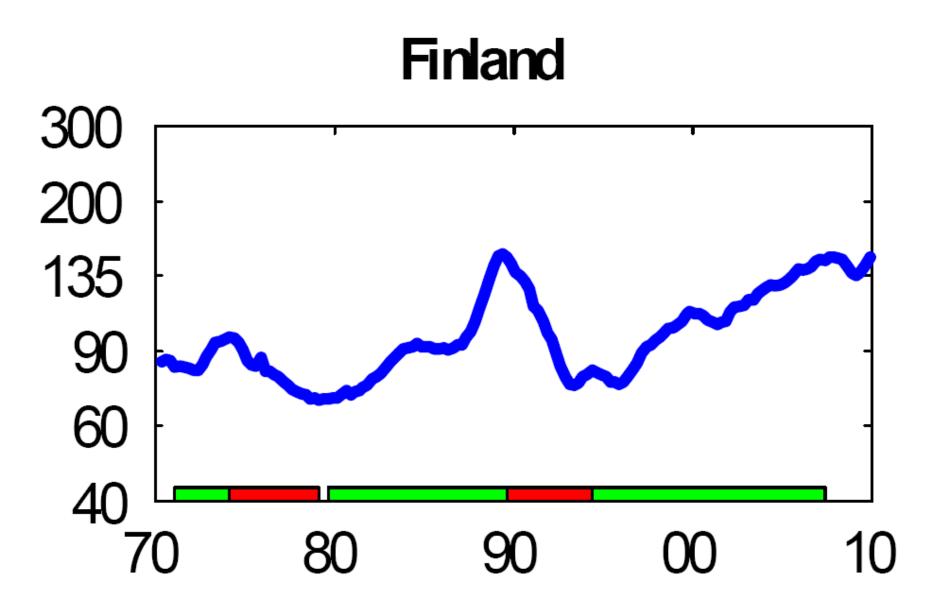
$$S(w_t, Y_t) = \frac{U_s'}{U_c'} s_t^{\star}$$

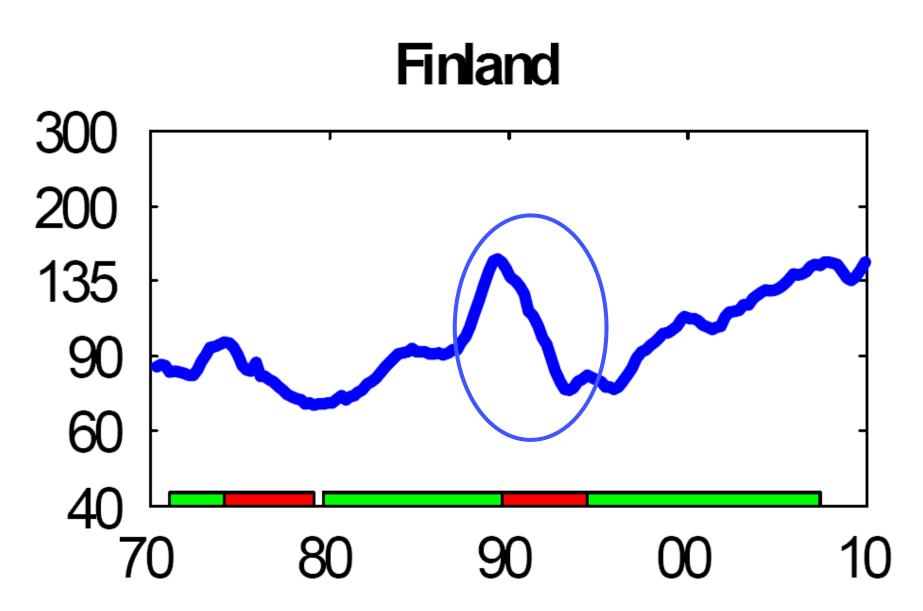
•: Therefore

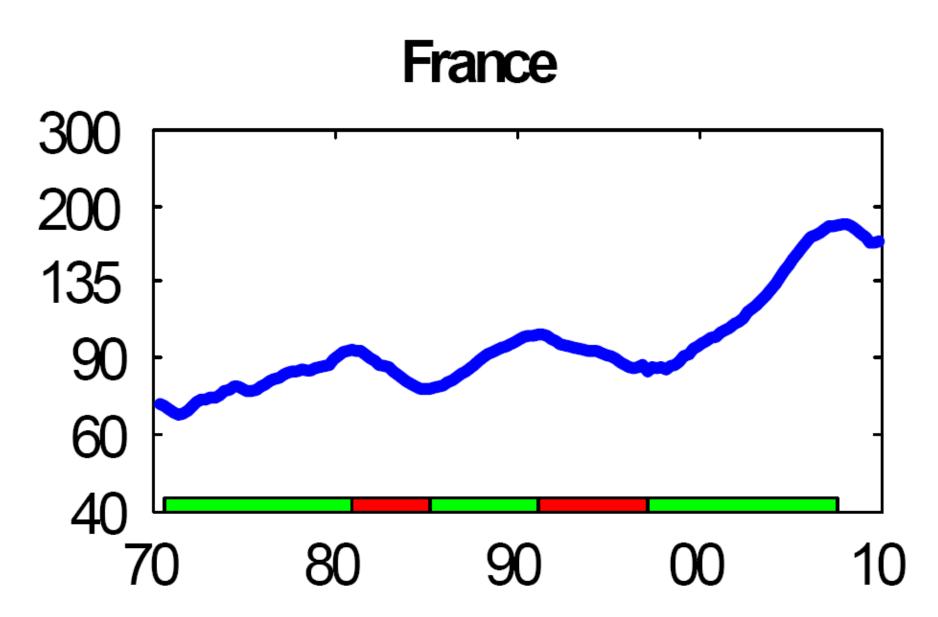
$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S(w_{t+j}, Y_{t+j})}{R(t, t+j)},$$

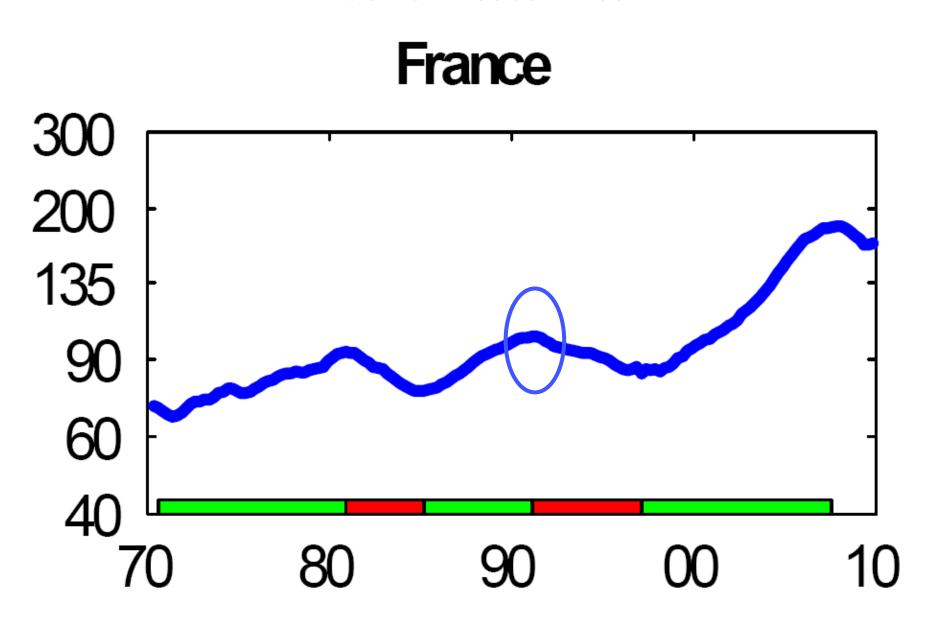
any protracted fluctuation in Y will create protracted fluctuations in P.

•: Let's take two real examples:









2.2. Fluctuations in
$$R_t$$

2.2. Fluctuations in
$$R_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

2.2. Fluctuations in
$$R_t$$

2.2. Fluctuations in
$$R_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

How much can be explained by fluctuations in the interest rate?

2.2. Fluctuations in
$$R_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- How much can be explained by fluctuations in the interest rate?
- Different asset prices are pretty much correlated (Stocks, Houses, Art).

2.2. Fluctuations in
$$R_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- How much can be explained by fluctuations in the interest rate?
- Different asset prices are pretty much correlated (Stocks, Houses, Art).
- This could indicate that it is a non negligible source of fluctuations in P.

2.2. Fluctuations in
$$R_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- How much can be explained by fluctuations in the interest rate?
- Different asset prices are pretty much correlated (Stocks, Houses, Art).
- This could indicate that it is a non negligible source of fluctuations in P.
- •: Harder to explain protracted booms and busts in P_t .

2.3. Fluctuations in
$$\Omega_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

2.3. Fluctuations in
$$\Omega_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

• Last piece of explanation is in "fluctuations of expectations"

2.3. Fluctuations in
$$\Omega_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- Last piece of explanation is in "fluctuations of expectations"
- Finding observable is clearly an issue.

2.3. Fluctuations in
$$\Omega_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- Last piece of explanation is in "fluctuations of expectations"
- Finding observable is clearly an issue.
- Shocks could be news, learning, revisions, surprises, etc...

2.3. Fluctuations in
$$\Omega_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- Last piece of explanation is in "fluctuations of expectations"
- Finding observable is clearly an issue.
- Shocks could be news, learning, revisions, surprises, etc...
- It is hard to generate protracted movements in P with rational expectations (surprises/revisions/news are not serially correlated)

2.3. Fluctuations in
$$\Omega_t$$

$$P_t = E_{\Omega_t} \sum_{j=0}^{\infty} \frac{S_{t+j}}{R(t,t+j)}.$$

- Last piece of explanation is in "fluctuations of expectations"
- Finding observable is clearly an issue.
- Shocks could be news, learning, revisions, surprises, etc...
- It is hard to generate protracted movements in P with rational expectations (surprises/revisions/news are not serially correlated)
- BER has chosen another route: agents have different priors, do not learn but "convince" each others

2.4. Bottom Line

2.4. Bottom Line

ullet It would be nice to know how much is left to be explained by "changes in expectations" once changes in R and S are accounted for.

2.4. Bottom Line

- ullet It would be nice to know how much is left to be explained by "changes in expectations" once changes in R and S are accounted for.
- Not an obvious question as those different explanations need not to be orthogonal.

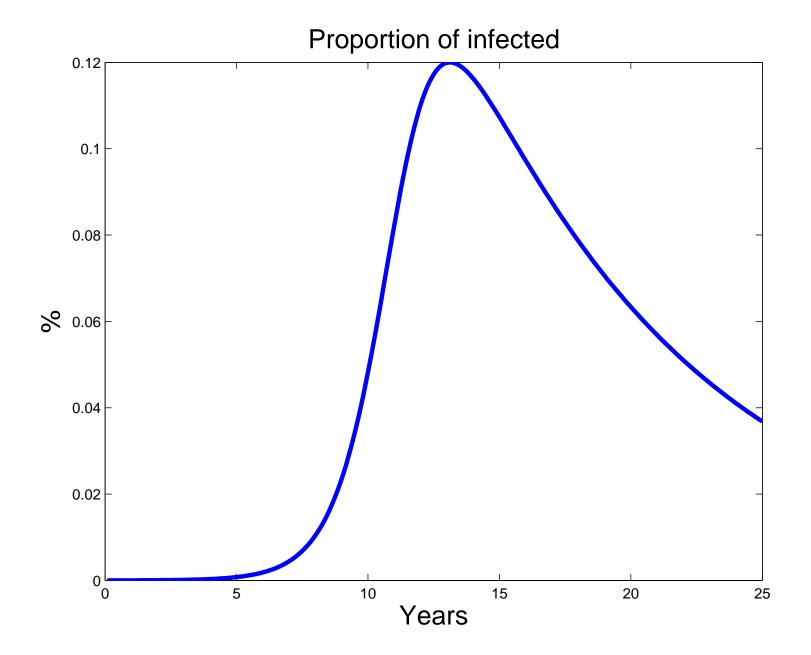
3. Boom-Bust cycles or Bust-Booms?

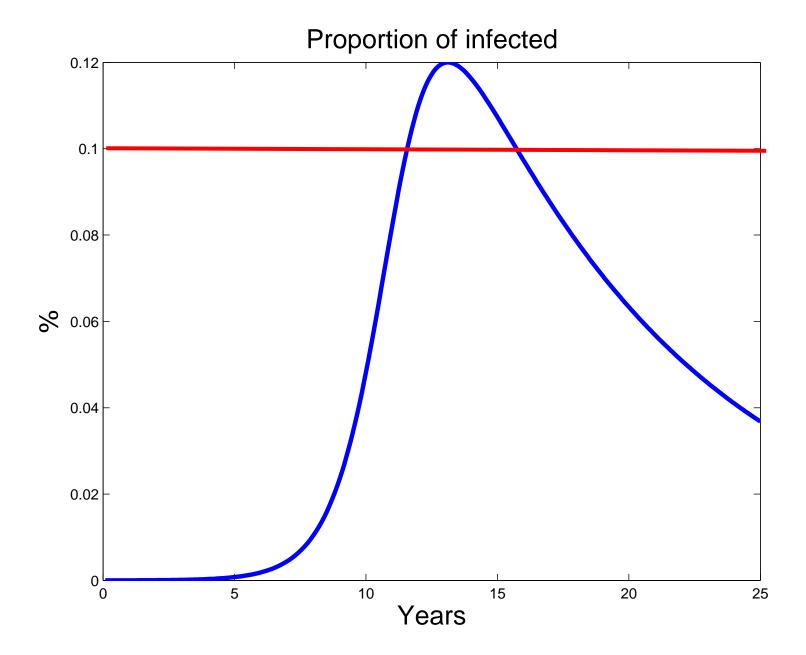
3. Boom-Bust cycles or Bust-Booms?

• The model assumes that infected are more optimistic than the others.

3. Boom-Bust cycles or Bust-Booms?

- The model assumes that infected are more optimistic than the others.
- As their proportion goes up and dow, prices go up and down



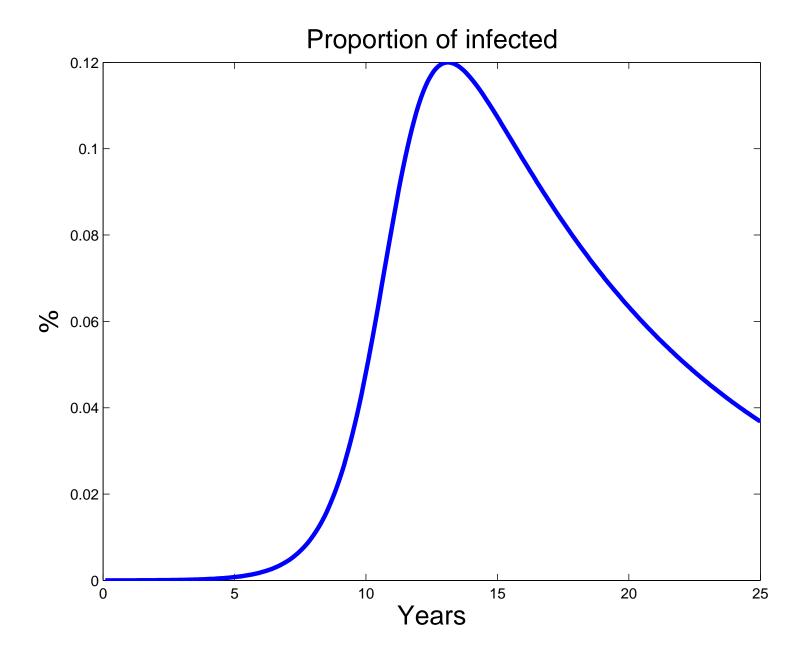


A Boom-Bust Cycle



• Assume now that infected are less optimistic than the others.

- Assume now that infected are less optimistic than the others.
- As their proportion goes up and dow, prices go down and up.



A Bust-Boomt Cycle

4.1 Make social interactions and trade meetings interrelated

4.2. Aggregation

• The housing price index is an aggregate object.

- The housing price index is an aggregate object.
- It is smooth mainly by aggregation

- The housing price index is an aggregate object.
- It is smooth mainly by aggregation
- It is not such a big problem if the model is delivering jumpy price path (after the shock is realized), as it can be smoothed by aggregation.

- The housing price index is an aggregate object.
- It is smooth mainly by aggregation
- It is not such a big problem if the model is delivering jumpy price path (after the shock is realized), as it can be smoothed by aggregation.
- One might think that fluctuations are partially granular.

- The housing price index is an aggregate object.
- It is smooth mainly by aggregation
- It is not such a big problem if the model is delivering jumpy price path (after the shock is realized), as it can be smoothed by aggregation.
- One might think that fluctuations are partially granular.
- The 1990 (?) Los Angeles riots are likely to have caused a decrease of housing prices in LA (in California?).

- The housing price index is an aggregate object.
- It is smooth mainly by aggregation
- It is not such a big problem if the model is delivering jumpy price path (after the shock is realized), as it can be smoothed by aggregation.
- One might think that fluctuations are partially granular.
- The 1990 (?) Los Angeles riots are likely to have caused a decrease of housing prices in LA (in California?).
- Such a local shock might not be washed out by aggregation

- The housing price index is an aggregate object.
- It is smooth mainly by aggregation
- It is not such a big problem if the model is delivering jumpy price path (after the shock is realized), as it can be smoothed by aggregation.
- One might think that fluctuations are partially granular.
- The 1990 (?) Los Angeles riots are likely to have caused a decrease of housing prices in LA (in California?).
- Such a local shock might not be washed out by aggregation
- It would be nice to make a variance decomposition of housing price into a local and a national component.