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Abstract

I study a dynamic economy featuring adverse selection in financial markets. Investment

is undertaken by borrowing-constrained entrepreneurs. They sell their past projects to

finance new ones, but asymmetric information about project quality creates a lemons

problem. The magnitude of this friction responds to aggregate shocks, amplifying the

responses of asset prices and investment. Indeed, negative shocks can lead to a complete

shutdown in financial markets. I then introduce learning from past transactions. This

makes the degree of informational asymmetry endogenous and makes the liquidity of

assets depend on the experience of market participants. Market downturns lead to less

learning, worsening the future adverse selection problem. As a result, transitory shocks

can create highly persistent responses in investment and output. (JEL E22, E44, D83,

G14)
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1 Introduction

Financial markets are fragile, volatile and occasionally shut down entirely. The recent financial

crisis has intensified economists’ interest in understanding the causes of financial instability

and its effects on real economic variables such as investment, output and productivity. In this

paper I develop a model of financial imperfections to explain how instability in general and

market shutdowns in particular can result from macroeconomic shocks and in turn amplify and

propagate them.

I focus on one specific type of financial market imperfection: asymmetric information about

the quality of assets. This particular imperfection is worth studying for several reasons. First,

the ability of creditors to seize a debtor’s assets, either as a possible equilibrium outcome or

as an off-equilibrium threat, is crucial for enabling financial transactions to take place, both

in theory (Hart and Moore 1994, Kiyotaki and Moore 1997) and in everyday practice. If

there is asymmetric information about asset qualities, which is a natural assumption, this has

the potential to interfere with a large subset of financial transactions. Second, asymmetric

information is a central concern in corporate finance. Following Myers and Majluf (1984),

asymmetry of information between firm managers and their outside investors is seen as a key

determinant of firms’ capital structure. Third, sometimes financial markets simply cease to

function, as documented for instance by Gorton and Metrick (2009) for the repo market in

2007-2009. Since Akerlof (1970), it is well known that the complete breakdown of trade is a

theoretical possibility in economies with asymmetric information. This means that asymmetric

information at least has the potential to explain extreme crises and may shed light on less

extreme phenomena as well.

I embed imperfect financial markets in a simple dynamic macroeconomic model. In the

model, entrepreneurs hold the economy’s stock of capital. Every period, they receive random

idiosyncratic investment opportunities. The only way to obtain financing is by borrowing

against existing assets or, equivalently, selling them. Assets are bought by entrepreneurs who

in the current period have poor investment opportunities but nevertheless wish to save part of

their dividends. Unfortunately, some fraction of existing assets are useless lemons and buyers

can’t tell them apart from high quality assets (nonlemons), creating a classic lemons problem.

I show that the lemons problem introduces a wedge between the return on saving and the

cost of funding, persuading some entrepreneurs to stay out of the market. This is formally

equivalent to introducing a tax on financial transactions, with revenues rebated lump-sum to

entrepreneurs. This defines a notion of liquidity where the degree of illiquidity of assets is the

size of the implicit tax. The tax lowers asset prices, the rate of return obtained by uninformed

investors and the rate of capital accumulation. Furthermore, the implicit tax depends on

the proportions of lemons and nonlemons sold, which respond to aggregate shocks. Standard
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productivity shocks increase current dividends, which increases the supply of savings and raises

asset prices. This persuades more entrepreneurs to sell their nonlemons, improving the overall

mix of projects that get sold and lowering the implicit tax on financial transactions. Shocks to

the productivity of investment have similar effects because they increase entrepreneurs’ desire

to invest and thus their willingness to sell nonlemons. The endogenous response of the size of

the tax implies that asymmetric information can be a source of amplification of the effects of

shocks on both capital accumulation and asset prices. Large negative shocks may lead financial

markets to shut down entirely.

The model predicts that capital becomes more liquid in economic expansions. This predic-

tion is consistent with empirical research by Eisfeldt and Rampini (2006), who find that the

costs of reallocating capital across firms are countercyclical. It is also consistent with the evi-

dence in Choe et al. (1993), who find that the negative price reaction to an offering of seasoned

equity is smaller and the number of firms issuing equity is larger in the expansionary phase of

the business cycle, suggestive of countercyclical adverse selection costs.

In reality, asymmetric information does not mean that relatively uninformed parties do

not know anything. Instead, it can be a matter of degree. In order to investigate how the

degree of asymmetry could vary endogenously, I extend the baseline model by introducing

public information about the quality of individual assets. Each asset issues a signal which is

correlated with its true quality. The correlation is imperfectly known and changes over time.

The precision of entrepreneurs’ estimates of the correlation determines how informative they

find the signals. They learn about the current value of the correlation by observing samples

of past transactions. More transactions lead to larger sample sizes, more precise estimates,

more informativeness of future signals and lower future informational asymmetry. Conversely,

market shutdowns lead to smaller sample sizes, less certainty about the correlation between

signals and quality and more severe informational asymmetry in the future. This can be a

powerful propagation channel by which temporary negative shocks can lead to financial crises

followed by long recessions, in a manner consistent with the evidence in Cecchetti et al. (2009),

Claessens et al. (2009) and Cerra and Saxena (2008).

The learning mechanism in the model formalizes the notion that assets will be more liquid if

they are more familiar and familiarity depends on experience. Accumulated financial experience

is a form of intangible social capital which increases liquidity and reduces frictions in the

investment process. Learning-by-doing in financial markets plays the important role of building

up that capital.

Because investment opportunities are heterogeneous, the distribution of physical investment

across entrepreneurs matters for capital accumulation. Asymmetric information lowers the level

of investment of entrepreneurs with relatively good opportunities, who may decide not to sell

their existing nonlemons due to depressed prices or receive lower prices if they do sell them.
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At the same time, it increases the level of investment of entrepreneurs with relatively poor

investment opportunities, who might decide to undertake them anyway rather than buy assets

from others for fear of receiving lemons. These effects lower the average rate of transformation

of consumption goods into capital goods and thus can be seen as a determinants of endogenous

investment-sector-specific productivity. Shocks to this type of productivity have been found to

be an important driver of output fluctuations in estimated quantitative models by Greenwood

et al. (2000), Fisher (2006) and Justiniano et al. (2008a). Furthermore, Justiniano et al.

(2008b) find that movements in investment-sector productivity are correlated with measures of

the smooth functioning of financial markets, as would be predicted by the model.

Measurement of investment sector productivity depends on accurate measures of capital

formation. If these fail to take into account changes in the the efficiency of investment due

to changes in the degree of informational asymmetry, information effects in one period would

show up as measured Solow residuals in future periods. Thus the movement of implicit tax

wedges in the model can be a source of changes in (measured) TFP or, in the terminology of

Chari et al. (2007), movements in efficiency wedges.

In common with Kiyotaki and Moore (1997), Bernanke and Gertler (1989), Bernanke,

Gertler and Gilchrist (1999) and Carlstrom and Fuerst (1997) among others, financial fric-

tions in my model are sensitive to wealth effects. However, what governs their severity in my

model is not the wealth of financially-constrained investors, since the margin that determines

whether to sell or keep nonlemons is independent of wealth. Instead, the wealth of those who

finance them matters because it governs the demand for assets.

The structure of the model is close to that developed by Kiyotaki and Moore (2005, 2008),

which also features random arrival of investment opportunities, borrowing constraints and

partially illiquid assets. Those papers use a reduced-form model of the limitations on selling

capital and investigate whether this may explain why easier-to-sell assets command a premium.

In contrast, I develop an explicit model of what the sources of these limitations are, which allows

me to investigate how they respond to aggregate shocks. My model also shares some of the

simplifying assumptions of the Kiyotaki-Moore framework, in particular that entrepreneurs

have no labour income and log preferences. One additional simplification that I make is that

physical capital is the only asset. Thanks to this assumption, entrepreneurs’ policy functions

can be found in closed form despite having an infinite dimensional state vector (due to the

continuum of possible signals) and a nonlinear budget set. This makes it possible to derive

most of the qualitative results analytically and to simulate the model at little computational

cost.

Following (Stiglitz and Weiss 1981), adverse selection played an important early role in the

theory of credit markets, although the emphasis was on the riskiness of projects rather than the

quality of assets. Financial market imperfections that arise specifically due to a lemons problem
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in asset quality have recently been studied by Bolton et al. (2009) and Malherbe (2009). These

papers model games where dynamic strategic complementarities can give rise to different types

of equilibria, with more or less severe adverse selection. Instead in my model the equilibrium

is unique so the severity of the lemons problem responds to aggregate shocks in a predictable

way.

The lemons problem in macroeconomic settings has been studied by Mankiw (1986), de Meza

and Webb (1987) and House (2006) among others. Closest to this paper is Eisfeldt (2004). In

her model, entrepreneurs hold different vintages of projects and cannot diversify risks. The

reason financial transactions are desirable is that they enable entrepreneurs to smooth con-

sumption when they suffer poor realizations of income from previous vintages of risky projects.

Thus her paper is about how asymmetric information interferes with risk-sharing whereas mine

is about how it interferes with the financing of investment. On a more technical side, one

limitation of her approach is that it requires keeping track of of the distribution of portfolio

holdings across different vintages of projects, for all entrepreneurs, which makes it necessary to

limit attention to numerical simulations of steady states or simple deterministic cycles, since

stochastic simulations are computationally infeasible.

The idea that economic recessions are associated with reduced learning is explored by Veld-

kamp (2005), van Nieuwerburgh and Veldkamp (2006) and Ordoñez (2009). In these models,

what agents need to learn about is the state of aggregate productivity. The speed of learning

governs how fast output and prices align themselves with fundamentals but the direction of

this alignment is just as likely to be towards higher or lower output. In contrast, in my model

agents learn about parameters of the information structure. More learning alleviates infor-

mational asymmetries, which helps the functioning of financial markets for any given level of

productivity. Another difference is that in my model the activity which generates information

is selling projects rather undertaking them. Since the volume of financial transactions can be

very volatile, this opens the door to strong learning effects.

The rest of the paper is organized as follows. Section 2 introduces the model and section

3 and describes frictionless benchmarks. Section 4 describes the equilibrium conditions under

asymmetric information and contains the results for the model without signals. Section 5

contains the extension of the model with signals and learning. Section 6 offers some brief final

remarks. Proofs are collected in Appendix B.

2 The environment

Households. There are two kinds of agents in the economy, workers and entrepreneurs. There

is a continuum of mass L of identical workers, each of whom supplies one unit of labour

inelastically; they have no access to financial markets, so they just consume their wage. In
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addition, there is a continuum of mass one of entrepreneurs, indexed by j, who have preferences

E

∞
∑

t=0

βtu(cj
t)

with u(cj
t) = log(cj

t). They do not work.

Technology. Final output (coconuts) is produced combining capital and labour. The capital

stock consists of projects owned by entrepreneurs. Entrepreneur j’s holdings of projects are

denoted kj
t so the aggregate capital stock is Kt =

∫

kj
tdj. Every period a fraction λ of projects

becomes useless or “lemons”. Each entrepreneur’s holdings of projects is sufficiently well di-

versified that the proportion λ applies at the level of the individual entrepreneur as well. Each

of the (1 − λ)Kt projects that do not become lemons is used for production, so that output

is Yt = Y ((1 − λ)Kt, L; Zt), where Y is a constant-returns-to-scale production function that

satisfies Inada conditions and Zt is exogenous productivity. The marginal product of capital

and labour are denoted YK and YL respectively.

The aggregate resource constraint is

Lcw
t +

∫

(

cj
t + ijt

)

dj ≤ Y ((1 − λ)Kt, L; Zt) (1)

where cw
t denotes consumption per worker, cj

t is consumption by entrepreneur j and ijt represents

physical investment by entrepreneur j.

Physical investment is undertaken in order to convert coconuts into projects for period

t + 1. Each entrepreneur can transform coconuts into projects using an idiosyncratic linear

technology with a stochastic marginal rate of transformation Aj
t . In addition, each nonlemon

project turns into γ projects at t + 1, so it is possible to interpret 1 − γ (1 − λ) as an average

rate of depreciation. Aggregate capital accumulation is given by

Kt+1 = γ (1 − λ)Kt +

∫

ijtA
j
tdj (2)

Aj
t is iid across entrepreneurs and across periods and is drawn from a distribution F with finite

mean.

Allocations. The exogenous state of the economy is zt ≡
{

Zt, Āt

}

. It includes productivity

Zt and the function Āt, which maps each entrepreneur to a realization of Aj
t . An allocation

specifies consumption and investment for each agent in the economy and aggregate capital after

every history: {cw (zt) , cj (zt) , ij (zt) , K (zt)}. An allocation is feasible if it satisfies constraints

(1) and (2) for every history given some K0.

Information. At time t each entrepreneur knows which of his own projects have become

6



lemons in the current period, but the rest of the agents in the economy do not. In section

5, I augment the model by allowing for publicly observable signals about individual projects.

Informational asymmetry lasts only one period. At t + 1, everyone is able to identify the

projects that became lemons at t, so they effectively disappear from the economy, as illustrated

in figure 1. This assumption is made for simplicity as it eliminates the need to keep track

of projects of different vintages. Daley and Green (2009) study the strategic issues that arise

when informational asymmetries dissipate gradually over time.

Nonlemon
enters Yt(·)

Lemon

1 − λ

λ

1 − λ
λ

Period t Period t + 1

Lemon

Nonlemon
enters Yt+1(·)

1 project

γ projects

project disappears

Figure 1: Information about a project over time

The investment opportunity Aj
t is and remains private information to entrepreneur j.

3 Symmetric information benchmarks

3.1 Complete Arrow-Debreu markets

Suppose zt and the quality of individual projects were public information and there were com-

plete competitive markets. The price of lemons will be zero so it is enough to focus on factor

markets and trades of coconuts for nonlemons and state-contingent claims.

Factor markets are competitive. Entrepreneurs hire workers at a wage of w (zt) = YL (zt)

coconuts and obtain dividends of r (zt) = YK (zt) coconuts for each nonlemon project.1 Co-

conuts are traded for nonlemon projects, ex-dividend, at a spot price of pNL(zt) coconuts per

nonlemon project. State-contingent claims are traded one period ahead: the state-price density

for obtaining a coconut in history (zt, zt+1) is ρ(zt, zt+1).

An entrepreneur who starts with kj
0 projects solves the following program:

1 As is standard, this could be the result of competitive firms renting capital from entrepreneurs or of
entrepreneurs operating the productive technology themselves. With asymmetric information, the latter inter-
pretation avoids the need to analyze adverse selection in the rental market.
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max
{c(zt),k(zt),dNL(zt),b(zt,zt+1),i(zt)}

E

∞
∑

t=0

βtu
(

c
(

zt
))

(3)

s.t.

c
(

zt
)

+ i
(

zt
)

+ pNL(zt)dNL

(

zt
)

+ E
[

ρ
(

zt, zt+1

)

b
(

zt, zt+1

)]

≤ r
(

zt
)

(1 − λ) k
(

zt
)

+ b
(

zt−1, zt

)
(4)

k
(

zt, zt+1

)

= γ
[

(1 − λ) k
(

zt
)

+ dNL

(

zt
)]

+ Aj (zt) i
(

zt
)

(5)

i
(

zt
)

≥ 0, dNL(zt) ≥ −(1 − λ)k(zt) (6)

lim
t→∞

E

[

b(zt)
t−1
∏

s=0

ρ(zs, zs+1)

]

≥ 0 (7)

Constraint (4) is the entrepreneur’s budget constraint in terms of coconuts. The en-

trepreneur’s available coconuts are equal to the dividends from his nonlemons r (zt) (1 − λ)

k (zt) plus net state-contingent coconuts bought the previous period b (zt−1, zt). These are

used for consumption plus physical investment plus net purchases of nonlemons dNL (zt) plus

purchases of state-contingent coconuts for period t + 1. Constraint (5) keeps track of the en-

trepreneur’s holdings of projects. k (zt, zt+1), the total number of projects the entrepreneur

has in history (zt, zt+1), is equal to the nonlemon projects he owned at the end of period zt,

which were (1 − λ) k (zt)+dNL (zt), and have grown at rate γ plus the projects that result from

his physical investment in the previous period, Aj (zt) i (zt). Constraint (6) states that invest-

ment must be nonnegative and sales of nonlemons are limited by the number of nonlemons the

entrepreneur owns. Constraint (7) is a no-Ponzi condition.

The first order conditions with respect to i (zt) and dNL (zt) imply

Aj (zt) ≤
γ

pNL (zt)
, with equality if i

(

zt
)

> 0 (8)

Let Amax be the highest possible value of A. By the law of large numbers, at each history

there will be an entrepreneur (the best entrepreneur) with Aj = Amax who can transform each

coconut into Amax projects at t + 1.2 Equation (8) then implies that pNL (zt) = γ

Amax for all zt.

At each history, the best entrepreneur is the only one to undertake physical investment. He

finances this investment by selling claims to coconuts one period ahead (i.e. borrowing) which

he then satisfies with the dividends plus proceeds of selling the newly created projects in the

spot market. Since r (zt) is stochastic, capital is a risky asset, and the best entrepreneur will

2With a continuous F there will be a zero measure of best entrepreneurs, but a positive measure of en-
trepreneurs with Aj ∈ (Amax − δ, Amax] for any positive δ. The results below follow from taking the limit as
δ → 0.
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use state-contingent securities to share this risk with the rest of the entrepreneurs. Complete

markets imply that risk-sharing will be perfect.

Complete markets are actually not indispensable for achieving the complete markets allo-

cation. All that is needed is that there exist a market for selling new projects at the same

instant that they are built, before anyone knows whether they will become a lemon the follow-

ing period. In equilibrium these new projects will trade at a price pNEW (zt) = 1
Amax , the best

entrepreneur will be the only one to invest and entrepreneurs will bear no idiosyncratic risk.

Their only asset in any given period will consist of projects, so they will automatically share

aggregate risk in proportion to their wealth. Since they have identical homothetic preferences,

this coincides with what they would do with complete markets.

Proposition 1. If there are complete markets, all the physical investment is undertaken by the

entrepreneur with Aj = Amax; all entrepreneurs obtain a return of Amax projects per coconut

saved and they bear no idiosyncratic risk. The same allocation is obtained if the only market

that exists is for newly-created projects.

The aggregate economy behaves just like an economy where the rate of transformation of

coconuts into projects is fixed at Amax, there is a representative entrepreneur and workers are

constrained to live hand-to-mouth. Due to log preferences, it is straightforward to compute the

entrepreneur’s consumption choice, which will be given by

cj
(

zt
)

= (1 − β) (1 − λ)
[

YK

(

zt
)

+
γ

Amax

]

kj(zt) (9)

and hence aggregate capital accumulation will be:3

K
(

Zt, Zt+1

)

= β (1 − λ)
[

AmaxYK

(

Zt
)

+ γ
]

K
(

Zt
)

(10)

3.2 Borrowing constraints with symmetric information

For various reasons, it may be difficult for an entrepreneur to borrow against his future wealth,

i.e. to choose negative values of b (zt, zt+1). For instance, he may be able to run away with

his wealth rather than honouring his debts.4 Creditors’ main means of enforcing their claims

is the threat to seize the entrepreneur’s assets. In other words, the entrepreneur’s assets serve

as collateral for any obligations he undertakes. Kiyotaki and Moore (2008) point out that it

is important to distinguish between assets that are already in place at the time the financial

transaction is initiated and those that are not, since the latter are harder for creditors to keep

3Equations (9) and (10) assume that the nonnegativity of aggregate investment is not binding. Otherwise
cj(zt) = YK(zt)kj(zt) and K (Zt, Zt+1) = γ(1 − λ)K(Zt).

4Alternatively, he could refuse to exert effort if he has pledged the output to someone else, as in Holmström
and Tirole (1998).
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track of and subject to more severe moral hazard problems. In what follows I make the extreme

assumption that entrepreneurs can costlessly run away with coconuts and hide new projects

from their creditors, which makes them useless as collateral. However, they cannot hide projects

that already exist a the time the transaction is initiated. These constitute the only form of

collateral.

Collateralized financial transactions could take many forms. However, in this model the

future payoffs of current nonlemon projects are binary: either they become a lemon at t + 1

or they do not. Any financing transaction must therefore have zero repayment if the project

becomes a lemon and positive repayment otherwise. If there is no aggregate risk, this makes

selling the asset and using it as collateral for borrowing exactly equivalent.5 Selling is sim-

pler to model, so I assume that the only kind of transaction is ex-dividend sales of existing

projects. This is intended to represent the wider range of transactions that use existing assets

as collateral.6

The entrepreneur will solve program (3), with the added constraint:

b
(

zt, zt+1

)

≥ 0 (11)

Constraint (11) will bind for the best entrepreneur. As a result, he will not be able to

undertake all the investment in the economy. Instead, there will be a cutoff A∗ (zt) = γ

pNL(zt)

such that entrepreneurs with Aj (zt) < A∗ (zt) will not invest and entrepreneurs with Aj (zt) >

A∗ (zt) will sell all their existing nonlemons in order to obtain coconuts for investment.

This equilibrium is inefficient in two related ways. First, the economy does not exclusively

use the most efficient technology (Amax) for converting coconuts into projects. The best en-

trepreneur is financially constrained and thus unable to invest all the coconuts the economy

saves, so others with Aj ∈ (A∗ (zt) , Amax) also undertake physical investment. Secondly, en-

trepreneurs are exposed to idiosyncratic risk. If they draw a low value of Aj, they must convert

their coconuts into projects through the market, which only provides a return A∗ (zt), whereas

if they draw a higher value they convert them at a rate Aj (zt).

4 Asymmetric information

Assume, as in section 3.2, that the only transactions in financial markets are sales of existing

projects. However, now there is asymmetric information: only the owner of a project knows

whether it is a lemon, and each entrepreneur observes only his own Aj . Those who purchase

5If there is aggregate risk, selling the asset is equivalent to state-contingent borrowing proportional to the
value that the asset would have in each state of the world if it does not become a lemon.

6In Kurlat (2009) I study the case of a general joint distribution of asset qualities and investment opportu-
nities and allow for arbitrary contracts.
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projects have rational expectations about λM (zt), the proportion of lemons among the projects

that are actually sold in the market.7

With asymmetric information, entrepreneurs do not observe the state of the economy zt =
{

Zt, Āt

}

because they do not observe the mapping Āt. Instead, they observe an individual

state zj
t ≡

{

Zt, A
j
t

}

which includes aggregate productivity Zt and their own idiosyncratic

investment-productivity draws. Fortunately, the endogenous aggregate variables r, p and λM

that are relevant for the entrepreneur’s decisions depend only on the history of productivity

Zt, which is part of the entrepreneur’s information set and hence the entrepreneur’s problem

can be specified in terms of the history of individual states zj,t. An entrepreneur who starts

with kj
0 projects solves the following program:

max
{c(zj,t),k(zj,t,z

j
t+1),i(zj,t),sL(zj,t),sNL(zj,t),d(zj,t)}

E

∞
∑

t=0

βtu
(

c
(

zj,t
))

(12)

s.t.

c
(

zj,t
)

+ i
(

zj,t
)

+ p
(

Zt
) [

d
(

zj,t
)

− sL

(

zj,t
)

− sNL

(

zj,t
)]

≤ r
(

Zt
)

(1 − λ) k
(

zj,t
)

k
(

zj,t, zj
t+1

)

= γ
[

(1 − λ) k
(

zj,t
)

+
(

1 − λM
(

Zt
))

d
(

zj,t
)

− sNL

(

zj,t
)]

+ Aj
(

zj
t

)

i
(

zj,t
)

i
(

zj,t
)

≥ 0, sL

(

zj,t
)

∈
[

0, λk
(

zj,t
)]

, sNL

(

zj,t
)

∈
[

0, (1 − λ) k
(

zj,t
)]

, d
(

zj,t
)

≥ 0

Program (12) incorporates the borrowing constraint (11) and the fact that the price p (Zt)

applies equally for sales of lemons sL (zj,t), sales of nonlemons sNL (zj,t) and purchases of

projects of unknown quality d (zj,t), a proportion λM (Zt) of which turn out to be lemons.

I will look for a recursive competitive equilibrium with X ≡ {Z, Γ} as a state variable,

where Γ(kt, At) is the cumulative distribution of entrepreneurs over holdings of capital and in-

vestment opportunities.8 The relevant state variable for entrepreneur j’s problem is {kj , Aj, X}

so (dropping the j superscript) he solves the following recursive version of program (12):

7One might still ask why an entrepreneur cannot sell claims against his entire portfolio of projects (by the
law of large numbers, he is not asymmetrically informed about it) instead of selling them individually. Kiyotaki
and Moore (2003) assume that it is possible to credibly bundle all of one’s projects by paying some cost. I
assume this cost is prohibitively large.

8Since Aj is iid, then it is independent of kj and Γ is just the product of F and the distribution of k. The
more general formulation could easily accommodate the case where an entrepreneur’s individual Aj has some
persistence, which would create some correlation between kj and Aj .
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V (k, A, X) = max
c,k′,i,sL,sNL,d

[u (c) + βE [V (k′, A′, X ′) |X]] (13)

s.t.

c + i + p (X) [d − sL − sNL] ≤ r (X) (1 − λ) k

k′ = γ
[

(1 − λ) k +
(

1 − λM (X)
)

d − sNL

]

+ Ai

i ≥ 0, d ≥ 0

sL ∈ [0, λk] , sNL ∈ [0, (1 − λ) k]

Denote the solution to this program by {c (k, A, X) , k′ (k, A, X) , i (k, A, X) , sL (k, A, X) ,

sNL (k, A, X) , d (k, A, X)} and define the supply of lemons and nonlemons, total supply of

projects and demand of projects respectively as

SL (X) ≡

∫

sL (k, A, X) dΓ(k, A)

SNL (X) ≡

∫

sNL (k, A, X) dΓ(k, A)

S (X) ≡ SL (X) + SNL (X)

D (X) ≡

∫

d (k, A, X) dΓ(k, A)

Definition 1. A recursive competitive equilibrium consists of prices {p (X) , r (X) , w (X)};

market proportions of lemons λM (X); a law of motion Γ′(X) and associated transition density

Π (X ′|X); a value function V (k, A, X) and decision rules {cw (X) , c (k, A, X) , k′ (k, A, X) ,

i (k, A, X) , sL (k, A, X) , sNL (k, A, X) , d (k, A, X)} such that (i) factor prices equal marginal

products: w (X) = YL (X), r (X) = YK (X); (ii) workers consume their wage cw (X) =

w (X); (iii) {c (k, A, X), k′ (k, A, X), i (k, A, X), sL (k, A, X), sNL (k, A, X), d (k, A, X)} and

V (k, A, X) solve program (13) taking p (X), r (X), λM (X) and Π (X ′|X) as given; (iv) the

market for projects clears: S (X) ≥ D (X), with equality whenever p (X) > 0; (v) the mar-

ket proportion of lemons is consistent with individual selling decisions: λM (X) = SL(X)
S(X)

and

(vi) the law of motion of Γ is consistent with individual decisions: Γ′(k, A)(X) =
∫

k′(k̃,Ã,X)≤k

dΓ(k̃, Ã) F (A)

4.1 Solution of the entrepreneur’s problem and equilibrium condi-

tions

I solve the entrepreneur’s problem and find equilibrium conditions in steps. First I show that

all the policy functions are linear in k, which implies an aggregation result. Second I show

12



that, given choice of c and k′, the choices of d, sL, sNL and i reduce to a simple arbitrage

condition. Third I solve a relaxed problem, converting the entrepreneur’s nonlinear budget set

into a weakly larger linear one and show that there is a simple static characterization of the

consumption-savings decision. Based on the solution to the relaxed problem it is possible to de-

rive supply, demand and a market clearing condition. Finally I show that the equilibrium price

must satisfy the market-clearing condition whether or not the solutions to the two programs

coincide. In either case the rest of the equilibrium objects follow immediately.

Linearity of policy functions. The constraint set in program (13) is linear in k and the

utility function is homothetic. Hence the policy functions c (k, A, X), k′ (k, A, X), i (k, A, X),

sL (k, A, X), sNL (k, A, X) and d (k, A, X) are all linear in k. This implies the following aggre-

gation result:

Lemma 1. Prices and aggregate quantities do not depend on the distribution of capital holdings,

only on total capital K.

By Lemma 1, {Z, K} is a sufficient state variable; in order to compute aggregate quantities

and prices it is not necessary to know the distribution Γ.

Buying, selling and investing decisions. Take the choice of k′ as given. The entrepreneur’s

problem then reduces to choosing d, sL, sNL and i to maximize c. This program is linear so

the entrepreneur will generically choose corner solutions. The decision to keep or sell lemons

is trivial: as long as p > 0 the entrepreneur will sell the lemons (sL = λk), since they are

worthless to him if kept. The decisions to keep or sell nonlemons and to invest in new projects

or in purchasing projects depend on A. The return (i.e. the number of t + 1 projects obtained

per coconut spent) from buying projects is AM ≡
γ(1−λM)

p
. I refer to this as the market rate

of return.9 Conversely, the number of t + 1 nonlemon projects an entrepreneur must give up

to obtain one coconut is γ

p
> AM . The return on investing is simply A. This implies that the

optimal choices of d, sNL and i are given by two cutoffs, shown in figure 2.

Aγ

p
AM ≡ γ(1−λM )

p

Buyer:
Keep nonlemons

Buy projects

Keeper:
Keep nonlemons

Invest

Seller:
Sell nonlemons

Invest

Figure 2: Buying, selling and investing decision as a function of A

Suppose first that k′ > γ (1 − λ) k so the entrepreneur wants to save more than by just

keeping his nonlemons. For A < AM , entrepreneurs are Buyers: the return from buying is

9Noting, however, that it involves two different goods (projects and coconuts) as well as two different dates.
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greater than the return from investing so i ≥ 0 and sNL ≥ 0 bind and d > 0. For A ∈ [AM , γ

p
]

entrepreneurs are Keepers: investing offers a higher return than buying but not higher than

the opportunity cost of selling nonlemons at the market price, so the entrepreneur neither buys

projects nor sells nonlemons; d ≥ 0 and sNL ≥ 0 bind and i > 0. For A > γ

p
entrepreneurs are

Sellers: the return from investing is high enough for the entrepreneurs to sell nonlemons in order

to finance investment; d ≥ 0 and sNL ≤ (1 − λ) k bind and i > 0. If instead k′ < γ (1 − λ) k

(which by lemma 4 below is inconsistent with equilibrium), then Buyers and Keepers would

choose i = d = 0 and sNL > 0 while Sellers would choose d = 0, sNL = (1 − λ) k and i > 0.

Combining these arbitrage conditions with the constraint from program (13) yields the following

lemma:

Lemma 2. Given k′, the optimal d, sL, sNL and i are given by

Buyers: A ∈
[

0, AM
]

Keepers: A ∈
(

AM , γ

p

]

Sellers: A ∈
(

γ

p
,∞
)

sL = λk λk λk

d = max
{

k′−γ(1−λ)k
γ(1−λM )

, 0
}

0 0

sNL = max
{

γ(1−λ)k−k′

γ
, 0
}

max
{

γ(1−λ)k−k′

γ
, 0
}

(1 − λ) k

i = 0 max
{

k′−γ(1−λ)k
A

, 0
}

k′

A

(14)

Consumption-savings decision under a relaxed budget set. An entrepreneur with investment

opportunity is A must choose c
k

and k′

k
from his budget set, shown in figure 3.

x

c
k

k′

k

(1 − λ)r
+λp

(1 − λ)r
+p

Buyer

Keeper

Seller

(1 − λ)γ

A[(1 − λ)r + p]

(1 − λ) γ+
[(1 − λ) r + λp]AM

(1 − λ) γ+
[(1 − λ) r + λp]A

Figure 3: Budget sets

Point x represents an entrepreneur who chooses sL = λk and i = sNL = d = 0, an option

14



available to all entrepreneurs. He simply consumes the dividends (1 − λ) rk and the proceeds

from selling lemons λpk, and enters period t + 1 with (1 − λ) γk projects.

Consider first the decision of a Keeper. If he wishes to increase consumption beyond point

x he must sell nonlemons, which means giving up γ

p
projects for each additional coconut of

consumption. If instead he wishes to carry more projects into t+1, he invests with productivity

A. Hence the budget constraint is kinked: to the right of x the slope is −γ

p
whereas to the left

it is −A. Consider next a Buyer. His budget set is the same as for the Keeper except that the

return he obtains from saving beyond point x is the market return AM , which is higher than

his individual return on investment A but lower than that of Keepers. Lastly, a Seller will sell

all his projects and his budget constraint is linear with constant slope −A.

Define the entrepreneur’s virtual wealth as

W (k, A, X) ≡

[

λp (X) + (1 − λ)

(

r (X) + max

{

p (X) ,
γ

max {A, AM(X)}

})]

k (15)

Virtual wealth corresponds to to the projection of the left half of the budget constraint onto

the horizontal axis. It consists of the coconuts the entrepreneur has (dividends plus proceeds of

selling lemons) plus the nonlemon projects, valued at the maximum of either their sale price p or

their replacement cost γ

max{A,AM (X)}
. The linear budget set k′

k
≤ max

{

A, AM (X)
}

[

W (k,A,X)
k

− c
k

]

is weakly larger than the true kinked budget, so substituting it in program (13) leads to the

following relaxed program:

V (k, A, X) = max
c,k′

[u (c) + βE [V (k′, A′, X ′) |X]] (16)

s.t.

k′ = max
{

A, AM (X)
}

[W (k, A, X) − c]

Lemma 3. Under the relaxed program (16), the entrepreneur’s consumption is c (k, A, X) =

(1 − β)W (k, A, X)

Due to logarithmic preferences, entrepreneurs will always choose to consume a fraction

1 − β of their virtual wealth and save the remaining β, by some combination of keeping their

old nonlemons, buying projects and physical investment. Note that the entrepreneur’s decision,

while rational and forward looking, does not depend on the transition density Π (X ′|X) or on

the stochastic process for A. This feature will make it possible to solve for the equilibrium

statically.

Supply and demand under the relaxed program. Take p as given. By (14), the supply of
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projects will include all the lemons plus the nonlemons from Sellers. Hence

S (p) =

[

λ + (1 − λ)

(

1 − F

(

γ

p

))]

K (17)

This implies a market proportion of lemons of

λM (p) =
λ

λ + (1 − λ)
(

1 − F
(

γ

p

)) (18)

and a market rate of return of:10

AM (p) =
γ

p

(

1 − λM (p)
)

=
γ

p

(1 − λ)
(

1 − F
(

γ

p

))

λ + (1 − λ)
(

1 − F
(

γ

p

)) (19)

Demand for projects will come from Buyers. By Lemma 3, under the relaxed program they

choose k′ =βAMW
(

k, AM , X
)

. By Lemma 2, they each demand k′−γ(1−λ)k
γ(1−λM )

projects. Using

(15) and adding over all Buyers, demand for projects will be:

D (p) =

(

β

[

λ + (1 − λ)
r

p

]

−
(1 − β) (1 − λ)

1 − λM (p)

)

F
(

AM (p)
)

K (20)

Market clearing implies

S(p∗) ≥ D(p∗) with equality whenever p∗ > 0 (21)

Equilibrium conditions under the true program.

Lemma 4. D > 0 only if the solutions to programs (13) and (16) coincide for all entrepreneurs

The solutions to programs (13) and (16) will not coincide whenever in the relaxed program,

some entrepreneurs wish to choose points to the right of x. Lemma 4 states that if this is the

case there will be no demand for projects and the price must be zero.

This implies the following result:

Proposition 2.

1. In any recursive equilibrium, the function p (X) satisfies (21) for all X

2. For any p(X) that satisfies (21), there exists a recursive competitive equilibrium where

the price is given by p(X)

10Define A(0) ≡ 0.
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3. There exists at least one function p(X) that satisfies (21)

Proposition 2 establishes that a recursive equilibrium exists and must satisfy (21) regardless

of whether or not the solutions to programs (13) and (16) coincide. Therefore it is possible to

find equilibrium prices statically simply by solving (21). Once p∗ is determined, it is straight-

forward to solve, also statically, for the rest of the equilibrium objects. λM and AM follow

from (18) and (19). If p∗ > 0 then virtual wealth and, by Lemma 3, consumption for each

entrepreneur can be found using (15) and sL, sNL, d and i are given by (14). If instead the

only solution to (21) is p∗ = 0, I refer to the situation as one of market shutdown. It is still

possible to solve the relaxed problem (16), which results in

k′ = β (1 − λ) (Ar + γ) k

This satisfies k′ ≥ γ (1 − λ) k iff A ≥ Ā ≡ γ

r

(1−β)
β

. Hence for entrepreneurs with A ≥ Ā,

consumption and investment can be computed in the same way as when the market does not

shut down whereas entrepreneurs with A < Ā chose c = (1 − λ) rk and k′ = γ (1 − λ) k.

Aggregate capital accumulation is found by replacing the equilibrium values of i into the

law of motion of capital (2),11 yielding

K ′

K
= γ (1 − λ) +

∫
γ
p

AM

[βA [λp + (1 − λ) r] − (1 − β) (1 − λ) γ] dF (A) (22)

+

∫ ∞

γ
p

βA [p + (1 − λ) r] dF (A)

In general, the market return AM (p) can be either increasing or decreasing in p. An increase

in the price has a direct effect of lowering returns by making projects more expensive and an

indirect effect of improving returns by increasing the proportion of entrepreneurs who choose to

sell their nonlemons. This implies that there could be more than one solution to (21). In this

case, I will assume that the equilibrium price is given by the highest solution. More worryingly,

there could exist a price p′ > p∗ such that AM (p′) > AM (p∗) even when p∗ is the highest solution

to (21). This will be the case when selection effects are strong enough that the return from

buying projects would be higher at a price higher than the highest market-clearing one. Both

Buyers and Sellers would be better off if there was sufficient demand to sustain such a price.

Stiglitz and Weiss (1981) argue that when this is the case the equilibrium concept used above

is not reasonable and it would be more sensible to assume that Buyers set a price above p∗ that

maximizes their return and ration the excess supply. Appendix A discusses how the definition

of equilibrium may be adapted to allow for rationing, a change that makes little difference

for the results. In section 5, I consider signals that segment the market into a continuum of

11By Walras’ Law, it is equivalent to just sum k′(k, A, X) over all entrepreneurs.
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different submarkets. In that variant there exists a unique equilibrium in which Buyers can

never benefit from raising prices in any submarket (see Lemma 7), so the issue of what is the

right equilibrium concept becomes moot, a point first made by Riley (1987) in the context of

the Stiglitz-Weiss model.12 For some of the results below, it will simplify the analysis to simply

assume that parameters are such that the issue does not arise:

Assumption 1. AM(p) is decreasing

A sufficient condition for Assumption 1 to hold is h (x) ≤ 1
x

[

1 + 1−λ
λ

(1 − F (x))
]

for all x,

where h is the hazard function of A. Results do not rely on Assumption 1 unless otherwise

stated.

4.2 Liquidity/Risk Premia

Entrepreneurs in the model do not face a portfolio problem. If an entrepreneur wishes to

carry wealth from one period to the next, the only way to do it is to buy or build projects.

For each coconut he saves, he obtains max
{

A, AM
}

projects at t + 1. By (15), Wk(A, X) =

λp (X) + (1 − λ)
(

r (X) + max
{

p (X) , γ

max{A,AM (X)}

})

is the marginal value of a project, so

saving one coconuts yields the equivalent of a (risky) amount of max
{

A, AM
}

Wk (A′, X ′)

coconuts at t + 1. It is possible to define the implicit risk-free rate Rf for a given entrepreneur

by assuming he has access to an alternative safe technology that converts t-dated coconuts into

t + 1-dated coconuts (and hence faces a portfolio problem) and asking what the return on that

technology would need to be for him not to change his equilibrium decisions.

Formally, consider an entrepreneur who has access to a technology that delivers R coconuts

tomorrow in exchange for a coconut today. The entrepreneur solves:13

V (W, A, X) = max
c,π,W ′

[u (c) + βE [V (W ′, A′, X ′) |X]]

s.t.

W ′ =
[

π max
{

A, AM
}

Wk (A′, X ′) + (1 − π)R
]

(W − c)

π ∈ [0, 1]

where π is the fraction of his savings W − c that he invests in projects. Define Rf (A, X) as the

maximum value of R such that π = 1 is optimal given {A, X}.

Proposition 3.

12In their terminology, there will be redlining (exclusion of arbitrarily similar yet distinct groups) but not
pure rationing (partial exclusion of observationally identical projects).

13This is the relaxed program. Proposition 3 below easy generalizes to the case where this does not necesarily
coincide with the full program.
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1. Rf (A, X) < max
{

A, AM
}

E [Wk (A′, X ′)] for all {A, X}

2. Under symmetric information and deterministic X ′, then Rf = max
{

A, AM
}

E [Wk (A′, X ′)]

Proposition 3 states that for any entrepreneur the implicit risk free rate is lower than the

expected return (measured in coconuts) of investing in projects. This premium arises because

Wk is decreasing in A. The higher an entrepreneur’s investment productivity, the lower the

marginal value he places on an existing project. Furthermore, Lemma 3 implies that agents

who value projects the least also consume less, so project valuation is negatively correlated

with the marginal utility of consumption. The premium would disappear under symmetric

information as agents trade away their different relative valuations for projects.

Kiyotaki and Moore (2008) obtain a similar result by assuming that resaleability constraints

prevent entrepreneurs from reselling a fraction of their projects. Here instead the difference

between the values placed on projects by entrepreneurs with different investment opportunities

is derived endogenously as a result of asymmetric information.

4.3 Equivalence with an economy with taxes

As shown in figure 2, asymmetric information introduces a wedge between the return obtained

by Buyers, AM , and the return given up by Sellers of nonlemons, γ

p
. The magnitude of this

wedge depends on λM (X). It turns out that this wedge is exactly isomorphic to the wedge

that would be introduced by imposing state-dependent taxes on the sales of projects.

Consider the economy with borrowing constraints and symmetric information of section 3.2,

but now assume that the government imposes an ad-valorem tax of τ (X) p coconuts on sales

of projects. The total revenue T (X) = τ(X)p(X)S(p(X)) collected from this tax is rebated

to entrepreneurs in proportion to their capital holdings. Entrepreneurs solve the following

program:

V (k, A, X) = max
c,k′,i,sNL,d

[u (c) + βE [V (k′, A′, X ′) |X]] (23)

s.t.

c + i + p (X) [d (1 + τ (X)) − sNL] ≤ r (X) (1 − λ) k + T (X)

k′ = γ [(1 − λ) k + d − sNL] + Ai

i ≥ 0, d ≥ 0

sNL ∈ [0, (1 − λ) k]

This problem can be solved by the same steps used to solve program (13). Solving for the

equilibrium conditions leads to the following equivalence result.
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Proposition 4. Suppose τ (X) = λM∗(X)
1−λM∗(X)

, where λM∗ (X) is the equilibrium value of the

asymmetric information economy. Then prices and allocations of the symmetric-information-

with-taxes and the asymmetric information economies are identical.

By Proposition 4, the distortionary effect of having a proportion λM of lemons in the market

is exactly equivalent to the one that would result from a tax at the rate τ = λM

1−λM . Moreover,

asymmetric information gives all entrepreneurs the possibility of earning λpk coconuts from

selling lemons to others. This has an exact counterpart in the pro-rata redistribution of the

government’s revenue.

Chari et al. (2007) propose a way to decompose economic fluctuations into the movements

of an efficiency wedge, a labour wedge, an intertemporal wedge and a government spending

wedge. The implicit taxes that result from asymmetric information do not translate neatly into

a single one of these wedges. They distort both the consumption-saving decision (resulting in an

intertemporal wedge) and the allocation of investment across different entrepreneurs (resulting

in an efficiency wedge). Furthermore, the model would have an intertemporal wedge even

under symmetric information due to borrowing constraints and the fact that workers do not

participate in asset markets.

It is reasonably simple to analyze the effects of exogenous changes in tax rates. This will

be useful when looking at the economy with asymmetric information because Proposition 4

implies these are exactly isomorphic to the effects of endogenous changes in λM .

Lemma 5. For any state X

1. dp

dτ
< 0

2. dAM

dτ
< 0

3. dK ′

dτ

∣

∣

τ=0
< 0

An increase in taxes increases the wedge between AM and γ

p
. Parts 1 and 2 of Lemma 5 es-

tablish that this increase in the wedge manifests itself through both lower returns for Buyers and

lower prices for Sellers. Both of these effects tend to lower capital accumulation. In addition,

taxes have the effect of redistributing resources from Buyers and Sellers to all entrepreneurs,

including Keepers. As with any tax, the relative incidence on Buyers and Sellers depends on

elasticities. For small enough τ , the elasticities of supply and demand are mechanically linked,

as the density of marginal Buyers, f
(

AM
)

, approaches that of marginal Sellers, f
(

γ

p

)

. Part

3 of Lemma 5 establishes that in this case the redistributive effect always goes against the

higher-A agents, reinforcing the effect of lower capital accumulation.14

14For τ away from zero, it is possible to construct counterexamples where f
(

γ
p

)

is much higher than f
(

AM
)

,
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4.4 Comparative statics and aggregate shocks

The equilibrium conditions derived in section 4.1 are static. This feature is a consequence of

assuming that entrepreneurs have log preferences, no labour income and a single asset to invest

in. This simplifies the analysis of the effects of aggregate shocks. In particular, it implies that

shocks will have the same effects whether or not they are anticipated. Thus by answering the

comparative statics question “how would the features of the model change if a parameter were

different?” one also answers the impulse response question “how would the economy respond

to a shock to one of the parameters?”

Consider first the effects of a productivity shock. It makes a difference in this model whether

the shock affects primarily the coconut-producing capacity of the economy or its project-

producing capacity. Suppose first that there is a proportional shock to coconut-productivity.

This would affect the equilibrium conditions through its effect on the marginal product of cap-

ital r = YK . Its effects can therefore be understood through comparative statics with respect

to r.

Proposition 5. If in equilibrium p∗ > 0 then

1. p∗ is increasing in r.

2. Under Assumption 1, AM∗ is decreasing in r.

3. λM∗ is decreasing in r.

4. Under Assumption 1, K ′

K
is increasing in r

Favourable shocks will mean that entrepreneurs receive higher current dividends and hence

hold a larger number of coconuts. Other things being equal, entrepreneurs would want to save

a fraction β of the additional coconuts. Sellers and Keepers would do so through physical

investment but Buyers would attempt to buy more projects, thus bidding up the price (part 1)

and lowering returns (part 2). Note that it is not productivity per se that matters but rather the

effect of the productivity shock on current dividends. A similar effect would result, for instance,

if there was a temporary shock to the capital share of output leaving total output unchanged or

simply a helicopter drop of coconuts from outside the economy. Part 3 of Proposition 5 has the

important implication that the severity of the lemons problem, as measured by the equivalent

tax wedge τ = λM

1−λM will respond to aggregate shocks. Higher prices persuade marginal Keepers

to sell their nonlemons and therefore a favourable shock to the coconut-producing capacity of

the economy will alleviate the lemons problem.

so supply is much more elastic than demand. In this case it is possible for Sellers to be net beneficiaries of
redistribution, so taxes can conceivably increase capital accumulation. Working in the opposite direction is the
fact that the direct marginal distortion increases with τ .
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Turn now to an investment-productivity shock. This can be represented as a proportional

change in the investment opportunity of every entrepreneur, from A to φA, so that the distri-

bution of A becomes F ′, where F ′ (A) = F
(

A
φ

)

.

Proposition 6.

1. λM∗ is decreasing in φ.

2. Under Assumption 1, K ′

K
is increasing in φ

Proposition 6 implies that higher productivity in the project-producing sector also alleviates

the lemons problem. In this case, the effect comes from the supply side rather than the demand

side. Because physical investment has become more attractive, marginal Keepers decide to sell

their nonlemons, improving the mix of projects.

Propositions 5 and 6 jointly show that positive shocks lessen financial market wedges and

negative shocks worsen them. Liquidity, as measured by (the inverse of) the size of these

wedges, is procyclical.

For negative shocks, the adverse selection effect can be sufficiently strong to lead to a

complete shutdown of financial markets.

Proposition 7.

1. If

max
p

AM (p) <
γ

r

(1 − β)

β
(24)

then the market shuts down

2. Sufficiently large negative shocks to coconut-productivity or project-productivity lead to

market shutdowns

When r is low, entrepreneurs have very few coconuts for each project they own. This raises

the return that is needed to entice Buyers to choose k′ above the kink in figure 3. When

project-productivity is low, the measure of entrepreneurs who are willing to sell nonlemons

at any given price becomes low. λM increases, lowering returns. In either case, if there was

symmetric information, in equilibrium asset prices would drop low enough to increase returns

to the point where Buyers have sufficient demand to clear the market. With asymmetric

information, however, the adverse selection effect places an upper bound on the return AM (p).

If either kind of productivity is low enough, the return that would be needed to have positive

demand for projects is higher than this upper bound and the market shuts down.

It is also possible to analyze shocks whose only effect is due to informational asymmetry.

Consider a temporary increase in λ, compensated by an increase in K such that (1 − λ) K
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remains unchanged. This shock has no effect on the production possibility frontier of the

economy and, with symmetric information, would have no effect on allocations. With asym-

metric information, the fact that there are more lemons mixed in with the nonlemons makes a

difference.

Proposition 8. An simultaneous increase in λ and K that leaves (1 − λ) K unchanged in-

creases λM∗

The increase in λM∗ that results from this type of shock is equivalent to an increase in

taxes, so the results in Lemma 5 regarding the effects on asset prices, rates of return and

capital accumulation can be applied directly.

One interpretation of this type shock may be the following. Suppose every period en-

trepreneurs receive an endowment of ∆λK useless lemons, so the total number of lemons

is (λ + ∆λ) K rather than λK. However, in ordinary times it is possible to tell apart the

endowment-lemons from the nonlemons, so their existence is irrelevant. A shock to λ of the

kind described above is equivalent to entrepreneurs losing the ability to detect endowment-

lemons, a form of deterioration of information. Effects of this sort will play a role in section 5

where I make the quality of information endogenous.

The endogenous response of liquidity has the important consequence of amplifying the re-

sponse of the economy to exogenous shocks. To show this, I compare the responses of economies

with symmetric and asymmetric information to the same exogenous shock. In order to make

sure that the economies are otherwise identical, I assume that in the symmetric information

economy there are (fixed) taxes on transactions at a rate such that, absent the shock, prices

and allocations in both economies would be exactly the same. Denote equilibrium variables in

both economies by the superscripts SI and AI respectively.

Proposition 9.

1. dpAI

dr
> dpSI

dr

2. dAM,SI

dr
< dAM,AI

dr

3. dK ′,AI

dr
> dK ′,SI

dr
for λ small enough

Proposition 9 implies that, in response to a productivity shock which increases r, asym-

metric information amplifies the rise in asset prices, moderates the drop in rates of return and

amplifies the increase in the rate of capital accumulation compared to the symmetric informa-

tion benchmark.

The idea that asset prices may affect productive but financially constrained agents and that

this can amplify shocks is of course not new. What is newer to this model is that, rather than
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being a fixed parameter as in Kiyotaki and Moore (2005, 2008), the degree of illiquidity of assets

itself responds to shocks, which is a related but slightly different channel and is consistent with

the evidence in Eisfeldt and Rampini (2006).

One related prediction of the model is that, because in recessions financial markets work

less well, firms (in the model, entrepreneurs) will rely less on them. Thus in recessions they

will finance a higher proportion of their investment with retained earnings and in expansions

they will rely more on external financing (in the model, selling old projects) in expansions.

This is in contrast to some other models of financial frictions. For instance, in Bernanke and

Gertler (1989), the key to the “financial accelerator” mechanism is that in good times firms

have abundant retained earnings and therefore need to rely less on outside financing.

4.5 Simulations

In this section I compute dynamic examples of the response of the economy to shocks. In order

to highlight the role of asymmetric information, I compare the impulse responses to those of an

economy with a fixed level of taxes on financial transactions such that steady state allocations

are identical.

While I choose parameter values that are close to those used in quantitative models, the

spirit of the exercise is to illustrate the mechanisms underlying the results stated above and

give a rough idea of the potential magnitudes rather than to constitute a quantitatively precise

simulation.

Parameter Value
β 0.94
γ .95
λ 0.05
F (A) Gamma distribution with E (A) = 1 and std (A) = 1.75
Y Z [(1 − λ)K]α L1−α with α = 0.4
L 1
Z 1

Table 1: Parameter values used in simulations

The production function is a standard Cobb-Douglas. The length of the period is approxi-

mately one year. The value of λ is low to make sures that markets do not shut down in steady

state. The values of β and γ lead to a steady-state investment-to-GDP ratio of 0.15 and a

depreciation rate of 0.1. Under these parameters, Assumption 1 holds in the relevant range

where equilibria take place.

In all cases I assume the economy begins at a steady state and is hit by a shock at t = 3.

The first exercise is to simulate a productivity shock in the consumption goods sector lasting
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a single period. Panel 2 of figure 4 shows the response of output to the TFP shock. It rises
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Figure 4: Transitory productivity shock in the consumption goods sector

mechanically at the time of the shock and remains slightly above steady state because of capital

accumulation. Panel 3 shows how capital accumulation responds to the shock, illustrating the

amplifying effect of asymmetric information. Panel 4 illustrates the response of asset prices.

Because the increase in the marginal product of capital increases the supply of savings, these

would rise even with symmetric information; they rise even more because of the selection effect.

The response of the implicit tax rate is shown on panel 5. Panel 6 shows the response of market

rates of return. The increase in the supply of savings drives them down, but selection effects

moderate the effect. After the shock is over at t = 4, the marginal product of capital is slightly

below its steady state level due to diminishing marginal product, so the effects are reversed.

If the productivity shock followed an AR(1) process (with persistence of 0.9), the effects

would be similar to the nonpersistent shock. The main difference is that output in the asym-

metric information economy remains above that of the fixed-tax economy for longer due to the

sum of several periods of more capital accumulation.

The next exercise is to simulate a productivity shock in the investment sector, i.e. a shift

in F (A) of the kind considered in Proposition 6, lasting only one period. The most interesting

difference compared to the standard TFP shock lies in the response of AM and p. The increase

in investment-productivity means that more entrepreneurs wish to sell their assets to obtain

financing. Even with symmetric information, this raises market returns, as shown on panel 6

of figure 6. The selection effect means that this is even stronger with asymmetric information.

With symmetric information, the increase in the supply of assets necessarily lowers asset prices,
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Figure 5: AR(1) productivity shock in the consumption goods sector
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Figure 6: Transitory productivity shock in the investment sector
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as shown on panel 4. With asymmetric information the increase in the proportion of nonlemons

moderates the effect, and for some parameter values could even reverse it.

5 Informative signals and learning

In section 4 I made the extreme assumption that potential buyers do not know anything about

an individual project. In reality there are many sources of information about assets that

potential buyers may consult, such as financial statements and analyst reports. All of these

are imperfect and the degree to which a prospective buyer finds them informative may depend

on his expertise with that particular kind of information. In this section I extend the model

by introducing both imperfect signals of project quality and the learning process by which

expertise in interpreting them is developed. I then examine how the learning process makes

shocks propagate through the economy.

The structure of information is as shown in figure 7.

Nonlemon

Lemon

λ

1 − λ

1 − µl

µl

l, Blue

l, Green

l, Blue

l, Green

1 − µl

µl

Outcome SignalsIndex

l

Figure 7: Information structure

Each project receives a random index l uniformly distributed in [0, 1]. After it has either

become a lemon or not it emits a publicly observable message s ∈ {Blue, Green}.15 A vector µ

governs the conditional probability of emitting each of the two messages for a given index l; µl ≡

Pr [s = Blue|l, Lemon] = Pr [s = Green|l, Nonlemon]. The index l, as well as the messages

Blue or Green are publicly observable, so a signal consists of a pair l, s ∈ [0, 1]×{Blue, Green}.

The amount of information that a signal l, s conveys about project quality depends on µl.

If µl = 1
2
, then the signals are completely uninformative, whereas if µl = 1 or µl = 0, then

15To abstract from issues of strategic release of information, I assume that both the index l and the message
s are beyond the entrepreneur’s control.
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they perfectly communicate the project’s quality. In general, the quality of information (as

measured for instance by the mutual information) is a monotonic function of |µl −
1
2
|.

Signals have the effect of segmenting the market into a continuum of separate submarkets,

with prices pl,s and proportions of lemons λM
l,s. Denote the price vector by p = {pl,s}l=[0,1],s=B,G

and the lemons-proportion vector by λM =
{

λM
l,s

}

l=[0,1],s=B,G
. Entrepreneurs might decide to

sell their nonlemons when they fall into certain l, s submarkets but not others16 and may also

decide which submarkets to buy from.

The index l represents the different pieces of information that a firm can issue in any given

period: its financial statements, news about a labour dispute, consumer reports about its

products, etc. The message s represents the actual content of that piece of information, such as

“the product ranks third in the industry in customer satisfaction” or “market share increased

from 17% to 22% in the past year but profit margins declined”. Potential buyers may use the

signals to infer the probability that a given project is a lemon.

In reality, inferring the the true value of a project on the basis of such information is a

difficult task. A firm that increases market share at the expense of profit margins could be

healthy (a nonlemon) if building market share is valuable because customers in that market

are loyal or it could be struggling (a lemon) if market share increased due to low prices while

costs are increasing. If investors are inexperienced they will find it difficult to assess which

of these explanations is more likely and will therefore find the signal relatively uninformative.

Instead, experienced investors will have observed firms in this industry increase market share

at the expense of profits several times in the past and will know how frequently this turned

out successfully. They may have to worry, however, about whether their experience continues

to be relevant or whether changes in the environment have rendered it obsolete.

I model this tension by assuming that the vector µ, which governs the correct interpretation

of the signals, changes over time and at any point in time entrepreneurs do not know its true

value. Formally, assume that for each l, µl,t follows an independent two-state Markov process,

taking values µ̄ > 1
2

and 1 − µ̄, with switching probability σ < 1
2
. Entrepreneurs do not

directly observe the value of µt, but must instead infer it from observing past projects. After

each period, they observe a sample of size Nl of signal-outcome pairs for each index l. Each

observation consists of the signal the project issued plus whether it turned out to be a lemon

or not. Denote the entire set of samples by the random variable χ.

By observing χ, after every period entrepreneurs will form updated beliefs about the true

value of µ. Since all entrepreneurs observe χ, beliefs will be common to all of them. Beliefs

about each µl,t are given by distributions Bl,t in [0, 1] with mean µ̂l,t. Given that the Markov

16Assume they are sufficiently well diversified that, at the level of the individual entrepreneur, their holdings
of projects are uniformly distributed across l and the proportion of messages Blue and Green for each l is given
by µl.
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processes for µl,t are independent, beliefs will be such that the Bl,t distributions are independent.

Denote the the overall beliefs by the joint distribution Bt. The size of the sample they observe,

Nl, will determine how precise these beliefs are.

I assume Nl is random and follows a Poisson distribution with mean

ωl = [flωS + (1 − fl)ωK ] (25)

where fl is the fraction of l-indexed projects which have been sold in the period and ωS and

ωK are parameters, with ωS > ωK . Equation (25) says that, for each project, there is a Poisson

probability that the market finds out what happened to it. This probability is higher for

projects that were sold than for projects that were kept by their owner.

The rationale for the assumption that ωS > ωK is that firms that raise funds from the

market usually provide investors with much more detailed information about their financial

condition than those that do not, both at the time of raising funds and thereafter. Part of

this is due to legal reasons, such as reporting requirements for publicly held companies, and

part may be because firms are purposefully attempting to alleviate the lemons problem. The

information that investors observe after investing gives them feedback about how accurate their

assessment of the firm was at the time they decided whether to invest in it. Furthermore, it

is not sufficient that information exist, someone must take the trouble to analyze it order to

learn from it. The main reason someone would do that is to help them decide whether to trade.

When the volume of trade decreases, the amount of attention paid to analyzing information is

likely to decrease as well. Anecdotal evidence certainly suggests that this is the case. To take

just one example, the investment bank Paribas laid off its entire Malaysian research team in

1998 in response to reduced business during the Asian crisis.17

As is standard in rational expectations equilibria, I assume that in addition to χ, agents are

able to observe prices and, if these are informative about the function µ, they can simultaneously

update their beliefs and adjust their demand accordingly.18 They are not, however, able to

observe the quantity of projects traded in any given submarket. Furthermore, they do not

learn µ from observing the signals emitted by the lemons and nonlemons in their own portfolio

of projects.19

In order to formulate the entrepreneur’s problem, I expand the state variable in the economy

to include beliefs B, so X = {Z, Γ, B}. Taking the process for X as given, an entrepreneur

17Wall Street Journal, October 26, 1998.
18It will turn out that prices are not informative about µ, see Lemma 8 below.
19This may seem inconsistent with the fact that they are fully diversified. However, full diversification can

be achieved by holding a countably infinite number of projects. Learning the true µl for a countable number of
indices l would provide information about a zero-measure subset of submarkets.
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solves:

V (k, A, X) = max
c,k′(µ),i,sL,l,s(µ),sNL,l,s(µ),dl,s

[u (c) + βE [V (k′(µ), A′, X ′) |X, p(X, µ)]] (26)

s.t.

c + i +

∫ 1

0

∑

s

pl,s (X, µ) [dl,s − (sL,l,s(µ) + sNL,l,s(µ))] dl ≤ (1 − λ) r (X) k

k′(µ) = γ

[

(1 − λ) k +

∫ 1

0

∑

s

[(

1 − λM
l,s (X, µ)

)

dl,s − sNL,l,s

]

dl

]

+ Ai

i ≥ 0, dl,s ≥ 0

sL,l,B ∈ [0, λµlk] , sL,l,G ∈ [0, λ (1 − µl) k]

sNL,l,B ∈ [0, (1 − λ) (1 − µl) k] , sNL,l,G ∈ [0, (1 − λ) µlk]

Notice that the entrepreneur does not know λM because how many lemons end up in each

submarket depends on the true µl,s, which is unknown to the entrepreneur. In case dl,s is

positive for some submarket l, s, then λM
l,s determines how many nonlemons the entrepreneur

obtains from that purchase. Therefore the value of k′ that the entrepreneur will achieve depends

on µ and the entrepreneur may have uncertainty about it. Expectations about the future,

including future beliefs and k′ are formed knowing the current state X and any information

the current prices provide about current µ.

Definition 2. A recursive equilibrium with signals consists of prices {p (X, µ) , r (X) , w (X)};

market proportions of lemons λM (X, µ); laws of motion Γ′(X, µ) and B′(X, µ, χ)) and as-

sociated transition density Π (X ′|X); a value function V (k, A, X) and decision rules {cw (X) ,

c (k, A, X) , k′(k, A, X;µ), i (k, A, X) , sL,l,s (k, A, X; µ) , sNL,l,s (k, A,X;µ), ds (k, A, X; µ)} such

that (i) factor prices equal marginal products: w (X) = YL (X), r (X) = YK (X); (ii) workers

consume their wage cw (X) = w (X); (iii) {c (k, A, X) , k′(k, A, X; µ), i (k, A, X) , sL,l,s (k, A, X; µ) ,

sNL,l,s (k, A, X; µ) , dl,s (k, A, X; µ)} and V (k, A,X) solve program (26) taking p (X; µ), r (X),

λM (X; µ) and Π (X ′|X) as given; (iv) each submarket l, s clears: Sl,s (X; µ) ≥ Dl,s (X; µ),

with equality whenever pl,s (X; µ) > 0; (v) in each market the proportion of lemons is consistent

with individual selling decisions: λM
l,s (X; µ) =

SL,l,s(X;µ)

Sl,s(X;µ)
; (vi) the law of motion of Γ is consis-

tent with individual decisions: Γ′(k, A)(X) =
∫

k′(k̃,Ã,X)≤k
dΓ(k̃, Ã) F (A) and (vii) beliefs evolve

according to Bayes’ rule.

Notice one subtlety about the definition of equilibrium. Consistent with the assumption

that Buyers do not know µ, program (26) does not allow the choice of dl,s to depend on

the realization of µ. However, in general program (26) may have many solutions if Buyers

are indifferent between buying from different submarkets (making demand a correspondence
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rather than a function). If demand is indeed a correspondence, the definition of equilibrium

allows D(X; µ) to take any value in that correspondence, possibly one that depends on µ. This

corresponds to assuming that, when Buyers are indifferent, demand adjusts to meet supply.

I characterize the equilibrium in two steps. I first take as given the laws of motion for beliefs

and find equilibrium prices and quantities and then describe the evolution of beliefs.

5.1 Equilibrium Conditions Given Beliefs

The solution to the entrepreneur’s problem can be found in the same way as in section 4.1.

Entrepreneurs will sell their nonlemons into submarket l, s iff A > γ

pl,s
, so

λM
l,s (pl,s, µl) =

λl,s(µl)

λl,s(µl) + (1 − λl,s(µl))
(

1 − F
(

γ

pl,s

)) (27)

where λl,s(µl), given by

λl,B(µl) ≡ Pr [Lemon|l, Blue] =
λµl

λµl + (1 − λ) (1 − µl)

λl,G(µl) ≡ Pr [Lemon|l, Green] =
λ (1 − µl)

λ (1 − µl) + (1 − λ)µl

(28)

is the probability that a project is a lemon given that it has emitted signal l, s.

The return obtained by Buyers who purchase from market l, s is

AM
l,s (pl,s, µl) =

γ

pl,s

(

1 − λM
l,s (pl,s, µl)

)

(29)

and it is uncertain for a Buyer because it depends on the true µl.

Lemma 6. Given any beliefs Bl about µl, define λ̂l,s ≡ Pr [Lemon|l, s, Bl]

1. λ̂l,s = λl,s(µ̂l)

2. E[AM
l,s (pl,s, µl|Bl)] = AM

l,s (pl,s, µ̂l)

The binary structure of both signals and project quality means that the mean of beliefs

about µl is a sufficient statistic for the problem that Buyers care about, which is inferring

project quality from a given signal. This further implies that the expected return from buying

in submarket l, s can be found by simply replacing µ̂l instead of µl in (29). Furthermore, it

means the distribution of µ̂ls across indices l contains all the relevant information about beliefs.

Denote that distribution by H , i.e. let H(m) ≡ Pr[µ̂l ≤ m].

31



Given that there is a continuum of submarkets and beliefs for each submarket are inde-

pendent, Buyers are able to diversify away all the risk due to realizations of µ (and it will be

optimal for them to do so) and will only care about the expected return when deciding whether

to buy from submarket l, s. The marginal Buyer must be indifferent between buying in any

submarket or investing on his own. Denoting his investment opportunity by A∗, this implies

that for every l, s

AM
l,s (pl,s, µ̂l) ≤ A∗, with equality if pl,s > 0 (30)

If AM
l,s (pl,s, µ̂l) < A∗ for all pl,s then the l, s market shuts down and the only solution to (30)

is pl,s = 0. This will be the case when λ̂l,s is sufficiently high, either because the signal l, s

is negative or because λ is high and the signal is uninformative. When signals are sufficiently

good (for instance, when s = Green and µ̂l is close to 1), there will be a positive solution to

(30).

General equilibrium is found by equating total spending on buying projects TS (derived

from Buyers’ consumption-savings problem) with total revenue from selling them TR (derived

from the arbitrage condition between selling and keeping projects). Market clearing therefore

requires

ED (p, A∗) ≡ TS (p, A∗) − TR (p) = 0 (31)

where

TS (p, A∗) = K

[

β

[

λ

∫ 1

0

[µlpl,B + (1 − µl) pl,G] dl + (1 − λ) r

]

−
(1 − β) (1 − λ) γ

A∗

]

F (A∗)

(32)

and

TR (p) = K

∫ 1

0





pl,B

[

λµl + (1 − λ) (1 − µl)
(

1 − F
(

γ

pl,B

))]

+

pl,G

[

λ (1 − µl) + (1 − λ)µl

(

1 − F
(

γ

pl,G

))]



 dl (33)

Given beliefs, conditions (30) and (31) are sufficient to characterize equilibrium prices for any

given state. Given prices, the rest of the equilibrium objects can be derived straightforwardly

from the entrepreneur’s problem. Note, however, that there could be multiple solutions to

equation (30) and the definition of equilibrium does not select between them. Denote the highest

solution to (30) by pl,s(A
∗) and the vector of such solutions by p(A∗). I call an equilibrium

robust if prices satisfy p(X, µ) = p(A∗).20

Mild regularity conditions ensure that there exists a unique price vector that satisfies the

conditions for a robust equilibrium.

Lemma 7. If H is continuous, then there is a unique solution to ED(p(A∗), A∗) = 0.

20Under Assumption 1, the solution to (30) is always unique. Otherwise, the focus on the highest solution is
justified by the fact the otherwise Buyers could improve their returns by raising prices. See Appendix A for a
discussion of this case.
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Lemma 7 states that there is a unique equilibrium in which it is never the case that Buy-

ers would prefer higher prices, without requiring Assumption 1 or allowing for rationing in

the definition of equilibrium. Uniqueness is guaranteed because ED(p(A∗), A∗) is monotonic.

Existence requires the assumption that H be continuous. A small change in A∗ can lead to

a discrete shutdown of a particular submarket, but continuity implies that each submarket is

small so the excess demand function is continuous and must intersect zero at some point. A

similar argument can be found in Riley (1987).

5.2 Evolution of Beliefs

As mentioned above, entrepreneurs can potentially learn about µ from two sources: observing

prices and observing samples from past projects. I first show that there exists an equilib-

rium where prices do not reveal information and then describe how entrepreneurs learn from

experience.

Lemma 8. There exists a recursive rational expectations equilibrium with signals such that

p(X, µ) does not depend on µ.

µ affects how many lemons and nonlemons end up in each submarket and therefore affects

the supply of projects in each submarket. However, because there is a continuum of submarkets,

demand in each of them is perfectly elastic and these supply realizations have no effect on each

submarket’s price and cancel out in the aggregate. Hence entrepreneurs do not learn about

µ from observing prices and knowing their initial beliefs, summarized by H , is sufficient to

compute equilibrium prices and allocations in any given state.21

The evolution of H is determined by the learning process. After each period, entrepreneurs

use observations of samples from that period to to update beliefs. For each l, these beliefs can

be summarized by a single number, bl,t ≡ Pr [µl,t = µ̄]. µ̂l,t is simply given by

µ̂l,t = bl,tµ̄ + (1 − bl,t)(1 − µ̄)

It is useful to analyze the updating of bl,t in three steps. First, since the number of l-indexed

projects actually sold (and therefore ωl) depends on the true value of µl, the number of sig-

nals itself is a source of information.22 Second, given Nl, each observation can be treated as a

Bernoulli trial, where observing Blue, Lemon or Green, Nonlemon is a success, which happens

with probability µl, and observing Blue, Nonlemon or Green, Lemon is a failure, which hap-

pens with probability 1−µl. Third, entrepreneurs take into account that µl may have changed

21I leave aside the question of whether there are other equilibria where revealing prices are self-fulfilling.
22Quantitatively, this source of information is negligible compared to the information derived from the actual

content of the signals
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between t and t + 1. The solution to this filtering problem can be found analytically. After

observing nl successes out of Nl observations, bl,t+1 is given by:

bl,t+1 =
(1 − σ) µ̄nl (1 − µ̄)Nl−nl (ωlµ̄)

Nl e−ωlµ̄bl,t + σ (1 − µ̄)nl µ̄Nl−nl (ωl1−µ̄)Nl e−ωl1−µ̄ (1 − bl,t)

µ̄nl (1 − µ̄)Nl−nl (ωlµ̄)
Nl e−ωlµ̄bl,t + (1 − µ̄)nl µ̄Nl−nl (ωl1−µ̄)

Nl e−ωl1−µ̄ (1 − bl,t)
(34)

where ωlµ̄ and ωl1−µ̄ denote the values of ωl when µl takes the values µ̄ and 1− µ̄ respectively.

In order to interpret equation (34), consider the extreme case in which ωl = 0 (which implies

Nl = 0), i.e. entrepreneurs do not observe anything regarding index l. In this case,

bl,t+1 = (1 − σ) bl,t + σ (1 − bl,t)

so bl (and therefore µ̂l) moves towards 1
2
, meaning that signals at t + 1 are less informative

than they were at t. The reason for this is that, because there is always a possibility that the

signal structure might change, not learning anything about index l for one period means that

the agents’ understanding of the information structure has become less precise. Experience is

a form of intangible capital, and can depreciate. Conversely, suppose that the realized value

of Nl is very large. The law of large numbers implies that the number of Bernoulli successes

observed will be close to the true µl,t with high probability. In the limit, agents will know

µl,t exactly and bl,t+1 approaches 1 − σ or σ. For intermediate cases, equation (34) implies

that bl will move towards 1
2

whenever (i)
∣

∣bl,t −
1
2

∣

∣ is large (mean reversion); (ii) few signals are

observed (experience becomes outdated) or (iii) nl

Nl
is close to 1

2
(different observations conflict

with each other).

The evolution of µ̂l for each individual l will in general depend on the realizations of the true

µl. However, the following lemma establishes that it is possible to characterize the distribution

of next-period mean beliefs H ′ without knowing the true realized µ.

Lemma 9. H ′ is a deterministic function of X

By Lemma 9, the realized value of µ in any given state is irrelevant not only for the de-

termination of prices and allocations in that state, but also for the learning process. This

makes it possible to characterize the entire dynamic path of the economy by keeping track of

H , aggregate capital K and productivity Z, without any reference to realized µ at all.

Computationally, the only complication is the need to carry the infinite-dimensional state

variable H and compute its trasition density. However, H itself can be well approximated

by a finite grid and its transition density computed by simulation. The fact that prices and

quantities can be found statically means there is no need to compute the entrepreneur’s value

function.
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5.3 Persistence

It is straightforward to verify that, taking H as given, the comparative statics of the economy

with signals regarding the response to shocks are the same as those in the economy without

signals. In addition, learning introduces a dynamic feedback mechanism between activity in

financial markets and the real economy. Suppose the economy suffers a negative productivity

shock. This lowers r, which lowers demand, increases A∗ and lowers asset prices. At these

lower asset prices, marginal Sellers in each submarket become Keepers, lowering the number

of transactions. Since ωK < ωS, equation (25) implies that the sample sizes from which en-

trepreneurs will learn about µ will be lower. Equation (34) then implies that this will lead to

a distribution of beliefs H ′ that is more concentrated towards 1
2
, increasing the overall level

of informational asymmetry as signals become less informative. This will affect asset prices,

the amount of financial market activity, the amount of learning and capital accumulation in

future periods. Thus temporary shocks can have long-lasting real effects. In fact, under certain

conditions a temporary shock can lead to an arbitrarily long recession.

Consider the steady states of two otherwise identical economies, economy 0 with no signals

and economy 1 with signals and endogenous learning. In economy 0, the steady state simply

consists of a level of capital K0
ss such that K ′ = K0

ss. In economy 1, the steady state is a level

of capital K1
ss and a distribution of beliefs H1

ss such that K ′ = K1
ss and H ′ = H1

ss. Denote the

steady state levels of output in both economies by Y 0
ss and Y 1

ss. Suppose that the steady state

in economy 0 is such that the market shuts down but in economy 1 there is a positive measure

of submarkets with positive prices. Because economy 0 is like an economy with signals where

µ̂l = 1
2

for all l, by continuity there exists a minimum number ε0 > 0 such that if a single

submarket had signals with informativeness |µ̂l −
1
2
| = ε0 the price in that market would be

positive.

Proposition 10.

1. Y 1
ss > Y 0

ss

2. Fix any integer T > 0 and real number δ > 0. Suppose that, starting from steady state,

economy 1 suffers a negative productivity shock lasting n periods. If

(a) The productivity shock is sufficiently large

(b)

n ∈

(

log
(

µ̄ − 1
2

)

− log ε0

− log (1 − 2σ)
− 1,

log Kss − log K0

− log [γ (1 − λ)]

)

(c) ωK is sufficiently small
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then there is a T ′ ≥ T such that
∣

∣Y 1
t+T ′ − Y 0

ss

∣

∣ < δ

Economy 1 will have a higher steady state capital stock and therefore output because

financial markets function, at least partially, allowing high-A entrepreneurs to obtain financing

and low-A entrepreneurs to obtain higher returns, both of which promote capital accumulation.

A large enough negative shock will lead financial markets in economy 1 to shut down. ωK close

to zero means that it is very unlikely that entrepreneurs will observe the outcomes of projects

that were not sold. Therefore a market shutdown will imply an almost complete interruption

of the learning process and entrepreneurs’ understanding of the information structure will

deteriorate. If positive amounts of information are indispensable for trade and the shock lasts

long enough, then when the shock is over financial market activity will not recover because the

information needed to sustain it will have been destroyed. The bounds on n in the statement

of the proposition ensure that the shock lasts long enough for knowledge to depreciate but

not long enough so that the capital stock falls below the informationless steady state level.

Reconstructing the stock of knowledge will require learning mostly from non-sold projects, and

small sample sizes imply that this process will be slow. Hence the levels of output can remain

close to those of the informationless steady state for a long time.

5.4 Simulations

In this section I compute examples of how the economy responds to various shocks, taking into

account the endogenous learning process. The examples are intended as explorations of the

effects that are possible in the model and rough indications of potential magnitudes rather than

as quantitatively precise estimates. To highlight the role of learning, in each case I compare

the impulse responses to those of an economy with no learning where H is fixed at its steady

state value.

Parameter Value
β 0.965
γ 2.14
λ 0.58
σ 0.25
µ̄ 0.74
F (A) Gamma distribution with E (A) = 1 and std (A) = 1.75
Y Z [(1 − λ)K]α L1−α with α = 0.4
ωs 200
ωK 0.04
L 1
Z 1

Table 2: Parameter values used in simulations
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The parameter values I use differ from those in the simulations in section 4.5 because I wish

to focus on economies where information is indispensable for trade, so that markets shut down

when there is no information. I do this by choosing λ = 0.58, which makes lemons abundant

and the asymmetric information problem severe. The length of the period is about a year. The

values of β and γ lead to a steady-state investment-to-GDP ratio of 0.15 and a depreciation rate

of 0.1. σ parameterizes the Markov process followed by µl. Define the half-life of that Markov

process as the number of periods of no learning that it would take for E [µl] to mean-revert half

way back to 1
2
. A simple calculation shows that it is given by − log 2

log(1−2σ)
. σ = 0.25 implies a

half-life of 1 period. µ̄ = 0.74 implies that the true correlation between signals an asset quality

is quite high, so learning it well has the potential to greatly reduce informational asymmetry.

ωS and ωK ensure that agents will have many observations to learn from when a submarket is

open and very few when it is closed.

The first simulation is an illustration of Proposition 10. It turns out that in steady state

learning µl,t very precisely provides sufficient information to sustain trade at t+1. Therefore an

l such that the market is open at t will be open at t+1 with very high probability, making market

openness close to an absorbing state. It is not quite absorbing because, due to the assumption

that Nl is Poisson, there is always a small probability there will be few observations and µ̂l will

move towards 1
2
. Due to the low value of ωK , it is very likely that if a submarket shuts down at

t, nothing will be learnt and it will remain shut at t + 1, making shutdowns nearly absorbing

as well.

Figures 8 and 9 illustrate the response of this economy to a negative 10% productivity shock

taking place at t = 2 and lasting only one period, starting from steady state.

Begin with the evolution of H , shown in figure 9. It is initially highly concentrated at either

µ̂l = (1 − σ) µ̄ + σ (1 − µ̄) = 0.62 (and symmetrically µ̂l = 0.38), where markets are open or

µ̂l = 1
2
, where markets are shut. The shock is sufficiently large to shut down all markets for

one period; in this period ωl is close to zero for all markets, so µ̂l shifts towards 1
2
, according

to equation (34). The distribution H becomes more concentrated around 1
2
, corresponding to

less informative signals. This loss of information turns out to be sufficient to prevent most

markets from reopening at t = 3 when the productivity shock is over. Hence the distribution

H continues to concentrate towards 1
2
. Eventually the percentage of markets with µ̂l away from

1
2

begins to recover as some observations emerge even from shut markets.

Panel 2 of figure 8 shows the response of output. The response to the initial shock at t = 2

is mechanical and is reverted at t = 3. Then the impact of increased informational asymmetry

on capital accumulation is felt and output drops steadily for several periods. Thus the model

is able to generate the long recessions following financial crises that have been documented

by Cecchetti et al. (2009), Claessens et al. (2009) and Cerra and Saxena (2008). In this

(admittedly extreme) example, output remains close to 5% below its steady state value for over
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Figure 8: Transitory TFP shock that leads to market shutdown
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Figure 9: Evolution of H after a transitory TFP shock that leads to market shutdown
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twenty periods.

Increased informational asymmetry affects capital accumulation by lowering both invest-

ment, shown on panel 3, and the average rate of transformation of consumption goods into

capital (average A), shown on panel 4. Average A drops because informational asymmetry

interferes with the flow of coconuts for investment towards higher-A entrepreneurs, as both

marginal Buyers and marginal Sellers in each submarket become Keepers. This may provide

an explanation for the pattern identified by Justiniano, Primiceri and Tambalotti (2008b) who

find, in an estimated quantitative model, that productivity in the investment sector is correlated

with disturbances to the functioning of financial markets.

The model is silent about whether entrepreneurs with higher A will transform a given

amount of coconuts into more machines or better machines. In reality it is likely that both

effects are present to some extent. Panel 5 shows the result of the following exercise. Assume

that all the effect of different values of A is due to better machines. An econometrician does not

observe how good the machines are and measures capital formation by just adding investment,

using the steady state average rate of transformation. Using this mismeasured capital stock,

the econometrician then proceeds to compute Solow residuals. Since average A has decreased,

the econometrician’s procedure overestimates capital formation and leads to lower estimated

Solow residuals. This may help explain the long periods of low (measured) productivity growth

that follow some financial crises, as documented for instance by Hayashi and Prescott (2002)

for Japan in the 1990s. In this example, low measured Solow residuals account for about a

quarter of the decrease in output and lower investment accounts for the rest.

The final panel of the figure tracks the drop and then recovery of financial activity as

knowledge of the information structure is first destroyed and then reconstructed.

Beyond the immediate impact, the effects of the productivity shock are due to the deterio-

ration of the economy’s stock of financial knowledge. The next exercise is to consider a shock

to that affects that knowledge directly. Suppose that σ increases from 0.2 to 0.5 for one period.

σ = 0.5 means that Pr [µl,t+1 = µ̄|µl,t = µ̄] = Pr [µl,t+1 = µ̄|µl,t = 1 − µ̄] = 1
2
. There is a 50%

chance that signals will change meaning between periods, which makes any knowledge of the

time-t information structure irrelevant as of time-t+1. Effectively, the shock destroys the stock

of financial knowledge. Figures 10 and 11 show that, aside from the initial period, the effects

on the quality of information and therefore on other variables in the economy are very similar

to those of a large productivity shock.

Due to the extreme values of the parameters ωS and ωK , the response of the economy

changes in a highly nonlinear way with the size of the shock. The next exercise (figures 12 and

13) looks at a productivity shock of only 5% rather than 10% which, for these parameter values,

is not enough to shut down the market completely. The number of projects sold decreases in

response to the shock, as seen on panel 6 of figure 12, but is not close to the point where the
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Figure 10: A shock that destroys the stock of expertise
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Figure 11: Evolution of H after a shock that destroys the stock of expertise
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market shuts down. Sample sizes for learning about µ decrease roughly in the same proportion

as the drop in the number of sold projects, but since ωS is very high they are still large enough

that there is virtually no effect on the learning process and there is no information-induced

recession.

10 20 30
−6

−4

−2

0
1. TFP

t

%
 d

ev
 fr

om
 s

s

 

 

Learning
Fixed H

10 20 30
−6

−4

−2

0

2
2. Y

t

%
 d

ev
 fr

om
 s

s
10 20 30

−15

−10

−5

0

5
3. I

t

%
 d

ev
 fr

om
 s

s

10 20 30
−2

−1

0

1

2
4. Average A

t

%
 d

ev
 fr

om
 s

s

10 20 30
−6

−4

−2

0

2
5. Measured Solow

t

%
 d

ev
 fr

om
 s

s

10 20 30
0

0.5

1

6. % of projects sold

t
%

Figure 12: Transitory TFP shock that does not lead to market shutdown

Learning effects can also lead to high persistence after positive shocks. Consider an economy

with ωK = 0, so there is never any learning from markets that are shut, making market

shutdown an absorbing state.23 Since market openness is not absorbing, the only steady state

of this economy will be one with no trade and no information. However, a positive productivity

shock that led markets to reopen for one period would lead to a large amount of learning,

which could sustain financial market activity for a long time. Figures 14 and 15 illustrate the

response of the economy to such a shock. Thanks to the restarting of the learning process,

information improves a lot at first and, because ωS is high, it depreciates very slowly. This

leads to a sustained increase in output. If the capital stock is computed without adjusting for

the higher average A, around a 20% of the increase in output would be attributed to higher

TFP.

The final experiment consists of modeling a stabilization of the information structure, i.e.

a decrease in σ. This helps the learning process by slowing the rate at which knowledge of the

information becomes outdated. I simulate a permanent decrease in σ from 0.2 to 0.1, using less

23For this simulation I use λ = 0.53. Markets still shut down in the informationless steady state but the
positive shock that would be required to reopen them is smaller than with λ = 0.58. I set γ = 1.91 so the rate
of depreciation is still 0.1.
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Figure 13: Evolution of H after a transitory TFP shock that does not lead to market shutdown
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Figure 14: Positive TFP shock that leads markets to reopen
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Figure 15: Evolution of H after a positive TFP shock that leads markets to reopen

extreme parameters for the Poisson sample sizes: ωS = 3 and ωK = 1. The results are shown

in figures 16 and 17.

As a result of the stabilization, the distribution of H gradually spreads out, improving the

quality of information. This increases the average productivity of investment, leading to a

new steady state with higher output. Around a quarter of the increase in output would be

attributed to higher TFP. This experiment is suggestive of some of the channels by which a

more stable economic environment, which does not need to be re-learned every period can lead

to higher levels of output.

6 Final remarks

This paper has explored the macroeconomic implications of asymmetric information about asset

quality when assets are necessary collateral for financial transactions. Informational asymmetry

acts like a tax on transactions, which has the potential to greatly distort the flow of investment.

Furthermore, the distortions are sensitive to macroeconomic shocks and amplify their effects.

Public information about asset quality may alleviate informational asymmetry, provided

agents have the experience necessary to interpret this information. By modeling the gaining

of experience as the result of financial market activity, the model captures a new notion of

market liquidity that emphasizes an economy’s accumulated financial knowledge. The dynam-

ics of gaining and losing experience can create a powerful propagation mechanism that leads

from temporary shocks to long-lasting consequences for market liquidity, capital-accumulation,
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Figure 16: A stabilization of the information structure
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Figure 17: Evolution of H after a stabilization of the information structure
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productivity and output, in ways that are consistent with stylized facts about financial crises.

At the center of the learning mechanism lies an externality: by choosing to sell their projects,

entrepreneurs contribute to the generation of knowledge. The externality is especially strong

when financial markets are close to shutting down. Is there something the government should

do to correct this? The model abstracts from any costs of preparing information for Sellers or

of analyzing it for Buyers. If these costs were literally zero, then it would be simple to compel

agents to produce and analyze information regardless of market conditions, severing the link

between learning and financial activity and eliminating the externality. If instead knowledge

generation is costly and is only undertaken as a side-product of financial transactions, there

may be a case for the government to try to prevent a complete market shutdown in order to

preserve the stock of financial knowledge.

The idea that learning-by-doing about how to interpret information may affect informational

asymmetries could have wider applicability beyond the types of settings explored in this paper.

Exploring whether these mechanisms may account for differing levels of liquidity across different

markets is a promising question for further research.

A Increasing AM(p) and rationing

Define

pm (p) ≡ arg max
p̃≥p

AM (p̃)

pM ≡ pm (0)

P m ≡ {p ∈ R+ : p ∈ pm (p)}

pm(p) is the price (or prices) above p that maximize the return for Buyers. If AM(p) has multiple

local maxima, there may be values of p such that pm(p) contains more than one element.

Assumption 2. AM(p) may have many local maxima, but no two are equal

Assumption 2 implies that pm(p) contains at most two elements and if it contains two, one

of them must be p. The results in this appendix would still hold without it, but making this

assumption simplifies the proofs without ruling out any cases of economic interest. pM is the

global maximizer of AM(p), which exists because AM (p) is bounded and continuous and must

be unique by Assumption 2. P m is the set of prices such that Buyers cannot be made better off

with higher prices. Suppose Assumption 1 does not hold, i.e. p∗ /∈ P m, where p∗ is defined by

(21). What should one expect from an equilibrium? Stiglitz and Weiss (1981) argue that the

Buyers will offer to pay a price pm (p∗) and ration the excess supply (and possibly if AM (p) has
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multiple maxima, buy the projects rationed out of the market at some lower price pl(p∗) < p∗).

This is illustrated in Figure 18.

a

c d

b

pa pb pl(pc) ppdpm(pa) pm(pc)pc

A∗(p)

Figure 18: AM (p) and equilibrium prices with rationing

Here P m = [pm(pa), p
l(pc)]∪[pm(pc),∞). If the highest Walrasian (nonrationing) equilibrium

price lies at a point like pb ∈ P m or pd ∈ P m, then these are reasonable equilibrium prices.

If the highest Walrasian equilibrium price lies at a point like pa, then Buyers prefer to offer

pm(pa), which improves the proportion of nonlemons enough to improve their returns. At that

price, there is excess supply, so a fraction of Sellers are rationed out of the market. No matter

how cheaply they offer to sell their projects, no one will be willing to buy them. If the highest

Walrasian equilibrium price lies at a point like pc, then Buyers prefer to raise prices up to

pm(pc) and ration the excess supply. Unlike case a, if those rationed out of the market offer

to sell their projects at a price below pl(pc), then this provides a return to Sellers which is

better than that obtained at price pm(pc). In equilibrium, Buyers anticipate the possibility of

a second round market, which implies that the return from buying in each round must be the

same. Therefore the second-round price must be pl(pc), such that AM(pm(pc)) = AM(pl(pc)).

The number of projects actually bought in the first round must be exactly such that, given the

projects that remain unsold, the second-round market clears.

Formally, this notion of equilibrium is captured as follows.24 Let ρn (X) be the fraction of

24Arnold (2005) applies this equilibrium concept to the Stiglitz and Weiss (1981) model
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Sellers who manage to sell in each of the two rounds, at a price pn(X).The entrepreneur solves

V (k, A, X) = max
c,k′,l,sL,n,sNL,n,dn

[u (c) + βE [V (k′, A′, X ′) |X]] (35)

s.t.

c + l +
∑

n=1,2

pn (X) [dn − ρn (X) (sL,n + sNL,n)] ≤ (1 − λ) r (X) k

k′ = γ

[

(1 − λ) k +
∑

n=1,2

[(

1 − λM
n (X)

)

dn − rn (X) sNL,n

]

]

+ Ai

l ≥ 0, dn ≥ 0

sL,1 ∈ [0, λk] , sNL,1 ∈ [0, (1 − λ) k]

sL,2 ∈ [0, λk − ρ1 (X) sL,1] , sNL,2 ∈ [0, (1 − λ) k − ρ1 (X) sNL,1]

In this formulation, sL,n and sNL,n represent the lemons and nonlemons respectively that the

entrepreneur attempts to sell in round n; he only manages to sell ρn (X) sL,n and ρn (X) sNL,n

respectively.

Supply and demand are defined in the obvious way

SL,n (X) ≡

∫

sL,n (k, A, X) dΓ(k, A)

SNL,n (X) ≡

∫

sNL,n (k, A, X) dΓ(k, A)

Sn (X) ≡ SL,n (X) + SNL,n (X)

Dn (X) ≡

∫

dn (k, A, X) dΓ(k, A)

Definition 3. A recursive competitive equilibrium with rationing consists of prices {pn (X) ,

r (X) , w (X)}; rationing coefficients ρn(X); market proportions of lemons λM (X); a law of

motion Γ′(X) and associated transition density Π (X ′|X); a value function V (k, A, X) and

decision rules {cw (X) , c (k, A, X) , k′ (k, A, X) , l (k, A, X) , sL,n (k, A, X) , sNL,n (k, A, X) ,

dn (k, A, X)} such that (l) factor prices equal marginal products: w (X) = YL (X), r (X) =

YK (X); (ii) workers consume their wage cw (X) = w (X); (iii) {c (k, A, X) , k′ (k, A, X) ,

l (k, A, X) , sL,n (k, A, X) , sNL,n (k, A, X) , dn (k, A, X)} and V (k, A, X) solve program (35)

taking pn (X) , ρn (X) , r (X) , λM
n (X) and Π (X ′|X) as given; (iv) either (a) the market clears

at a price that Buyers do not wish to increase, i.e. S1(X) = D1(X), S2(X) = D2(X) = 0,

ρ1(X) = ρ2(X) = 1, p1(X) = p2(X) ∈ P m (d) there is rationing at pM , i.e. p1(X) = p2(X) =

pM , ρ1(X) = D1(X)
S1(X)

≤ 1, ρ2(X) = D2(X)
S2(X)

= 0 or (c) there is rationing in the first round and

market clearing in the second, i.e. ρ1(X) = D1(X)
S1(X)

≤ 1, ρ2(X) = D2(X)
S2(X)

= 1, p1(X) ∈ P m,

p2(X) ∈ P m; (v) the market proportions of lemons are consistent with individual selling deci-
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sions: λM
n (X) =

SL,n(X)

Sn(X)
and (vi) the law of motion of Γ is consistent with individual decisions:

Γ′(k, A)(X) =
∫

k′(k̃,Ã,X)≤k
dΓ(k̃, Ã)F (A)

Lemma 10. The equilibrium exists and is unique

Proof. Take any state X and Let A∗ be the investment opportunity of the marginal Buyer.

Total spending on projects is

TS (p1, p2, ρ1, ρ2, A
∗) = K

[

β [λ [ρ1p1 + ρ2(1 − ρ1)p2] + (1 − λ) r] − (1 − β) (1 − λ)
γ

A∗

]

F (A∗)

and total revenue from sales is

TR (p1, p2, ρ1, ρ2) = K





ρ1p1

[

λ + (1 − λ)
(

1 − F
(

γ

p1

))]

+

ρ2p2

[

λ + (1 − λ)
(

1 − F
(

γ

p2

))

− ρ1

[

λ + (1 − λ)
(

1 − F
(

γ

p1

))]]





Equilibrium condition (iv) implies

ED (p1, p2, ρ1, ρ2, A
∗) ≡ TS (p1, p2, ρ1, ρ2, A

∗) − TR (p1, p2, ρ1, ρ2) = 0

The function ED (p1, p2, ρ1, ρ2, A
∗) is increasing in A∗ and decreasing in p1, p2, ρ1 and ρ2.

Let

ph(A∗) ≡

{

the highest solution to AM(p) = A∗ if a solution exists

pM otherwise

ρh(A∗) ≡

{

1 if a solution exists

0 otherwise

Both ph(A∗) and ρh(A∗) are decreasing, which implies that EDh(A∗) ≡ ED(ph(A∗), ph(A∗), ρh(A∗),

ρh(A∗), A∗) is increasing in A∗. By definition, in equilibrium either EDh(A∗) = 0 or EDh(A∗) =

0 crosses zero discontinuously at A∗ Since EDh(A∗) is increasing, this implies uniqueness.

To establish existence, distinguish three cases:

1. EDh(A∗) = 0 for some A∗. Then the following values constitute an equilibrium: p∗1 =

p∗2 = ph(A∗), ρ∗
1 = 1, ρ∗

2 = 0.

2. EDh(A∗) crosses zero discontinuously at A∗ = A∗(pM). Then ED
(

pM , pM , 1, 0, A∗
)

<

0 < ED
(

pM , pM , 0, 0, A∗
)

so there exists a value of ρ∗
1 ∈ (0, 1) such that ED

(

pM , pM , ρ1, 0, A
∗
)

=

0. Then the following values constitute an equilibrium: p∗1 = p∗2 = pM , ρ∗
1, ρ∗

2 = 0

3. EDh(A∗) crosses zero discontinuously at some other value of A∗. This implies that

ph(A∗) is discontinuous at A∗, which, by Assumption 2, implies that AM(p) = A∗
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must have exactly two solutions in P m, the higher one of which of which is local max-

imum. Denote them ph(A∗) and pl(A∗). We have that ED(ph(A∗), ph(A∗), 1, 1, A∗) <

0 < ED
(

pl(A∗), pl(A∗), 1, 1, A∗
)

, which implies there is a value of ρ∗
1 ∈ (0, 1) such that

ED
(

ph(A∗), pl(A∗), ρ1, 1, A
∗
)

= 0. Then the following values constitute an equilibrium:

p∗1 = ph(A∗), p∗2 = pl(A∗), ρ∗
1, ρ∗

2 = 1.

Lemma 11. Consider the equilibrium with signals (Definition ??), given by conditions (31)

and (30) and suppose µl = 1
2

+ ǫ(l − 1
2
). In the limit as ǫ → 0, the equilibrium with signals

converges to the rationing equilibrium.

Proof. Suppose in a given state X the rationing equilibrium is given by {A∗, p1, p2, ρ1, ρ2}, with

AM(p1) = AM(p2) = A∗. Recall that the function AM
l,s(p; µl) is continuous in µl and equal to

AM(p) when µl = 1
2
. Consider any δA > 0, δp > 0 and ρ1, ρ2 ∈ [0, 1]. By continuity, there exists

ǫ (δA, δp) small enough that, for any ǫ < ǫ (δA, δp), there exists A∗′
1 (ǫ) satisfying

∣

∣A∗′(ǫ) − A∗
∣

∣ <

δA such that the fraction of submarkets l, s where the equation AM
l,s(p; µl(ǫ)) = A∗′ has a solution

pl,s(A
∗′) with

∣

∣pl,s(A
∗′) − p1

∣

∣ < δp is exactly ρ1 and the fraction of the remaining submarkets

where the equation AM
l,s(p; µl(ǫ)) = A∗′ has a solution pl,s(A

∗′) with
∣

∣pl,s(A
∗′) − p2

∣

∣ < δp is

exactly ρ2. The result then follows from noting that if for every ǫ a fraction ρ1 of submarkets

have prices p∗l,s(ǫ) satisfying limǫ→0 p∗l,s(ǫ) = p1, a fraction ρ2 of the remaining ones have prices

p∗l,s(ǫ) satisfying limǫ→0 p∗l,s(ǫ) = p2 and the rest have p∗l,s(ǫ) = 0, and limǫ→0 A∗′(ǫ) = A∗, then

lim
ǫ→0

ED
(

p∗l,s(ǫ), A
∗′(ǫ); µl(ǫ)

)

≡ ED(p1, p2, ρ1, ρ2, A
∗)

B Proofs

Proof of Lemma 1. r(X) does not depend on the distribution of k because Y does not. For

any given p and λM , linearity of the policy functions and the fact that Aj is independent of kj

imply that SL SNL and D do not depend on the distribution of k and therefore neither do the

market clearing values of p(X) and λM(X). Linearity then implies that neither do aggregate

quantities.

Proof of Lemma 3. The first order and envelope conditions are

uc = β max
{

A, AM (X)
}

E [Vk′ (k′, A′, X ′) |X]

Vk (k, A, X) = Wk (k, A, X)uc
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and the Euler equation is:

uc = β max
{

A, AM (X)
}

E [Wk′ (k′, A′, X ′) |X] uc′

With logarithmic preferences, the Euler equation becomes

1

c
= β max

{

A, AM (X)
}

E

[

Wk′ (k′, A′, X ′)

c′
|X

]

Conjecture that c = aW (k, A, X), which implies

W (k′, A′, X ′) = Wk′ (k′, A′, X ′)max
{

A, AM (X)
}

(1 − a) W (k, A, X)

and replace in the Euler equation:

1

aW (k, A, X)
= β max

{

A, AM (X)
}

E

[

Wk′ (k′, A′, X ′)

aWk′ (k′, A′, X ′)max {A, AM (X)} (1 − a)W (k, A, X)
|X

]

which reduces to a = 1 − β.

Proof of Lemma 4.

Assume there is an entrepreneur for whom the solutions to both programs differ. For Sellers

both programs are identical so it must be that at least one Buyer or Keeper chooses k′ <

(1 − λ) γk. Then by revealed preference all Buyers choose k′ < (1 − λ) γk. Replacing in (14)

yields D = 0.

Proof of Proposition 2.

1. This follows immediately from Lemma 4. Whenever the solutions to the two programs

do not coincide, p∗ = 0 satisfies (21), which therefore holds in either case.

2. In the text.

3. Take any X. For sufficiently large p, S(p) > D (p). If there exists a price such that

D(p) ≥ S(p), then the result follows by continuity. If D(p) < S(p) for all p, then p∗ = 0

is a solution.

Proof of Proposition 3.

1. The first order condition for π is

π =











1 if E
[

VW (W ′, A′, X ′)
(

max
{

A, AM
}

Wk (A′, X ′) − R
)

|X
]

> 0

anything if E
[

VW (W ′, A′, X ′)
(

max
{

A, AM
}

Wk (A′, X ′) − R
)

|X
]

= 0

0 if E
[

VW (W ′, A′, X ′)
(

max
{

A, AM
}

Wk (A′, X ′) − R
)

|X
]

> 0
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so Rf must satisfy:

Rf =
E
[

VW (W ′, A′, X ′)max
{

A, AM
}

Wk (A′, X ′) |X
]

E [VW (W ′, A′, X ′) |X ]
(36)

= E
[

max
{

A, AM
}

Wk (A′, X ′) |X
]

+
cov

[

VW (W ′, A′, X ′) , max
{

A, AM
}

Wk (A′, X ′) |X
]

E [VW (W ′, A′, X ′) |X ]

when evaluated at π = 1. Using c = (1 − β)W and uc = VW and evaluating at π = 1:

VW (W ′, A′, X ′) =
1

(1 − β) W ′
=

1

(1 − β) [π max {A, AM}Wk (A′, X ′) + (1 − π) Rf ] (W − c)

=
1

(1 − β) max {A, AM}Wk (A′, X ′) (W − c)
(37)

Equation (37) implies that the covariance term in (36) is weakly negative, strictly so if

Wk (A′, X ′) is not a constant. Finally, equation (15) implies that Wk (A′, X ′) is indeed

not constant as long as p(X) 6= γ

AM (X)
⇐⇒ λM(X) 6= 0.

2. Under symmetric information the price of nonlemons is pNL = γ

AM and the price of lemons

is zero, so Wk =
[

(1 − λ)
(

r (X) + γ

AM (X)

)]

, which does not depend on the realization of

A′. If in addition X is deterministic, then Wk is constant and therefore the covariance

term in equation (36) is zero, which gives the result.

Proof of Proposition 4. Take any state X and let r∗, p∗, λM∗ and AM∗ represent equilibrium val-

ues under asymmetric information in that state. Multiplying supply and demand by
(

1 − λM∗
)

to express them in quantities of nonlemons rather than total projects, market clearing condition

(21) can be reexpressed as

[

β

γ
AM∗ [λp∗ + (1 − λ) r∗] − (1 − β) (1 − λ)

]

F
(

AM∗
)

K ≤ (1 − λ)

[

1 − F

(

γ

p∗

)]

Turn now to the economy with symmetric information and taxes. Virtual wealth is

W (k, A, X) ≡

[

T + (1 − λ)

(

r (X) + max

{

p (X) ,
γ

max {A, AM(X)}

})]

k

At price p∗ the supply of projects is S = (1 − λ)
(

1 − F
(

γ

p∗

))

and tax revenue is

T = τp∗ (1 − λ)

(

1 − F

(

γ

p∗

))

=
λM∗

1 − λM∗
(1 − λ) p∗

(

1 − F

(

γ

p∗

))

= λp∗
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The return to buying projects is AM = γ

p∗(1+τ)
=

γ(1−λM)
p∗

= AM∗ and, because K is the same,

r = r∗. Therefore the virtual wealth is

W =















[

λp∗ + (1 − λ)
(

r∗ + γ

AM∗

)]

k if A ≤ AM∗

[

λp∗ + (1 − λ)
(

r∗ + γ

A

)]

k if A ∈
(

AM∗, γ

p

]

[λp∗ + (1 − λ) (r∗ + p∗)] k if A > γ

p

which is the same as with asymmetric information. This implies that demand for nonlemons

is the same as with asymmetric information and the market clearing condition must hold,

confirming that p∗ is an equilibrium price. Since this is true for every state X, programs (13)

and (23) are identical and allocations also coincide.

Proof of Lemma 5.

1. Market clearing implies
dp

dτ
=

∂S
∂τ

− ∂D
∂τ

∂D
∂p

− ∂S
∂p

where

D (p, τ) =

[

β

γ
AM (p)

[

τ (1 − λ) p

(

1 − F

(

γ

p

))

+ (1 − λ) r

]

− (1 − β) (1 − λ)

]

F
(

AM (p)
)

S (p, τ) = (1 − λ)

[

1 − F

(

γ

p

)]

AM (p, τ) =
γ

p (1 + τ)

Taking derivatives and substituting:

dp

dτ
= −

β
γ

F(AM)AM

1+τ

[

r − p
(

1 − F
(

γ
p

))]

+
[

β
γ
AM

[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

f
(

AM
)

AM

1+τ

β
γ
rF (AM ) AM

p
+
[

β
γ
AM

[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

f (AM ) AM

p
+ f

(

γ
p

)

γ
p2

[

1 − βF (AM )τ
1+τ

] < 0

2. Market clearing implies
dAM

dτ
=

∂S
∂τ

− ∂D
∂τ

∂D
∂AM − ∂S

∂AM

where

D
(

AM , τ
)

=

[

β

γ
AM

[

τ (1 − λ) p
(

AM , τ
)

(

1 − F

(

γ

p (AM , τ)

))

+ (1 − λ) r

]

− (1 − β) (1 − λ)

]

F
(

AM
)

S
(

AM , τ
)

= (1 − λ)
[

1 − F
(

AM (1 + τ)
)]

p
(

AM , τ
)

=
γ

AM (1 + τ)
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Taking derivatives and substituting:

dAM

dτ
= −

f
(

AM (1 + τ)
)

AM
[

1 − τ
1+τ

βF
(

AM
)

]

+
βF (AM )
(1+τ)2

(

1 − F
(

AM (1 + τ)
))

β
γ

F (AM ) r +
[

β
γ

AM
[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

f (AM ) + f (AM (1 + τ)) [1 + τ − τβF (AM )]
< 0

3. Integrating k′ over all entrepreneurs, K ′ is given by

K ′ =

∫ AM

0

[

βAM (T + (1 − λ) r) + β (1 − λ) γ
]

dF (A)

+

∫ γ
p

AM

[βA (T + (1 − λ) r) + β (1 − λ) γ] dF (A)

+

∫ ∞

γ
p

[βA (T + (1 − λ) r) + βA (1 − λ) p] dF (A)

where

T = τ (1 − λ) p

(

1 − F

(

γ

p

))

Taking derivatives:

dK ′

dτ
= (1 − λ)β





p
(

1 − F
(

γ
p

))

[

AMF
(

AM
)

+
∫

∞

AM AdF (A)
]

+
(

τp
(

1 − F
(

γ
p

))

+ r
)

dAM

dτ

+
[

∫

∞

γ
p

AdF (A) + τ
[

1 − F
(

γ
p

)

+ pf
(

γ
p

)

γ
p2

]

[

AMF
(

AM
)

+
∫

∞

AM AdF (A)
]

]

dp
dτ





Replacing with the expressions from parts 1 and 2 and rearranging:

x

(1 − λ) β

dK′

dτ
=









[

β
γ

AM
[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

p
1+τ

(

(

1 − F
(

γ
p

)) [

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

−

∫

∞
γ
p

AdF (A)

)

−
p

1+τ

[

β
γ

AM
[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

τp
γ

p2

[

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

f
(

γ
p

)









f
(

A
M
)

+







([

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

− AM
)

[

p
(

1 − F
(

γ
p

))

[

τ −
τ2

1+τ
βF

(

AM
)

]

−
rτ

1+τ
βF

(

AM
)

]

+
[

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

p
(

1 − F
(

γ
p

))

− AM r






f

(

γ

p

)

+









β
γ

F
(

AM
)

(1+τ)
pr

[

−AM
(

1 − F
(

AM
)) (

1 − F
(

γ
p

))

+
(

1 − F
(

γ
p

))

∫

∞

AM AdF (A) −

([

1 −
p
r

(

1 − F
(

γ
p

))])

∫

∞
γ
p

AdF (A)

]

+ τ
1+τ

[

p
(

1 − F
(

γ
p

))]2 β
γ

F
(

AM
) ([

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

− AM
)









where

x ≡
β

γ
F
(

AM
)

r+

[

β

γ
AM

[

τp

(

1 − F

(

γ

p

))

+ r

]

− (1 − β)

]

f
(

AM
)

+f

(

γ

p

)

(1 + τ)

[

1 − βF
(

AM
) τ

1 + τ

]

> 0

Using the market clearing condition and the fact that as τ → 0, F
(

AM
)

→ F
(

γ

p

)

and

f
(

AM
)

→ f
(

γ

p

)

, this expression reduces to

x

(1 − λ) β

dK ′

dτ
= −

[(

r

p
− β

[

r

p
+ 1

]

(

1 − F
(

AM
))

F
(

AM
)

)

pAM

]

f
(

AM
)

−

[

β

γ
F
(

AM
)

pr

[

AM
(

1 − F
(

AM
))2

+ F
(

AM
)

(p

r
+ 1
)

(1 − β)

∫

∞

AM

AdF (A)

]]

< 0
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Proof of Proposition 5. 1. Fixing p, higher r increases demand but has no effect on supply.

If ∂[D(p)−S(p)]
∂p

< 0 the equilibrium price must rise to restore market clearing. While this

inequality need not hold for every p, it holds at the p that constitutes the highest solution

to (21).

2. The result follows from part 1 and Assumption 1.

3. The result follows from part 1 and (18).

4. By part 1, the terms inside the integrals of equation (22) are increasing in r. By part 3,

AM is decreasing in r. Since both terms inside the integrals are positive but the second

is greater than the first, the results follows.

Proof of Proposition 6. Denote the original equilibrium by
{

p∗, λM∗, AM∗
}

and decompose the

effect of an increase in φ into two steps: (i) the effect of increasing φ while decreasing r to

leave φr constant and (ii) the effect of restoring r to its original value. For step (i), equation

(21) implies that
{

p, λM , AM
}

=
{

p∗

φ
, λM∗, φAM∗

}

is an equilibrium for any φ. Furthermore,

equation (15) implies that each entrepreneur’s proportional increase in max
{

AM , A
}

is exactly

offset by a proportional decrease in virtual wealth and K ′

K
does not change with φ. Step (ii)

consists of increasing r, so the results follow from Proposition 5.

Proof of Proposition 7.

1. Rearranging (20):

D (p) =
1

p

[

β [λp + (1 − λ) r] −
γ (1 − β) (1 − λ)

AM (p)

]

F
(

AM (p)
)

Condition (24) ensures that

D (p) < βλF
(

AM (p)
)

for any p. Since the supply of lemons from Buyers is λF
(

AM (p)
)

> D (p), there is no

price that equalizes supply and demand, which implies p∗ = 0.

2. First note that AM (p) is bounded because (i) it is continuous in p, (ii) limp→∞ AM (p) = 0

and (iii) using l’Hôpital’s Rule

lim
p→0

AM (p) = lim
p→0

f
(

γ

p

)

p2

γ2 (1 − λ)

λ
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which must be equal to zero for A to have a finite mean.

Since AM (p) is bounded, condition (24) is met for sufficiently low r, which proves the

result for coconut-productivity shocks. Also because AM (p) is bounded, then

AM (p, φ) =
γ

p

(1 − λ)
(

1 − F
(

γ

pφ

))

λ + (1 − λ)
(

1 − F
(

γ

pφ

))

converges uniformly to zero as φ → 0, so a sufficiently large project-productivity shock

also ensures that condition (24) is met.

Proof of Proposition 8. For given prices, equation (18) implies that λM∗ is increasing in λ. In

addition, D (p) − S (p) is decreasing in λ, so p must fall to restore market clearing. By (18),

this reinforces the increase in λM∗.

Proof of Proposition 9. The effect of r on each of the endogenous variables in the asymmetric

information economy can be decomposed into the effect it has in the fixed-wedge symmetric

information economy plus the effect of the change in the implicit τ . By part 3 of Proposition

5, the implicit τ is decreasing in r. The inequalities then follow from Lemma 5.

Proof of Lemma 6. Assume w.l.o.g. that s = G and drop the l subscript for clarity.

1.

λ̂G = Pr [Lemon|G]

= Pr [G|Lemon]
λ

Pr [G]

=

∫

Pr [G|Lemon, µ] dB(µ)
λ

∫

Pr [G|µ] dB(µ)

=

∫

(1 − µ)dB(µ)
λ

∫

[λ(1 − µ) + (1 − λ)µ] dB(µ)

=
λ(1 − µ̂)

λ(1 − µ̂) + (1 − λ) µ̂
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2.

E
[

λM
G (pG, µ)

]

= Pr [Lemon|G, Sold]

=
Pr [Sold|Lemon, G] Pr [Lemon|G]

Pr [Sold|G]

=
λ̂G

λ̂G +
(

1 − λ̂G

)(

1 − F
(

γ

pG

))

Therefore, using part 1,

E
[

AM
G (pG, µ)

]

=
γ

pG

(

1 − E
[

λM
G (pG, µ)

])

= AM
G (pG, µ̂)

Proof of Lemma 7. First note that ED(p, A∗) is continuous in both arguments. Furthermore,

since AM
l,s (pl,s, µ̂l) is continuous in µ̂l and H is continuous, then pl,s (A∗) can only be discontin-

uous on a zero-measure set. Therefore ED(p(A∗), A∗) is continuous.

Next, note that, given that AM
l,s(pl,s, µ̂l) is continuous and limpl,s→∞ AM

l,s(pl,s) = 0, it follows

from the definition that pl,s(A
∗) is decreasing. Therefore, given that ED(p, A∗) is increasing in

A∗ and decreasing in pl,s, ED(p(A∗), A∗) is monotonically increasing.

Finally, note that for sufficiently low A∗, pl,s (A∗) is arbitrarily large for all l, s, so ED(A∗) ≡

ED(p(A∗), A∗) is necessarily negative. For sufficiently high A∗, pl,s (A∗) = 0, so ED(A∗) is

necessarily positive. Given that ED(p(A∗), A∗) is continuous and monotonically increasing, it

must intersect zero exactly once.

Proof of Lemma 8. An equilibrium must satisfy equations (30) and (31). Conjecture that

p(X, µ) does not depend on µ. If so, the beliefs that are required to define µ̂ in equation

(30) must be the beliefs entrepreneurs had at the beginning of the period since prices do not

reveal information. It remains to show that, when prices are defined by p(A∗), the value of

A∗ that ensures market-clearing does not depend on realized µ. The market clearing condition

(31) can be rewritten as

ED(p(A∗), A∗, µ) = K

[
∫ 1

0

µlϕl(A
∗)dl + κ(A∗)

]

= 0
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where

ϕl(A
∗) ≡βλ (pl,B(A∗) − pl,G(A∗))F (A∗)

+pl,B(A∗)

[

λ − (1 − λ)

(

1 − F

(

γ

pl,B(A∗)

))]

−pl,G(A∗)

[

λ − (1 − λ)

(

1 − F

(

γ

pl,G(A∗)

))]

and

κ(A∗) =

[

β

[

λ

∫ 1

0

pl,G(A∗)dl + (1 − λ)r

]

− (1 − β) (1 − λ)
γ

A∗

]

F (A∗)

+

∫ 1

0

[

pl,B(A∗) (1 − λ)

(

1 − F

(

γ

pl,B(A∗)

))

+ λpl,G(A∗)

]

dl

Since the values of µl are independent draws from Bl (µl) and ϕl is bounded, then by the

law of large numbers ED(p(A∗), A∗, µ) is a constant and therefore so is the value of A∗ that

ensures market clearing.

Proof of Lemma 9.

H ′(m) ≡

∫

I [µ̂l,t+1 ≤ m] dl

=

∫

I

[

bl,t+1 ≤
m − (1 − µ̄)

2µ̄ − 1

]

dl

bl,t+1 is a function of the random variables µl, Nl and nl. The distributions of µl, Nl and nl are

a function of the state (up to a reordering of the indices) and the realizations are independent

across l. The result then follows from the law of large numbers.

Proof of Proposition 10.

1. ED(p, A∗) is decreasing in p and increasing in A∗, so for any given level of capital, an

economy where some prices are positive must have higher A∗ than one where all markets

shut down. From the entrepreneur’s problem, k′ is given by:

k′(k, A, X) = k













∫













λ [µlpl,B + (1 − µl) pl,G] max{A, A∗}

+(1 − λ)r max{A, A∗}

+(1 − λ)µl max {γ, pl,G max{A, A∗}}

+(1 − λ)(1 − µl) max {γ, pl,B max{A, A∗}}













dl













which is increasing in both p and A∗. Hence every entrepreneur in an economy where

some submarkets are open will accumulate more capital than if all submarkets are closed,
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and therefore the steady state level of capital must be higher.

2. Note first that, by equation (31), excess demand is increasing in r and therefore A∗ is

increasing in K. This means that if ε0 is the minimum value of |µ̂l,n −
1
2
| needed for there

to be any trade when K = K0
ss, then a value higher than ε0 is needed when K > K0

ss.

Since σ > 0, in steady state no signal in the economy is perfectly informative and there is

some residual informational asymmetry in all submarkets. This implies that, by the same

reasoning used in the proof of Lemma 7, a sufficiently large negative productivity shock

lasting n periods will lead all submarkets to shut down for n periods. Suppose ωK = 0,

so there is no learning while markets shut down. Equation (34) implies that n periods

after the shock: for any submarket l

bl,n =

[

bl,ss −
1

2

]

(1 − 2σ)n +
1

2

≤
1

2
(1 − 2σ)n+1 +

1

2

This implies that

|µ̂l,n −
1

2
| ≤

(

1

2
(1 − 2σ)n+1

)

[2µ̄ − 1]

for all l. Condition n >
log(µ̄− 1

2)−log ε0

− log(1−2σ)
− 1 ensures that |µ̂l,n − 1

2
| < ε0 for all l and

condition n < log Kss−log K0

− log[γ(1−λ)]
ensures that Kt+n > K0. Jointly, this ensures that markets

do not reopen in period n. If ωK = 0, this means that they will never reopen and Y 1

will converge to Y 0
ss. For ωK > 0 small enough, the result holds because H ′ is continuous

in ωK and K ′ is continuous in H . proportion of submarkets for all m ≤ T ′. Since K ′ is

continuous in H , the result follows.
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