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Abstract. Decision makers have a strong tendency to retain the status quo unless an

alternative which may be a significant improvement comes along. This well-documented

phenomenon is termed status quo bias. In many complicated choice problems governed

by a status quo, decision makers consider alternatives that yield inferior outcomes in

some criteria if they simultaneously yield improvements in a set of other criteria that is

of relative importance. In an uncertain environment, we present the probabilistic dom-

inance approach to status quo bias – an alternative is considered acceptable to replace

the status quo only if it yields a better outcome than the status quo with sufficiently

high probability. Probabilistic dominance is applied and behaviorally characterized in

a choice model that allows for a scope of biases towards the status quo, general enough

to accommodate unanimity but also standard expected utility maximization. In addi-

tion, we show that the probabilistic dominance choice model predicts the well-known

endowment effect and provide with the means of calculating the buying and selling

prices.
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1. Introduction

Standard choice models describe a decision maker who ought to choose one or a few

elements from a collection of alternatives. These models typically describe methods that

decision makers might use based on their utility, beliefs, ambiguity, information and

alike. Payoff-irrelevant factors such as an initial endowment or a default reference point

are considered irrelevant to the rational assessment of the alternatives and are frequently

ignored. However, a growing amount of empirical data suggests that such factors affect

behavior and that standard models are insufficient to describe real-life decision-making

processes. It is well-established by now that individuals exhibit a strong tendency to

retain the current state of affairs, unless an alternative comes along, which may be a

significant improvement. This phenomenon is traditionally referred to as status quo bias

(Samuelson and Zeckhauser (1988)).

Accumulated experimental findings relate status quo bias to anticipated regret. In

particular, the sensation of regret is stronger when bad outcomes are a result of choosing

a new alternative than when they result from retaining the status quo (e.g., Kahneman

and Tversky (1982), Inman and Zeelenberg (2002) and Zeelenberg, van den Bos, van

Dijk, and Pieters (2002)). On the other hand, Shafir, Simonson, and Tversky (1993)

and Inman and Zeelenberg (2002) argue that with sufficient justification in favor of the

alternative to the status quo, this distinction decreases.

In the decision theoretic literature, a prominent approach involving status quo con-

siderations is that of unanimity. According to this approach, an option is considered a

candidate to replace the status quo if and only if it is considered better than the status

quo with respect to every possible criterion. Examples include Bossert and Sprumont

(2003), Masatlioglu and Ok (2005) and Ortoleva (2010). Criteria are determined sub-

jectively by the decision maker according to the nature of the decision problem in study.

For example, Bossert and Sprumont as well as Masatlioglu and Ok consider attributes

of outcomes in a general framework, and Ortoleva (similar to Bewley (2002)) considers

probability distributions over the state space.

The unanimity approach describes a decision maker who is unwilling to perform any

sort of trade-off considerations relative to the status quo. In particular, she is willing to

endure no regret upon the replacement of the status quo with another alternative. How-

ever, behavior in complicated problems, such as accepting a new job offer or relocating
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to a different country, often does not conform with this approach. Decision makers may

often allow for compromises in some criteria, trading-off simultaneous improvements in

other criteria that are subjectively important enough. For instance, an employee might

consider enduring additional working hours if she draws more satisfaction out of her

new position or earns more money, and an assistant professor might take an associate

professor position in a different state despite the uncertainty whether such a move will

be successful or not, as long as she evaluates the chances of success to be sufficiently

high.

Taking a choice-theoretic approach, the purpose of this paper is to present, what we

refer to as, the Probabilistic Dominance Model of decision making under uncertainty—

the decision maker considers an alternative choosable only if it yields a better outcome

than the status quo with sufficiently high probability.

1.1. Main results. We adopt a setup similar to that in Masatlioglu and Ok (2005)

but focus on inherent uncertainty as in Anscombe and Aumann (1963). In this set up, a

choice problem is either a collection of acts, or a collection of acts and a status quo (which

is an act) in this collection. In particular, it is assumed that the status quo is always

a feasible alternative.1 The decision maker is characterized by a choice correspondence

that assigns a non-empty sub-collection of alternatives for each choice problem, with or

without a status quo.

We present a set of axioms implying that the decision maker is associated with a

subjective prior over the state space and two binary relations. The first admits an ex-

pected utility representation with respect to the subjective prior. The second admits

a probabilistic dominance representation: one act is preferred to another if the proba-

bility (with respect to the same subjective prior) that the first act will return a better

alternative than the second exceeds a certain threshold. The decision maker uses the

following procedure to make her choices: whenever there is no status quo, the decision

maker simply maximizes the first relation among all feasible alternatives. That is, she

acts as a standard subjective expected utility maximizer. However, if the choice problem

is governed by a status quo, she first applies probabilistic dominance considerations to

1See the discussion section for a simple extension of the model presented here to a more general one

in which the status quo may not be feasible or exogenous.
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eliminate all alternatives that do not return an alternative at least as good as the one

returned by the status quo with high enough probability. She then maximizes the first

relation over the collection of feasible acts that survived the elimination stage described

above (note that this collection is never empty, as the status quo always survives the

elimination stage).

To illustrate the proposed model, consider for instance the assistant professor exam-

ple mentioned above. When contemplating the different offers, the assistant professor

compares each offer to the one from the university she is currently employed at, trying

to assess the quality of life she and her family would experience both from professional

and personal aspects. Out of all offers, she is willing to consider only those that guar-

antee, with (subjectively) sufficiently high probability, a quality of life at least as good

as the one she would experience in case she accepted the offer from her current working

place. Then, out off all the offers she considers, she chooses the one that maximizes the

expected well-being.

In the suggested decision model, the first step describes how the decision maker resolves

her bias towards the status quo. She groups states to construct decisive events—events

which are sufficiently significant for the decision maker to consider the alternatives that,

within such events, perform at least as well as the status quo.2 This procedure conforms

with the findings relating status quo bias to anticipated regret. Probabilistic dominance

considerations guarantee that the probability the decision maker will regret having moved

away from the status quo, once uncertainty is resolved, is not too high. Alternatively,

probabilistic dominance relations could be considered as ensuring some level of confidence

(that is, providing sufficient justification) when replacing the status quo.3 For example,

the assistant professor would like to convince her spouse (or alternatively, herself4) that

2Some experimental evidence for such comparisons can be found in Ritov (1996). In that study, when

choosing between two alternatives, a major factor subjects exhibited was a concern to minimize the

probability of regret.
3This interpretation of the first step of the suggested choice procedure raises a notion of regret different

than those that had previously appeared in the literature, such as in Savage (1954), Bell (1982), Loomes

and Sugden (1982) and Sarver (2008). All that matters for the decision maker is the probability of

feeling regret.
4See the discussion in Shafir et al., (1993) page 33.
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a particular offer is ‘good enough’ in the sense that the chance that it will improve their

quality of life is significant.

The scope of the probabilistic threshold in the representation allows for a range of

biases towards the status quo. The higher the threshold, the more difficult it is for an

act to survive the first stage of the decision making process. So, the higher the threshold

parameter, the more biased towards the status quo the decision maker is. Note that the

model is general enough to allow for no bias at all, so that choices follow a ‘standard’

maximization of expected utility (characterized by a threshold of 0), but also for a

strong bias towards the status quo as expressed in the unanimity approach (which is

characterized by a threshold of 1).

The chosen framework allows us, when comparing between the choices of two individ-

uals, to present a definition of revealing more bias towards the status quo. The intuition

behind the definition is the following. Assume that two decision makers, Ilsa and Rick,

both choose the same alternative given a status quo free choice problem. Assume in

addition that at the same choice problem Rick no longer chooses this alternative once a

status quo is present. If Ilsa reveals more bias towards the status quo than Rick, then in

the presence of the same status quo, one would expect her to alter her choice as well. We

study the implications of this definition to the suggested model. As a simple illustration,

assume that both Ilsa and Rick follow the probabilistic dominance choice model and that

they share beliefs and tastes. Intuitively, Ilsa reveals more bias towards the status quo

than Rick if and only if Ilsa’s probabilistic threshold parameter is at least as high as that

of Rick.

As an application of our choice model, we show that it predicts that the decision maker

will demand more in order to give up a commodity than she would be willing to pay to

acquire it. Thaler (1980) termed this well-known phenomenon the endowment effect.5

We provide a simple way of calculating the buying and selling prices in terms of utility,

and characterize by means of the representation those acts for which the decision maker

exhibits the endowment effect.

1.2. Related literature. Status quo bias was first captured and termed by Samuelson

and Zeckhauser (1988). Through laboratory and field experiments, they indicated the

5Additional examples are Knetsch and Sinden (1984) and Kahneman, Knetsch, and Thaler (1990).
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strong affinity of individuals to retain the alternative which is the status quo. This obser-

vation has lead to a significant number of empirical studies on the presence of status quo

bias (and related effects such as the endowment effect and reference-dependence) in im-

portant choices. Examples are 401(k) pension plans (Madrian and Shea (2001), Agnew,

Balduzzi, and Sundén (2003) and Choi, Laibson, Madrian, and Metrick (2004)), electri-

cal services (Hartman, Doane, and Woo (1991)) and car insurance (Johnson, Hershey,

Meszaros, and Kunreuther (1993)).

These findings promoted the development of decision making models attempting to

capture status quo effects. Tversky and Kahneman (1991) presented a reference-dependent

choice model based on loss aversion. The intuition behind this model is that the status

quo affects the utility of the decision maker in such a manner that relative losses loom

larger than corresponding gains. Sugden (2003) and Munro and Sugden (2003) axiom-

atize reference-dependent preferences in the spirit of Tversky and Kahneman (1991)’s

‘loss-aversion’. Köszegi and Rabin (2006) develop a reference-dependent preferences

model, which adhere to loss-aversion as well, extracting the reference point out of equi-

librium.

Masatlioglu and Ok (2005) and (2009) present a new approach to modeling status quo

bias. Instead of affecting the underlying utility as in loss aversion, the presence of the

status quo imposes constraints on what is choosable and what is not.6 These constraints

make some of the alternatives appear as inferior to the status quo and therefore unchoos-

able.7 In Masatlioglu and Ok (2005), the strong axioms describing the decision maker’s

bias towards the status quo, yield (as discussed above) unanimity type of constraints.8

Aware of the restrictive nature of their status quo bias axioms, Masatlioglu and Ok

(2009) consider a much broader model. In particular it is broader than the model pre-

sented here. For example, it is possible in the second stage of the process for the decision

maker to consider some, but not all, alternatives that with high probability yield a good

6Rubinstein and Zhou (1999) consider a similar approach where the choosable alternatives are those

closest to the status quo.
7See Masatlioglu and Ok (2009) for elaborated discussions on the differences between the two

approaches.
8Sagi (2006) studies the implications of an axiom bearing the essence of the Masatlioglu and Ok

(2005) status quo bias axioms. The example given by Sagi, when considered in the present framework,

describes an attitude towards the status quo which is identical to unanimity.
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outcome relative to the status quo, as well as alternatives that yield a good outcome

relative to the status quo with much lower probabilities.

1.3. Organization. In the following section we discuss the main model in detail, de-

scribing the framework in Section 2.1, introducing the representation in Section 2.2 and

the axioms in Section 2.3. Section 3 provides the main results. The representation the-

orem and uniqueness result appear in Section 3.1. In Section 3.2 we present a natural

comparative notion of revealed bias towards the status quo and provide its implications

to the probabilistic dominance model. An application of the model is given in Section

3.3 in which we show how it predicts the well-known endowment effect and provide with

a simple way of calculating the buying and selling prices. In Section 4 we axiomatize

probabilistic dominance relations in an Anscombe–Aumann framework and discuss some

properties of these relations. Section 5 suggests additional models where the probabilistic

dominance approach could be applied, such as choice with endogenous reference points.

Probabilistic dominance in a Savagean framework is axiomatized in Appendix A. Lastly,

all the proofs appear in Appendix B.

2. The main model

2.1. The framework. We follow the setup and notation in Masatlioglu and Ok (2005)

with the difference that the objects of choice are assumed to be Anscombe and Aumann

acts. Formally, let X be a non–empty finite set of outcomes, and let ∆(X) be the set

of all lotteries (probability distributions) over X.9 Given p ∈ ∆(X) and x ∈ X, we

denote by p(x) the probability p assigns to the outcome x. Let S be a finite non–empty

set of states of nature. Now, consider the collection F = ∆(X)S of all functions from

states of nature to lotteries. Such functions are referred to as acts. We denote by Fc the

collection of all constant acts. Following the standard abuse of notation, we denote by p

the constant act that assigns the lottery p to every state of nature. Similarly, given an

act f and a state s, we write f(s) to represent the constant act that returns the lottery

f(s) in every state of nature.

Mixtures (convex combinations) of acts are performed state-wise. For f, g ∈ F and

α ∈ [0, 1], we denote by f ⊕α g the act αf +(1−α)g that returns αf(s)+(1−α)g(s), for

9Given a finite set A, ∆(A) denotes the collection of all probability distributions over A.
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each state s ∈ S. And, if A is a non-empty collection of acts, we write A⊕α g to denote

the collection {f ⊕α g : f ∈ A}. In addition, for any act f ∈ F , state s∗ ∈ S, lottery

p ∈ ∆ (X) and λ ∈ [0, 1], we define f ⊕s∗λ p ∈ F by (f ⊕s∗λ p)(s∗) := λf(s∗) + (1−λ)p and

(f ⊕s∗λ p)(s) := f(s) if s 6= s∗. Given a collection of acts A, A⊕s∗λ p denotes the collection

{f ⊕s∗λ p : f ∈ A}.
Let F denote the set of all nonempty closed subsets of F .10 The symbol � will be used

to denote an object that does not belong to F . By a choice problem we mean a list

(A, f) where A ∈ F and either f ∈ A or f = �. The set of all choice problems is denoted

by C(F). If f ∈ A, then the choice problem (A, f) is referred to as a choice problem with

a status quo. The interpretation is that the agent has to make a choice from the set A

while the alternative f is her default option. We denote by Csq(F) the set of all choice

problems with a status quo. Finally, the notation (A, �), with A ∈ F is used to represent

a choice problem without a status quo.

The decision maker (henceforth, DM) is associated with a choice correspondence, that

is, a map c : C(F)→ F such that

c(A, f) ⊆ A for all (A, f) ∈ C(F).11

2.2. Representation. We define a probabilistic dominance choice model as follows:

Definition 1. A correspondence c : C(F) → F is a probabilistic dominance choice

correspondence if there exist an affine function u : ∆(X) → R, a prior π over S and a

θ ∈ [0, 1] such that, for all A ∈ F ,

c(A, �) = arg max
f∈A

∫
S

u(f(s))dπ

10All results remain true, with no modifications, if we assume F to be the set of all non-empty finite

subsets of F .
11As in some of the papers discussing choice in the presence of status quo, it is also possible to

consider a system of preference relations as the primitive. This may lead to unresolved issues though.

For example, if a status quo f is preferred to both g and h, then in the presence of f as a status quo,

the ranking between g and h is never revealed. Thus, it seems more natural for the primitive to be a

choice correspondence. Apesteguia and Ballester (2009b) study the relation between the two possible

primitives.
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and, for all (A, g) ∈ Csq(F),

c(A, g) = arg max
f∈D(A,g,π,θ)

∫
S

u(f(s))dπ,

where, for each (A, g) ∈ Csq(F), D (A, g, π, θ) := {f ∈ A : π{s : u(f(s)) ≥ u(g(s))} ≥ θ}.

The interpretation of this choice procedure is the following. In the absence of a status

quo, the agent acts as a standard subjective expected utility maximizer. As elaborated

in the Introduction, when faced with a decision problem governed by a status quo the

agent wishes to be confident that, regardless of her choice, she will obtain an outcome

at least as good as the one she would have obtained had she retained the status quo,

with sufficiently high probability. She first eliminates all those alternatives that do not

ensure such a sufficiently high level of confidence. Following the elimination, she acts as

a standard expected utility maximizer as in choice problems without a status quo.12

Two points should be noted regarding the threshold parameter θ. One is that θ

captures the degree of confidence the DM wishes to ensure when moving away from the

status quo. Fixing the beliefs and tastes, it is intuitive that the larger the threshold,

the more bias towards the status quo the DM is going to exhibit (this intuition is made

formal, even for the case where beliefs are not fixed, in Section 3.2). When θ = 0 the

DM exhibits no bias at all towards the status quo and acts as a standard expected utility

maximizer. At the other end of the threshold range, a DM who is characterized by θ = 1

is not willing to take any chances of loosing by moving away from the status quo and

displays the extreme approach of unanimity. Second, the bias towards the status quo is

not continuously shifting as θ changes. This point is closely related to the non-uniqueness

of θ in the representation of c and it is discussed in detail in Section 3.1.

12In a different framework and in a status quo free context, sequentially rationalizable choices were also

studied by Manzini and Mariotti (2007), Cherepanov, Feddersen, and Sandroni (2009) and Apesteguia

and Ballester (2009a). Two-staged decision processes are also of importance in the marketing literature

(see Sheridan, Richards, and Slocum (1975) and Gensch (1987) and references therein). Experimental

and empirical evidence point to the fact that, when facing a choice problem, individuals tend to eliminate

some alternatives according to a crude, non-compensatory initial rule, followed by a more thoughtful

and compensatory process for deciding on the final choice.
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2.3. Axioms. We impose the following properties on a choice correspondence c.

A1 WARP. If (A, h) , (B, h) ∈ C (F) are such that B ⊆ A and c (A, h) ∩ B 6= ∅, then

c (B, h) = c (A, h) ∩B.

The first postulate is an adaptation of the standard Weak Axiom of Revealed Pref-

erence to the environment here. It says that if we keep the status quo (or the absence

of status quo) fixed, then c satisfies that postulate. This axiom implies that, for each

f ∈ F ∪ {�}, there exists a complete preorder �f that represents the DM’s behavior

when the default option is f .

A2 Independence. For any f ∈ F , A ∈ F and λ ∈ [0, 1], c(A⊕λ f, �) = c(A, �)⊕λ f .

Our Independence axiom is also standard. It says that the agent’s choices in prob-

lems without a status quo satisfy the well-known Independence postulate.

A3 Continuity. For any f, g, h ∈ F , the following sets are closed: {α : f ⊕α g ∈
c({f ⊕α g, h}, �)}, {α : h ∈ c({f ⊕α g, h}, �)}, {α : f ⊕α g ∈ c({f ⊕α g, h}, h)} and

{α : h ∈ c({f ⊕α g, h}, f ⊕α g)}.

The first part of our continuity condition, which talks about choices in problems without

a status quo, is entirely standard. The second part imposes a similar continuity condition

in problems with a status quo.

A4 Unambiguous Transitivity. If f(s) ∈ c({f(s), g(s)}, �) for all s ∈ S, then, for

any h ∈ F , g ∈ c({g, h}, h) implies f ∈ c({f, h}, h) and h ∈ c({f, h}, f) implies

h ∈ c({g, h}, g).

As the name says, the Unambiguous Transitivity postulate imposes some transitivity

in the agent’s choices once it is revealed that an act dominates the other in a unanimous

sense. The main idea is that we consider deviations from standard rationality that ul-

timately stem from the uncertainty in the world and the possibility of bias towards the
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status quo. But, assuming that g is chosen in the presence of h, despite h being the status

quo, it is natural to assume that the bias towards h will reduce whenever presented with

an act f that is unambiguously better than g, in the sense that f performs better than

g in all states. So the axiom imposes that such an act f is also chosen in the presence of

h when h is the status quo. Similarly, if h is such a good option that it is chosen in the

presence of f even when f is the status quo, then it is natural to think that h will also

be chosen when confronted with a status quo g that is unambiguously worse than f .

A5 Status quo Irrelevance (SQI). For any (A, f) ∈ Csq, if there does not exist a non-

singleton B ⊆ A with (B, f) ∈ Csq and {f} = c(B, f), then c(A, f) = c(A, �).

The postulate above was first introduced by Masatlioglu and Ok (2009). It begins with

a set A such that in no subset of A the bias towards the status quo f is strong enough

to make it the only choice. In other words, the bias towards f is not significant, in the

sense that the DM always considers moving away from it as something acceptable. The

axiom then requires that such a default option does not affect the DM’s behavior. That

is, she resolves her problems as if there existed no status quo. This is the essence behind

A5.

A6 Single-state Mixing Irrelevance (SSMI). For any s∗ ∈ S, λ ∈ (0, 1), p ∈ ∆ (X) and

(A, f) ∈ Csq, if c(B ⊕s∗λ p, �) = c(B, �) ⊕s∗λ p for all B ⊆ A, then c(A ⊕s∗λ p, f ⊕s∗λ p) =

c(A, f)⊕s∗λ p.

The SSMI axiom is the most novel property studied in this section. To the best of

our knowledge the implications of this type of postulate have never been investigated in

the literature. Choosing from a set of alternatives, in a given state the agent may or may

not obtain a better outcome than the status quo. Mixing all the alternatives (including

the status quo) in this state with some other outcome will not change the relative result

in this state (or any other). Such a mixing yields a decision problem which is a very

simple variation of the original one: no matter what the DM chooses, if s∗ is the realized
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state, then with probability λ she obtains the outcome p, and with probability 1−λ her

outcome is no different than in the problem when there is no such mixing.

It seems that if such a mixture does not affect the DM’s choices when she objectively

assesses the different alternatives (that is, in the status quo free problem), then in the

presence of a status quo the insignificance of the mixture should be enhanced. Having

a bias towards the status quo, insignificant changes might be perceived even more in-

significant than when there is no status quo and thus will not change the choice.13 This

is the idea behind Axiom A6.

A7 Binary Consistency. Let p, q, r ∈ ∆(X). If f and g are acts such that f(S)∪ g(S) ⊆
{p, r}, then {f} = c({f, g, q}, q) implies that {f} = c({f, g, q}, �).

To describe A7 in detail, define the relation <⊆ F × F by f ′ < g′ if and only if

f ′ ∈ c({f ′, g′}, �) and suppose, without loss of generality, that p < r. It is possible

to show that unless p � q � r, Binary Consistency is implied by the axiomatic structure

above. However, if indeed p � q � r, f and g can be interpreted as acts that either

return a lottery that is better than the status quo lottery q or a lottery that is worse.

When we learn that f is the unique choice out of {f, g, q} when q is the status quo, we

must conclude that the event in which f returns the good lottery is more salient, under

some subjective criterion, than the event in which g returns the good lottery. The axiom

is then a consistency property that imposes that this saliency is sustained in the status

quo free problem.

Remark 1. The axioms SQI and SSMI are written in a stronger format than what is

needed. It is easy to see that in the presence of WARP it is enough to require that those

axioms be valid for sets with three or less elements. We note that if we replace A5 and

A6 by the simpler versions (only for sets with less than four elements) discussed above,

then, except for continuity, our axiomatic system is entirely testable.

13If there exists no bias towards the status quo (meaning the status quo plays no role in the choice

problem), the resulting problem is similar to the status quo free problem and no changes in choice should

be observed, either.
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3. Main results

3.1. The representation theorem. We now provide the main representation result of

the paper.

Theorem 1. Given a choice correspondence c : C(F)→ F the following are equivalent:

(1) c satisfies A1-A7;

(2) c is a probabilistic dominance choice correspondence.

Remark 2. If c is not trivial,14 then A1-A7 imply that the prior π is unique and the

function u is non-constant and unique up to positive linear transformations. The same

is not true for θ – following the proof of Theorem 1, it is clear that θ can be chosen from

some interval. For example, consider a state space with two states and a probabilistic

dominance choice correspondence that is represented by a non-constant utility and prior

distribution assigning probability 0.5 for each state. Holding the utility and prior fixed,

one would obtain identical choices for every 0 ≤ θ ≤ 0.5. For each such θ, in every

choice problem the corresponding procedure would simply pick those alternatives with

highest expected utility.

Next we present an auxiliary result, which is interesting on its own, partially hints to

the proof of Theorem 1, and resolves the uniqueness issue of the probabilistic threshold

parameter θ representing c.

Proposition 1. Given a choice correspondence c : C(F) → F the following are equiva-

lent:

(1) c satisfies A1-A6;

(2) there exists an affine function u : ∆(X) → R, a prior π over S and a non-empty

collection of events T ⊆ 2S such that, for all A ∈ F ,

c(A, �) = arg max
f∈A

∫
S

u(f(s))dπ

and, for all (A, g) ∈ Csq(F),

c(A, g) = arg max
f∈D(A,g,T )

∫
S

u(f(s))dπ,

14A choice correspondence c is trivial if, for all c(A, g) ∈ C(F), c(A, g) = A.
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where, for each (A, g) ∈ Csq(F), D (A, g, T ) := {f ∈ A : u(f(s)) ≥ u(g(s)) for all s ∈ T
for some T ∈ T }.
Moreover, if c is non-trivial then π is unique, u is non-constant and unique up to positive

linear transformations, and there exists a unique collection of events T that is closed

under containment,15 satisfies that π(T ) > 0 for all T ∈ T and represents c in the sense

above.

The interpretation of the proposition is similar to that of Theorem 1. The events in

the collection T are called decisive. In the presence of a status quo, during the first

stage of the decision process, an act has to perform at least as well as the status quo

for all states inside at least one of the decisive events. Differently from Theorem 1,

Proposition 1 imposes no restrictions on the collection of events T . In particular, T
need not be consistent with the agent’s subjective belief π and there might exist some

decisive event T ∈ T and an event T ′ /∈ T such that π(T ) < π(T ′). Such behavior can be

explained by the intuitive–deliberate choice theory described by Kahneman (2003), but

this raises two remarks. First, it is hard to believe that a DM would base his choices on

a low probability event but not on an event with higher probability. And second, going

through all the difficulties entailed in computing the subjective prior, it seems unnatural

that the DM would not revise the first stage of the decision process and reconstruct T
so that it contained all high probability events. In short, the probabilistic dominance

choice correspondence characterized in Theorem 1 is a special case of the representation

above where T := {T ⊆ S : π(T ) ≥ θ}.

Remark 3. In Proposition 1, the uniqueness properties of the collection T of decisive

events which represents c are quite natural. First, given any T ∈ T , if an act f dominates

the status quo g over an event T ′ that contains T , then it dominates g over T itself, thus

f passes to the second stage of the decision process. Second, consider a π-null event

T and assume that f dominates the status quo g only over T . This implies that the

expected utility of f is strictly lower than that of g, thus f will never be chosen when g

is the status quo. This shows that zero probability events are completely inconsequential

15A collection of events T is closed under containment if T ∈ T and T ⊆ T ′ implies that T ′ ∈ T .



14 GIL RIELLA AND ROEE TEPER

for the choice procedure described in Proposition 1, therefore, including or not including

them in the collection T does not affect the DM’s choices.16

3.2. Comparative status quo bias. Consider two DMs, I and II, associated with

choice correspondences c1 and c2, respectively. Assume that there exists a status quo

free choice problem for which both DMs choose f . Now, assume that there exists a status

quo where II’s bias towards it is salient in the sense that its presence alters her choice

(relative to the status quo free problem) and f is no longer chosen. If I exhibits more

bias towards the status quo than II, then, in the presence of the same status quo, she

will not choose f as well. This is the idea behind the following comparative notion.

Definition 2. c1 reveals more bias towards the status quo than c2 if, for every (A, g) ∈
Csq(F) such that f ∈ c1(A, �) and f ∈ c2(A, �),

f /∈ c2(A, g) =⇒ f /∈ c1(A, g).

The following proposition reinforces the intuition behind our interpretation of proba-

bilistic dominance choice and in particular, the formation of decisive events.

Proposition 2. Suppose c1 and c2 have representations as in Proposition 1, with the

same utility function u, priors π1 and π2, and collections of decisive events T1 and T2,

respectively. Then, the following are equivalent:

(1) c1 reveals more bias towards the status quo than c2;

(2) the tuple (u, π2, T1 ∪ T2) also represents c2 in the sense of Proposition 1.

What the proposition suggests is simply that, revealing less status quo bias is equiv-

alent to imposing less restrictions on the considered alternatives by having a richer col-

lection of decisive events (up to null events). In the context of Theorem 1, if the DMs

share utilities and beliefs then Proposition 2 implies that no matter what the threshold

θ2 is, there exists a threshold θ1 ≥ θ2 which represents c1. This is formally presented in

the next proposition.

16Although correct in the current formulation, Proposition 1 leads to a revised definition of

D (A, g, π, θ) in Theorem 1: D (A, g, π, θ) could be defined by {f ∈ A : π{s : u(f(s)) ≥ u(g(s))} ≥
θ} ∩ {f ∈ A : π{s : u(f(s)) ≥ u(g(s))} > 0}.
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Proposition 3. Suppose c1 and c2 have representations as in Theorem 1, with the same

utility function u and prior π. Then, the following are equivalent:

(1) c1 reveals more bias towards the status quo than c2;

(2) There exists θ1 that represents c1 such that θ1 ≥ θ2 for every θ2 representing c2.

3.3. The endowment effect. People often demand more in order to give up a commod-

ity than they would be willing to pay to acquire it (see Kahneman, Knetsch, and Thaler

(1991) for a survey). This phenomenon, intrinsically related to status quo bias is the

well-documented endowment effect (Thaler (1980)). We show that our model predicts

this phenomenon in terms of unambiguous gains of utility. Also, we provide a simple

way to compute, in terms of utility, the willingness to accept (WTA) and willingness to

pay (WTP).

Consider a probabilistic dominance choice correspondence c that has a representation

with a non-constant and affine function u : ∆(X)→ R, a prior π over S and a threshold

parameter θ ∈ [0, 1]. We define the function Sc : F → u(∆(X)) by17

Sc(f) := inf{u(p) : p ∈ ∆(X) and p ∈ c({p, f}, f)}

and the function Bc : F → u(∆(X)) by

Bc(f) := sup{u(p) : p ∈ ∆(X) and f ∈ c({p, f}, p)}.

Intuitively, Sc(f) is the minimum unambiguous gain the individual would require in order

to give away the act f (WTA in terms of utility) and Bc(f) is the maximum unambiguous

gain the individual would be willing to give away in order to have f (WTP in terms of

utility).

For a constant act p to be chosen from that pair {f, p} whenever f is the status

quo, two conditions must be fulfilled. It must dominate f with probability at least θ,

and its utility must be as high as the expected utility induced by f . Thus, given the

representation of c, we have that

(1) Sc(f) = max

{∫
S

u(f(s))dπ,min{v ∈ u(∆(X)) : π{s : u(f(s)) ≤ v} ≥ θ}
}
.

17Similar definitions, in an environment with no uncertainty and explicit potential prices, can be

found in Masatlioglu and Ok (2005).
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Applying similar arguments as above (for the case where the constant act p is the status

quo when choosing between {f, p}), we obtain

(2) Bc(f) = min

{∫
S

u(f(s))dπ,max{v ∈ u(∆(X)) : π{s : u(f(s)) ≥ v} ≥ θ}
}
.

Loosely speaking, the two terms above, min{v ∈ u(∆(X)) : π{s : u(f(s)) ≤ v} ≥ θ}
and max{v ∈ u(∆(X)) : π{s : u(f(s)) ≥ v} ≥ θ}, are expressions for the left θ quantile

and the right 1 − θ quantile of the distribution of u(f) with respect to π. We denote

them Q̃π,θ(f) and Q̂π,1−θ(f) respectively. Thus, the WTA and WTP of any act can be

calculated using only its expected value and these two quantiles.

When c can be represented with θ = 0 and the DM is not biased to status quo,

choosing as a standard expected utility maximizer, for every act f we have that Q̂π,1(f) ≥∫
S
u(f(s))dπ ≥ Q̃π,0(f), meaning that Bc(f) = Sc(f). The question is how Bc(f) and

Sc(f) relate whenever c reveals a bias towards the status quo and cannot be represented

with θ = 0.

From Eq. (1) and (2) it is easy to verify that, for a particular act f , the WTA is at

least as high as the WTP. Also, a necessary and sufficient condition for both to be equal

is Q̂π,1−θ(f) ≥
∫
S
u(f(s))dπ ≥ Q̃π,θ(f). Furthermore, if c cannot be represented with

θ = 0, there always exists an act f for which the latter inequalities do not hold. This

implies that the WTA for this specific act is strictly hight than WTP. We formalize these

results in the next proposition:

Proposition 4. Suppose that u, π and θ represent a non-trivial probabilistic dominance

choice correspondence c as in Theorem 1. Then,

(a) Sc(f) ≥ Bc(f) for every f ∈ F .

(b) For every f ∈ F , Sc(f) = Bc(f) if and only if Q̂π,1−θ(f) ≥
∫
S
u(f(s))dπ ≥ Q̃π,θ(f).

(c) The following statements are equivalent:

(1) There exists f ∈ F with Sc(f) > Bc(f);

(2) There exists s∗ ∈ S such that θ > π(s∗) > 0; and

(3) θ = 0 does not represent c.
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4. Probabilistic dominance

Given a representation as in Theorem 1, define the relation � by

f � g ⇐⇒ π{s : u(f(s)) ≥ u(g(s))} ≥ θ.

We say that � has a probabilistic dominance representation and refer to � as a proba-

bilistic dominance relation. As mentioned in the Introduction, � can be interpreted as

representing the fact that the probability that the agent would regret choosing f instead

of g is below the threshold 1− θ.
Being the first of the two steps constructing the choice procedure described in Theorem

1, we discuss in detail this family of relations in the current section.

4.1. Framework and axioms. Again, let S be a finite set of states of the world, X

be a finite set of alternatives, ∆ (X) be the set of lotteries on X and F := ∆ (X)S be

the space of Anscombe and Aumman acts. The primitive of the model now is a binary

relation �⊆ F ×F . For any f, g ∈ F and event T ⊆ S we write f DT g to represent the

fact that f(s) � g(s) for all s ∈ T .

The following is a list of basic assumptions (axioms) about �:

B1 Relation. � is complete over Fc, reflexive and non-trivial.18

B2 Unambiguous Transitivity. (i) f � g and g DS h imply f � h; and (ii) f � g

and hDS f imply h � g.

B3 Continuity. For any f, g, h ∈ F , the sets {α ∈ [0, 1] : αf + (1 − α)g � h} and

{α ∈ [0, 1] : αf + (1− α)g � h} are closed.

We concentrate on deviations from standard rationality that are ultimately due to un-

certainty. Therefore, we assume that the restriction of � to constant acts satisfies all

the standard postulates of rationality. Specifically, B1 imposes that the restriction of

� to constant acts is complete. This restriction is transitive thanks to B2 and satisfies

continuity due to B3. Lastly, the restriction of � to constant acts satisfies the standard

independence axiom thanks to B4 that will be presented below.

18By non-trivial we mean that �6= F × F .
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In the presence of uncertainty, we allow for the possibility that the DM is undecided

and we do not require her decisions to be transitive. That is, we do not ask � to be

complete nor transitive in general. Despite that, assume that the DM is able to conclude

that f � g. On top of that, assume that the act h is dominated by g (or dominates

f) in the sense that it assigns to every state s ∈ S a lottery that is weakly worse

(better) than the lottery returned by g (f). So, in some sense, h is worse (better) than

g (f) independent of any uncertainty related considerations. B2 requires that in such a

situation the DM considers f � h (h � g). Note that B2, along with the reflexivity of

�, implies that � satisfies the standard monotonicity axiom. That is, for any two acts

f and g, if f DS g, then f � g. Also, as we have discussed above, B2 implies that � is

transitive over Fc.
B3 is a standard technical continuity condition of preferences under uncertainty.

As (one of the interpretations) we have discussed in the Introduction, we have in mind

a DM that considers the anticipated (ex-post) regret at the time she makes her decisions.

For example, consider a CEO subordinate to a board of directors. The CEO has to take

an important strategic decision for the company at the present time, but its ramifications

depend on the state of nature yet to be realized. Once the state is realized, the board

of directors can evaluate the CEO’s decision, as they know what outcome each optional

alternative would have yielded. In such a situation, it makes sense to think that the

CEO’s main concern will be if her decision will (ex post) prove to have been the correct

one or not.

Consider any two acts f and g. Fix a state s∗ ∈ S, a lottery p ∈ ∆(X) and λ ∈ (0, 1).

If the DM’s choices over constant acts satisfy the standard independence axiom, then

λf(s∗) + (1−λ)p � λg(s∗) + (1−λ)p if and only if f(s∗) � g(s∗). So, mixing f and g in

a single state with the same lottery does not change the states where f performs better

than g or g performs better than f . Given the discussion above, we must conclude that

the CEO’s decision about any two acts f and g has to agree with her decision about

f ⊕s∗λ p and g ⊕s∗λ p, for any s∗ ∈ S, p ∈ ∆(X) and λ ∈ (0, 1). This is exactly what the

postulate below imposes.19

19Behind this discussion there is the assumption that no intensity considerations about how better

or how worse a given act performs in each state are relevant for the DM’s decisions. There is empirical

evidence that the beliefs of obtaining a worse outcome than the alternative is the dominant aspect (out
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B4 State-wise Independence. For any two acts f and g, lottery p ∈ ∆(X), state s∗ ∈ S
and λ ∈ (0, 1), f � g if and only if f ⊕s∗λ p � g ⊕s∗λ p.

We note that a simple inductive argument shows that B4 is stronger than the stan-

dard Independence axiom, B4’, below.20

B4’ Independence. For any acts f, g, h ∈ F and λ ∈ (0, 1), f � g if and only if

λf + (1− λ)h � λg + (1− λ)h.

Similarly to the result in the previous section, B1–B4 yield the following useful pre-

liminary result:

Proposition 5. Given a binary relation � over F , the following are equivalent:

(1) � satisfies B1–B4;

(2) there exist a non–constant and affine function u : ∆(X) → R and a non–empty

collection of events T ⊆ 2S \ {∅} such that, for every f, g ∈ F ,

(3) f � g if and only if u(f(s)) ≥ u(g(s)) for all s ∈ T , for some T ∈ T .

Moreover, u is unique up to positive linear transformations and there exists a unique

collection of events T that is closed under containment and represents � in the sense

above.

Call an event T ⊆ S decisive if f(s) � g(s) for all s ∈ T implies that f � g.

Proposition 5 states, informally, that the axioms discussed above are equivalent to the

existence of a collection of decisive events that completely characterizes �.

4.2. Complementarities. Consider the following example:

Example 1. Suppose S = {s1, s2, s3, s4}, p � r, and the DM’s preferences satisfy axioms

B1–B4 with {s1, s3}, {s2, s4} as decisive events. That is, for every two acts f and g,

of the two mentioned above) that affects the agent’s choice when anticipated regret is in play (e.g., Ritov

(1996) and references within). Of course, completely disregarding the intensity of the anticipated regret

is a bit extreme. We consider it as a useful simplification that delivers a tractable model.
20This is also clear from claim 1 in the proof of Proposition 5, in Appendix B.
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f � g if, and only if, {s1, s3} ⊆ {s : f(s) � g(s)} or {s2, s4} ⊆ {s : f(s) � g(s)}. Now,

let f := (p, r, p, r), f ′ := (r, p, r, p), g := (p, p, r, r) and g′ := (r, r, p, p). We have that
1
2
g + 1

2
g′ DS 1

2
f + 1

2
f ′, f � p and f ′ � p, but neither g � p nor g′ � p are true.

In Example 1, we see that the decision rule represented by � exhibits a form of perfect

complementarity between the states s1 and s3, and the states s2 and s4. That is, for the

DM the fact that an act f returns a better outcome than another act g in state s1 is only

relevant if it is also true that f returns a better outcome than g in state s3. The same

thing occurs with states s2 and s4. The example shows that such complementarities yield

the following result: even though both f and f ′ are preferred to p, and even though both

g and g′ are not preferred to p, the mixture of g’s unambiguously dominates the (similar)

mixture of f ’s. The following axiom states that such complementarities between states

should not exist.

B5 No State–Complementarities. For any p, q, r ∈ ∆(X) and finite sequences of acts,

f1, ..., fm and g1, ...gm, such that, for all i = 1, ...,m, fi(S)∪gi(S) ⊆ {p, r}, if
∑m

i=1 λigi DS∑m
i=1 λifi for some λ ∈ ∆(m) and fi � q for all i, then gi � q for some i.

We can now prove the following result:

Theorem 2. Given a binary relation � over F , the following are equivalent:

(1) � satisfies B1–B5;

(2) there exist a non–constant and affine utility function u : ∆(X) → R, a probability

distribution π on S and a θ ∈ (0, 1] such that, for every f, g ∈ F ,

(4) f � g if and only if π
(
{s ∈ S : u(f(s)) ≥ u(g(s))}

)
≥ θ.

Of course, the representation in Theorem 2 is a particular case of the representation

obtained in Proposition 5. In the representation above, the collection of decisive events

is given by

(5) T := {T ⊆ S : π(T ) ≥ θ}.

Example 1 shows that given a collection T of decisive events, B5 is necessary for the

existence of a probability measure and a threshold parameter that yield T as described

in Eq. 5. Note that in Example 1 the events {s1, s3} and {s2, s4} are decisive. So, if �
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could be represented as in the statement of Theorem 2 we would have π({s1, s3}) ≥ θ

and π({s2, s4}) ≥ θ. It is not hard to see that this would imply that at least one of the

events in the collection {{s1, s2}, {s1, s4}, {s3, s2}, {s3, s4}} would also have probability

greater than or equal to θ and, therefore, would also be decisive. This contradicts the

assumptions within the example.

4.3. Additional properties and particular cases. In this section we very briefly

discuss some properties and special cases of the representation introduced in Theorem 2.

Uniqueness. Following the proof of Theorem 2, it is clear that there is no unique couple

(π, θ) that represents �. Consider the following example.

Example 2. Let S = {s1, s2, s3}, π(s) = 1
3

for every s ∈ S, and θ = 2
3
. According to

Theorem 2, an act f is (weakly) preferred to an act g if and only if f (weakly) dominates

g in at least two out of the three states. However, this is also true for every θ ∈ (1
3
, 2

3
]

(given that the distribution stated above is fixed). It is possible to construct a different

distribution that along with an appropriate θ would represent the same preferences. For

example, define π′ by π′(s1) = 1
6
, π′(s2) = 1

3
+ ε and π′(s3) = 1

2
− ε, where ε > 0 is small

enough. Now, given such ε > 0, for every θ′ ∈ (1
2
− ε, 1

2
+ ε], the couple (π′, θ′) represents

the same relation as (π, θ).

For a relation � satisfying the axioms discussed above, denote by H� the collection of

elements (π, θ) ∈ ∆(S)×(0, 1] such that (π, θ) represents �. A property of the collection

H� is convexity. That is, whenever both (π, θ) and (π′, θ′) are elements of H�, then

(απ + (1− α)π′, αθ + (1− α)θ′) is also an element of H�, for every α ∈ (0, 1). It can be

easily shown that any pair (π, θ), (π′, θ′) ∈ H� has to induce exactly the same collection

of decisive events. This is formalized in the following result:

Proposition 6. (π, θ) and (π′, θ′) represent the same relation � if, and only if, {T ⊆
S : π(T ) ≥ θ} = {T ⊆ S : π′(T ) ≥ θ′}.

Completeness. The relations we have been working with so far are both incomplete

and intransitive, in general. We now characterize a complete binary relation that satisfies

B1–B5.
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It is clear that whenever θ ≤ 1/2, the pair (π, θ) ∈ ∆(S) × (0, 1] induces a relation

� that is complete. It is not hard to see that the converse is true in the sense of the

proposition below.

Proposition 7. Suppose that � is complete and satisfies B1–B5. Then, (π, θ) ∈ H�
implies that (π,min{1/2, θ}) ∈ H�.

Thus, whenever � is complete we can represent it with some θ ≤ 1/2.

Transitivity and Bewley’s Knightian preferences. Above we studied the char-

acterization of complete probabilistic dominance relations. In this subsection we focus

on transitivity. We show that in this case one obtains a particular form of Bewley’s

Knightian preferences (see Bewley (2002)). Informally, transitivity is equivalent to the

existence of an event T ⊆ S such that, f is (weakly) preferred to g if and only if f

(weakly) dominates g over the event T . Also, every π ∈ ∆(S) such that support(π) = T

and θ = 1 would represent such relations, in the sense of Eq. 4. It turns out that given

transitivity, B5 is redundant. We formalize this observation in the next proposition.

Proposition 8. Consider a binary relation �. The following are equivalent:

(1) � satisfies transitivity, B1-B4 ;

(2) there exist a non–constant and affine utility function u : ∆(X)→ R and a probability

distribution π over S such that, for every f, g ∈ F

f � g if and only if π
(
{s ∈ S : u(f(s)) ≥ u(g(s))}

)
= 1.

(3) there exist a non–constant and affine utility function u : ∆(X) → R and an event

∅ 6= T ⊆ S such that for every f, g ∈ F

f � g if and only if u(f(s)) ≥ u(g(s)) for every s ∈ T.

5. Additional models of probabilistic dominance

As discussed in the Introduction, probabilistic dominance can be applied to other

choice models. We discuss some possible directions in this section.
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5.1. A general model of probabilistic dominance. The representation in Theorem

2 is a particular case of a general class of representations. We say that a relation � has

a second–order probabilistic dominance representation if there exist a non–constant and

affine function u : ∆(X) → R, a probability distribution µ over ∆ (S) and a θ ∈ (0, 1]

such that, for every f, g ∈ F ,

(6) f � g iff µ

(
π ∈ ∆ (S) :

∫
u (f (s)) dπ ≥

∫
u (g (s)) dπ

)
≥ θ.

The representation above reduces to the one in Theorem 2 whenever the support of the

measure µ includes only degenerate priors.

A second-order probabilistic dominance representation is a particular case of Lehrer

and Teper (2010)’s justifiable preferences. They introduce the notion of justifiability to

axiomatic decision theory and axiomatize Knightian preferences that adhere to justifi-

cations and incorporate multiple–multiple priors. They characterize a binary relation �
over acts, such that there exist a vN–M utility function u and a collection of closed and

convex sets of probability distributions P over the state space, where f � g if and only

if there exists P ∈ P such that, with respect to every p ∈ P , the expected value of u(f)

is at least as high as that of u(g). Formally, for every f, g ∈ F ,

f � g if and only if max
P∈P

min
π∈P
{π · (u(f)− u(g))} ≥ 0.

Such preferences are characterized by B1–B3 and B4’,

Given a relation as in Theorem 2 and denoting by T the collection of decisive events,

the collection P of sets of probability distributions over S given by {conv{1ls}s∈T : T ∈ T },
is a justifiable preferences representation of the same relation. In particular, the charac-

terization of justifiable preferences is the second-order probabilities version of Proposition

5.

Second-order probabilistic dominance can be incorporated into a complete decision

process to obtain a more general result than Theorem 1. For example, a DM can be

associated with a utility function u, a prior π ∈ ∆(S), a prior µ over ∆(S) and a

θ ∈ [0, 1] such that, for all A ∈ F ,

c(A, �) = arg max
f∈A

∫
S

u(f(s))dπ
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and, for all (A, g) ∈ Csq(F),

c(A, g) = arg max
f∈D(A,g,µ,θ)

∫
S

u(f(s))dπ

where, for each (A, g) ∈ Csq(F), D (A, g, µ, θ) := {f ∈ A : µ{π′ :
∫
S
u(f(s))dπ′ ≥∫

S
u(g(s))dπ′} ≥ θ}.

The interpretation is similar to that of Theorem 1. In the first stage of the decision

process the DM employs second–order probabilistic dominance considerations and, out

of the alternatives that are not eliminated, in the second stage she chooses an act that

maximizes expected utility.21

We were not able (neither for the binary relation model nor the choice model) to find

a condition that guarantees that the sets of multiple-multiple priors P in the justifiable

preferences representation could be generated by a probability measure µ over ∆ (S) and

a threshold parameter θ ∈ (0, 1], as in Eq. 6. This is left for future study.

5.2. Unfeasible status quo. In some situations, the status quo is not a feasible alter-

native. The probabilistic dominance approach could still be applied for such problems.

Consider the following choice procedure:

c(A, �) = arg max
f∈A

∫
S

u(f(s))dπ,

and for all (A, g) where g need not be an element of A,

c(A, g) = arg max
f∈D(A,g,π,θ)

∫
S

u(f(s))dπ,

where D (A, g, π, θ) = {f ∈ A : π{s : u(f(s)) ≥ u(g(s))} ≥ θ} if {f ∈ A : π{s : u(f(s)) ≥
u(g(s))} ≥ θ} is not empty, and D (A, g, π, θ) = A otherwise.

Similar to the representation in Theorem 1, the DM considers only alternatives that

dominate the status quo with high enough probability. Since the status quo need not be

feasible, there may not be such an alternative. In this case the DM chooses according to

expected utility maximization.

21The second stage of the decision process can be any general preferences. For example, smooth

ambiguity preferences (Klibanoff, Marinacci, and Mukerji (2005)) with respect to µ and some increasing

real function ϕ.
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5.3. Endogenous references. Probabilistic dominance considerations can also be ap-

plied for choice problems where the reference is not observable, but can rather be ex-

tracted from behavior. In such a framework, choice problems would be described only by

a collection of feasible alternatives A, and the choice c can be described by the existence

of an endogenous reference g such that

c(A) = arg max
f∈D(A,g,π,θ)

∫
S

u(f(s))dπ,

where D (A, g, π, θ) = {f ∈ A : π{s : u(f(s)) ≥ u(g(s))} ≥ θ}.
The interpretation is similar to the one in the previous subsection, with the difference

that the reference is extracted endogenously from the DM’s behavior.

Appendix A. Results in a Savagean framework

Suppose now that X is a separable metric space, S is a finite non–empty set of states

of nature and call a function f : S → X an act. As we did in the main text, we use the

symbol F to represent the set of all acts. The set of all constant acts is referred to as Fc.
The primitive of the model is a relation � on F . We consider the following properties

of �:

C1 Relation. � is complete, transitive and continuous over Fc, reflexive and non–trivial,

in general.22

C2 Negative Neutrality. For any acts f and g in F and state s∗ ∈ S, if f � g, but

g(s∗) � f(s∗), then x{s∗}f � y{s∗}g, for any x, y ∈ X.

C3 Positive Neutrality. For any acts f and g in F and consequences x and y in X,

if f � g and x � y, then x{s}f � y{s}g for all s ∈ S.

C4 No State Complementarities. For any three consequences x, y, z ∈ X and finite se-

quences of acts, f1, ..., fm and g1, ...gm such that, for all i = 1, ...,m, fi(S)∪gi(S) ⊆ {x, z},
if fi � y for all i and, for all s ∈ S, #{i : fi(s) = x} = #{i : gi(s) = x}, then gi � y for

22When we say that � is continous over Fc we mean that, for any two convergent sequences in X,

xm → x and ym → y, if xm � ym for all m, then x � y.
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some i.

In the axiomatization in the Anscombe and Aumann framework, the idea that the DM

was concerned only about which act would give the best alternative, state by state, was

incorporated into the State-wise Independence axiom. Such a property obviously cannot

be written in the current framework. Here we replace B4 by C2 and C3.

We are interested on a DM that, state by state, only cares about the ordinal comparison

between the consequences returned in these states. Condition C2 begins with two acts

f and g such that g(s∗) � f(s∗). So, in s∗ the situation is the least favorable for the

act f . Despite that, C2 assumes that f � g. Now, if we replace f(s∗) and g(s∗) by any

other two consequences this can only help f and, therefore, the DM should not reverse

her decision.

Axiom C3 follows a similar motivation as C2. Now we start with two consequences x

and y such that x � y and two acts f and g such that f � g. The axiom then says that

if, in any state s, we replace the consequences f(s) and g(s) by x and y, respectively,

this should not reverse the DM’s decision. The idea is that since x � y is already the

most favorable situation for f , such a change cannot make the DM change her mind.

Axiom C4 has a similar interpretation as the correspondent property in the axiomati-

zation in the Anscombe and Aumann framework. It rules out complementarities among

the states and is also incompatible with Example 1. This postulate is reminiscent of

the social choice literature. More specifically, it is very similar to the Strong Neutrality

axiom (see Fishburn (1970)).

We can now state the main result of this section:

Theorem 3. Given a binary relation �⊆ F ×F , the following are equivalent:

(1) � satisfies C1–C4;

(2) there exist a non-constant, continuous function u : X → R, a probability distribution

π on S and a threshold parameter θ ∈ (0, 1] such that, for every f, g ∈ F ,

f � g if and only if π ({s ∈ S : u(f(s)) � u(g(s))}) ≥ θ.

The representation above is basically the same as in Theorem 2, but in a Savagean

world.
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Appendix B. Proofs

B.1. Proof of Proposition 1. It is routine to show that the representation implies the

axioms, so we only show that the axioms are sufficient for the representation. Define

the relation <⊆ F ×F by f < g iff f ∈ c({f, g}, �). By WARP, < is a complete

preorder and, for any A ∈ F, c(A, �) = arg max(A,<).23 By Independence, < satisfies the

standard Independence axiom. Continuity implies that < is continuous.24 Now suppose

that f(s) < g(s) for all s ∈ S. Unambiguous Transitivity implies that f ∈ c({f, g}, g).

By SQI, f ∈ c({f, g}, �), which is equivalent to saying that f < g. That is, < satisfies

Monotonicity. We have just shown that < satisfies all conditions for an Anscombe and

Aumann representation. So, there exists an affine function u : ∆(X)→ R and a prior π

over S such that, for any A ∈ F,

(7) c(A, �) = arg max
f∈A

∫
S

u(f(s))dπ.

Now define the relation <∗⊆ F ×F by f <∗ g iff f ∈ c({f, g}, g). We note that <∗ is

a reflexive binary relation. For each (A, g) ∈ Csq(F), define D((A, g),<∗) := {f ∈ A :

f <∗ g}. We need the following claim:

Claim 1. For every (A, g) ∈ Csq(F),

c(A, g) = arg max
f∈D((A,g),<∗)

∫
S

u(f(s))dπ.

Proof of Claim. By WARP, f ∈ c(A, g) implies that f ∈ c({f, g}, g). So, c(A, g) ⊆
D((A, g),<∗). Now pick any (f, h) ∈ c(A, g)×D((A, g),<∗). By WARP, f ∈ c({f, g, h}, g),

and, by SQI, c({f, g, h}, g) = c({f, g, h}, �). Now (7) implies that
∫
S
u(f(s))dπ ≥∫

S
u(h(s))dπ. We conclude that c(A, g) ⊆ arg max

f∈D((A,g),<∗)

∫
S
u(f(s))dπ. In particular, this

shows that ∅ 6= arg max
f∈D((A,g),<∗)

∫
S
u(f(s))dπ. Now pick h ∈ arg max

f∈D((A,g),<∗)

∫
S
u(f(s))dπ and

f ∈ c(A, g). By SQI we know that c({f, g, h}, g) = c({f, g, h}, �), which, by (7), implies

that h ∈ c({f, g, h}, g). But, by WARP, c({f, g, h}, g) = c(A, g)∩{f, g, h}. We conclude

that arg max
f∈D((A,g),<∗)

∫
S
u(f(s))dπ ⊆ c(A). ‖

23Notation: By arg max(A,<) we mean the set {f ∈ A : f < g for all g ∈ A}.
24To be precise, < satisfies the following property: for every f, g, h ∈ F , the sets {α ∈ [0, 1] :

αf + (1− α)g < h} and {α ∈ [0, 1] : h < αf + (1− α)g} are closed. This property is sometimes called

Archimedean Continuity.
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Fix any λ : S → [0, 1]. For any acts f and g define f ⊕λ(.) g to be the act such that(
f ⊕λ(.) g

)
(s) = λ(s)f(s) + (1 − λ(s))g(s) for each s ∈ S. We can prove the following

claim:

Claim 2. Suppose f � g and f ⊕λ(.) h � g ⊕λ(.) h for some λ such that λ(s) ∈ (0, 1] for

all s ∈ S. Then, f <∗ g if and only if f ⊕λ(.) h <∗ g ⊕λ(.) h.

Proof of Claim. Let T := {s ∈ S : u(f(s)) ≥ u(g(s))}. Order the states in S in a

way that the states not in T come first. That is, write S as S := {s1, s2, ..., s|S|} with

si /∈ T for i = 1, ..., (|S| − |T |). For each i = 1, ..., |S|, let λi : S → (0, 1] be defined by

λi(s) := λ(s) if s ≤ i and λi (s) := 1 for s > i. The representation of c(·, �) implies that

{f ⊕λi(.) h} = c({f ⊕λi(.) h, g ⊕λi(.) h}, �) for all i. But then, Statewise Independence

implies that f <∗ g iff f ⊕λ1(.) h <∗ g ⊕λ1(.) h iff ... iff f ⊕λ(.) h <∗ g ⊕λ(.) h. ‖

Without loss of generality, we may assume that u(∆(X)) = [0, 1]. Let p and p be such

that u(p) = 1 and u(p) = 0. Call an event T a candidate for decisiveness if,

(8) pTp <∗ λp+ (1− λ)p for some λ ∈ (0, 1).

Let T be the collection of all such events. We can now prove the following claim:

Claim 3. If f < g, then f <∗ g if and only if {s ∈ S : u(f(s)) ≥ u(g(s))} ∈ T .

Proof of Claim. Let T := {s ∈ S : u(f(s)) ≥ u(g(s))}. Suppose first that f and g

are such that u(f(s)) 6= u(g(s)) for all s ∈ S and f � g. Since f � g, it must be

the case that π(T ) > 0. By the representation of <, this implies that if λ∗ ∈ (0, 1)

is small enough then f := pTp � λ∗p + (1 − λ∗)p =: g. Let h ∈ F be any act such

that λ∗ < u(h(s)) < 1 for all s ∈ T and 0 < u(h(s)) < λ∗ for all s ∈ S \ T . Now

define fα := αf + (1 − α)h and gα := αg + (1 − α)h for some α ∈ (0, 1) small enough

so that, for every s ∈ T , λ∗ < u(gα(s)) < u(fα(s)) < 1 and, for every s ∈ S \ T ,

0 < u(fα(s)) < u(gα(s)) < λ∗. By the representation of <, it is clear that fα � gα,

so, by the previous claim, f <∗ g ⇐⇒ fα <∗ gα. Finally, let λ : S → (0, 1) and

j ∈ F be such that, for every s ∈ T , u(fα(s)) = λ(s) + (1− λ(s))u(j(s)) and u(gα(s)) =

λ(s)λ∗ + (1 − λ(s))u(j(s)) and, for every s ∈ S \ T , u(fα(s)) = (1 − λ(s))u(j(s)) and
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u(gα(s)) = λ(s)λ∗ + (1 − λ(s))u(j(s)).25 Two applications of unambiguous transitivity

give us that fα <∗ gα ⇐⇒ (pTp)⊕λ(.) j <∗ (λ∗p+(1−λ∗)p)⊕λ(.) j, but, by the previous

claim, (pTp)⊕λ(.) j <∗ (λ∗p+ (1− λ∗)p)⊕λ(.) j ⇐⇒ pTp <∗ λ∗p+ (1− λ∗)p. Suppose

now that it is not true that u(f(s)) 6= u(g(s)) for all s ∈ S and f � g. Define, for each

γ ∈ (0, 1), fγ := γp+(1−γ)f and gγ := γp+(1−γ)g. Let γ∗ ∈ (0, 1) be small enough so

that {s ∈ S : u(fγ
∗
(s)) ≥ u(gγ

∗
(s))} = T . It is clear that fγ � gγ̂, u(fγ(s)) 6= u(gγ̂(s))

and {s ∈ S : u(fγ(s)) ≥ u(gγ̂(s))} = T for all γ̂ ∈ (0, γ∗] and γ ∈ (0, γ̂]. If f <∗ g, two

applications of unambiguous transitivity give us that fγ
∗
< gγ

∗
and, by what we have

just proved, T ∈ T . Conversely, if T ∈ T , again by what we have just proved, fγ <∗ gγ̂

for all γ̂ ∈ (0, γ∗] and γ ∈ (0, γ̂]. But then continuity implies that, for all γ̂ ∈ (0, γ∗], we

have f <∗ gγ̂. But now another application of continuity gives that f <∗ g. ‖

Combining Claims 1 and 3 above we obtain the desired representation.

Now, assuming non-triviality, if there exists A ∈ F such that c(A, �) ⊂ A, then

the uniqueness of a non-constant u and π representing c is immediate. If there exists

(A, f) ∈ Csq(F) such that c(A, f) ⊂ A, then u is non-constant which in turn implies

its uniqueness and π’s uniqueness. As for T , Eq. 8 implies that it is closed under

containment and does not contain π-null events. Moreover, Eq. 8 implies that non-null

events cannot be omitted or included to T , thus it is the unique collection, which is

closed under containment and contains no π-null events, that represents c. �

B.2. Proof of Theorem 1. Again, the arguments that show that the representation

implies the axioms are routine, so we only show that the axioms are sufficient for the

representation. By Proposition 1, we know that c can be represented in that fashion

for some affine u : ∆(X) → R, some prior π over S and some class of events T . It

is easy to see that we can assume, without loss of generality, that T is such that T 3
T ⊆ T̂ =⇒ T̂ ∈ T and π(T ) > 0 for all T ∈ T . The result will be proved if we

can show that there exists a θ ∈ [0, 1] such that, for any T ⊆ S, T ∈ T if and only if

π(T ) ≥ θ. Fix some event T ∈ T and some event T̂ /∈ T . Now pick p, q, r ∈ ∆(X)

such that u(r) < u(q) < u(p) and π(T )u(p) + (1− π(T ))u(r) > u(q). Let f := pTr and

25To be precise, choose j and λ so that, for s ∈ T , λ(s) := u(fα(s))−u(gα(s))
1−λ∗ and u(j(s)) =

(1−λ∗)u(fα(s))−(u(fα(s))−u(gα(s)))
(1−λ∗)−(u(fα(s))−u(gα(s))) , and, for s ∈ S \ T , λ(s) := u(gα(s))−u(fα(s))

λ∗ and u(j(s)) =
λ∗u(fα(s))

λ∗−(u(gα(s))−u(fα(s))) .
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g := pT̂ r. By the representation in Proposition 1, we must have {f} = c({f, g, q}, q).
But, by Binary Consistency, this implies that {f} = c({f, g, q}, �), which, again by the

representation in Proposition 1, implies that π(T ) > π(T̂ ). Notice that T and T̂ were

entirely generic in the analysis above, so if we define θ := min{π(T ) : T ∈ T } we have

the desired characterization of T . �

B.3. Proof of Proposition 2. (2) =⇒ (1). Suppose (A, g) ∈ Csq(F) and f ∈ A

are such that f ∈ c1(A, g) and f ∈ c2(A, �). Since f ∈ c1(A, g), we know that

{s ∈ S : u(f(s)) ≥ u(g(s))} ∈ T1 ⊆ T2. From f ∈ c2(A, �) we know that f ∈
arg max

f∈A

∫
S
u(f(s))dπ2. But then it is clear from the representation of c2 that f ∈ c2(A, g).

(1) =⇒ (2). Define the collection of events T o2 by T o2 := T2 ∪ {T ∈ T1 : π2(T ) =

0}. Notice that
∫
S
u(g(s))dπ2 >

∫
S
u(f(s))dπ2.for any two acts such that π2({s ∈ S :

u(f(s)) ≥ u(g(s))}) = 0. This implies that (u, π2, T o2 ) is also a representation of c2.

Now fix any T ∈ T1 with π2(T ) > 0. It is possible to find two acts f and g such that∫
S
u(f(s))dπ1 ≥

∫
S
u(g(s))dπ1,

∫
S
u(f(s))dπ2 ≥

∫
S
u(g(s))dπ2 and {s ∈ S : u(f(s)) ≥

u(g(s))} = T . By the representations of c1 and c2, this implies that f ∈ c1({f, g}, g) and

f ∈ c2({f, g}, �). But then (1) implies that f ∈ c2({f, g}, g) which can happen only if

T ∈ T2. But then T1 ∪ T2 = T o2 , which completes the proof of the proposition. �

B.4. Proof of Proposition 4. (a) and (b) are straight forward and the proof is omitted.

To see that (c) holds, if u, π and θ = 0 represent c, then c simply maximizes expected

utility and Sc(f) = Bc(f) for all f ∈ F . This shows that (1) implies (3). Also, it

is clear that if, for all s ∈ S, π(s) > 0 implies π(s) ≥ θ, then u, π and θ = 0 also

represent c. That is, (3) implies to (2). So we only have to show that (2) implies (1).

Suppose that there exists s∗ ∈ S such that θ > π(s∗) > 0. Pick p, q ∈ ∆(X) such

that u(p) > u(q). Consider the act f such that f(s∗) = p and f(s) = q for all s 6= s∗.

Notice that
∫
S
u(f(s))dπ > u(q) = max{v ∈ u(∆(X)) : π{s : u(f(s)) ≥ v} ≥ θ}. Since

Sc(f) ≥
∫
S
u(f(s))dπ and Bc(f) ≤ max{v ∈ u(∆(X)) : π{s : u(f(s)) ≥ v} ≥ θ}, we

conclude that Sc(f) > Bc(f). �

B.5. Proof of Proposition 5. The arguments that show that the representation implies

the axioms are routine, so we only show the sufficiency part of the proof. Similar to what

we did in the proof of Proposition 1, for any λ : S → [0, 1] and acts f and g, define f⊕λ(.)g
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to be the act such that
(
f ⊕λ(.) g

)
(s) = λ(s)f(s) + (1 − λ(s))g(s) for each s ∈ S. We

need the following claim:

Claim 1. For any acts f, g and h, and λ : S → (0, 1], f � g if and only if f ⊕λ(.) h �
g ⊕λ(.) h.

Proof of Claim. Order the states in S in any way. For each i = 1, ..., |S|, let λi : S →
(0, 1] be defined by λi(s) := λ(s) if s ≤ i and λi (s) := 1 for s > i. Now notice

that Statewise Independence implies that f � g iff f ⊕λ1(.) h � g ⊕λ1(.) h iff ... iff

f ⊕λ(.) h � g ⊕λ(.) h. ‖

In particular, the claim above implies that the restriction of � to constant acts satisfies

the standard Independence axiom. By B1, B2 and B3, it is also complete, transitive,

continuous and non-trivial. By the expected utility theorem, we know that there exists a

non-constant and affine function u : ∆ (X)→ R such that, for any p, q ∈ ∆ (X), p � q if

and only if u(p) ≥ u(q). Without loss of generality we may assume that u(∆(X)) = [0, 1].

Let p and p be two lotteries such that u(p) = 1 and u(p) = 0. Call an event T a candidate

for decisiveness if pTp � pTp. Let T be the class of all such events. The next two claims

show that, for any two acts f and g, f � g if and only if {s ∈ S : u(f(s)) ≥ u(g(s))} ∈ T .

Claim 2. If f, g ∈ F are such that u(f(s)) 6= u(g(s)) for all s ∈ S, then f � g if, and

only if, {s ∈ S : u(f(s)) ≥ u(g(s))} ∈ T .

Proof of Claim. Suppose the acts f and g are such that u(f(s)) 6= u(g(s)) for all s ∈ S.

Let T := {s ∈ S : u(f(s)) ≥ u(g(s))}. Define λ : S → (0, 1] by λ(s) := u(f(s))− u(g(s))

if s ∈ T and λ(s) := u(g(s)) − u(f(s)) if s /∈ T . Let h be any act such that, for each

s ∈ T , u(h(s)) = u(g(s))
1−(u(f(s))−u(g(s))) , and, for each s /∈ T , u(h(s)) = u(f(s))

1−(u(g(s))−u(f(s)))
.

Define fλ := (pTp)⊕λ(.) h and gλ := (pTp)⊕λ(.) h. By construction, u(f(s)) = u(fλ(s))

and u(g(s)) = u(gλ(s)) for all s ∈ S. Two applications of Unambiguous Transitivity

imply that f � g ⇐⇒ fλ � gλ. But, by the previous claim, fλ � gλ ⇐⇒ T ∈ T . ‖

Claim 3. For any two acts f and g, f � g if, and only if, {s ∈ S : u(f(s)) ≥ u(g(s))} ∈
T .

Proof of Claim. Fix any two acts f and g and define T := {s ∈ S : u(f(s)) ≥ u(g(s))}.
By Claim 1, f � g ⇐⇒ 1

2
f+ 1

2
p � 1

2
g+ 1

2
p, so, we can assume, without loss of generality,
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that u(f(s)) < 1 for all s ∈ S. For any α ∈ (0, 1), define fα := αf + (1− α)p. It is clear

that, for α close enough to one, {s ∈ S : u(fα(s)) ≥ u(g(s))} = T . Moreover, for such α

it is clear that u(fα(s)) 6= u(g(s)) for all s ∈ S. By the previous claim, we learn that, for

all α close enough to one, fα � g ⇐⇒ T ∈ T . If f � g, then Unambiguous Transitivity

implies that fα � g for all α ∈ (0, 1) and, consequently, T ∈ T . Conversely, if T ∈ T ,

then, for all α close enough to one we have fα � g. But then Continuity implies that

f � g. ‖

The claim above completes the proof of the proposition. �

B.6. Proof of Theorem 2. Since � satisfies B1–B4, it has a representation as in

Proposition 5 for some collection of events T . Suppose T1, ..., Tm, and T̂1, ..., T̂m are

two finite sequences of events such that Ti ∈ T and T̂i /∈ T for all i. Pick any two

lotteriesp, q ∈ ∆ (X) such that u(p) > u(q). The representation in Proposition 5 implies

that, for all i, pTiq � p � pT̂iq. But then B5 implies that for no λ ∈ ∆(m) it can be

true that
∑m

i=1 λi(pT̂iq) DS
∑m

i=1 λi(pTiq). By the representation in Proposition 5, this

is equivalent to saying that for no λ ∈ ∆(m) can it be true that
∑m

i=1 λi1lT̂i
≥
∑m

i=1 λi1lTi
.

That is, the collection T satisfies the following property:

Property ∗ For any sequences of events {T1, ..., Tm} ⊆ T , {T̂1, ..., T̂m} ⊆ 2S \ T and

λ ∈ ∆(m), it cannot be true that
∑m

i=1 λi1lT̂i
≥
∑m

i=1 λi1lTi
.

Now let E := conv{1lT − 1lT̂ : T ∈ T and T̂ /∈ T }.26 E is a closed and convex sub-

set of RS, and, by Property ∗, it is disjoint from RS
−. Therefore, by the separating

hyperplane theorem, there exists a non-null vector π ∈ RS such that π · x > 0 and

π · y ≤ 0, for every x ∈ E and y ∈ RS
−. 27 The vector π must be non–negative, since

if there exists s∗ ∈ S for which π(s∗) < 0, then π · (−1l{s∗}) > 0, in contradiction to

the separation by π. Without lost of generality, π can be normalized to be a probability

distribution on S. Now note that π ·x > 0 for every x ∈ E . In particular, π ·(1lT−1lT̂ ) > 0

for every T ∈ T and T̂ /∈ T . That is, π(T ) > π(T̂ ) for every T ∈ T and T̂ /∈ T . Thus,

26By conv{1lT − 1lT̂ : T ∈ T and T̂ /∈ T } we mean the convex hull of the set {1lT − 1lT̂ : T ∈ T and

T̂ /∈ T }.
27For p, x ∈ RS we denote the inner product of p and x by p · x =

∑
s∈S xs · ps.
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letting θ := minT∈T π(T ), we have that π(T ) ≥ θ if, and only if, T ∈ T . Finally, as θ is

a probability of some event in T , we must have θ ∈ [0, 1]. Since ∅ /∈ T , it must be the

case that θ > 0.

Conversely, suppose that � has a representation as in the statement of the theorem.

By Proposition 5, we know that � satisfies B1-B4. To see that it also satisfies B5, pick

any three lotteries p, q, r ∈ ∆(X) and finite sequences of acts f1, ..., fm and g1, ..., gm such

that, for all i = 1, ...,m, fi(S) ∪ gi(S) ⊆ {p, r}. Suppose that λ ∈ ∆(m) is such that∑m
i=1 λigi DS

∑m
i=1 λifi and fi � q for all i = 1, ...,m. Without loss of generality suppose

that u(p) ≥ u(r). If u(r) ≥ u(q), then the representation implies that gi � q for all i.

If u(q) > u(p), then the representation would imply that it cannot be true that fi � q

for any i. So, the only interesting case remaining is when u(p) ≥ u(q) > u(r). For each

i = 1, ...,m let Ti := {s ∈ S : u(fi(s)) = p} and T̂i := {s ∈ S : u(gi(s)) = p}. By the

representation of �, it must be the case that π(Ti) ≥ θ for i = 1, ...,m. Now note that

saying that
∑m

i=1 λigi DS
∑m

i=1 λifi is equivalent to say that
∑m

i=1 λi1lT̂i
≥
∑m

i=1 λi1lTi
.

But this implies that
∑m

i=1 λiπ(T̂i) = π · (
∑m

i=1 λi1lT̂i
) ≥ π · (

∑m
i=1 λi1lTi

) =
∑m

i=1 λiπ(Ti).

This can be true only if π(T̂i) ≥ π(Ti) ≥ θ, for some i ∈ {1, ...,m}, but for such i the

representation of � implies that gi � q. �

B.7. Proof of Proposition 7. Suppose � is complete and (π, θ) ∈ H� is such that

θ > 1/2. Suppose that there exists T ⊆ S with 1
2
≤ π(T ) < θ and fix p, q ∈ ∆(X) with

u(p) > u(q). But observe that the representation of � would imply that pTq and qTp

are not comparable. We conclude that π(T ) < 1
2

for all T ⊆ S with π(T ) < θ. But now

it is clear that (π, 1/2) ∈ H�. �

B.8. Proof of Proposition 8. It is obvious that (2) and (3) are equivalent and, by

Proposition 5, it is clear that they imply (1). So, we only need to show that (1) implies

(3). By Proposition 5, � has a representation as in Eq. 3. Now take any minimal set

T ∈ T .28 We now show that T ⊆ T̂ for any T̂ ∈ T . To see that, suppose that there

exists T̂ ∈ T such that T \ T̂ 6= ∅ and pick two lotteries p and q such that p � q. Now

note that q � qTp, qTp � q(T ∩ T̂ )p, but, since T is minimal, it cannot be true that

q � q(T ∩ T̂ )p. We conclude that T ⊆ T̂ for any T̂ ∈ T . �

28By minimal we mean that there is no T ′ ∈ T such that T ′ ( T .
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B.9. Proof of Theorem 3. The proof that (2) implies C1, C2 and C3 is straight-

forward. We now show that the representation implies C4. Pick any three conse-

quences x, y, z ∈ X and any and two finite sequences of acts f1, ..., fm and g1, ..., gm

such that, for all i = 1, ...,m, fi(S) ∪ gi(S) ⊆ {x, z}. Suppose that, for all s ∈ S,

#{i : fi(s) = x} = #{i : gi(s) = x} and fi � y for all i = 1, ...,m. Without loss

of generality suppose that u(x) ≥ u(z). If u(z) ≥ u(y), then the representation im-

plies that gi � y for all i. If u(y) > u(x), then the representation would imply that

it cannot be true that fi � y for any i. So, the only interesting case remaining is

when u(x) ≥ u(y) > u(z). For each i = 1, ...,m let Ti := {s ∈ S : u(fi(s)) = x} and

T̂i := {s ∈ S : u(gi(s)) = x}. By the representation of �, it must be the case that

π(Ti) ≥ θ for i = 1, ...,m. Now note that saying that #{i : fi(s) = x} = #{i : gi(s) = x}
for all s ∈ S is equivalent to saying that

∑m
i=1 1lTi

=
∑m

i=1 1lT̂i
. But this implies that∑m

i=1 π(Ti) = π · (
∑m

i=1 1lTi
) = π · (

∑m
i=1 1lT̂i

) =
∑m

i=1 π(T̂i). This can be true only if

π(T̂i) ≥ π(Ti) ≥ θ, for some i ∈ {1, ...,m}. For such i the representation of � implies

that gi � q. It remains to show that (1) implies (2).

By C1, the restriction of � to Fc satisfies all the conditions in Debreu’s represen-

tation theorem, so there exists a continuous function u : X → R such that, for any

x, y ∈ X, x � y if, and only if, u(x) ≥ u(y). Now, define an event T ⊆ S to be decisive

if, for any acts f and g, u(f(s)) � u(g(s)) for all s ∈ T implies that f � g. Now

let T := {T ⊆ S : T is decisive}. Notice that, since � is non-trivial, ∅ /∈ T . Now

observe that C2 and C3 immediately imply that, for any two acts f and g, if f � g

then {s : u(f(s)) � u(g(s))} ∈ T . Pick x, y, z ∈ X such that u(x) ≥ u(y) > u(z).

Take any two finite sequences of events, T1, ..., Tm and T̂1, ..., T̂m such that Ti ∈ T for

all i and
∑m

i=1 1lTi
=
∑m

i=1 1lT̂i
. For each i, define fi := xTiz and gi := xT̂iz. By

our previous observation, it must be the case that fi � y for all i and, for all s ∈ S,

#{i : fi(s) = x} = #{i : gi(s) = x}. But then C4 implies that gi � y for some i. That

is, T̂i ∈ T for some i. This discussion shows that the collection of events T satisfies the

following property:

C4’ For any finite sequences of events T1, ..., Tm and T̂1, ..., T̂m, if Ti is decisive for all i

and
∑m

i=1i
1lTi

=
∑m

i=1 1lT̂i
, then Ti is decisive for some i.
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Let E = conv
{

1lT − 1lT̂ : T ∈ T , T̂ /∈ T
}

. We first need the following claim:

Claim 1. If E ∩ RS
− 6= ∅, then 0 ∈ E.

Proof of Claim. Suppose ξ ∈ E ∩ RS
−. This means that there exist T1, ..., Tm ∈ T ,

T̂1, ..., T̂m /∈ T and (λ1, ..., λm) ∈ ∆m such that
∑m

i=1 λi1lTi
−
∑m

i=1 λi1lT̂i
= ξ. Call a

state s irrelevant if, for any event T ⊆ S, T is decisive if and only if T \ {s} is decisive.

We can assume, without loss of generality, that for all i, Ti and T̂i contain only relevant

states. Let K = {s ∈ S : ξ(s) < 0}. Since all s ∈ K are relevant, for each s ∈ K,

there exists a decisive set Ts such that T̂s := Ts \ {s} /∈ T . But then, if we define, for

each s∗ ∈ K, λ̂s∗ = −ξ(s∗)
1+

∑
s∈K −ξ(s)

, and define, for i = 1, ...,m, λ̂i = λi

1+
∑

s∈K −ξ(s)
, we have∑

i∈K∪{1,...,m} λ̂i (1lAi
− 1lBi

) = 0. ‖

We also need the following claim:

Claim 2. If 0 ∈ E, then there exist T1, ..., Tm ∈ T , T̂1, ..., T̂m /∈ T such that
∑m

i=1 1lTi
=∑m

i=1 1lT̂i
.

Proof of Claim. If 0 ∈ E then there exist T1, ..., Tm ∈ T , T̂1, ..., T̂m /∈ T and (λ1, ..., λm) ∈
∆m such that

∑m
i=1 λi1lTi

=
∑m

i=1 λi1lT̂i
. Of course, we can assume that λi > 0 for all

i. That is, the homogeneous system of linear equations
∑m

i=1 µi (1lAi
− 1lBi

) = 0 has a

solution with all µi’s being positive real numbers. But since all the coefficients in the

system above are rational numbers, this implies that the system also has a solution with

all µi’s being natural numbers.29 Since the sequences of sets in the statement of the

claim can have repetitions this gives the desired result. ‖

The two claims above show that C4’ implies that E ∩RS
− = ∅. Now we can repeat the

argument in the end of the proof of Theorem 2 to finish the proof of this theorem. �
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