Discussion of: "Monetary policy and herd behavior in new-tech investment"

Olivier Loisel Aude Pommeret Franck Portier

Christian Hellwig Toulouse School of Economics

Environment

- t = 0,1,...
- State of nature: {H,L}, determined at t=0, fixed throughout, with Pr{H} = p.
- World ends each period w.p. 1- β , at which time state is fully revealed.
- Each period, one investor makes investment decision, two options
- Old tech: invest κ, return A when world ends (no uncertainty)
- New tech: invest $\kappa + \Delta(\kappa)$, return $A + \Delta(A)$ in state H, A in state L,
- Each investor receives signal x: $Pr(x=s) = \lambda > \frac{1}{2}$.

Assumptions:

- No discounting between periods, all returns realized when world ends.
- In good state, new technology is optimal:

 $\Delta(\kappa) \leq \Delta(A).$

• Return always suffices to pay for initial investment: $A > \kappa + \Delta(\kappa).$

Allocation: maps signal histories x^t to current investment action a(x^t).

Social planning problem

• Consider Utilitarian Social Planner:

$$v(p) = \max_{\{a(x^t)\}} \sum_{t=0,x^t}^{\infty} \beta^t \Pr(x^t) a(x^t) (\Pr(H \mid x^t) \Delta(A) - \Delta(\kappa))$$

- Suppose first that signals commonly observable
- Recursive solution:

v(p) = $\max_{\{a(x_H), a(x_L)\}} \Pr(x_H) \{a(x_H)(\Pr(H \mid x_H)\Delta(A) - \Delta(\kappa)) + \beta v(p'(x_H, p))\}$ + $\Pr(x_L) \{(a(x_L)(\Pr(H \mid x_L)\Delta(A) - \Delta(\kappa)) + \beta v(p'(x_L, p)))\}$

Social planning problem

- **Solution** to planning problem:
 - exogenous learning through x^t
 - optimal decisions are 'myopic' (i.e. only consider current period payoffs).
 - Invest if and only if $Pr(H|x) > p^*$.
- **Decentralization:** contingent payment contracts
 - Uncontingent loan for investment plus
 - Option to bet on aggregate state
- Notice: consistent with incentive compatibility, even if signals are privately observed!
 - Implies contracting restrictions important for herding behavior.

Planning problem with 'herding restriction':

- Suppose next that planner can only learn from actions:
 - $a(x_H) = a(x_L) = 0 \text{ or } a(x_H) = a(x_L) = 1 \text{ implies } p'(x,p) = p$
 - Updating only if $a(x_H) = 1 = 1 a(x_L)$ or $a(x_H) = 0 = 1 a(x_L)$
- Mimicks updating rule from simple herding models.
- Same planning problem as above, but with additional restriction on updating of beliefs.
- Again, possible to solve recursively, using p as state variable
- Preliminary leg work:
 - Separation: $a(x_H) = 1 = 1 a(x_L)$ dominates $a(x_H) = 0 = 1 a(x_L)$ (always best to have high signal invest to achieve separation)
 - Pooling: if actions are pooled then choose myopically optimal.

Planning problem with 'herding restriction':

• Solution:

- Separation in middle region, as soon as belief hits $p_{\rm L}$ or $p_{\rm H},$ absorbing state.
- Experimentation:
 - Tradeoff: foregone myopic profits vs gains from additional information
- As β goes to 1, limits p_L and p_H approach 0 and 1.

Pure herding equilibrium

 Consider market environment in which investors borrow from deep-pocketed outsiders

- Same structure, but eq. thresholds much tighter
- Why?
 - Suppose initial belief near p^* , first investor just indifferent before receiving private signal \rightarrow Signal breaks tie.
 - Second investor: if signal opposes first action, belief back to initial belief Otherwise, signal reinforces first...
 - As soon as two separating investors take identical decisions, they outweigh all further private info, so herd starts.
- Social learning externality: investors don't internalize informational benefits to subsequent investors (think of problem with β=0).

How policy can correct herding externality

- Interest policy: alter tradeoff between initial investment cost and return.
- Replace κ , $\Delta(\kappa)$ with $\gamma(x^t) \kappa$, $\gamma(x^t) \Delta(\kappa)$.
- Idea: change tradeoff in such a way that indifference point p^{*} always lines up with current posterior p.
- Then, signals are pivotal.
- Remark: can use this to implement any investment plan (including optimal one).

Back to planning problem:

- Key for social learning externality, herding problem:
 - Uncontingent contracts, limit learning from actions (restriction on contract space)
- Contingent contracts improve separation
 - Glosten-Milgrom: zero-sum best on good outcomes fully reveal information through prices
- Separation of investment/debt decision from information aggregation/secondary markets:
 - Use bets in secondary markets to aggregate info
 - Separate from investment and uncontingent loan.

Comments (ctd):

- Restriction to primary loan contracts
 - One-sided screening possible if a(x)=1 (use different upsides to separate signals)
 - Not feasible if a(x)=0 is chosen (uncontingent return)
 - One-sided experimentation problem
 - Intervention to foster investment when p is low... (not a story about bubbles, but about busts)
- Similar argument, if investment activity generates additional signals to private sector (learning from outcomes)

Conclusion:

- Interesting herding story for investment
- 'usual' critiques of herding models apply (robustness, role of prices etc.)
- Interest rate policy as 'poor' substitute for richer contract spaces that avoids herding.
- Key for overall efficiency: separating learning about signals from actual investment decisions
- Is learning externality really a first order concern?