Discussion of Loisel, Pommeret & Portier: "Monetary Policy and Herd Behavior in New-Tech Investment"

Jean-Paul L'Huillier EIEF

Conference on "The Future of Monetary Policy" Oct. 1st, 2010

The Question

- "Should monetary policy react to perceived asset-price bubbles?"
 - Suggested answer: YES
- Provide framework where
 - 1. Easy to detect bubble, given publicly available info.
 - 2. Easy to burst bubble
- Interesting paper:
 - Question important and relevant
 - ► Thought provoking and clear, simple, model

Summary of Model

- Entrepreneurs invest sequentially in technology ("Old" or "New")
- Fixed cost κ gives prod. fn. Y = f(A, L)
 - $\kappa(New) > \kappa(Old)$
- ▶ TFP
 - ► A(Old): given
 - ► A(New): aggregate uncertainty
 - ► Two states: "Good" or "Bad"
 - ightharpoonup A(New = Good) > A(Old) and A(New = Bad) = A(Old)

Summary of Model, cont'ed

- ▶ Each entrepreneur receives a private binary signal
 - Sequential, observable, decisions imply informational cascades (Banerjee 1992; Bikhchandani et al. 1992)
 - Stock market prices based only on publicly available information
 - ▶ Definition: Bubble ⇒ Cascade
- To invest, entrepreneur first needs to borrow from households
- Monetary friction
 - ⇒ Central Bank can determine real interest rate

Summary of Results

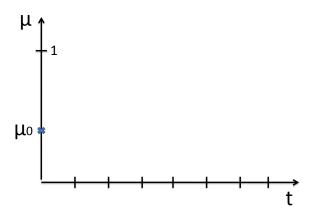
Monetary policy can improve welfare

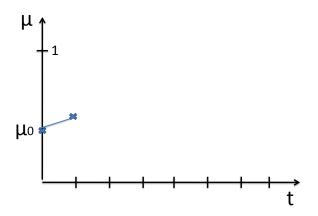
- For instance: Assume high cascade is unravelling
- Easy to detect
 - Implies sequence of entrepreneurs investing in new-tech
 - Actions observable
 - ⇒ Cascade is easily identifiable by Central Bank
- Easy to burst
 - Central bank can increase real interest rate
 - increase the cost of borrowed funds
 - make each entrepreneur invest based on private signal
 - Authors identify conditions in which welfare ↑

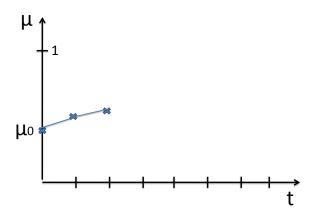
Some Remarks

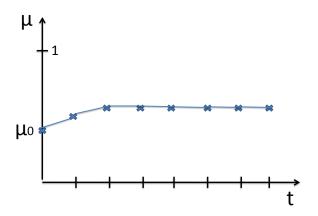
Fragility of cascades

- Richer action space
 - Continuous action space as in Lee 1993
 - ⇒ Cascades less likely
- Entrepreneur idiosyncratic shocks
 - Reduces correlation between signals and actions
 - ⇒ Cascades less likely
- Endogenous cost of New technology as in Avery & Zemsky 1998
 - Here exogenous
 - What if supply of New Technology is upward slopping
 - κ(New) increases in high cascade decreases in low cascade
 - ⇒ Cascades less likely

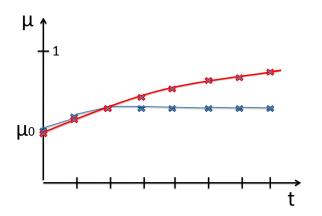

Relevance for policy?


- Another tradeoff: Spill-over effect of monetary policy
 - Consider 2 sector model
 - High bubble in one sector and no bubble in the other
 - Should intervene?
 - High bubble in one sector and low bubble in the other
 - Can monetary policy do anything?
- Is monetary policy really the best instrument?
 - Why not tax New Technology directly
 - Avoids spill-over effects in the economy
- Easy to detect?
 - Enrich info. structure: for instance, idiosyncratic shocks, or noise traders
 - Can we be sure there is a cascade/bubble?


Behavior of Stock Market


- ► In the model, entrepreneurs do not have access to stock market
- Avoids all sorts of tricky issues
- For instance: their information is not revealed on the price
 - But this also leads to particular dynamics of prices

Dynamics of Stock Market



In red: no bubble, average beliefs when private signals observable, high state

Conclusion

Thought provoking paper

- ▶ Interesting mechanism: in bubble information gets hidden
- Policy can make it costlier to imitate
 Private information can be revealed and welfare increased
- ▶ For this, really need stock market? Not really
- But, probably can use model with dynamic inefficiency
 - to generate bubble that grows over time
 - and information gets hidden as well