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1 Introduction

Several papers document how price setting behavior, as summarized by the size-distribution

and by the timing of price changes, varies systematically with the number of products sold.1

The recent empirical work of Bhattarai and Schoenle (2010) documents that firms selling

more goods display a higher frequency of price adjustment. Lach and Tsiddon (2007) show

that price changes are synchronized within stores, but staggered across stores.

Despite the rich and growing evidence on this phenomenon, there is scant theoretical work

on this problem. Midrigan (2007, 2009) begun to study this problem by explicitly writing

down and solving numerically a model where a firm is selling 2 goods, subject to a common

menu cost.2 Compared to the classic case of one good, his model generates a distribution of

price changes with “small” price adjustments. But some important questions remain to be

answered: what forces shape the optimal pricing decisions as the number of goods n sold by

the firm changes? going beyond the n = 2 case is important, as the number of goods sold by

the retail stores, where much of the micro data are measured, is much larger.3

This paper provides a simple model to study how the price setting decision depends on

n, the number of goods sold by a firm. The model allows us to answers some questions that

are hard to tackle without a formal frame. Examples of these questions are: Is the higher

frequency of price adjustment the mechanical consequence of a fixed menu ψ cost split over

a larger number of goods, so that it is as if each good pays a smaller menu cost ψ/n as n

increases? in other words, how does the frequency of price adjustment behaves as a function

of n if the menu cost paid by the firm increased linearly with the number of goods: n ψ? Is

the synchronization of price adjustment arising from the fact that a single fixed cost applies

1 An incomplete list of contributions documenting this fact includes Lach and Tsiddon (1992), Lach and
Tsiddon (2007), Baudry et al. (2007), Dhyne and Konieczny (2007), Dutta et al. (1999), Midrigan (2007,
2009), Cavallo (2009), Bhattarai and Schoenle (2010) and Neiman (2010).

2 Importantly, he also put this model into a general equilibrium framework, and analyzed the effect of a
monetary shock. Bhattarai and Schoenle (2010) also solve numerically the problem for a firm selling three
goods.

3Bhattarai and Schoenle (2010) rerports that the US the median firm sampled by the BLS sells between
3 to 5 goods.
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to a bundle of goods, or is there a systematic association between the number of products

and the volatility σ of the shock that hit each product? One purpose of this note is to provide

some guidance for the empirical examination of these concerns by analyzing the identification

of the different factors, such as the n, σ2, ψ, and B in a tractable set up. Another purpose of

the note is to advance on the understanding of the impact effect of an aggregate monetary

shock in this set-up. This question that has been tacked numerically by Midrigan (2007) for

the case of n = 2, but as we explain below we provide tools that help to analyze in the case

of n > 2.

We study a stylized version of the problem of a multi-product firm that can revise prices

only after paying a fixed cost. The key assumption, introduced by Lach and Tsiddon (1996,

2007) and Midrigan (2007, 2009), is that once the fixed menu cost is paid the firm can adjust

the price of all its products. The problem is set up as to minimize the deviations of the profits

incurred relative to the flexible price case, i.e. the case with no menu cost. We assume that

the static profit maximizing price for each of the n products, which coincide with the price

that will be charged without menu cost, follows n independent random walks without drift

and with volatility σ per unit of time. We refer to the vector of the difference between the

frictionless prices and the actual prices charged as the vector of the price gaps. The period

return function is assumed to be proportional to the sum of the squares of the price gaps.

The proportionality constant B measures the second order per period losses associated with

charging a price different from the optimum, i.e. it is a measure of the curvature of the profit

function.4 We assume that if a fixed cost ψ is paid the firm can simultaneously change all

the prices. The firm minimizes the expected discounted cost, which include the stream of

lost profit from charging prices different from the frictionless as well as the fixed cost at the

time of adjustments. We completely characterize the solution of a simple symmetric problem

in terms of the structural parameters: the variability of the flexible prices σ, the curvature

of the profit function B, the size of the menu cost ψ, the discount rate r, and the number of

4The first order losses are zero, since the maximum per period profits are obtained at the frictionless price.
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products n. We also provide analytical expressions for the invariant distribution of the price

gaps, the frequency of adjustment, the hazard rate of price adjustments, and the marginal

distribution of price changes in terms of the fundamental parameters.

The solution of the firms’ problem involves finding the set over which prices are adjusted,

and the set where they are not, i.e. the inaction set. Due to the lack of drift, when prices are

adjusted they are set equal to the frictionless prices, i.e. the price gaps are set to zero in all

dimensions. We show that the optimal decision is to control the price gap as to remain in the

interior of the n-dimensional ball centered at the origin. The size of this ball, whose square

radius we denote by R̄, is chosen optimally. We solve for the value function and completely

characterize the size of the inaction set R̄ as a function of the parameters of the problem.

As we let r ↓ 0 the ratio R̄/σ2 can be written as an increasing function of two arguments:

σ2B/ψ and n. We also obtain a very accurate approximation for small cost ψ, where we

show that R̄ takes the form of a square root function, R̄ ≈ [2(n+ 2)σ2B/ψ]
1/2

.

To our knowledge this is the first fixed cost adjustment problem in n-dimensions whose

solution is analytically characterized. We believe that this is because of the difficulty of

finding a tractable boundary condition and a candidate solution that is smooth enough on

the boundary of the inaction region. Baccarin (2009) gives a recent statement of the general

problem, and a characterization of the viscosity solution. In our case we can reduce the

dimension of the problem to one, by keeping track of R, the square of the radius of the

vector of the price gaps. This reduction is possible because of the quadratic nature of the

objective function, and the lack of drift of the uncontrolled price gap. Thus, we trade off

high dimension for a non-linearity on the evolution of the system.

As mentioned, Midrigan (2007, 2009) analyzes the effect of monetary policy shock in a

general equilibrium model with n = 2. He shows that it differs from the one with n = 1

because, among other things, the mass of firms that are close to the inaction region just

before the shock and find it optimal to adjust right after the shock is smaller when n = 2.

The reason is that, for n = 2, some price adjustments are small because not all individual
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prices being adjusted are close to the inaction boundary. In the language of Golosov and

Lucas (2007), there is a smaller selection effect among the firms that adjust in the n = 2

case, compared to the n = 1 case. Indeed Caballero and Engel (2007) argue that the cross

section distribution of the “desired adjustments”, or price gaps in our set up, is one of the

key ingredients to understand the aggregate effect in a model with sS policies. Motivated

by these findings, we compute the density of the invariant distribution of R, the sum of

the square of the price gaps. This density is downward sloping, and, except for its scale, it

depends exclusively on the number of products n. For larger values of n this distribution

puts relatively more mass on the points close to the boundary of the sphere, i.e. there are

more firms close to the point where they want to adjust. As n → ∞, the distribution is

uniform. [WE NEED TO FINISH THIS PARAGRAPH...]

We characterize the implications for the timing of price changes given R̄, σ2 and n. We

show that the expected number of price adjustments per unit of time is given by nσ2/R̄, which

together with our result for R̄ gives a complete characterization of the frequency of price

adjustments. This characterization can be used to disentangle the effects on the frequency of

adjustments while comparing firms with different number of products, since it points out to

all its determinants. Moreover, when used together with other information described below,

it can be used to identify the parameters of the model and test its implications.

We solve in closed form for the hazard rate of the price changes as a function of the

time elapsed since the last change. The shape of this function, except for its scale, depends

exclusively on the number of products n. The scale of the function is completely determined

by the expected number of adjustment per unit of time, which we have already solve for.

For a given n, the hazard rates are increasing in duration, have an elongated S shape, with a

finite asymptote. Comparing across different values of n, while keeping the expected number

of adjustment constant, we show that the asymptote is increasing in n. As we let n increase

without bound, the asymptote diverges to +∞ and the hazard rate function converges to the

one with deterministic adjustments, i.e. towards one with an inverted L shape.
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Finally we characterize the shape of the distribution of price changes. While price changes

occur simultaneously for n products, we characterized the marginal distribution of prices,

because this is the object that is usually computed in actual data sets. We give a close form

expression for the density of the marginal distribution of price changes as a function of R̄ and

n. Thus, once the size of the changes is control for, the shape of the price change distribution

is exclusively a function of the number of products. We obtain then several statistics that

have been computed in the data, such as the coefficient of variation of the absolute value

of price changes, or the excess kurtosis, as purely functions of the n. Indeed the shape of

the distribution of price changes is as follows: for n = 2 it is bimodal, with modes at the

absolute value of
√
R̄, for n = 3 is uniform, for n = 4 peaks at zero and it is concave, and

for larger n it is bell shape. Indeed, as n→ ∞, once normalized, the distribution converged

to a standard normal.

2 A stylized multiproduct menu cost model

Let n be the number of goods produced by the firm. Each price pi evolves according to a

random walk without drift, so that dpi = σ dWi where dWi is a standard Brownian Motion.

The n Brownian Motions (BM henceforth) are independent, so E [Wi(t)Wj(t
′)] = 0 for all

t, t′ ≥ 0 and i, j = 1, ..., n. The problem is:

V (p) = min
{τj ,u(τj)}∞j=1

E

[ ∞
∑

j=1

e−rτjψ +

∫ ∞

0

e−rtB

(

n
∑

i=1

p2i (t)

)

dt

∣

∣

∣

∣

∣

p(0) = p

]

(1)

where

pi(t) = σWi(t) +
∑

j:τj<t

∆pi(τj) for all t ≥ 0 and i = 1, 2, ..., n, (2)

and p(0) = p.

So that τj are the (stopping) times at which control is exercised. At these times, after

paying the cost ψ, the state can be changed to any value in R
n. We denote the vector of price
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changes as ∆p(τj) ∈ R
n. This is a standard adjustment cost problem subject to a fixed cost,

with the exception that after paying the adjustment cost ψ the decision maker can adjust

the state in the n dimension.

At an abstract level equation (1) and equation (2) can be used to solve a symmetric

quadratic loss tracking problem in n dimensions, subject to a fixed adjustment cost. To map

it into a tracking problem, let the state of the system be two n dimensional vectors p̂(t),

and p∗(t). The interpretation of p̂(t) is the location of the system, and p∗(t) a bliss point,

the location that the decision maker is tracking. The instantaneous cost of the decision

maker is proportional to the distance between the location of the system and the bliss point,

B||p∗(t)− p̂(t)||2, where B > 0. Each component of the bliss points evolve as an independent

random walk without drift, with variance σ2 per unit of time. If the decision maker pays a

fixed cost ψ/n she can change the location of the system anywhere that she desires. For the

purpose of finding the times at which the decision maker chooses to change the state, and

to find the value of the changes of the state, we can simplify the problem and consider the

distance between the location of the state and the bliss point the of the system, and simple

let the state be p(t) = p̂(t)− p∗(t). We have written equation (1) and equation (2) using this

“gap” notation.

For future reference we note if B and ψ are multiplied by a constant λ > 0 the value

function is scaled by λ with no change on the decisions. This explains why all the decision

are functions of B/ψ. We will use this property to interpret different assumptions about how

these parameter vary firms with different number of products n.

We describe now an economic interpretation of the problem, which can be summarized

to say that the firms “tracks” the prices that will maximize instantaneous profits from the n

products. Consider a system of n independent demands, with constant elasticity η for each

product, and a time varying constant marginal cost Ci(t). In the context of the price setting

models, our model is a stylized version of the problem introduced by Midrigan (2007, 2009)

where the elasticity of substitution between the goods produced within the firm is the same as
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the one of the bundle of goods produced across firms. The instantaneous profit maximizing

price is proportional to the marginal cost, or in logs p∗i (t) = log ci(t)+ log ((η − 1)/η). In this

case we assume that the log of the marginal cost evolve as a random walk with drift so that

p∗i (t) inherits this property. We can interpret the period cost as a second order expansion of

the (log) of the profit function with respect to the vector of the log of prices, around the log

of the profit maximized price vector. The first order term are zero because we are expanding

around p∗(t). The fact that it is an expansion of the log of the profit is equivalent to measure

the profits relative to the value of the maximized profit for the n goods. There are no second

order cross terms due to the separability of the demand. Thus we can write the problem in

terms of the gap between the actual price and the profit maximizing price: p(t) = p̂(t)−p∗(t).

The constant B is given by B = (1/2)η(η−1)/n, where the term 1/2 is due to a second order

expansion, the terms with η are due to the fact that the curvature of the profits depend on

the elasticity of demand, and the term (1/n) is the the share of profits from each product

relative to the profits across the n goods. In this interpretation the value of the fixed cost

is measured relative to the profit of the n goods, thus it costs ψ/n in units of the numeraire

good. Since all that matter for the decision is the ratio of B to ψ this normalization only

scales the units of the vale function. In Appendix C we give a derivation of the second order

expansion as well as a discussion and interpretation of the parameters B and ψ. In particular

the interpretation of how to scale B and ψ for firms with different of products.

Below we consider two cases for scaling of the cost of adjustment with respect to the

number of goods. In the first case, which we refer to as constant returns to scale (CRTS)

technology for adjustment cost, when we compare firms with different values of n, the ad-

justment cost scales linearly with it, so that ψ = n ψ1. In this case a firm with twice as

many products pays twice as much in terms of the numeraire good to adjust all the prices

simultaneously. We refer to the case of a constant fixed cost, if ψ = ψ1, so that a firm with

twice as many products pays the same cost in terms of numeraire to adjust the twice as many

prices. We think that these two extreme simple cases bracket all of the interesting setups.
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We note the following basic properties of the value function and the optimal policy.

1. Given the symmetry of the BM and of the objective function around zero, and the

independence of the BM’s, one can use reflection around zero to show that the value

function only depends on the absolute values of pi, i.e. V (p) = V (|p1|, |p2|, ..., |pn|) for

all p ∈ R
n.

2. Due to the the symmetry of the problem, and the shape of the period return function,

we have that after an adjustment the state is reset at the origin, i.e. p(τ+j ) = 0, or

∆p(τj) = −p(τ−j ).

3. The state space R
n can be divided in two regions, an inaction region I ⊂ R

n and

control region C ⊂ R
n. We use Int(I) for the interior of the range of inaction, and ∂I

for its boundary. We have that C ∩ Int(I) = ∅, that inaction is strictly preferred in

Int(I), that control is strictly preferred in Int(C), and that in ∂I the agent is indifferent

between control and inaction.

We write down the conditions for the solution of the problem, provided that a value

function is smooth enough (i.e. we look for a solution of the “strong” formulation of the

problem). In the range of inaction the cost for the firm is given by the following Bellman

equation:

r V (p1, p2, ..., pn) = B

n
∑

i=1

p2i +
σ2

2

n
∑

i=1

Vii(p1, p2, ..., pn) (3)

for all p ∈ I. In the control region we have:

V (p1, p2, ..., pn) = V (0) + ψ (4)

for all p ∈ C. The optimality of returning to the origin implies that,

Vi(p1, p2, ..., pn) = 0 for all i = 1, 2, ..., n (5)
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and that V (p) is convex in a neighborhood of the origin. Finally, differentiability in the

boundary of the inaction

Vi(p1, p2, ..., pn) = 0 for i = 1, 2, ..., n and for all p ∈ ∂I, (6)

We refer to this condition as smooth pasting.

3 Characterization of the solution

Before presenting the solution of this problem we change the state space, which we summarize

using a single variable. Let

R =
n
∑

i=1

p2i (7)

measure the deviation of prices from their optimal value across the n goods. We consider

policies summarized by a single number R̄. In this class of policies the firm controls the state

so that if R < R̄, there is inaction. The first time that R reaches R̄, all prices are adjusted

to the origin, so that R = 0. We will find the optimal policy in this class. Then we will show

that the optimal policy of the original problem is of this form.

The variable R measures the square of the ray of a sphere centered on the origin. Since

each of the prices follows identical independent standard BM in the inaction region, then R

follows a simple diffusion in the inaction. Using Ito’s Lemma on equation (7) the evolution

of R is

dR = nσ2dt + 2σ
n
∑

i=1

pi(t)dWi

This implies that the quadratic variation of R is:

E(dR)2 = 4σ2

(

n
∑

i=1

p2i (t)

)

dt

Thus we can define a stochastic differential equation for R with a new standard BM {W (t)}
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that solves:

dR = nσ2dt + 2σ
√
R dW for R ∈ [0, R̄]. (8)

We note that for the unregulated process, i.e. when R̄ = ∞, if R(0) > 0 then R(t) > 0 for

t > 0 with probability one provided that n ≥ 2, see Karatzas and Shreve (1991) Proposition

3.22.5

Note that the drift and diffusion terms in equation (8) are only functions of R. We also

note that instantaneous return is a function of R, so we can write the following

v(R) = min
R̄

E

[ ∞
∑

j=1

e−rτjψ +

∫ ∞

0

e−rtB R(t) dt

∣

∣

∣

∣

∣

R(0) = R

]

(9)

subject to equation (8) when R ∈ [0, R̄], where τj are the first time that R(t) hits R̄. The

function v solves:

r v(R) = BR + nσ2 v′(R) + 2σ2R v′′(R), for R ∈ (0, R̄) . (10)

Since policy calls for adjustment at values higher than R̄ we have:

v(R) = v(0) + ψ, for all R ≥ R̄ . (11)

If v is differentiable at R̄ we can write the two boundary conditions:

v(R̄) = v(0) + ψ and v′(R̄) = 0 . (12)

These conditions are typically referred to as value matching and smooth pasting. For R = 0

5This result was obtained for Bessel processes, which are the square root of R(t). Additionally, Karatzas
and Shreve (1991) have shown in Problem 3.23 and 3.24 that for if R(0) > 0, then for n = 2 the unregulated
process can become arbitrarily close to zero but for n ≥ 3 almost every path remains bounded away from
zero. Furthermore, for the regulated process the classification for the boundaries of a diffusion gives that for
n ≥ 2 the point R = 0 is an entrance boundary, as verified in Karlin and Taylor (1999) Example 6, Chapter
12.6.
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to be the optimal return point, it must be a global minimum, and thus we require that:

v′(0) ≥ 0 . (13)

Note the weak inequality, since R is non-negative.

The next proposition finds an analytical solution for v in the range of inaction.

Proposition 1. Let σ > 0. The ODE equation (10) has the solution:

v(R) =

∞
∑

i=0

βi R
i , for R ∈ [0, R̄] . (14)

where the coefficients {βi} solve:

β0 =
nσ2

r
β1 , β2 =

rβ1 − B

2σ2(n+ 2)
, βi+1 =

r

(i+ 1) σ2 (n+ 2i)
βi , for i ≥ 2 . (15)

for any β0.

The proof follows by replacing the function given in equation (14) into the ODE (10) and

matching the coefficients for the powers of Ri. The next proposition shows that there exist

a unique solution of the ODE (10) satisfying the relevant boundary conditions. It partially

characterizes the solution of the threshold R̄.

Proposition 2. Assume r > 0, σ > 0, n ≥ 1. There exists a unique solution of the

ODE (10) satisfying the boundary conditions equation (12) for which v(·) is minimized at

R = 0. The unique value of R̄(ψ) is strictly increasing in ψ, with R̄(0) = 0 and R̄ → ∞

as ψ → ∞. Moreover, as r ↓ 0, the optimal threshold satisfies R̄ = σ2 q
(

ψ
B σ2

, n
)

for some

strictly increasing function q(·, n).

We note that the solution for R̄ is only a function of the ratio ψ/B is apparent from the

definition of the sequence problem. That it is strictly increasing in the ratio of the fixed cost

to the benefit of adjustment ψ/B is quite intuitive. The last property implies that if R̄ is
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the solution of the problem for parameters σ, ψ/B and n, then R̄′ = R̄ λ is the solution for

parameters (ψ/B)′ = λ, n′ = n and σ′ =
√
λ σ for any λ > 0.

While the last proposition gives a partial characterization of the optimal thresholds, it

does not analyzes how it depends on n. To do so, we give an simple expression for an

approximate solution of R̄. The formula gives an approximate solution for small values of ψ

and r. Mechanically we take value matching and smooth pasting conditions derived above

and we set βi = 0 for i ≥ 3, i.e. we assume that v(·) is quadratic. Taking r to zero gives:

R̄ =

√

ψ σ2 2 (n+ 2)

B
. (16)

Notice that this approximation satisfied the properties of the general solution of Proposition 2.

The effect on this formula of ψσ2/B is exactly the same as in the case of one product. Indeed

the quartic root implied when n = 1 was obtained by Dixit (1991) for the model with

n = 1. We found that the quadratic approximation to v(·), which amounts to a quartic

approximation to V (·), gives very accurate values for R̄. Alternatively, the rest of the βi

coefficients become very small for i ≥ 3 for the parameters that we are interested.

The next proposition verifies that the restricted policy that we use to characterize the

solution is indeed optimal. Indeed the decision rule is very similar to the one obtained by

Baccarin (2009). He studies a general class of problems with fixed and variable adjustment

cost and a non-linear cost function, but illustrate his results with the computation of several

examples, among them one very similar to ours.

Proposition 3. Let v be the solution of the restricted problem equation (9) and equa-

tion (8). Let V (p) = v (
∑n

i=1 p
2
i ). This is the solution of the problem described equation (1)

and equation (2).

For completeness we note that the in the case of n = 1 and the case of perfectly correlated

target prices. In the case of one product, i.e. n = 1, the solution to V is easily seen to be
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the sum of a quadratic and an two exponential, as in

V (p) =
B

r
p2 + β (exp (λp) + exp (−λp)) +B

(σ

r

)2

where λ =
√
2r/σ and the constant β is chosen to match enforce smooth pasting and value

matching. Moreover, it is easy to see that in that case the v(R) = V (
√
R) solves the ODE

in (10) and its boundary conditions. We note that the solution for the n = 1 case and the

expression for the approximation for R̄ are the same as the ones derived in Dixit (1991),

which we explore in the price setting context in Alvarez, Lippi, and Paciello (2009). In the

case of n perfectly correlated target prices the problem has, after the first adjustment, a single

state variable. In this case, in terms of the threshold policy and value function, the problem

is identical to the one with only one price. The static return is thus nBp(t)2 where p(t)

is, when uncontrolled, a one dimensional brownian motion. The only difference with the

problem with only one price is that the value of B is multiplied by n, or more importantly,

the ratio B/ψ is proportional to n. This is quite natural, since the adjustment has the same

effectiveness for all products, and hence it is as if it were cheaper. Note that, in the case

of the CRTS assumption, the value of the adjustment threshold, and hence the frequency of

adjustment, is independent of n. Instead, in terms of the implication for price changes, the

problem with perfectly correlated shocks is quite differently, since there are no small price

changes. When adjustment takes place, all products have the same price gap. We return to

this simple case later on to speculate on the case of positive, but less than one correlation

between the innovations.

4 Implications for timing and size of price changes

In this section we explore the implications for the frequency and distribution of price changes.

We let the expected time for R(t) to hit the barrier R̄ starting at R by the function T (R).
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This function satisfies:

0 = 1 + n σ2 T ′(R) + 2 R σ2 T ′′(R) for R ∈ (0, R̄) and T (R̄) = 0 ,

where the first condition gives the law of motion inside the range of inaction and the second

one imposes the terminal condition on the boundary of the range of inaction. The unique

solution of this ODE that satisfies the relevant boundary condition is:

T (R) =
R̄− R

n σ2
for R ∈ [0, R̄] . (17)

We use T (0) as the expected time between successive price adjustments, and thus the average

number of adjustment, denoted by Na is given by 1
T (0)

. We collect this result in the following

proposition:

Proposition 4. Let Na be the expected number of price changes for a multi-product

firm with n goods. It is given by

Na =
nσ2

R̄
∼=
√

B σ2

2 ψ

n2

(n+ 2)
. (18)

In the last expression of equation (18) we use the approximation of R̄ for small ψ and r.

It is interesting that this expression extends a well known expression for the case of n = 1,

simply by adjusting the value of the variance from σ2 to nσ2. The number of products n

affects Na through two opposing forces. One is that with more products, the variance of the

deviations of the price gaps increases, and thus a given value of R̄ is hit sooner in expected

value, which we refer to as the direct effect. On the other hand, with with more products,

the optimal value of R̄ is higher. Expression equation (18) shows that, as often happens in

these models, the direct effect dominates, and the frequency of adjustment increases with n.

We use this expression to study how the bundling of menu costs, i.e. the fact that a

single menu cost relates to several products, affects the frequency of adjustment of individual
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prices. This is interesting because recent evidence in Bhattarai and Schoenle (2010) shows

that the the frequency of price adjustment appears higher for firms that sell a larger number

of goods.6 They find that the average frequency of price adjustment increases, from about

20% to about 30% per month, moving from the first to the fourth bin.

This pattern is qualitatively consistent with the formula in equation (18), which shows

that Na is increasing in n. Notice however that in this comparison we are keeping ψ constant,

so that as n increases the menu cost per good is decreasing. One may wonder whether the

increased activity by the firms follows from the fact that the menu cost is smaller (per good)

or because of the bundling of the goods prices. To separate the effects of the economies of

scale in the menu cost from the bundling of the goods, consider the case where the cost ψ

grows linearly with the number of goods n, i.e. : ψ = ψ1 n. This gives

Na
∼=
√

B σ2

2 ψ1

n

(n+ 2)
. (19)

which is also increasing in n, although at a lower rate. Thus, even under “CRTS” for the

menu cost, the bundling of the goods pricing induces more frequent adjustments than in the

case where the menu costs are dissociated, i.e. when n = 1.

We now study the invariant distribution of the sum of the squares of the price gaps

||p||2 =
∑n

i=1 pi(t)
2 under the optimal policy. We will denote the density of the invariant

distribution by f(R) for R ∈ [0, R̄]. This is interesting to study the response of a set of firms

that are in steady state (i.e. in the invariant distribution) to an unexpected shock to their

target which will displace the price gaps uniformly. In particular the study of how much

mass is close to the boundary of inaction (so that after the “unexpected shock” they will

decide to adjust) is one that has been identify as one of the key determinants to the impact

effect of monetary policy shocks. We are interested in studying how this mass changes as we

6See Figures 1 and 2 in their paper. These authors group firms into 4 bins, according to the number of
items sold (and recorded by the BLS), from 1 to 3 goods in the first bin to more than 7 goods in the fourth
bin. They first measure the frequency of price changes at the good level, then compute the median frequency
across the goods produced in the firm. Finally, they average these medians inside each of the 4 bins.
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vary the number of goods n. There is an extensive literature on this topic, see for example

Caballero and Engel (2007). The density of the invariant distribution has to solve the forward

Kolmogorov equation and relevant boundary conditions.

Proposition 5. The density f(·) of the invariant distribution of the sum of the squares

of the price gaps R, for a given thresholds R̄ in the case of n ≥ 1 products is for all R ∈ [0, R̄]

f(R) =
1

R̄

[

log(R̄)− log(R)
]

if n = 2, and

f(R) =
(

R̄
)−n

2

(

n

n− 2

)

[

(

R̄
)

n
2
−1 − (R)

n
2
−1
]

otherwise. (20)

So the density has a peak at R = 0, decreases in R, and reaches zero at R̄. The shape

depends on n. The density is convex in R for n = 1, 2 and n = 3, linear for n = 4, and

concave for n ≥ 5. This is intuitive, since the drift of the process for R increases linearly with

n, hence the mass accumulates closer to the upper bound R̄ for higher n. Indeed as n→ ∞

the distribution converges to a uniform in [0, R̄]. Proposition 5 makes clear also that the

shape of the invariant density depends exclusively on n, the value of the other parameters,

ψ,B, σ2 only enters as determining R̄, which only stretches the horizontal axis proportionally.

Consider the effect of decreasing the vector of price gaps by a constant δ > 0 in all

dimensions. The interpretation of this experiment, is the effect of an unexpected jump in the

target price for all the goods. We want to find out the fraction of firms under the invariant

that will adjust their prices. We will assume that from here on the price gap process remains

the same, so the firms solved the problem stated above. For this we need the invariant

distribution of p, not just R. We note that for each R ≤ R̄, the distribution of p is uniform

on the n-dimensional sphere with radius
√
R. This is due to the symmetry of the distributions

of the price gaps in each dimension, and its independence. Following the notation in Song and

Gupta (1997) we use U(n, 2) for the uniform distribution of p on the n-dimensional sphere,

i.e. all the values of p with ||p|| = 1 have the same density. Now we obtain the fraction of

prices p with ||p||2 = R ≤ R̄ that after the δ “shock” will be outside the set of inaction. They
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Figure 1: f(·) density of invariant distribution of R, for various choices of n
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are given by:

||p||2 − 2δ

(

n
∑

i=1

pi

)

+ nδ2 > R̄ or

∑n
i=1 pi√
R

≤ R− R̄

2δ
√
R

+ n
δ√
R
. (21)

Abusing notation let u(x;n, 2) be the density of U(n, 2) and define:

D(s) =

∫

{x: ||x||=1}
I

{

n
∑

i=1

pi ≤ s

}

u(x1, ..., xn;n, 2) dx1 dx2 · · · dxn .

Thus the fraction of firms that adjust after the unexpected increase in prices δ, denoted by

is given by A(δ) :

A(δ) =

∫ R̄

0

f(R) D

(

R− R̄

2δ
√
R

+ n
δ√
R

)

dR ≈ −f ′(R̄)D

(

n
δ√
R̄

)

R̄2

2
=
n

2
D

(

n
δ√
R̄

)

, (22)

where the last term is a an approximation of A(δ) using a first order expansion of the product
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fD around R̄, which will be accurate for small values of R̄.

[TO FINISH THIS PART OF THE SECTION WE NEED TO DERIVE THE AVERAGE

CHANGE ON PRICES OF THOSE THAT ADJUST]

Proposition 6. Let t denote the time elapsed since the last price change. Let Jν(·) be

the Bessel function of the first kind. The hazard rate for price changes is given by

h(t) =

∞
∑

r=1

ξn,r
∑∞

s=1 ξn,s exp
(

− q2n,sσ
2

2R̄
t
)

q2n,rσ
2

2R̄
exp

(

−
q2n,rσ

2

2R̄
t

)

, where ν =
n

2
− 1 ,

ξn,r =
1

2ν−1Γ(ν + 1)

qν−1
n,r

Jν+1(qn,r)
, and qnr are the positive zeros of Jν(·),

which asymptotes to
limt→∞ hn(t)

T (0)
=
q2n,1
2n

>
(n− 1)2

2n
. (23)

In the proof we use results from probability theory on the first passage of time of a n

brownian motion in a sphere center to the origin by Ciesielski and Taylor (1962) as well

as characterization from the zeros of the Bessel function from Qu and Wong (1999) and

Hethcote (1970).

Proposition 6 compares the asymptote of the hazard rate with the expected time until

adjustment, which equals T (0) = R̄/(nσ2), as derived above. Notice that for a model with

constant hazard rate these two quantities are the reciprocal of each other, i.e. the expected

duration is the reciprocal of the hazard rate. We use this ratio, as a function of n as a

measure of how close the model is to have constant hazard rates. We note that this ratio is

exclusively a function of n. Indeed from the expression Proposition 6, it is immediate that

the shape of the hazard rate function depends only on the number of products n. Changes in

σ2, B, ψ only stretch linearly the horizontal axis. More precisely, once keeping the expected

time until adjustment T (0) fixed, the hazard rate is only a function of n.

Figure 2 plots the hazard rate function h for different choices of n keeping the expected

time between price adjustment fixed at one. As Proposition 6 shows the function h has an

asymptote, which is increasing in the number of products n. Moreover, since the asymptote
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Figure 2: Hazard rate of Price Adjustments for various choices of n
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For each n the value of σ2/R̄ is chosen so that the expected time elapsed between adjustments is one.

diverges to ∞ as n increases with no bound, the hazard rate converges to a an inverted L

shape, as the one for a model where adjustment are done exactly every T (0) = 1 periods.

To see this note that, defining R̃ ≡ R/R̄ and fixing the ratio σ2/R̄ = T (0)/n so that for any

n the expected time elapsed between price changes is T (0), we have:

dR̃ = T (0)dt + 2

√

R̃
T (0)

n
dW for R̃ ∈ [0, 1]. (24)

As n→ ∞ the process for the normalized size of the price gap R̃ described in equation (24)

converges to the deterministic one, in which case the hazard rate is zero between times 0 and

below T (0) and ∞ precisely at T (0). For completeness, Table 1 computes the first zero for

the relevant Bessel functions and the asymptotic hazard rate for several value of n.

[WE NEED TO CONCLUDE WITH THE IMPLICATIONS AS WE COMPARE WITH

THE DATA]

Finally we discuss the distribution of price changes. This distribution can be described
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Table 1: Limit hazard rates for various values of n

number of products n

1 2 3 4 6 8 10 20 50 100

zeroes of Jn
2
−1(·) : qn1 1.6. 2.4 3.1 3.8 5.1 6.4 7.6 13 30 56

Limit Hazard rate
Expected duration

: limt→∞ hn(t,R̄)
T (0)

1.2 1.4 1.6 1.8 2.2 2.5 2.9 4.5 8.8 16

Note: for n = 1 and n = 3 the zeros are multiples of π, i.e. q1,r = (2(r − 1) + 1)π/2 and q3,r = r π.

in terms of 2 parameters: the number of goods n, and the optimal threshold describing the

size of the inaction set R̄. The value of R̄, as discussed above, depends on all the parameters.

Since after an adjustment price gaps are set to zero, price changes coincide with the value

of p(τ) ∈ ∂I ⊂ R
n, the surface of an n-dimensional sphere of radius

√
R̄. Let τ , be a time

where p hits he boundary of the range of inaction, then given that each of the pi(t) when

they are uncontrolled, are independently and identically normally distributed, price changes

∆p(τ) = −p(τ) are uniformly distributed in the n-dimensional surface of the sphere of radius
√
R̄ 7. The next proposition characterizes the marginal distribution of price changes.

Proposition 7. Let ∆p ∈ ∂I ⊂ R
n denote a price change for the n goods. The

distribution of the price change of an individual good, i.e. the marginal distribution of

∆pi ∈ [0,
√
R̄ ] has density:

w(∆pi) =
1

Beta
(

n−1
2
, 1
2

)

√
R̄

(

1−
(

∆pi√
R̄

)2
)(n−3)/2

(25)

where Beta(·, ·) denotes the Beta function. The standard deviation and kurtosis of the price

changes, and expected value of the absolute value of price changes and its coefficient of

7The distribution of ∆p(τ) is uniform in the surface of the sphere since the p.d.f. of a jointly normally
distributed vector of n identical and independent normals, apart from a constant, is given by the exponential
of a the square of an sphere with radius

√
R̄.
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variations are given by:

Std ( ∆pi ) =
√

R̄
/

n , Kurt ( ∆pi ) =
3 n

n+ 2
,

E [ |∆pi| ] =

√
R̄

n−1
2
Beta

(

n−1
2
, 1
2

) ,
Std ( |∆pi| )
E ( |∆pi| )

=

√

[

n− 1

2
Beta

(

n− 1

2
,
1

2

)]2
1

n
− 1 .

Moreover, as n → ∞, the distribution of ∆pi/Std(∆pi) converges point-wise to a standard

normal.

Using the previous proposition and the approximation for R̄ we obtain the following

expression for the standard deviation of price changes:

Std ( ∆pi ) =

(

σ2ψ

B

2(n+ 2)

n2

)1/4

and in the CRTS case Std ( ∆pi ) =

(

σ2ψ1

B

2(n+ 2)

n

)1/4

,

where both expressions are decreasing in n. The expression for the kurtosis of the price

changes shows that this statistic is an increasing function of n.

We can approximate some of the expressions in Proposition 7 for statistics for |∆pi|

involving the Beta function to obtain the following simpler expressions:8

E [ |∆pi| ] ≈
√

R̄
/

n
√

2
/

π
√

1 + 1.1
/

(2 n) and

Std ( |∆pi| )
E ( |∆pi| )

≈
√

π

2

(

2n

1.1 + 2n

)

− 1 .

The expression for the approximate value of E [|∆pi|] is given by Std (∆pi) times a decreasing

function of n. The expression for the approximate value of Std (|∆pi|) /E (|∆pi|) show that

this statistic is an increasing function of n.

We note that the shape of the distribution h for price changes differs substantially for

small values of n. For n = 2 is U-shaped, for n = 3 is uniform, for n = 4 it has the shape of

8 We note that error on the approximation error for E [ |∆pi| ] and Std ( |∆pi| ) /E ( |∆pi| ) are smaller
than 0.26% and 0.91%.
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a half circle, and for n ≥ 6 it has bell shape.9 Proposition 7 establishes that when n → ∞

the distribution converges to a normal: this can be seen in Figure 3 by the comparison of

the distribution for n = 50 and the p.d.d. of a normal distribution with standard deviation

equal to Std(∆pi) for n = 50.

Figure 3: Density w(·) of the price changes for various choices of n
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Parameter values: B = 20 , σ = 0.15 , ψ1 = 0.02. Menu cost proportional to n. Solid lines are the p.d.f for h
for different n. Circles denote the p.d.f. of a normal with standard deviation equal to that of ∆pi for n = 50.

Furthermore, from the expression in Proposition 7 the distribution of price changes x and

of their absolute value |x| depends on n and R̄, any normalized statistics such as ratio of

moments (kurtosis, skewness, etc) or a ratio of points in the c.d.f. depends exclusively on n.

Indeed the kurtosis is given in Proposition 7, as Kurtosis(∆pi) = 3n/(2+n), and increasing

concave function, starting at 1 and converging to 3. The next table computes several of these

moments of interest, which has been computed for two scanner data sets by Midrigan (2009)

to be compared with the prediction two menu cost models, one with one product and one

with two.10

Comparing the statistics from Table 2 with the ones computed from scanner data by

9For n equal to 2, 3 and 4 one can grasp the shape of the distribution h from geometrical considerations,
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Table 2: Statistics for price changes as function of number of products

statistics \ number of products n 1 2 3 4 5 6 10 20 50

Std(|∆pi|) / E(|∆pi|) 0 0.48 0.58 0.62 0.65 0.67 0.70 0.74 0.75

Kurtosis(∆pi) 1.0 1.7 2.0 1.9 2.1 2.3 2.5 2.8 2.9

Fraction: |∆pi| < 1
2
E(|∆pi|) 0 0.21 0.25 0.27 0.28 0.28 0.30 0.31 0.31

Fraction: |∆pi| < 1
4
E(|∆pi|) 0 0.10 0.12 0.13 0.14 0.14 0.15 0.16 0.16

∆pi denotes the log of the price change, and |∆pi| the absolute value of the log of price changes. They
are computed the results in Proposition 7. All statistics in the table depend exclusively on n. Kurtosis
defined as the fourth moment relative to the square of the second.

Midrigan (2009) we conclude that a large value of n is required, on the order of 50. [THIS

IS VERY SPECULATIVE, WE NEED TO EXPLAIN THE REASONS FOR THIS]

together with the fact the maximum of a density of a univariate normal is at one.
10The table in the Midrigan (2009) paper is Table 2b, Distribution of standardized price changes conditional

on adjustments.
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A Proofs

Proof. (of Proposition 2 ) Notice that v′(0) = β1 and that v(0) = β0, so that we require
β1 > 0, which implies β0 > 0. Moreover, if β1 > B/r then v is strictly increasing and strictly
convex. If β1 = B/r then v is linear in R. If 0 < β1 < B/r, then v is strictly increasing at
the origin, strictly concave, and it reaches its unique maximum at a finite value of R. Thus,
a solution that satisfies smooth pasting requires that 0 < β1 < B/r, and the maximizer is
R̄. In this case, R = 0 achieves the minimum in the range [0, R̄]. Finally, we require value
matching at R̄, i.e. v(R̄) = v(0)+ψ. Let βi(β1) be the solution of equation (15), as a function
of β1. Note that for 0 < β1 < B/r, all the βi(β1) < 0 for i ≥ 2 and are increasing in β1,
converging to zero as β1 goes to B/r. Smooth pasting can be written as

0 = v′(R̄; β1) ≡
∞
∑

i=1

i βi(β1) R̄
i−1 ,

where we emphasize that all the βi can be written as a function of β1. From the properties of
the βi(·) discussed above, it follows that we can write the unique solution of 0 = v′(ρ̄(β1); β1)
as an strictly increasing function of β1, i.e. ρ̄

′(β1) > 0. Now we write value matching at R̄
which gives:

ψ = v(R̄, β1)− v(0, β1) = v(R̄, β1)− β0(β1) =

∞
∑

i=1

βi(β1) R̄
i .
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We note that, given the properties of βi(·) discussed above, for any given R > 0 we have:
v(R, β1)− β0(β1) is strictly increasing in β1, as long as 0 < β1 < B/r. Thus, define

Ψ(β1) = v(ρ̄(β1), β1)− v(0, β1) =
∞
∑

i=1

βi(β1) ρ̄(β1)
i .

From the properties discussed above we have that Ψ(β1) is strictly increasing in β1 and that
it ranges from 0 to ∞ as β1 ranges from 0 to B/r. Thus Ψ is invertible. The solution of the
problem is given by setting:

β1(ψ) = Ψ−1(ψ) and R̄(ψ) = ρ̄(β1(ψ)) .

Now we show that the solution of the problem, as r ↓ 0 satisfies:

R̄ = σ2 q

(

ψ

B σ2
, n

)

.

for some increasing function q(·). As r ↓ 0 solving the expected discounted problem is
equivalent to solve the following steady state problem. The objective is to chose a threshold
value of R̄ in order to minimize the sum of two terms. The first is expected number of
adjustment times the cost per adjustment ψ from following the threshold policy. We denote
this term by Na(R̄; σ

2n)ψ. The second is the expected value of the deviations, times the
cost of each deviation B. We denote this term by e(R̄; σ2, n)B. The minimization problem
is then

min
R̄
Na(R̄; σ

2n) ψ + e(R̄; σ2, n) B

To be clear about the definition of this problem, denote F (·, n) the measure on the sample
paths of n independent standard BM’s, starting at zero at time zero. Let τ(ω;λ, n) the first
time that the sum of the squares of the BM’s hits λ, and let A(λ, n) = {ω :

∑n
i=1W

2
i (τ, ω) =

λ} be the sample paths for which the sum of the squares hit λ. We have that

Na(R̄; σ
2n) =

1
∫

ω∈A( R̄

σ2
,n) τ(ω;

R̄
σ2
, n)F (ω, n)dω

=
n σ2

R̄

where the last computation follow from equation (18) obtained in Proposition 4.

e(R̄; σ2, n) ≡ σ2

∫

ω∈A( R̄

σ2
,n)

∫ τ(ω; R̄

σ2
,n)

0

∑n
i=1W

2
i (t, ω)dt

τ
(

ω; R̄
σ2
, n
) F (ω;n)dω

We note that since the n BM’s have a normal finite distribution and are assumed to be
independent, we have that

e(R̄; σ2, n) = σ2e

(

R̄

σ2
; 1, n

)

.
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We can write the minimization problem as:

Bmin
R̄

n σ2

R̄

ψ

B
+ σ2e

(

R̄

nσ2
; 1, n

)

= σ2Bmin
R̃

n

R̃

ψ

B σ2
+ e

(

R̃; 1, n
)

where R̃ ≡ R̄/σ2. Let the solution of the transformed problem be R̃ = q
(

ψ
B σ2

, n
)

then the
solution of the original problem is:

R̄ = σ2 q

(

ψ

B σ2
, n

)

.

That the function q(·) is strictly increasing follows from the previous result and since ψ is an
argument of this function. Q.E.D.
Proof. (of Proposition 3) We show that V so constructed has the following properties:

1. it only depends on the absolute value of the prices, since for all p ∈ R
n:

v

(

n
∑

i=1

p2i

)

= v

(

n
∑

i=1

|pi|2
)

.

for all p ∈ R
n,

2. The range of inaction is given by I = {p ∈ R
n
∣

∣

∑n
i=1 p

2
i ≤ R̄}.

3. It solves the ODE given by equation (3). This can be seen by computing:

Vi(p) = v′

(

n
∑

i=1

p2i

)

2pi and Vii(p) = v′′

(

n
∑

i=1

p2i

)

(2pi)
2 + v′

(

n
∑

i=1

p2i

)

2 ,

replacing this into the ODE equation (3) we obtain the ODE equation (10), which v
solves by hypothesis.

4. It satisfies value matching equation (4), which is immediate since it satisfied the value
matching condition for v given in equation (11).

5. it satisfies smooth pasting equation (6). Using the form of the solution for v, namely:

Vi(p) = v′

(

n
∑

i=1

p2i

)

2 pi =

n
∑

j=1

βj j

(

n
∑

k=1

p2k

)j−1

2 pi

Using that v satisfies smooth pasting we have:

0 =

n
∑

j=1

βj j

(

n
∑

k=1

p2k

)j−1

for any p with
∑n

k=1 p
2
k = R̄, which establishes that Vi(p) = 0 for all i = 1, .., n and for

any p ∈ ∂I.
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6. It satisfies optimality of the origin as return point, as given by equation (5). Direct
computation gives:

Vi(p) = v′

(

n
∑

i=1

p2i

)

2 pi =

n
∑

j=1

βj j

(

n
∑

k=1

p2k

)j−1

2 pi

which equals zero when evaluated at p = 0. Notice also that

Vii(0) = 2 β1 > 0 for all i = 1, ..., n and Vij(0) = 0 ,

thus, p = 0 is a local minimum.

Finally, a function V with these properties is a strong solution to the variational inequality
of the problem, and hence it is the value function. QED
Proof. (of Proposition 5 ) The forward Kolmogorov equation is:

0 =
1

2

∂2

∂R2

(

[

2σ
√
R
]2

f(R)

)

− ∂

∂R

(

nσ2f(R)
)

for R ∈ (0, R̄) , (26)

with boundary conditions:

1 =

∫ R̄

0

f(R) dR and f(R̄) = 0 . (27)

The first boundary conditions ensures that f is a density. The second is implied by the fact
that when the process reaches R̄ it is return to the origin, so the mass escape from these
points. Equation (27) implies the second order ODE: f ′(R)(n

2
− 2) = Rf ′′(R). The solution

of this ODE for n 6= 2 is f(R) = A1R
n/2−1 + A0 for two constants A0, A1 to be determine

using the boundary conditions equation (27):

0 = A1(R̄)
n/2−1 + A0 ,

1 =
A1

n/2
(R̄)n/2 + A0R̄ .

For n = 2 the solution is f(R) = −A1 log(R) + A0 subject to the analogous conditions.
Solving for the coefficients A0, A1 gives the desired expressions.
Proof. (of Proposition 6 ) Let τ be the stopping time defined by the first time where the
sum of the square of the price gaps vector ||p(τ)||2 reaches the critical value R̄, starting at the
origin at time zero, i.e. starting at ||p(0)|| = 0. Let Sn(t, R̄) be the probability distribution
for stopping times τ ≥ t, alternatively let Sn(·, R̄) be the survival function. Theorem 2
Ciesielski and Taylor (1962) shows that for n ≥ 1:

Sn(t, R̄) =

∞
∑

r=1

ξn,r exp

(

−
q2n,r
2R̄

σ2 t

)

, where ξn,r =
1

2ν−1Γ(ν + 1)

qν−1
n,r

Jν+1(qn,r)
. (28)

where Jν(z) is the Bessel function of the first kind, where ν = (n − 2)/2, where qnr are the
positive zeros of the Bessel function Jν(z), index in ascending order according to r, and where
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Γ is the gamma function. The hazard rate is then given by:

hn(t, R̄) = − 1

Sn(t, R̄)

∂Sn(t, R̄)

∂t
, with asymptote lim

t→∞
hn(t, R̄) =

q2n,1 σ
2

2 R̄
. (29)

As shown by Qu and Wong (1999), the zeroes of the Bessel function qn,r satisfy for n > 2
the following inequalities:

(n

2
− 1
)

− ar
21/3

(n

2
− 1
)1/3

< qn,r <
(n

2
− 1
)

− ar
21/3

(n

2
− 1
)1/3

+
3

10
a2r

21/3
(

n
2
− 1
)1/3

(30)

where ar are the first negative zero of the Airy function. For instance a1 ≈ −2.33811, giving
a tight bound for the first zero qn,1, which determines the asymptote of the hazard rate. A
related simpler lower bound given by Hethcote (1970) for n ≥ 2 is

q2n,r >

(

r − 1

4

)2

π2 +
(n

2
− 1
)2

. (31)

Proof. (of Proposition 7 ) We first establish the following Lemma. Lemma. Let z be
distributed uniformly on the surface in the surface of the n-dimensional sphere of radius one.
We use x for the projection of z in any of the dimension, so zi = x ∈ [−1, 1]. The marginal
distribution of x = zi has density:

fn(x) =

∫ ∞

0

s(n−3)/2e−s/2

2(n−1)/2 Γ[(n− 1)/2]

e−sx
2/[2(1−x2)]
√
2π

s1/2

(1− x2)3/2
ds

=
Γ(n/2)

Γ(1/2) Γ[(n− 1)/2]
(1− x2)(n−3)/2 (32)

where the Γ function makes the density integrate to one. This lemma is an application of
Theorem 2.1, part 1 in Song and Gupta (1997), setting p = 2, so it is euclidian norm, and
k = 1 so it is the marginal of one dimension. We give a simpler proof below.

Now we consider the case where the sphere has radius different from one. Let p ∈ ∂I,
then

p =
p

∑n
i=1 p

2
i

R̄ =
p

√
∑n

i=1 p
2
i

√

R̄ = z
√

R̄

where z is uniformly distributed in the n dimensional sphere of radius one. Thus each pi
has the same distribution than x

√
R̄. Using the change of variable formula we obtained the

required result.
Part 2 of Theorem 2.1 in in Song and Gupta (1997) shows that if x the marginal of a

uniform distributed vector in the surface of the n-dimensional sphere, then x2 is distributed
as a Beta(1

2
, n− 12). If y is distributed as a Beta(α, β) then it has E(y) = α/(α + β) and

E(y2) = (α+1)/(α+β+1)E(y). Using these expressions for α = 1/2 and β = n/2 we obtain
the results for the standard deviation of ∆pi and its kurtosis. For the expected value of the
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absolute value of price changes we note that

E[|∆pi|] = 2

∫

√
R̄

0

∆pi w(∆pi) d∆pi

=
2

Beta
(

n−1
2
, 1
2

)

∫

√
R̄

0

∆pi

(

1−
(

∆pi√
R̄

)2
)(n−3)/2

d∆pi

=

√
R̄

n−1
2
Beta

(

n−1
2
, 1
2

)

where the second line uses the form of h and the last line uses that the following result:

∫ b

a

x
(

1− x2
)(n−3)/2

dx =
(1− x2)

(n−1)/2

1− n

∣

∣

∣

∣

∣

b

a

.

Then we have, using the fundamental property of the Gamma function

1
n−1
2

Beta
(

n−1
2
, 1
2

) =
Γ
(

n
2

)

n−1
2

Γ
(

n−1
2

)

Γ(1/2)
=

Γ
(

n
2

)

Γ
(

n+1
2

)

Γ(1/2)

Thus

E[|∆pi|] =
√
R̄

n−1
2
Beta

(

n−1
2
, 1
2

) =
√

R̄
Γ
(

n
2

)

Γ
(

n+1
2

)

Γ(1/2)

We can approximate these ratio of Gamma functions as

Γ
(

n
2

)

Γ
(

n+1
2

)

Γ(1/2)
≈
√

2

π

√

n+ 1/2

n

from where we obtain our expression.
For Std ( |∆pi| ) / E ( |∆pi| ) we use that, given the symmetry around zero we have:

Std ( |∆pi| ) / E ( |∆pi| ) =

√

E[∆p2i ]

E[|∆pi|]2
− 1 =

√

(

Std(∆pi)

E[|∆pi|]

)2

− 1

=

√

√

√

√

(

n−1
2

Beta
(

n−1
2
, 1
2

)

√
n

)2

− 1 ≈
√

π

2

(

2n

1 + 2n

)

− 1

For the convergence of ∆pi/Std(∆pi) to a normal, we show that y = x2 n converges to a
chi-square distribution with 1 d.o.f., where x is the marginal of a uniform distribution in the
surface of the n-dimensional sphere. The p.d.f of y ∈ [0, n], the square of the standardized
x, is

Γ
(

n
2

)

n Γ
(

n−1
2

)

Γ
(

1
2

)

(

1−
(y

n

))(n−3)/2 (y

n

)−1/2

,
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and the p.d.f. of a chi-square with 1 d.o.f. is

exp(−y/2) y−1/2

√
2 Γ

(

1
2

) .

Then, fixing y, taking logs in the ratio of the two p.d.f.’s, and taking the limit as n → ∞,
using that

Γ
(

n
2

) √
2

Γ
(

n−1
2

) √
n
→ 1 as n→ ∞ .

we obtain that the ratio of the two p.d.f.’s converges to one.
Q.E.D.
Derivation of the approximation for R̄. The smooth pasting and value matching

conditions gives a system of two equations in two unknowns,

0 = v′(R̄) = β1 + 2β2R̄

ψ = v(R̄)− v(0) = β1R̄ + β2R̄
2 ,

where β2 = (rβ1 − B)/(2σ2(n + 2)). We replace R̄ and β2 to obtain the following quadratic
solution for β1:

−β2
1 − rβ1

(

2 ψ

σ2 (n+ 2)

)

+
B ψ 2

σ2 (n+ 2)
= 0

taking the positive root and replacing it back to solve for R̄ yields:

R̄ =
2ψ

− rψ
σ2(n+2)

+

√

(

rψ
σ2(n+2)

)2

+ 2Bψ
σ2(n+2)

Taking r to zero in this expression we obtain equation (16).

B Numerical accuracy of the approximation

In this section we present some evidence on the numerical accuracy of the approximation.
We compare the value of R̄ obtained from the quadratic approximation to v described above,
with what we call the “exact” solution, which is the numerical solution using up to 30 terms
for βi in its the expansion.

The approximation are closer for smaller values of σ and ψ, which we regard as more
realistic.

The next figure shows the value of Na(n) for various n when the menu cost are constant
returns to scale, so ψ = ψ1n using the approximation and using the “exact” expression.
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Figure 4: Ratio of R̄′s and of v(0)′s for the approximation relative to the “exact” solution
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Note: parameter values are B = 20 , σ = 0.25 , ψ1 = 0.03 and r = 0.03.

Figure 5: Frequency of adjustment Na for the CRTS ψ1n and constant ψ.
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C Approximating the Profit Function

Consider the expression for the rate of profits of a multiproduct firm. The marginal cost
for each of the products is Ci. The demand system is given by the sum of n independent
demands, with own price elasticity given by η. The parameter Ai is the intercept, in logs,
of the demand for the i− th product. Given the constant elasticity of demand and constant
marginal cost, the frictionless optimal price for the monopolist is a multiple of the marginal
cost, and independent of Ai. To keep the n goods symmetric we will assume that Ci and Ai
are perfectly correlated, so that when cost are high, and hence frictionless prices are high,
demand is also high. In this way we can keep the share of profits coming to each of the n
goods comparable, even if cost differ significantly.

We write the total profits per product

Π(P1, .., Pn, C1, ..., Cn, A1, ..., An) ≡
n
∑

i=1

Π(Pi, Ci, Ai) =
n
∑

i=1

Ai P
−η
i (Pi − Ci)

Let P ∗
i = argmaxP Π(P,Ci, Ai). Assuming that

Ai = A (Ci)
η−1 ,

we obtain that profits, relative to the maximized profits, can be written as

Π(P1, .., Pn, C1, ..., Cn, A1, ..., An)− Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

= B
n
∑

i=1

(

Pi − P ∗
i

P ∗
i

)2

+ o

(

n
∑

i=1

(

Pi − P ∗
i

P ∗
i

)2
)

where B = (η−1)η
2 n

.
To obtain the quadratic expression above we write a second order expansion of the profits,

divide both sides by the maximized total profits, and complete elasticities:

Π(P1, .., Pn, C1, ..., Cn, A1, ..., An)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

= 1 +
n
∑

i=1

1

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

∂

∂Pi
Π (Pi, Ci, Ai)|P ∗

i
P ∗
i

(

Pi − P ∗
i

P ∗
i

)

+
1

2

n
∑

i=1

1

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

∂2

∂P 2
i

Π (Pi, Ci)|P ∗

i
(P ∗

i )
2

(

Pi − P ∗
i

P ∗
i

)2

Computing the derivatives for our functional forms:
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∂

∂Pi
Π (Pi, Ci, Ai) = AiP

−η
(

−η
(

Pi − Ci
Pi

)

+ 1

)

∂2

∂P 2
i

Π (Pi, Ci) = −AiP−ηη
1

Pi

(

−η
(

Pi − Ci
Pi

)

+ 1

)

− AiP
−ηη

(

Ci
P 2
i

)

We have the standard result of a constant mark-up:

P ∗ =
η

η − 1
Ci =⇒

(

−η
(

Pi − Ci
Pi

)

+ 1

)

=

(

−η
(

ηCi − Ci(η − 1)

ηCi

)

+ 1

)

= 0 ,

and the maximized value of profits given by

Π(P ∗
i , Ci, Ai) = AiC

−η
i

(

η

η − 1

)−η
Ci

(

1

η − 1

)

= Ai C
1−η
i

(

η

η − 1

)−η (
1

η − 1

)

.

Hence the first and second derivatives, evaluated a the optimal prices are:

∂

∂Pi
Π (Pi, Ci, Ai) |P ∗ = 0

∂2

∂P 2
i

Π (Pi, Ci, Ai) |P ∗ = −AiP ∗−ηη
Ci

P ∗
i
2 = −Ai

(

Ci
η

η − 1

)−η
ηCi

P ∗
i
2

and

1

Π (P ∗
i , Ci, Ai)

∂2

∂P 2
i

Π (Pi, Ci, Ai) |P ∗(P ∗
i )

2 = −
Ai

(

Ci
η
η−1

)−η
ηCi

Ai C
1−η
i

(

η
η−1

)−η (
1
η−1

)
= − (η − 1) η

Thus the expansion can be written as:

Π(P1, .., Pn, C1, ..., Cn, A1, ..., An)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

= 1 +
1

2

n
∑

i=1

1

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

∂2

∂P 2
i

Π (Pi, Ci)|P ∗

i
(P ∗

i )
2

(

Pi − P ∗
i

P ∗
i

)2

= 1− 1

2

n
∑

i=1

Π(P ∗
i , Ci, Ai)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

(η − 1) η

(

Pi − P ∗
i

P ∗
i

)2

Using the assumption that Ai = A (Ci)
η−1 we have that

Π(P ∗
i , Ci, Ai)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

=
AiC

1−η
i

∑n
j=1AjC

1−η
j

=
1

n
,
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and hence the expression for B is:

B =
(η − 1)η

2 n
.
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