# Risky Mortgages in a DSGE Model

Chiara Forlati<sup>1</sup> Luisa Lambertini<sup>1</sup>

<sup>1</sup>EPFL

The Future of Monetary Policy, EIEF

September 30, 2010

(ロ) (四) (E) (E) (E) (E)

1/33

# **Motivation**

- The global financial crisis started with an increase in U.S. mortgage delinquencies • Graph
- Banks wrote down several hundred billion dollars in bad loans
- Liquidity crisis brought several financial institutions into or on the brink of bankruptcy
- Credit crunch and the Great Recession

# **Motivation**

- The global financial crisis started with an increase in U.S. mortgage delinquencies • Graph
- Banks wrote down several hundred billion dollars in bad loans
- Liquidity crisis brought several financial institutions into or on the brink of bankruptcy
- Credit crunch and the Great Recession

# U.S. Seriously Delinquent Mortgages



Percentage of total loans; Not seasonally adjusted

Source: Mortgage Bankers Association, National Delinquency Survey Back

< 🗇 🕨

-

# U.S. Seriously Delinquent Mortgages



Percentage of total loans; Not seasonally adjusted

Source: Mortgage Bankers Association, National Delinquency Survey Back

< 🗇 🕨

-

# This Paper

- Focuses on an increase in mortgage delinquencies and its transmission to the rest of the economy
- Introduces endogenous default on mortgages in a DSGE model with housing
- Analyzes an unanticipated increase in mortgage risk
- Compares economies with different leverage ratios
- Compares different degrees of interest rate inertia in monetary policy

### Results

- 1. An increase in mortgage risk
  - raises mortgage default and the mortgage premium
  - produces a credit crunch that generates a recession
- 2. Economies with lower mortgage risk have higher leverage ratios
- 3. High leverage ratios amplify the effects of a mortgage risk shock
- 4. Inertial monetary policies amplify the effects of a mortgage risk shock (zero lower bound scenario)

#### Literature

- Housing Sector: Iacoviello (2005), Iacoviello and Neri (2009), Calza, Monacelli and Stracca (2009), Aoki, Proudman and Vlieghe (2004)
- Durable Consumption Goods: Barsky, House and Kimball (2007), Erceg and Levin (2006), Carlstrom and Fuerst (2006), Monacelli (2009)
- Financial Accelerator: Bernanke and Gertler (1989), Carlstrom and Fuerst (1997), Bernanke, Gertler and Gilchrist (1999)
- **Risk, Default and Repayment Shocks**: Christiano, Motto and Rostagno (2009), Cohen-Cole and Martinez-Garcia (2008), Iacoviello (2010), Dellas, Diba and Loisel (2010)

### The Model Households

Fraction  $\psi$  of impatient (Borrowers) and  $1 - \psi$  of patient (Savers) households

- Consume a non-durable good, C<sub>t</sub>
- Consume services from and accumulate houses, H<sub>t+1</sub>
- Supply two types of labor, N<sub>C,t</sub> and N<sub>H,t</sub>
- Savers make loans to Borrowers, L<sub>t+1</sub>

#### Borrowers

$$\max_{C_{t},H_{t+1},N_{C,t},N_{H,t},L_{t+1},\bar{\omega}_{t+1}}\sum_{t=0}^{\infty}\beta^{t}E_{0}\left\{U\left(X_{t},N_{C,t},N_{H,t}\right)\right\}, \quad 0<\beta<1$$

where

$$X_t \equiv \left[ (1-\alpha)^{\frac{1}{\eta}} C_t^{\frac{\eta-1}{\eta}} + \alpha^{\frac{1}{\eta}} H_{t+1}^{\frac{\eta-1}{\eta}} \right]^{\frac{\eta}{\eta-1}}, \ \eta \ge 0,$$

subject to three constraints:

Budget constraint (nominal terms)

$$P_{C,t}C_t + P_{H,t}H_{t+1} + [1 - F(\bar{\omega}_t)](1 + R_{Z,t})L_t = L_{t+1} + W_{C,t}N_{C,t} + C_{t+1} + W_{C,t}N_{C,t} + C_{t+1} + C_{t+1$$

$$W_{H,t}N_{H,t} + (1-\delta)\left[1 - G(\bar{\omega}_t)\right]P_{H,t}H_t,$$

Participation constraint

Incentive-compatibility constraint

# Mortgage Risk

- · Each household consists of many members
- The household decides total housing investment H<sub>t+1</sub>
- The *i*-th member receives  $H_{t+1}^i$  and finalizes the mortgage contract according to household instructions
- Idiosyncratic shock  $\omega_{t+1}^i$  (observable by the member only) such that the ex-post housing stock is  $\omega_{t+1}^i H_{t+1}^i$  (or ex-post housing value is  $\omega_{t+1}^i p_{H,t+1} H_{t+1}^i$ )
- $E_t(\omega_{t+1}^i H_{t+1}^i) = H_{t+1}$ , i.e. there is *no* aggregate mortgage risk
- For  $\omega_{t+1}^i \in [0, \bar{\omega}_{t+1})$  loans are defaulted; for  $\omega_{t+1}^i \in [\bar{\omega}_{t+1}, \infty]$  loans are repaid
- Lenders pay the cost  $\boldsymbol{\mu}$  to monitor defaulting borrowers and seize the collateral
- Perfect insurance among household members

# The Mortgage Contract

Participation constraint of lenders

$$(1 + R_{L,t})L_{t+1} = \int_0^{\bar{\omega}_{t+1}} \omega_{t+1}(1 - \mu)(1 - \delta)P_{H,t+1}H_{t+1}f(\omega)d\omega + \int_{\bar{\omega}_{t+1}}^\infty (1 + R_{Z,t+1})L_{t+1}f(\omega)d\omega$$

Incentive-compatibility constraint

$$\bar{\omega}_{t+1}(1-\delta)P_{H,t+1}H_{t+1} = (1+R_{Z,t+1})L_{t+1}$$

 $R_{L,t}$  is the pre-determined and non-state-contingent rate of return on total loans

 $R_{Z,t+1}$  is the adjustable and state-contingent mortgage rate  $\bar{\omega}_{t+1}$  is the threshold value of the idiosyncratic shock

#### Savers

$$\max_{\widetilde{C}_{t},\widetilde{H}_{t+1},\widetilde{N}_{C,t},\widetilde{N}_{H,t}\widetilde{L}_{t+1}}\sum_{t=0}^{\infty}\gamma^{t}E_{0}\left\{U(\widetilde{X}_{t},\widetilde{N}_{C,t},\widetilde{N}_{H,t})\right\}, \quad 0<\beta<\gamma<1$$

subject to

$$P_{C,t}\widetilde{C}_t + P_{H,t}\widetilde{H}_{t+1} + \widetilde{L}_{t+1} = (1 + R_{L,t-1})\widetilde{L}_t + W_{C,t}\widetilde{N}_{C,t} + W_{H,t}\widetilde{N}_{H,t}$$
$$+ \widetilde{\Delta}_t + (1 - \delta)P_{H,t}\widetilde{H}_t$$

where  $\widetilde{\Delta}_t$  are profits from firms

### Intermediate Goods Producers

- Each sector has monopolistically competitive intermediate goods producers
- Continuum of differentiated goods  $i \in [0, 1]$
- Firm *i* produces according to

$$Y_{j,t}(i) = A_{j,t} \left[ \zeta^{\frac{1}{\varsigma}} N_{j,t}(i)^{\frac{\varsigma-1}{\varsigma}} + (1-\zeta)^{\frac{1}{\varsigma}} \widetilde{N}_{j,t}(i)^{\frac{\varsigma-1}{\varsigma}} \right]^{\frac{\varsigma}{\varsigma-1}}, \quad 0 < \zeta < 1, \varsigma > 0$$

Calvo price setting

### **Final Goods Producers**

- Each sector has perfectly competitive final goods producers
- Flexible prices and CRS technology

$$Y_{j,t} = \left(\int_0^1 Y_{j,t}(i)^{\frac{\varepsilon_j-1}{\varepsilon_j}} di\right)^{\frac{\varepsilon_j}{\varepsilon_j-1}}, \ \varepsilon_j > 1, \ j = C, H$$

Monetary policy rule:

$$\frac{1+R_{L,t}}{1+R_L} = A_{M,t} \left[ \pi_{C,t}^{\phi_{\pi}} \right]^{1-\phi_r} \left[ \frac{1+R_{L,t-1}}{1+R_L} \right]^{\phi_r}, \quad \phi_{\pi} > 1, \ \phi_r < 1$$

- Interest rate smoothing
- Monetary policy targets inflation in the non-durable sector

### **Functional Forms**

Utility function:

$$U(X_t, N_{C,t}, N_{H,t}) \equiv \ln X_t - \frac{\nu}{1+\varphi} \left[ N_{C,t}^{1+\xi} + N_{H,t}^{1+\xi} \right]^{\frac{1+\varphi}{1+\xi}}, \qquad \varphi, \xi \ge 0$$

Leverage Ratio:

 $\frac{l}{l + w_C N_c + w_H N_H}$ 

Total output:

$$Y_t = Y_{C,t} + p_{h,t} Y_{H,t}$$

<ロ> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

15/33

#### Exogenous Shocks

$$\ln A_{C,t} = \rho_C \ln A_{C,t-1} + \epsilon_{C,t}$$
$$\ln A_{H,t} = \rho_H \ln A_{H,t-1} + \epsilon_{H,t}$$
$$\ln A_{M,t} = \rho_M \ln A_{M,t-1} + \epsilon_{M,t}$$

Idiosyncratic risk in the housing sector:

$$\ln \omega_t \sim N(-\frac{\sigma_{\omega,t}^2}{2},\sigma_{\omega,t}^2)$$

Mortgage risk shock:

$$\ln \frac{\sigma_{\omega,t}}{\sigma_{\omega}} = \rho_{\sigma} \ln \frac{\sigma_{\omega,t-1}}{\sigma_{\omega}} + \epsilon_{\sigma_{\omega,t}}$$

### **Benchmark Calibration**

| Parameter         | Value | Description                                           |
|-------------------|-------|-------------------------------------------------------|
| $\gamma$          | 0.99  | Discount factor of Savers                             |
| $\beta$           | 0.98  | Discount factor of Borrowers                          |
| $\psi$            | 0.5   | Relative size of Borrower group                       |
| $\delta$          | 0.01  | Rate of depreciation for housing                      |
| $\varepsilon_{C}$ | 7.5   | Elasticity of substitution for C goods                |
| $\varepsilon_{H}$ | 7.5   | Elasticity of substitution for H goods                |
| ς                 | 3     | Elasticity of substitution across labor inputs        |
| ζ                 | 0.5   | Share of Borrower labor in the production function    |
| ξ                 | 0.871 | Elasticity of substitution across labor types         |
| $\alpha$          | 0.16  | Share of housing in consumption bundle                |
| $\nu$             | 2.5   | Disutility from work                                  |
| $\eta$            | 1     | Elasticity of substitution between C and H goods      |
| $\varphi$         | 1     | Inverse of elasticity of labor supply                 |
| $\theta_{C}$      | 0.67  | Calvo probability in C                                |
| $\theta_{H}$      | 0     | Calvo probability in H                                |
| $\phi_{\pi}$      | 1.5   | Taylor-rule coefficient on inflation                  |
| $\phi_r$          | 0.9   | Taylor-rule coefficient on past nominal interest rate |
| $\rho_{C}$        | 0.9   | Serial correlation of productivity shocks in C        |
| $ ho_H$           | 0.9   | Serial correlation of productivity shocks in H        |
| ρΜ                | 0     | Serial correlation of monetary policy shocks          |
| $\sigma_{\omega}$ | 0.20  | Standard deviation of idiosyncratic shocks            |
| $\mu$             | 0.12  | Monitoring cost                                       |

### Low-Leverage Calibration: $\sigma_{\omega} = 0.6$

| Steady State Values                 |           |              |              |  |  |
|-------------------------------------|-----------|--------------|--------------|--|--|
| Variable                            | Benchmark | Low Leverage | % Difference |  |  |
| Output C                            | 0.5407    | 0.5399       | 0.15         |  |  |
| Output H                            | 0.1465    | 0.1419       | 3.24         |  |  |
| Consumption, Borrowers              | 0.4789    | 0.4887       | -2.01        |  |  |
| Consumption, Savers                 | 0.6026    | 0.5912       | 1.93         |  |  |
| Housing Demand, Borrowers           | 11.5421   | 10.5337      | 9.57         |  |  |
| Housing Demand, Savers              | 17.7524   | 17.8431      | -0.51        |  |  |
| Hours Worked, Borrowers in C Sector | 0.5879    | 0.5789       | 1.55         |  |  |
| Hours Worked, Borrowers in H Sector | 0.1617    | 0.1549       | 4.41         |  |  |
| Hours Worked, Savers in C Sector    | 0.4948    | 0.5019       | -1.41        |  |  |
| Hours Worked, Savers in H Sector    | 0.1361    | 0.1343       | 1.37         |  |  |
| Loans                               | 2.1747    | 0.7980       | 172.54       |  |  |
| Loan-to-Value Ratio*                | 59.17     | 24.37        | 142.80       |  |  |
| Leverage Ratio*                     | 80.12     | 60.01        | 33.51        |  |  |
| Default Rate on Mortgages†          | 2.36      | 8.21         | -71.22       |  |  |
| External Finance Premium†           | 0.41      | 2.44         | -83.20       |  |  |
| Mortgage Interest Rate†             | 4.51      | 6.54         | -31.04       |  |  |

\* Percentage points. †Annual, percentage points.

# **Credit Crunch**



Mortgage Risk shock: increase in  $\sigma_{\omega,t}$ , the standard deviation of the distribution of idiosyncratic housing investment risk

#### Responses to a 40% Increase in $\sigma_{\omega,t}$ : Benchmark Calibration



Note: Default rate is annual and in percentage points. Loans are difference from steady state, multiplied by 100. All other variables are percentage point deviation from steady state 20/33

#### Responses to a 40% Increase in $\sigma_{\omega,t}$ : Benchmark Calibration



#### Responses to a 40% Increase in $\sigma_{\omega,t}$ : Low-Leverage Calibration



22/33

#### Responses to a 40% Increase in $\sigma_{\omega,t}$ : Low-Leverage Calibration



23/33

# Credit Crunch and Leverage

- Credit crunch is deeper in high-leverage economies
- Stronger adverse effects on Borrowers
- Loans, consumption of non-durable goods, and housing investment fall more
- Deeper fall in total output

#### Responses to a 40% Increase in $\sigma_{\omega,t}$ with Non-inertial Rule



#### Responses to a 40% Increase in $\sigma_{\omega,t}$ with Non-inertial Rule



26/33

### Interest Rate Flexibility

- Interest rate flexibility is important in the response to a mortgage risk shock
- Policy rate is cut more aggressively and non-durable consumption falls less
- Housing prices increase (because Borrowers and Savers increase hours in the housing sector by less)
- Strong inertial rules mimic a zero bound scenario where interest rate cannot be lowered further and the negative effects of a mortgage risk shock are amplified

## Responses to a 25 basis points Monetary Shock



#### Responses to a 25 basis points Monetary Shock



# Monetary Policy Shock and Sectoral Co-movement

- Representative agent models with sticky non-durable and flexible durable prices display negative co-movement in response to a monetary shock - see Barsky et al. (2007), Carlstrom and Fuerst (2006)
- Empirical evidence supports positive co-movement see Erceg and Levin (2006)
- Models with credit constraints display positive co-movement only with sticky durable prices - see Monacelli (2009)
- Our model displays positive co-movement with sticky durable prices
- Role of wage stickiness in the housing sector

## **Conclusions and Extensions**

Our model under-predicts the fall in total output and real housing prices seen in the Great Recession

- Perverse effect of monitoring costs. Make the housing sector response: adjustment costs in the housing sector
- Wage stickiness to dampen the output response in the housing sector
- Financial intermediation to provide capital to firms to amplify the effects of mortgage risk shocks
- Consider fixed-rate multi-year contracts and ARM contracts with nonstandard features

#### VAR Evidence: Innovation to Delinquencies



Notes: VAR estimated from 1980Q1 to 2009Q4. The dashed lines indicate the +/- one standard error bands. The Choleski ordering is DELHP, RR, DP, QQHP, CCHP, IHHP. Vertical axis: percent deviation from baseline.

#### VAR Evidence: IR of Delinquencies to Innovation to All Variables

