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Abstract. We consider GMM estimation from a random sample of incom-

plete observations. For each observation, certain components of the moment

function may be unavailable. We propose an estimator for an arbitrary set

of regular moment conditions and a general missing data pattern. The es-

timator is consistent and asymptotically efficient under an assumption that

is weaker than missing completely at random. It can be interpreted as the

optimal linear combination of GMM estimators based on subsets of the mo-

ment functions. Therefore, the computational burden and the small-sample

performance of the estimator are of the same order as those for the GMM

estimator for a complete data set. Furthermore, we propose an inverse prob-

ability weighting estimator that is consistent under an assumption weaker

than missing at random. The estimator is efficient in the class of all inverse

probability weighting estimators for a general missing data pattern. Appli-

cations to multivariate mean estimation, instrumental variable estimation,

and a dynamic panel data model demonstrate the efficiency gain with re-

spect to traditional missing data methods. We also discuss how the results

can be used to optimize data collection for measuring consumer confidence.

JEL Classification: C13, C20, C23, C30.

Key words: Missing data, GMM, efficiency.

∗I would like to thank Ramon van den Akker, Richard Blundell, Otilia Boldea, Pedro

Duarte Bom, Miguel Atanasio Carvalho, Toru Kitagawa, Andrea Krajina, Jan Magnus,

Bertrand Melenberg, Pedro Santos Raposo, and Nathanael Vellekoop for encouraging and

helpful discussions.

1



1 Introduction

Missing data affect the majority of empirical studies in economics. As a

result, there is a vast literature on how to deal with missing data. Never-

theless, an efficient method to deal with estimation in an arbitrary GMM

setting with a general missing data pattern is not available. Therefore,

inefficient methods such as complete-case analyses dominate the empirical

literature. In a survey of top journals in economics, Abrevaya and Donald

(2010) find that 38.9% of the empirical research deals with missing data. In

69.8% of these cases, a complete-case estimator is used, i.e., all incomplete

observations are discarded.

We propose an estimator that can be used in any regular GMM setting

with a random sample. The estimator can accommodate any combination of

missing data patterns. The estimator is consistent whenever the complete-

case and available-case methods are. It is asymptotically efficient under a

condition that is weaker than missing completely at random. The compu-

tational burden and small-sample performance of the estimator are close to

those of the estimator in the absence of missing data, because it does not in-

clude any nonlinear or nonparametric components other than those already

in the moment conditions. Furthermore, the estimator is easily extended to

an efficient inverse probability weighting estimator that is consistent under

an assumption that is weaker than missing at random.

In a typical cross-section regression model, a parameter β0 relates a vec-

tor of exogenous variables X to the conditional expectation of a dependent

variable y through E(y|X) = m(X,β0). The estimation of β0 is based on the

sample analog of E(g(X)(y−m(X,β))) for some function g. For a complete

observation, all the components of the moment function can be computed.

Whenever yi or at least one of the components of Xi is missing, yi−m(Xi, β)

cannot be evaluated, and none of the components of the moment function

is available for this observation. The discussions in Robins et al. (1994),

Wooldridge (2007), Chen et al. (2008), and Graham (2010) apply to this

situation, mainly focusing on issues of sample selection.

In many econometric applications, however, the missing data pattern is
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more general. In contrast to the all-or-nothing case in the previous para-

graph, efficiency gains over complete- and available-case estimators are pos-

sible, even when data are missing completely at random. As an example

of a general missing data pattern in GMM estimation, consider the instru-

mental variable model y = Xβ0 + ǫ, with the conditional mean assumption

E(ǫ|Z) = 0, where y is a dependent variable, X is a vector of explanatory

variables, and Z is a vector of instruments. Assume that the components

of X and Z are distinct and that β0 is identifiable. The estimation of β0

is based on the moment conditions E(Z(y −Xβ0)) = 0. If yi or any of the

components of Xi is missing, observation i does not contribute to any of

the sample moments. However, if (yi,Xi) is completely observed, but some

instruments are not, the observed instruments are still informative for β0.

In this case, not all the moment conditions are available, and each observa-

tion may have a different subset of the components of the moment function

available.

Another example comes from dynamic panel data models. The param-

eter of interest is the autoregressive parameter ρ in

yi,t = αi + ρyi,t−1 + ǫi,t, 2 ≤ t ≤ T.

Arellano and Bond (1991) propose an estimator that is widely used. The

estimator is based on the lack of serial correlation in the error terms, which

implies the moment conditions

E(yi,t−s∆ǫi,t) = 0, t ≥ 3, s ≥ 2.

Table 1 illustrates the relationship between missing data and the availability

of subsets of components of the moment function. In the example, T = 5 and

there are six moment conditions. If yi,1 is missing, observation i contributes

only to three sample moments. If yi,4 is missing, only one component of the

moment function can be evaluated.

For certain combinations of moment conditions and missing data pat-

terns, improvements over the complete-case and available-case methods can
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Missing components
None yi,1 yi,4 (yi,1, yi,4)

yi,1∆ǫi,3 X · X ·
yi,1∆ǫi,4 X · · ·
yi,1∆ǫi,5 X · · ·
yi,2∆ǫi,4 X X · ·
yi,2∆ǫi,5 X X · ·
yi,3∆ǫi,5 X X · ·

Table 1: Missing-data patterns for dynamic panel data estimation
using the estimator in Arellano and Bond (1991). T = 5.

be found in the literature. For multivariate regression and static panel data

regression, Robins et al. (1995) and Robins and Rotnitzky (1995) allow for

a general missing data pattern. The static panel data setting is also inves-

tigated by Chen et al. (2010). Abowd et al. (2001) allow for attrition with

selection in a dynamic panel data model.

In addition to these methods for specific settings, several inefficient but

flexible methods are available. Complete-case and available-case methods

can be applied with a few exceptions. Moreover, imputation-based meth-

ods can be applied to any situation with missing data. Formulating an

imputation model requires stronger assumptions than we make in this pa-

per. Furthermore, a flexible imputation model incorporates nonparametric

components, which can lead to poor small-sample performance. Finally,

the algorithms in Heyde and Morton (1996) and Elashoff and Ryan (2004)

might yield some efficiency improvements, but they can be computationally

burdensome and do not lead to efficient estimators.

In this paper, we propose a method that is as flexible as the complete-

case and available-case approaches and efficient in the class of all regular

semiparametric estimators under an assumption that we will motivate in

Section 2. In that section, we also discuss the notation for missing data

patterns and the relationship between missing data patterns and the avail-

ability of the components of the moment function. The main contribution

of the paper can be found in Section 3, where we introduce an estimator and
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show that it is asymptotically efficient under the assumption introduced in

Section 2. The computational and small-sample properties of the estimator

are comparable to those of the optimal estimator for a complete data set.

In Section 4 we study a model with a stronger identification assumption,

which further simplifies the implementation of the estimator and allows for

an extension to generalized empirical likelihood estimation. We show that

the asymptotic efficiency bound can be obtained by optimally combining op-

timal estimators for each missing data pattern. In Section 5 we adapt this

approach to estimation where the selection is on observables, which leads to

an efficient inverse probability weighted (IPW) estimator. This IPW estima-

tor is consistent under an assumption that is weaker than missing at random,

which in turn is weaker than missing completely at random. In Section 6,

we present some examples that demonstrate the flexibility of the estimator

and the efficiency gains of our method over standard approaches to missing

data. We consider a panel data model with attrition, the instrumental vari-

able model, and the dynamic panel data model that we mentioned in this

introduction. We also use our results to investigate a question in optimal

data collection. Appendix A contains proofs of the results in Section 3.

2 Sample moments for missing data

We introduce notation for general missing data patterns, and discuss how a

missing data pattern for X implies which subset of the components of a mo-

ment function h(X, θ) can be evaluated. We introduce an assumption about

the missing data mechanism, mi, which is a mean independence version of

missing completely at random. mi is a necessary and sufficient condition

for the complete- and available-case methods. In Section 3, we consider

estimation under mi for data with a general missing data pattern.

2.1 Missing-data patterns in GMM estimation

There are 2d ways in which the components of a random vector X ∈ R
d

can be missing, since each component is either missing or not. For a given
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model, the number of possible patterns is Jx, which can be smaller than 2d

when some patterns are ruled out by design. We use a diagonal selection

matrix Sx ∈ R
d×d to describe a missing data pattern. Such a matrix has kth

diagonal entry equal to 1 if and only if the kth component of X is observed,

that is:

(Sx)k1,k2 =







1 if k1 = k2 and component k1 of X is observed for pattern j,

0 otherwise.

The Jx diagonal selection matrices Sx
j , j = 1, . . . , Jx, describe the missing

data patterns. The missing data indicator Rx ∈ R
d×d is a random matrix

that captures which components of X are missing and takes values Sx
j , 1 ≤

j ≤ Jx.

In GMM estimation, a parameter of interest θ0 ∈ Θ ⊂ R
p is defined

through the moment conditions E(h(X, θ0)) = 0, with moment function

h : Rd × Θ → R
q. If an observation is incomplete, only a subset of the

components of the moment function is observable. A missing data pattern

represented by Sx implies a missing-moment pattern, which we describe by a

diagonal selection matrix S ∈ R
q×q. As such, S describes a missing-moment

pattern for h in the same way that Sx describes a missing data pattern for

X. The number of missing data patterns is greater than or equal to the

number of missing-moment patterns J , because different values for Rx can

imply the same value for R. The missing-moment indicator R takes values

Sj , 1 ≤ j ≤ J. Let pj = P(R = Sj) be the probability that missing-moment

pattern j occurs.

Assumption (full-rank). The probability of observing pattern j is posi-

tive, pj > 0, for each 1 ≤ j ≤ J and rk
(

∑J
j=1 Sj

)

= q.

The restriction of positive probability is not restrictive, since we can

eliminate patterns that occur with zero probability. The second restriction

ensures that each component of the moment function is observed with pos-

itive probability.
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2.2 Missing completely at random

Typically, three assumptions about the missing data mechanism are dis-

tinguished: missing completely at random (MCAR), missing at random

(MAR), and not missing at random (NMAR). For a detailed discussion

of these concepts, see Little and Rubin (2002, Chapter 1). MCAR is the

most restrictive assumption. Let ⊥ denote statistical independence.

Assumption (mcar). X ⊥ Rx.

Assumption (iid1). (Rx
i , R

x
iXi, 1 ≤ i ≤ n) is a random sample of size n

from (R,RX).

Assumption mcar requires that whether or not a random variable is ob-

served is independent of the realization. For a moment function h, mcar im-

plies that h(X, θ) ⊥ R for each θ ∈ Θ because h(X, θ) depends on X and not

on Rx, while R is determined by Rx. This implies the following MCAR-like

mean independence condition:

Assumption (mi). E (h(X, θ0) |R) = E (h(X, θ0)) .

This assumption requires the moment conditions to hold regardless of the

missing data pattern. To demonstrate the difference between mcar and mi,

consider the univariate linear regression model, yi = βxi+ ǫi, E(ǫi|Xi) = 0.

In Figure 1, we present the regression line and some simulated data. A

cross represents an observation that is missing, ri = 0, and a dot repre-

sents an observation that is complete, ri = 1. The sample can be split

in two groups: those with low xi and those with high xi. In terms of

deviation from the regression line, the data are arbitrarily missing in the

sense that the estimator that uses the missing data has the same expecta-

tion as the estimator that uses the complete data. However, the situation

in Figure 1 does not satisfy mcar: an observation in the low group has

a positive probability of being missing, while an observation in the high

group is always complete, so P(r = 1 |X low) 6= P(r = 1 |X high). The

data are mi, since E(xiǫi| r = 1) = E(xiǫi| r = 0) = 0. If we strength-

ened mi to include independence of the variance, or mean independence
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xi

yi

Figure 1: mi, not mcar. Simulated data for a univariate regression
model. A cross represents a missing observation; a dot represents a
complete observation.

at values of the parameter other than the true value of β, mi would not

be satisfied in this example: var(xiǫi|ri = 1) > var(xiǫi|ri = 0), and

E(xi(yi − (β + 1)xi|ri)) = E(xiǫi|ri)− E(x2i |ri) = −E(x2i |ri) 6= E(x2i ).

The complete-case approach and the available-case approach are two

popular ways to deal with missing data. Both methods are consistent under

mi. The complete-case estimator is common in empirical work and is the

default approach for most statistical packages. A complete-case estimator

uses only complete observations. Let S1 = Iq, so that all components of h

can be evaluated for observations with missing data pattern 1. Then, the

complete-case sample moment for E(h(X, θ)) is

hcc,n(θ) =
1

n1

∑

i∈G1

Rih(Xi, θ),

where Gj is the subsample for which Ri = Sj and nj is the number of

observations in subsample Gj , 1 ≤ j ≤ J . A complete-case GMM estimator

is based on the complete-case sample analog.

The available-case approach uses all the available data. For each com-
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ponent of the moment function it uses all the observations for which that

component is observed. The available-case sample moment is

hac,n(θ) =
1

n
ˆ̄R−1

n
∑

i=1

Rih(Xi, θ),

where ˆ̄R =
∑J

j=1(nj/n)Sj is used for normalization.

In Section 3 we consider GMM estimation under mi, and we find an

estimator that is asymptotically efficient under mi. In Section 5, we consider

GMM estimation under a mean independence version of mar.

3 GMM estimation

We are interested in estimating a parameter θ0 that is defined through the

moment conditions E(h(X, θ0)) = 0. Given a complete data set, we would

use the optimal GMM estimator. We construct a class of estimators that are

consistent under mi. We show that the asymptotic variance of an optimal

estimator in this class achieves the semiparametric efficiency bound for θ0

under mi. The results in this section are a natural generalization of the

properties of the optimal full-data GMM estimator to the optimal GMM

estimator with a general missing data pattern. In Section 4, we consider a

special case where the parameter can be estimated using the observations for

an arbitrary pattern only. In Section 5, we allow the missing data indicator

to depend on observable random variables. We provide examples of the

estimator in this section in Section 6. All the proofs are in Appendix A.

3.1 GMM with missing data

We are interested in a parameter θ0 ∈ Θ ⊂ R
p that is defined through a

moment function h : Rd ×Θ → R
q for which the following is assumed:

Assumption (identification). E (h(X, θ)) = 0 ⇔ θ = θ0.

A GMM estimator for θ0 for complete data is defined as the minimizer over
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Θ of
(

n
∑

i=1

h(Xi, θ)

)′

W (n)

(

n
∑

i=1

h(Xi, θ)

)

, (1)

for some arbitrary symmetric positive definite matrix W (n). Since h(Xi, θ)

is not observed for each i, this estimator is not feasible. For completeness,

we restate the assumption about the available data and the missing data

mechanism.

Assumption (mi). E (h(X, θ0) |R) = E (h(X, θ0)) .

Assumption (iid1). (Rx
i , R

x
iXi, 1 ≤ i ≤ n) is a random sample of size n

from (R,RX).

Let hn,j(θ) be the sample moment for subsample Gj = {i : Ri = Sj},

hn,j(θ) = (1/nj)
∑

i∈Gj

Rih(Xi, θ).

We define a GMM estimator for missing data as the minimizer of the mod-

ification of the full-data objective function (1),

θ̂W (n) = argminθ∈Θ

J
∑

j=1

hn,j(θ)
′Wj(n)hn,j(θ). (2)

A GMM estimator for missing data minimizes the sum of weighted sub-

sample moments instead of weighted sample moments. Complete-case and

available-case estimators can be obtained as special cases. If pattern 1

is the complete-data pattern, S1 = Iq, a complete-case estimator is ob-

tained by setting W1(n) = Wcc,n and Wj(n) = 0q, j > 1, where Wcc,n

can be chosen optimally. The available-case estimator follows from setting

Wj(n) = SjWac(n)Sj for each j = 1, . . . , J, where Wac(n) can be chosen

optimally. By construction, our estimator will be at least as efficient as

the complete-case and available-case estimators. The examples in Section 6

demonstrate that the efficiency gain is substantial.

The asymptotic distribution of the estimator θ̂W (n) requires the assump-

tions stated below.
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Assumption (finite-Ωj). For each j, var (h(X, θ0) |R = Sj) = Ωj < ∞,

where 1 ≤ j ≤ J.

The finite-Ωj assumption is not compatible with mcar because finite-

Ωj allows the conditional variance of the moment function to depend on the

missing data pattern.

Assumption (derivative). (i) For each x, the moment function h(x, ·)
is continuously differentiable on Θ; (ii) for each pattern j let the q × p

matrix Dj(θ) = E (∂h(X, θ0)/∂θ|R) be uniformly bounded, in the sense that

supθ∈Θ ‖Dj(θ)‖ < ∞, where ‖Dj‖ = tr(D′
jDj)

1/2; (iii) for each pattern j,

rk(Dj) = p.

Assumption (regularity). (i) The parameter space Θ is compact and

θ0 is in the interior of Θ; (ii) the moment function is bounded in absolute

mean:

sup
θ∈Θ

E (|h(X, θ)|) <∞;

(iii) for each subsample, the sequence of GMM weights (Wj(n), n ∈ N) sat-

isfies SjWj(n)Sj = Wj(n) and converges to a positive semidefinite matrix,

Wj , with rk(Wj) = rk(Sj).

All conditions are standard GMM assumptions, except for regular-

ity(iii), which sets the submatrix of Wj that corresponds to Sj = 0 equal

to zero, and requires the remaining submatrix to be positive definite.

Theorem 3.1. Under assumptions mi, iid1, full-rank, finite-Ωj , deriva-

tive, and regularity, we have that, as n→ ∞,

√
n
(

θ̂W (n) − θ0

)

d→ N



0, B−1





J
∑

j=1

1

pj
D′

jWj(SjΩjSj)WjDj



B−1



 ,

where

B =
J
∑

j=1

pjD
′
j(SjΩjSj)

+Dj . (3)
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The asymptotic variance can be minimized by setting each Wj equal to

W ∗
j = pj(SjΩjSj)

+. Note that this reduces to the familiar optimal weighting

matrix if J = 1, p1 = 1, and S1 = Iq. The estimator that uses weighting

matrices W ∗(n) = (W ∗
1 (n), . . . ,W

∗
J (n)) is denoted θ̂∗n and has limiting dis-

tribution √
n(θ̂W ∗(n) − θ0)

d→ N(0, B−1). (4)

This is an extension of the familiar result on optimal GMM: the weighting

matrix for each subsample moment is proportional to the inverse of the

relevant part of the variance matrix.

Remark 1. Replacing the variance matrices Ωj and the derivative matri-

ces Dj by consistent estimators leaves the asymptotic distribution of θ̂∗n
unchanged.

Remark 2. The GMM estimator based on the modified objective function

is computationally slightly more expensive than the full-data sample mo-

ment. The only additional computational burden comes from determining

J , rather than 1, optimal matrix weights, for which an analytical expression

is available, and sorting the n observations into J groups.

3.2 Semiparametric efficiency bound

The model defined bymi and iid1 is a semiparametric model: we are estimat-

ing a finite-dimensional parameter θ0 and consider the infinite-dimensional

η that describes the distribution of the data to be a nuisance parameter.

Consider some (smooth) parametric submodel, so that the distribution is

described by a finite-dimensional parameter. The Cramer-Rao lower bound

guarantees a lower bound on the variance of any regular estimator in this

parametric submodel. Now consider a semiparametric estimator that is reg-

ular in every parametric submodel. The variance of this estimator must

be at least as large as the supremum of the lower bounds in all parametric

submodels. This supremum is called the semiparametric efficiency bound

(SPEB). More information about regularity and the semiparametric effi-

ciency bound can be found in Bickel et al. (1993), Newey (1990), and Van

der Vaart (2000, Chapter 25).
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For many econometric models with a random sample, we can use the

methods for calculating the SPEB proposed in Newey (1990) and Severini

and Tripathi (2001). For the following theorem, the result for conditional

moment restrictions for singular covariance matrices in Newey (2001) that

extends a result in Chamberlain (1987) is important. The result shows that

the optimal GMM estimator θ̂W ∗(n) is asymptotically efficient for θ0 among

all regular semiparametric estimators.

Theorem 3.2. Under assumptions mi, iid1, full-rank, and finite-Ωj,

the semiparametric efficiency bound for θ0 is SPEB(θ0) = B−1, where B is

as in (3).

Remark 3. For specific examples, it may be reasonable to assume that Ωj =

Ω and Dj = D for each j. In that case, the expression for B simplifies

to B = D′
(

∑J
j=1 pj(SjΩSj)

+
)

D. This possibly lowers the SPEB, and our

estimator may no longer be efficient.

4 Subsample estimation

In some situations θ0 can be estimated using each subsample. An example

is instrumental variable estimation with, for each pattern, more instruments

than endogenous variables. We show that an optimal linear combination

of the optimal GMM estimators for each subsample is asymptotically effi-

cient. We study this estimator to gain more intuition for the semiparametric

efficiency bound, and because it can be implemented using only the full-

data estimation routine. Moreover, this estimator can be extended, without

modification, to generalized empirical likelihood estimation. In Section 5,

we generalize this approach to an optimal inverse probability weighting es-

timator for estimation under an assumption weaker than mi that allows for

selection on observables.

Assume that θ0 can be estimated using each subsample separately. Then

the following subsample GMM estimator for θ0 is defined for each missing
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data pattern j:

θ̂n,j = argminθ∈Θ hn,j(θ)
′W ∗

j (n)hn,j(θ),

where W ∗
j (n) converges to the optimal weighting matrix W ∗

j = (SjΩjSj)
+.

We look at matrix-weighted sums of these subsample GMM estimators. In

particular, we are interested in the matrix weights that minimize the asymp-

totic variance of the sum. To find these, we need the limiting distribution

of the subsample GMM estimators. Assume a standard GMM setting as in

Section 3.1. Then, as n→ ∞,

√
nj(θ̂n,j − θ0)

d→ N
(

0,
(

D′
j(SjΩjSj)

+Dj

)−1
)

. (5)

A matrix-weighted sum is the matrix equivalent of a weighted average. The

weights are p × p matrices that are subsample specific, (Aj(n), n ∈ N).

An estimator that is a matrix-weighted sum is characterized by a J−tuple

A(n) = (A1(n), . . . , AJ(n)) that collects the matrix weights. We denote the

matrix-weighted sum with matrix weights A(n) by θ̂A(n), and define

θ̂A(n) =

J
∑

j=1

Aj(n)θ̂n,j.

Assuming
∑J

j=1Aj = Ip, the estimator is consistent. Since we have assumed

a random sample, the subsample GMM estimators are uncorrelated, so that

the asymptotic variance of matrix-weighted sum θ̂A(n) is given by

lim
n→∞

var(
√
nθ̂A(n)) =

J
∑

j=1

1

pj
Aj

(

D′
j(SjΩjSj)

+Dj

)−1
A′

j,

which uses the asymptotic variance of the subsample GMM estimators in

(5). From the following theorem, we can see that the choice of weight matrix

A∗
j ,

A∗
j = B−1 pjD

′
j(SjΩjSj)Dj ,
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leads to an efficient estimator θ̂∗n = θ̂A∗(n). The asymptotic variance is

B−1 =





J
∑

j=1

pjD
′
j(SjΩjSj)

+Dj





−1

.

The theorem below shows that this is a lower bound for the asymptotic

variance of any matrix-weighted sum.

Theorem 4.1. For each j = 1, . . . , J, let Aj be a p × p matrix such that
∑J

j=1Aj = Ip. Then

J
∑

j=1

1

pj
Aj

(

D′
j(SjΩjSj)

+Dj

)−1
A′

j −B−1

is positive semidefinite.

Therefore, the estimator is the optimal linear combination of the opti-

mal GMM estimators for each subsample. As such, it does not contain any

additional nonlinear or nonparametric ingredients, which suggests that the

higher-order asymptotic properties and small-sample performance of the ef-

ficient estimator under mi are of the same order as those of the full-data

optimal GMM estimator.

Remark 4. The discussion in this section suggests the following procedure to

obtain an efficient estimator: (1) estimate B =
∑J

j=1 pjD
′
j(SjΩjSj)

+Dj ; (2)

estimate A∗
j,n = B−1 pjD

′
j (SjΩjSj)

+Dj; (3) determine θ̂A∗(n) =
∑J

j=1A
∗
j,nθ̂j,n.

Remark 5. The results in this section can be used to optimally combine

estimators obtained using any estimation method, provided that the data

used for different estimators is independent. For example, the results can

be applied to generalized empirical likelihood estimation. Another example

is a combination of estimators applied to different data sets.
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5 Inverse probability weighting

In the previous section we derived an optimal estimator for θ0 undermi and iid1.

For some applications, the mi assumption is too strong. In this section, we

introduce a weaker assumption about the missing data mechanism, cmi,

that allows the missing data indicator to depend on some observed random

variables. We generalize the inverse probability weighting (IPW) estima-

tor to a class of estimators that are consistent under cmi. Then, we use

techniques from Sections 3 and 4 to derive the efficient IPW estimator.

5.1 Missing at random

For many situations, both mcar and mi are too strong. A significantly

weaker assumption that can be used is missing at random, mar. Organize

the data into two groups, (X,Z), where X ∈ R
d, Z ∈ R

dz . The random

vector X enters the moment function, but the random vector Z does not;

it is a vector of auxiliary variables. The missing data pattern for X is

captured by Rx ∈ R
d×d, a random matrix that takes values {Sx

1 , . . . , S
x
Jx
}.

The following assumption is a typical version of mar, although different

versions are possible:

Assumption (mar). For each pattern j, X ⊥ Rx |Z.

Assumption (iid2). (Rx
i , R

x
iXi, Zi, 1 ≤ i ≤ n) is a random sample of size

n from (Rx, RxX,Z).

The mar assumption allows the process that generates the missing data

to depend on that data. It requires that there exists an auxiliary random

vector Z that is always observed and that removes the dependence between

Rx and X. This is a significantly weaker assumption than mcar, especially

when many relevant variables are included in Z.

We will formulate an assumption that relaxes mar in the way that mi re-

laxes mcar. As in the mcar case, the missing data indicator Rx implies a

missing data indicator R that describes which components of h(X, θ) can be

evaluated when RxX is observed instead of X. There are J such patterns

for h, denoted {S1, . . . , SJ}.
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Consider pattern j, and let rj be an indicator function that equals 1 if

and only if the missing data follow pattern j. Let Vj ∈ R
dj be a random

vector that consists of a subset of the components of (X,Z). We assume

that there exists a function pj that determines the probability of observing

pattern j : pj(Vj) = P(rj = 1 |Vj). Let V = ∪J
j=1Vj.

Assumption (cmi). (i) E (h(X, θ0) | rj, Vj) = E (h(X, θ0) |Vj) ; (ii) pj(Vj)
is observed if rj = 1; (iii) P(rj = 1|V ) = P(rj = 1|Vj); (iv) there exists δ > 0

such that pj(Vj) ≥ δ for each Vj.

The first assumption captures the essence of mar, and assumptions (ii)–

(iv) are necessary for the construction of an inverse probability weighted

estimator in Section 5.2. We are not interested in the function pj(Vj) and

assume that the function is known or can be
√
nj−consistently estimated,

which under cmi is not very restrictive given the results in Hirano et al.

(2003). Notice that elements of X can be included in Vj if they are observed

whenever rj = 1. Also, missing data indicators rk, k 6= j, can be included,

provided the resulting pj obeys cmi (iv).

5.2 Optimal IPW

A standard tool for missing data with a binary missing data pattern that sat-

isfiesmar is inverse probability weighting (IPW); see for example Wooldridge

(2007). In this section we consider a generalization of IPW estimators to

the case of general missing data patterns. The assumption of cmi ensures

the consistency of such an IPW estimator. First, note that we can rewrite

R =
∑J

j=1 rjSj. If we have a function h(X, θ0) for which E(h(X, θ0)) = 0

then, in general, E(Rh(X, θ0)) 6= 0. Now let R̃(V ) =
∑J

j=1
rj

pj(Vj)
Sj. Then

E

(

R̃(V )
∣

∣

∣V
)

=
∑

j=1

E(rj |Vj)
pj(Vj)

Sj =

J
∑

j=1

Sj.

and, using iterated expectations, E
(

R̃(V )h(X, θ0)
)

= 0.
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This motivates the use of the adjusted subsample moment h̃n,j,

h̃n,j =
1

nj

∑

i∈Gj

1

pj(Vj)
Rih(Xi, θ0).

An IPW version of the complete-case estimator minimizes h̃′n,1W
∗
cc(n)h̃n,1,

and an IPW version of the available-case estimator minimizes





J
∑

j=1

h̃n,j





′

W ∗
ac(n)





J
∑

j=1

h̃n,j



 ,

where the respective W ∗ can be chosen optimally.

This suggests an extension of the method in Section 4. Assume that

θ0 can be estimated using each subsample separately. Furthermore, the

assumptions for asymptotic normality of the optimal GMM estimator and

cmi hold. Then, the parameter θ0 is identifiable within subsample Gj . De-

note the optimal subsample IPW estimator ˆ̃θn,j:

ˆ̃θn,j = argminθ∈Θ h̃n,j(θ)
′W ∗

j (n)h̃n,j(θ), (6)

with W ∗ equal to the optimal weighting matrix for this problem. The lim-

iting distribution of
ˆ̃
θn,j is that of a standard GMM estimator: as nj → ∞,

√
nj(

ˆ̃
θn,j − θ0)

d→ N (0,Λj) .

We do not impose any structure on Λj , since we have not specified whether

the function is known, or whether a parametric or nonparametric estimator

was used.

Analogously to Section 4, we introduce the class of estimators

ˆ̃θA(n) =

J
∑

j=1

Aj(n)θ̂n,j, (7)

for any J−tuple of p × p matrices A(n) = (A1(n), . . . , AJ(n)) that satisfies
∑J

j=1Aj(n) = Ip. For each sequence A(n) that converges to some A, the
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asymptotic variance is given by

lim
n→∞

var(
√
n
ˆ̃
θA(n)) =

J
∑

j=1

1

pj
AjΓjA

′
j .

A straightforward modification of Theorem 4.1 shows that the lower bound

on the asymptotic variance for any estimator in the class of matrix-weighted

sums is given by

B̃−1 =





J
∑

j=1

pjΓj





−1

.

Setting A∗
j = B̃−1 pjΓj achieves that bound.

6 Examples

This section contains four examples that illustrate the methods in this paper

and demonstrate the efficiency gains with respect to a complete-case and an

available-case analysis. The first example concerns a multivariate mean

estimation problem that corresponds to a two-period panel data model with

attrition. In the second example, we discuss an instrumental variable model

where the instruments are partially observed. The third example is the

estimator proposed by Arellano and Bond (1991) for dynamic panel data

models. In the fourth example, we use our results to optimally design a

data set to measure the change in consumer confidence when nonresponse

is expected. The derivations are available upon request.

6.1 Attrition in two periods

We study a two-period panel data model with attrition as an example of

multivariate mean estimation with missing data. We present analytical re-

sults for the asymptotic variance of the estimators.

A health club is interested in measuring the change in the weight of new

members after they join. New members are weighed upon registration, and

a random sample of new members is selected to come back for a reweighing
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after six months. Let Xi,1 be the weight of member i upon registration and

let Xi,2 be the weight of that member after six months.

An error component model can be used to model Xi = (Xi,1,Xi,2):

Xi,t = µt + αi + ǫit, t = 1, 2, where E(αi) = 0, var(αi) = σ2a and E(ǫit) =

0, var(ǫit) = σ2e for each t = 1, 2. We normalize σ2a + σ2e and denote ρ =

σ2a/(σ
2
a + σ2e). As a result, E(Xi) = (µ1, µ2) and Ω = var(Xi) =

(

1 ρ

ρ 1

)

.

There are two missing data patterns, corresponding to two groups. For

an observation i in the first group we observe both Xi,1 and Xi,2. For an

observation in group 2 we observe only Xi,1. In other words, d = 2, q =

2, J = 2, S1 = I2, and S2 =

(

1 0

0 0

)

. Assuming that all members who

are called for a reweighing show up, the health center has full control over

the randomization mechanism, so we assume mi and Ω1 = Ω2 =

(

1 ρ

ρ 1

)

.

Finally, define p1 = P (R = S1) .

The estimation is focused on µ2 and (µ2−µ1) and based on the moment

conditions E(h(X,µ)) = E(X − µ) = 0. We consider four estimators. The

first is the full-data estimator, which equals the sample mean using all n ob-

servations. This estimator is not feasible because it uses observations that

are missing. We include this estimator to quantify the amount of informa-

tion that is lost because of the missing data. The second estimator is the

complete-case estimator and uses only the complete observations in group

1. The third estimator is the available-case estimator. This estimator uses

the maximum number of observations per component: n1 + n2 for µ1 and

n1 for µ2. Finally, we consider the optimal sample mean.

The asymptotic variances of the estimators in this example for µ̂2 and

(µ̂2− µ̂1) are given in Table 2. In Figures 2 and 3 we compare the variances

as a function of ρ.

The key element of this example is the individual effect, which intro-

duces correlation between the components of Xi. The optimal estimator

efficiently exploits this correlation. An interesting finding is that including

observations for members who are observed only upon registration increases
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Estimator avar (µ̂2) avar (µ̂2 − µ̂1)

full data 1 2 (1− ρ)
complete case 1/p1 2 (1− ρ)/p1
available case 1/p1 (1− 2ρ) + 1/p1
optimal 1/p1(1− ρ2(1− p1)) (1− 2ρ) + 1/p1 (1− ρ2(1− p1))

Table 2: Comparison of asymptotic variances.

0.0 0.2 0.4 0.6 0.8 1.0

complete case, available case

optimal
1

2p1

1

p1

ρ

Figure 2: Asymptotic variances of µ̂2 as a function of ρ.

the precision for the average weight after six months and for the average

change in weight.

The first column of Table 2 and Figure 2 show that, for estimating µ2,

the complete-case and the available-case estimators do not recover any of

the information that is lost because of the missing data, even when the com-

ponents are highly correlated. The optimal estimator efficient exploits the

correlation. As the individual effect becomes more important, the perfor-

mance of the optimal estimator relative to the full-data estimator improves.

In particular, if ρ = 1, observing Xi,2 does not give any additional informa-

tion, and the optimal estimator is as efficient as the full-data estimator.
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Figure 3: Asymptotic variances of µ̂2 − µ̂1 as a function of ρ. Top
panel: p1 = 0.2. Bottom panel: p1 = 0.5.
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The second column of Table 2 and Figure 3 describe the relative perfor-

mance of the estimator of µ2−µ1. All estimators benefit from the correlation

between Xi1 and Xi2. In the absence of correlation, the optimal estimator

coincides with the available-case estimator. If the components are perfectly

correlated, both the optimal estimator and the complete-case estimator re-

trieve all the information.

To understand why the relative performance of the complete-case and

the available-case estimators depends on the correlation, consider that the

complete-case estimator corresponds to first calculating Xi,2−Xi,1 and then

averaging, while the available-case estimator averages the Xi,1 and the Xi,2

and then takes the difference. For the complete-case estimator the individual

effects drop out, so that high values of σ2a (ρ) are not reflected in the variance

of the estimator. For the variance of the available-case estimator, σ2a does

play a role, because this estimator includes observations for which only one

period is available. An increase in σ2α therefore increases the variance of the

available-case estimator.

6.2 Instrumental variables

We study a simple linear instrumental variable model where the depen-

dent and explanatory variables are always observed, but instruments can

be incomplete. We consider the linear case with one explanatory variable

and two instruments. Either instrument can be missing for a subsample.

The approach is easily generalized to multiple explanatory variables, mul-

tiple instruments, and nonlinear models. The setup in this section has the

advantage that it allows us to derive analytical results. The problem of

partially missing instruments is common; a recent example can be found in

Angrist et al. (2006).

The dependent variable y is linearly related to an explanatory variable

x, y = βx+ ǫ. Two instruments, w1 and w2, are available, which motivates
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the following unconditional moment conditions to estimate β:

0 = E

((

w1

w2

)

(y − θ0x)

)

= E

((

w1ǫ

w2ǫ

))

.

We assume that the dependent variable and the explanatory variable are

always observed. There are three groups of observations, Jx = 3. For the

first group we observe both instruments. For the second group we observe

only w1, and for the third group we observe only w2. As a result, J = 3 and

S1 =

(

1 0

0 1

)

, S2 =

(

1 0

0 0

)

, S3 =

(

0 0

0 1

)

.

We assume that the instruments are similar: they are equally likely to be

missing, p2 = p3 = (1 − p1)/2, they have the same correlation with the

explanatory variable, E(w1x) = E(w2x) = λ, and they are both standardized

so that E(wj) = 0, j = 1, 2 and E(w2
j ) = 1, j = 1, 2. The instruments have

correlation ρ = cov(w1, w2).

We assume that the variance matrices are the same for all groups:

Ω1 = Ω2 = Ω3 =

(

1 ρ

ρ 1

)

,

where the form of Ω could result from the additional assumptions E(w2
j ǫ

2) =

E(w2
j )E(ǫ

2) = 1, j = 1, 2. Furthermore, we normalize the variance of the

explanatory variable, var(x) = 1. Since var(x,w1, w2) must be semidefinite,

we have

var(x,w1, w2) =







1 λ λ

λ 1 ρ

λ ρ 1






,

|var(x,w1, w2)| = (−1)ρ2 + (2λ2)ρ+ (1− 2λ2),

and it follows that ρ ≥ 2λ2−1. We fix λ = 1√
2
so that the lower bound for ρ

is 0. This assumption does not affect the relative efficiency of the estimators.
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Figure 4: Asymptotic variance for various estimators of β as a function
of ρ, p1 = 0.5.

We consider five estimators. The first four (full data, complete case,

available case, and optimal) have been discussed in the text and in Example

6.1. The fifth, which we call the complete-moment estimator, uses one mo-

ment only. Because the instruments are similar, the two complete-moment

estimators have the same asymptotic variance.

In Figure 4 we plot the asymptotic variance of our estimators as a func-

tion of ρ for p1 = 0.5. The key aspect of this example is that the two instru-

ments act as similar sources of information for estimating β. Therefore, as

the correlation between w1 and w2 increases, we expect two effects. First,

the total amount of information for β decreases, so we expect all estimators

to be worse. Secondly, the amount of information on the instrument that

is missing increases. Since the optimal estimator is constructed such that it

efficiently exploits the correlation between the components of the moment

conditions, we expect the relative performance of the optimal estimator to

increase.
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The optimal estimator is efficient among the feasible estimators. Ex-

cept for ρ = 0, it outperforms the available-case estimator. As ρ increases,

the relative performance of the optimal estimator with respect to the avail-

able estimator increases: the available-case estimator uses all the available

data but does not efficiently use the correlation between the instruments.

As ρ approaches 1, the optimal sample mean is able to recover all the in-

formation. The complete-case and complete-moment estimators are always

outperformed by the available-case estimator and the optimal sample mean.

6.3 Dynamic panel data

The goal of this setting is to demonstrate the performance of our method

in a more complicated model and to provide an example where the variance

matrix is not known. In particular, we look at a dynamic panel data model,

and use continuous updating GMM to estimate it.

The parameter of interest ρ describes the relationship between current

and lagged values of a random variable yi,t, yi,t = αi+ρyi,t−1+ ǫi,t, 2 ≤ t ≤
T. We assume that E(αi) = 0, var(αi) = σ2a, and E(ǫit) = 0, var(ǫit) = σ2e ,

and E(ǫi,tǫi,s) = 0 whenever s 6= t. Arellano and Bond (1991) propose an

estimator that is widely used: the optimal GMM estimator based on the

(T − 2)(T − 1)/2 moment conditions E(yi,t−s∆ǫi,t) = 0, t ≥ 3, s ≥ 2.

For any observation i, if yi,t is not observed, then several components

of the moment function are not observed. For an example with T = 5,

see Table 1 in the introduction. For the purposes of this simulation, we

consider the case T = 9, which corresponds to the example in Blundell and

Bond (1998). This gives 28 moment conditions for 1 parameter. If any of

the yi,t are missing, the moment function is incompletely observed: if yi,1 is

not observed, 7 components of the moment function are not observed; if yi,4

is not observed, 12 components of the moment function are not observed.

We perform a Monte Carlo analysis to compare the relative performance

of the estimator introduced in this paper to the full-data, complete-case,

and available-case estimators. We do not assume the variance matrix to

be known, and use a continuous updating version of the Arellano-Bond
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σ2α ρ p cc ac opt

0.1

0.1
0.02 1.19 1.12 1.08
0.06 2.29 1.46 1.41

0.2
0.02 1.29 1.23 1.18
0.06 2.37 1.34 1.27

0.5
0.02 1.82 1.77 1.69
0.06 3.35 2.50 2.25

0.8
0.02 8.61 8.11 7.74
0.06 15.95 11.76 10.45

1

0.1
0.02 1.71 1.47 1.46
0.06 3.04 1.89 1.84

0.2
0.02 1.91 1.70 1.68
0.06 3.75 2.35 2.21

0.5
0.02 5.10 4.75 4.59
0.06 8.61 5.85 5.33

0.8
0.02 2.04 2.20 1.92
0.06 3.47 3.30 2.62

Table 3: Relative variance of the complete-case (cc), available-case
(ac), and optimal (opt) estimator in a Monte Carlo study of a continuous
updating Arellano-Bond estimator, with n = 10000, s = 1000, and
T = 9. The missing data patterns are described in the text.

estimator to estimate ρ. When estimating the variance matrix, we assume

that Ωj = Ω for each j.

We normalize σ2ǫ = 1. We consider different values for the variance

of the individual effect σ2α ∈ {0.1, 1} and the parameter of interest ρ ∈
{0.1, 0.2, 0.5, 0.8}. We set n = 10000 and perform s = 1000 simulations

per parameter combination. There are 10 missing data patterns. Patterns

j = 1, . . . , 9 have yi,j missing and the other variables observed. Pattern 10

corresponds to the subsample with all variables observed. This missing data

pattern is determined by a parameter p such that p = P(R = Sj) for each

j = 1, . . . , 9, and P(R = S10) = 1− 9p. We consider p ∈ {0.02, 0.06} so that

82% (respectively 46%) of the observations are complete.

Table 3 reports the variance of the complete-case, available-case, and

optimal estimator divided by the variance of the full-data estimator. The
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complete-case estimator is always worse than the available-case estimator,

except for (σ2α, ρ, p) = (1, 0.8, 0.02). The optimal estimator always outper-

forms the other two estimators. In contrast to the case where the Ωj are

known, this is not true by construction. The optimal estimator seems to

gain more when p is larger. For some parameter configurations, the effi-

ciency gain is substantial.

6.4 Panel design

We have considered optimal estimation for given missing data patterns. This

analysis is useful for many applications in economics, where the researcher

has no control over the data-collection process. For the data collector the

relative performance of estimators under different missing data patterns is

of importance. Assuming that the researcher uses efficient methods to deal

with missing data, what is the best way to collect the data? We discuss

data collection for a variable that varies over individuals and over time. We

are interested in estimating the change in the population average of the

variable over time. We consider three ways to collect the data: repeated

cross-sections, a panel, and a rotating panel.

A researcher wants to measure the change in consumer confidence over

a period of three years. Denote the confidence of consumer i at time t

by Xi,t, where 1 ≤ t ≤ 3, which can be modeled using error components:

Xi,t = αi + µt + ǫi,t. The level of consumer confidence at time t is µt. Some

consumers may have, across all periods, a more optimistic or pessimistic

outlook on the economy, and this is captured by αi, E(αi) = 0, and var(αi) =

σ2a. The idiosyncratic error term ǫi,t captures random errors in the elicitation

process, and we assume that E(ǫi,t) = 0 and var(ǫi,t) = σ2e . It follows that

var(Xi,t) = (σ2a + σ2e)







1 ρ ρ

ρ 1 ρ

ρ ρ 1






,

where ρ = σ2a/(σ
2
a +σ2e). The level of consumer confidence does not have an

interpretation, so we normalize σ2a + σ2e = 1. The parameters of interest are
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Figure 5: Asymptotic variances of optimal estimators of the change in
consumer confidence using different data collection methods; p = 0.1.
Left panel: δ1. Right panel: δ2.

the changes in consumer confidence, E(Xi,t−Xi,t−1) = µt−µt−1 = δt−1, for

t = 2, 3.

The researcher has a budget of $M . Surveying a person once costs $1,

so the researcher can obtain at mostM consumer confidence measurements.

She considers three ways of collecting the data. The first is a repeated cross-

section: for each period, survey a random sample of M/3 consumers from

the population. The second is a panel: randomly select M/3 consumers

and survey them in each period. The third is a rotating panel: randomly

select M/4 consumers to survey in periods 1 and 2, and randomly sample

M/4 consumers for periods 2 and 3. All these methods exhaust the research

budget.

Not all the surveys are completed, which leads to missing data. The miss-

ing data mechanism is assumed to be mi. The probability that a consumer

does not respond, or stops responding, is p. The research budget allocated

to this consumer is lost. Once the data are collected, the researcher will use

the methods in this paper to estimate δ1 and δ2 optimally. Figures 5 and

6 show the asymptotic variance of δ̂1 and δ̂2 for each of the approaches for

p = 0.1 and p = 0.5 respectively.

The relative performance of the cross-section method increases as the

probability of nonresponse increases: a panel member is lost forever, so
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Figure 6: Asymptotic variances of optimal estimators of the change in
consumer confidence using different data collection methods; p = 0.5.
Left panel: δ1. Right panel: δ2.

the effect of nonresponse for the (rotating) panel is stronger than for the

cross-section. As ρ increases, the relative performance of the cross-section

method decreases, since there is no information available on the missing

data, whereas the panel methods can extract some information through the

individual effect. The variance of the panel methods is similar for p = 0.1,

but the rotating panel leads to more substantially more efficient estimators

for p = 0.5.

A Proofs

Proof of Theorem 3.1. Note that the criterion function

Qn(θ) =

J
∑

j=1

hn,j(θ)
′Wj(n)hn,j(θ),

where hn,j(θ) = (1/nj)
∑

i∈Gj
Rih(Xi, θ) can be rewritten as a standard

GMM criterion function.

First, stack the subsample moments in hn, hn(θ) = (hn,1(θ), . . . , hn,J (θ)).

Assumption finite-Ωj implies that the standard central limit theorem ap-
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plies to the subsample moments, so that

√
njhn,j(θ0)

d→ N(0, SjΩjSj),

so that √
nhn(θ0)

d→ N(0, Ω̃),

where

Ω̃ =















1
p1
S1Ω1S1 0 · · · 0

0 1
p2
S2Ω2S2

...
...

. . .

0 1
pJ
SJΩJSJ















.

Now construct the blockdiagonal weighting matrix W (n),

W (n) =















W1(n) 0 · · · 0

0 W2(n)
...

...
. . .

0 WJ(n)















,

so that Qn(θ) = hn(θ)Whn(θ). Stack the selection matrices Sj in S =

(S1, . . . , SJ ) ∈ R
Jq×q, and let

Q0(θ) = E(h(X, θ)′ S′ W S E(h(X, θ).

Consistency. Qn(θ) converges to Q0 uniformly because of regularity.

identification implies that Q0 has a unique minimum. Continuity of Q0

follows from derivative. Furthermore, compactness of Θ is assumed in

regularity. Then, by Newey and McFadden (1994, Theorem 2.1), θ̂n is a

consistent estimator for θ0.

Asymptotic normality. (i) regularity guarantees that θ is in the

interior of Θ, (ii) derivative implies that hn(θ) is continuously differ-

entiable on Θ, (iii) we have shown that
√
nhn(θ0)

d→ N(0, Ω̃), (iv) the

boundedness assumption in derivative guarantees that the derivative of
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hn(θ0) converges to SD(θ) = (S1D1(θ), . . . , SJDJ(θ), (v) full-rank and

the rank assumption in regularity guarantee that D′WD is invertible,

where W = limn→∞W (n) and D = D(θ0). Then, by Newey and McFadden

(1994, Theorem 3.2),

√
n(θ̂n − θ0)

d→ N(0, (D′SWSD)−1D′SW Ω̃WSD(D′SWSD)−1).

By assumption regularity(iii), we have required that SjWjSj = Wj , so

SWS = W. Furthermore, SΩ̃S = Ω̃, so that the asymptotic variance can

be rewritten as (D′WD)−1D′W Ω̃WD(D′WD)−1, which reduces to the ex-

pression in the text by the blockdiagonal structure of W and Ω̃.

Proof of Theorem 3.2. Each observation provides two random objects that

we can use for estimation: a missing-moment indicator Ri and the observed

elements of the moment function Rih(Xi, )̇. The moment conditions are

provided by mi, which states that E(Rh(X, θ0) |R)) = 0. Furthermore,

we have that E(R) =
∑J

j=1 pjSj . Under the typical mcar assumption, we

have more information about R, which we can exploit as additional moment

conditions, see Graham (2010). However, mi does not provide conditional

moment conditions of R on X, or some function of X.

Therefore, the model implies the following moment restrictions on our

data: (i) E(R) =
∑J

j=1 pjSj , and (ii) E(Rh(X, θ0) |R)) = 0. First, we show

that the unconditional moment restrictions (i) are not informative for θ0.

Then we derive SPEB(θ0) using the conditional moment restrictions (ii).

First, denote E(Rh(X, θ0) |R)) = E(ψ1(R,X; θ0) |R). and E(R−∑J
j=1 pjSj) =

E(ρ2(R; p)), where p = (p1, . . . , pJ). Since R has finite support, there exists

a function M(R) such that the unconditional moment restrictions

E(M(R)ψ1(R,X; θ0)) = E(ρ1(R,X; θ0)) = 0

contain the same information as E(ψ1(R,X; θ0) |R) = 0. Let β0 = (θ0, p).

The asymptotic efficiency bound for β0 based on the unconditional moment

restrictions E(ρ(R,X;β0)) =

(

ρ1(R,X; θ0)

ρ2(R; p)

)

= 0 is Λ0 =
(

D′
0Σ

−1
0 D0

)−1
,
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where D0 = E

(

∂ρ(R,X;β0)
∂(θ)

)

and Σ0 = E (ρ(R,X;β0)ρ
′(R,X;β0)) , following

Chamberlain (1987). D0 can be partitioned asD0 =

(

E(∂ρ1(β0)
∂θ ) 0

0 E(∂ρ2(β0)
∂p )

)

.

The off-diagonal blocks of D0 are zero, since θ0 only features in ρ1 and p

only features in ρ2. Therefore, the bound for θ0 under E(ρ1) = 0 equals the

bound for θ0 under E(ρ) = 0, and we conclude that ρ2 is not informative for

θ0.

Next. we can find the semiparametric efficiency bound for θ0 given the

conditional moment conditions

E(Rh(X, θ0) |R) = E(ρ(R,X, θ0) |R) = 0

by applying the result in Newey (2001, Theorem 5.2) that extends Chamber-

lain (1987). LetDρ(R) =
∂E(ρ(X,R,θ0)|R)

∂θ and Σρ(R) = E(ρ(X,R, θ0)ρ(X,R, θ0)
′|R).

The semiparametric efficiency bound is equal to

SPEB(θ0) =
(

E
(

Dρ(R)
′Σρ(R)

+Dρ(R)
))−1

,

In our case, Dρ(Sj) = SjDj = SjE
(

∂h(X,θ0)
∂θ

∣

∣

∣R = Sj

)

. and Σρ(Sj) =

SjΩjSj Then,

SPEB(θ0) =





J
∑

j=1

pjD
′
jSj(SjΩjSj)

+SjDj





−1

=





J
∑

j=1

pjD
′
j(SjΩjSj)

+Dj





−1

.

Proof of Theorem 4.1. Let Γj = D′
j(SjΩjSj)

+Dj . Γj = Γ′
j and, because of

identification+, Γj is invertible. We need to show that, for any J−tuple
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of weighting matrices (Aj ∈ R
p×p, j = 1, . . . , J),

J
∑

j=1

1

pj
AjΓ

−1
j A′

j − (

J
∑

j=1

pjΓj)
−1

is positive semidefinite. Let K ′
1 =

[

1/
√
p1A1Γ

−1/2
1 . . . 1/

√
pJAJΓ

−1/2
J

]

,

so thatK ′
1K1 =

∑J
j=1

1
pj
AjΓ

−1
j A′

j . Similarly, letK ′
2 =

[√
p1Γ

1/2
1 . . .

√
pJΓ

1/2
J

]

,

so that (K ′
2K2)

−1 = (
∑J

j=1 pjD
′
j(SjΩjSj)

+Dj)
−1.

Furthermore, K ′
1K2 =

∑J
j=1

√
pj/

√
pjAjΓ

−1/2
j Γ

1/2
j =

∑J
j=1Aj = Ip.

Then, by Abadir and Magnus (2005, Exercise 12.18), K ′
1K1 − (K ′

2K2)
−1 is

positive semidefinite, which completes the proof.
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