# The Great Escape? A Quantitative Evaluation of the Fed's Non-Standard Policies

Marco Del Negro, Gauti Eggertsson Andrea Ferrero (NY Fed), Nobu Kiyotaki (Princeton) September 2010, Rome

Disclaimer: This talk does not reflect the views of the NY Fed

#### Question

What happens if you print money (reserves) corresponding to one dollar and buy private assets for that money...

... but without changing the nominal interest rate.

- Inflation
- Output
- etc

"Non-standard" open market operations



#### Motivation

- What is the effect of increasing the CB balance sheet?
  - Wallace (1982), Eggertsson and Woodford (2003)
  - Modigliani-Miller irrelevance theorem holds without financial frictions.
  - How large is the effect with financial frictions?

#### What we do

- Incorporate standard Kiyotaki-Moore (2008) into a DSGE model with standard real and nominal frictions.
- Findings:
  - Liquidity shock in KM-model moves asset prices and investment but <u>not aggregate output</u> (<u>quantitatively</u>).
    - → Quantitative effect of balance sheet (on output) tiny.
  - 2. If nominal rigidity and zero bound, the liquidity shock generates large output losses.
    - → Quantitative effect of CB balance sheet possibly large (Great Escape?).
- Not a normative analysis "crude" calibration

#### Model – Actors

- 1. Entrepreneurs: Financial frictions
- 2. Workers: Sticky wages
- 3. Capital Producers: Adjustment costs
- 4. Intermediate firms: Sticky prices
- 5. Final good producing firms: Aggregation
- Government: Conventional (interest rate policy) and unconventional policies (credit policy)

Model – Assets

- 1. Equity (n): Illiquid
- 2. Government nominal bonds (b): Liquid

### **Entrepreneurs & Frictions** Stochastic ideas

```
k_{t} = 0  with probability with probability with probability 1 with 1 with probability 1 with probability 1 with probability 1 with 1 with probability 1 with probability 1 with probability 1 with 1 wi
```

#### **Entrepreneurs & Frictions**

| Assets                        |               | Liabilities       |                 |  |
|-------------------------------|---------------|-------------------|-----------------|--|
| nominal bonds                 | $b_t$ $P_t$   | own equity issued | $q_t n_{t}^I$   |  |
| equity of other entrepreneurs | $q_t n_{t}^O$ |                   |                 |  |
| capital stock                 | $q_t k_t$     | net worth         | $q_t n_t$ $b_t$ |  |

where 
$$n_t \mathbf{Q} \mathbf{U} \otimes n_t^O \mathbf{Q} \mathbf{U} = \mathbf{M}_t \mathbf{Q} \mathbf{U} \otimes n_t^I \mathbf{Q} \mathbf{U}$$

Assume that  $\phi^I = \phi^o = \phi$ 

Then

Resellability constr.

Borrowing constr.

### Entrepreneurs' problem

$$\max_{s} E_t \overset{\text{\tiny (a)}}{\bullet} \mathscr{D}^{\text{\tiny (a)}} log \mathfrak{O}_s \mathfrak{O} \mathfrak{Q}$$

$$b_t = 10$$

$$c_t = p_t^I i_t = q_t \mathbf{\hat{n}}_{t=1} \otimes i_t \mathbf{$$

With probability 
$$1-\chi$$
  $\rightarrow$   $i_t(e)=0$  & constraint (1) slack With probability  $\chi$   $\rightarrow$   $i_t(e)>0$  & constraint (1) binding

#### Workers

$$c_t^{\bullet} = q_t \mathbf{\hat{q}}_t^{\bullet} \otimes \mathbf{\hat{m}}_t^{\bullet} \otimes \mathbf{\hat{m}}_t^{\bullet} \otimes \mathbf{\hat{m}}_t^{\bullet}$$

$$\Rightarrow r_t^k n_t^* = \underbrace{X}_{P_t} W_t \mathcal{D}_t h_t^* \mathcal{D}_t \mathcal{D}_t = P_t^I = \underbrace{X}_{P_t} \mathcal{D}_t \mathcal{D}_t = \mathcal{D}_t^I = \underbrace{X}_{P_t} \mathcal{D}_t \mathcal{D}_t = \underbrace{X}_{P_t} \mathcal{D}_t = \underbrace{X}_{P_t}$$

$$h_t$$

In equilibrium

$$n_{t}^{\bullet}$$
  $\mathbf{n}_{0}$ ,  $b_{t}^{\bullet}$   $\mathbf{n}_{0}$ 

#### Three types of producers

- Capital goods producers (competitive): Source of adjustment costs. Transform consumption good into investment good for entrepreneurs at price p<sub>t</sub><sup>1</sup>
- Intermediate good producers (monopolistic power). Calvo pricing ( $\xi_p$ ). Rent labor from workers and capital from entrepreneurs.
- Final goods producers (competitive): Aggregate.
   Buy goods from intermediate goods producers and sell to consumers.

### **Policy Authority**

Conventional monetary policy

$$\frac{R_t}{R}$$
  $\max 10, \mathfrak{T}_t \times \mathbf{1}$ 

Unconventional policy

$$\frac{N_{t=1}^g}{K} \quad \mathbf{R} \quad \mathbf{A}_{N^g} \quad \mathbf{A}_{\underline{\Omega}} \quad \mathbf{A}_{\mathbf{I}} \quad \mathbf{A}$$

Government budget constraint

Tax rule for government financing

#### The intervention

- This is "open market operations" at market prices.
- Buying private paper for public debt.
- No re-salability constraints of the private sector violated.
- Only affects investment in period t through price effect.
- → Next period private sector has more "liquid" assets.
- → It is obvious that this will have an effect (boring question). Interesting question: Does it matter quantitatively?

#### Equilibrium and solution of the Model

- All agents maximize subject to their constraints and markets clear
- Focus on constrained steady state
  - Stock of capital is lower than in first best
  - Price of investment is strictly greater than one (q > 1)
  - Workers do not save
  - Investing entrepreneurs do not hold liquid assets
  - Spectrum of interest rates
- Linearize model about steady state and solve with standard techniques
- Liquidity shock ^t follows two-state Markov process (s.s. vs "crisis")
- Explicitly take into account zero bound (Eggertsson, 2008)

### **Liquidity Share**

$$ls_t \approx \frac{B_{t} / P_t}{B_{t} / P_t}$$



The liquidity share in the data.

### Calibration

| Standard Parameters                    |   |       |                                                                 |  |
|----------------------------------------|---|-------|-----------------------------------------------------------------|--|
| <b>©</b>                               | • | 0.99  | Subjective discount factor                                      |  |
| Ŧ                                      | F | 0.975 | Annual depreciation ■10%                                        |  |
| 8                                      | F | 0.35  | Capital share                                                   |  |
| ×                                      | F | 1     | Inverse Fisch elasticity                                        |  |
| $\mathcal{T}_p$ of $\mathcal{T}_w$     |   | 0.1   | Steady state markup 10%                                         |  |
| ☆ <b>日</b> ☆                           | F | 0.66  | Average duration price/wage contracts 3 qrts                    |  |
| S*10U                                  | • | 3     | Investment adjustment cost                                      |  |
| Liquidity Parameters                   |   |       |                                                                 |  |
|                                        | • | 0.05  | Doms and Dunne (1998); Cooper, Haltinwanger and Power (1999)    |  |
| L/4Y                                   |   | 0.4   | Average (government debt \subseteq currency)/ GDP 1952Q1:2008Q4 |  |
| 20                                     | H | 0.18  | Real interest rate ◆2%; Liquidity share ◆14%                    |  |
| Zero Bound Parameters (shock duration) |   |       |                                                                 |  |
| $\overline{}_{\overline{z}_b}$         | 7 | 0.125 | Expected duration of zero bound  98qrts                         |  |
|                                        |   |       |                                                                 |  |

#### Calibration of $\phi$ (shock) and $\xi$ (intervention)

#### Two targets:

- 1. ≈ 24% increase in measured liquidity share
- 2. ≈\$1 trillion (=8% of GDP) increase in Fed's assets





#### Calibration of $\phi$ (shock) and $\xi$ (intervention)

#### Two targets:

- 1. ≈ 20% increase in measured liquidity share
- 2. ≈\$1 trillion (=7 percent of GDP) increaser in Fed's assets





• Size of the shock: φ drops by -0.40

## Response of Macro Variables (with intervention)



# Response of Financial Variables (with intervention)



#### The effect of the intervention



#### The Great Escape?

Suppose expected duration of zero bound = 10 years (ZB = 1/40), then .....



#### Multipliers

- •By how much does output increase, per dollar in intervention?
- •As outcome gets worse, the effectiveness of policy becomes greater ('divine coincident')
- •Similar result as Eggertsson (2009) and Christiano, Eichenbaum and Rebelo (2009) for government spending at the zero bound
- •Important for policy making?

$$M_{B,0} = \frac{\mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} (\hat{Y}_t^I - \hat{Y}_t^N) \right\}}{\mathbb{E}_0 \left\{ \sum_{t=0}^{\infty} \hat{N}_t^g \right\}}$$

|                 | Baseline | Great Escape |
|-----------------|----------|--------------|
| Standard        | 0.8      | 2.8          |
| No zerobound    | 0.6      | 0.8          |
| Flexible Prices | 0.009    | 0.007        |



#### The role of nominal frictions



#### The role of the zero bound



#### Conclusions

- What are the quantitative effects of the Fed's non-standard policies?
- At the zero bound, interest rate policy ineffective; Fed becomes "creative"
- Quantitative results:
  - Liquidity frictions/shocks provide coherent story for financial crisis (the Holy Grail?)
  - Substantial effects of Fed's non-standard policies
  - Does not imply <u>current</u> balance sheet expansion effective!
- Moving forward:
  - Theoretical foundations of resaleability constraint
    - Exogeneity of the resaleability shock, i.e., feedback from real economy and resellability.
  - Formal estimation of the model
  - The BIG question: Why has the crisis led to such a PERSISTENT weakness. → Macro theory has an incomplete answer.

#### Path for the nominal Interest Rate

