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Abstract

This paper studies the role of limited commitment and heterogeneity in explain-
ing the consumption allocation in village economies. I estimate the dynamic contract
determining self-enforcing insurance transfers in a structural manner, and allow the co-
efficient of relative risk aversion to differ across households and groups of households
to face different exogenous income processes. I then statistically compare models in
terms of how well they can predict consumption shares in Thai villages. I find that
the heterogenous model explains the consumption allocation significantly better than
the homogenous version and the benchmarks of perfect risk sharing and autarky. En-
forcement constraints bind more often with heterogeneous households, implying less risk
sharing. The paper then examines how social policies would interact with existing infor-
mal insurance arrangements. I simulate the effects of counterfactual transfers targeting
the poor on consumption by both eligible and ineligible households. I also study the
crowing-out effect of aggregate insurance.
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1 Introduction

Households living in rural areas of low-income countries face a great amount of risk. Revenue
from agricultural production is usually low and volatile, as a result of extreme weather
conditions, such as erratic monsoon rains in South Asia. Further, outside job opportunities
are often lacking. In addition, access to financial instruments to insure against consumption
fluctuations is limited. In such an environment, households in a community rely on one
another for insurance.

There exists ample empirical evidence that households in poor villages do not fully share
the risks they face, although they do achieve a remarkable amount of insurance (Townsend,
1994; Grimard, 1997; Dubois, 2000; Dercon and Krishnan, 2003a,b; and others).1 There
is also direct evidence that households make state-contingent transfers to one another (e.g.
Udry, 1994). The literature has focused on two imperfections to explain the observed partial
insurance, namely private information (Wang, 1995; Ligon, 1998; Ales and Maziero, 2009)
and lack of commitment. This paper focuses on the case where limited commitment is the
friction that may cause a deviation from the first best. Households in small communities
can often observe shocks faced by their neighbors (bad harvest, or illness), but no authority
exists to enforce informal risk-sharing contracts. Considering imperfect information as an
alternative or additional friction is left for future research.

The model of risk sharing with limited commitment has been developed by Thomas and
Worrall (1988), Coate and Ravallion (1993), Kocherlakota (1996), and Ligon, Thomas, and
Worrall (2002) (LTW hereafter),2 and its implications are supported by mounting empirical
evidence (Fafchamps, 1999; Attanasio and Ríos-Rull, 2000; Foster and Rosenzweig, 2001;
LTW; Dubois, Jullien, and Magnac (2008), and others). LTW is the only paper, to my
knowledge, that estimates dynamic risk sharing contracts in a structural manner in general,
and the model of risk sharing with limited commitment in particular. I extend their work in
several dimensions. First, I show that the discount factor is identified by binding enforcement
constraints. I also take measurement error into account consistently when estimating the
model.

The existing evidence on comparing different models of risk sharing is of reduced form.
LTW do not perform any statistical tests on parameters or model selection. This paper
provides a test of perfect risk sharing, where the alternative is a well-specified model of partial

1See also the seminal papers by Cochrane (1991) and Mace (1991) for tests of perfect risk sharing in the
United States.

2See also Alvarez and Jermann (2000) for a decentralization of the constrained-effient allocation, trading
Arrow-Debreu securities with endogenous solvency constraints.
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insurance. In particular, I compare the model of perfect risk sharing, autarky, and risk sharing
with limited commitment in terms of how well they can predict the consumption allocation in
Thai villages, given income shares. I apply likelihood ratio-based tests introduced by Vuong
(1989).3 The approach of this paper could be used to compare models of partial risk sharing
with different or additional frictions.

I compare models not just in terms of constraints to risk sharing, but also whether house-
holds are heterogenous with respect to their risk preferences and income processes. Allowing
for preference heterogeneity across households is an important extension, because efficient
risk sharing has two main implications. First, incomes should be pooled. Second, less risk-
averse households should bear more uninsurable risk (Borch, 1962; Wilson, 1968). Assuming
that risk preferences are homogeneous, we exclude an additional motive for risk sharing. The
first paper that considers heterogeneity in risk preferences when testing perfect risk sharing is
Altug and Miller (1990). In that paper the authors test efficiency by allowing preferences to
depend on household demographic variables. Dubois (2000) specifies an isoelastic utility func-
tion, and allows the coefficient of relative risk aversion to depend on observables. Mazzocco
and Saini (2010) construct nonparametric tests of perfect risk sharing allowing for preference
heterogeneity. The present paper tests perfect risk sharing against a well-specified alterna-
tive, but considers only parametric models. In particular, households’ relative risk aversion
coefficients may depend on observable household characteristics. I also investigate whether
differences in income risk faced by households matter. Differences in income processes are
rarely taken into account in the literature on risk sharing.4 I allow groups of households to
face different income processes that are exogenous, in addition to heterogeneity coming from
the presence of idiosyncratic risk.

Afterwards, this paper provides examples of using the estimated model to predict how
social policies would affect the consumption allocation, taking into account that these policies
interact with existing informal insurance arrangements. Since the estimation is done in a
structural manner, the effects of counterfactual social policies on the consumption allocation
can be simulated.

Attanasio and Ríos-Rull (2000) argue that, under limited commitment, formal insurance
provided by the state may crowd out informal insurance transfers to the extent that welfare

3These tests are appropriate under misspecification in general, and in the case of simulated estimators
and in the presence of approximation errors in particular, that may be important here because of the value
function iteration when solving the model.

4An exception is Schulhofer-Wohl (2010), who uses an experimental measure of risk aversion, and finds
evidence that occupational choice is affected by risk preferences in the United States. He argues that this
should be taken into account when evaluating how well people are able to mitigate the adverse effects of risk
they face.
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decreases. They then provide reduced form evidence on the crowding-out of informal transfers
as a result of the Progresa program in Mexico, but do not use the model to predict the
transfers. Further, recent evidence on the same program suggests that conditional cash
transfers targeting the poor also increase consumption by ineligible households (Angelucci and
De Giorgi, 2009). The authors argue that risk sharing is the explanation for the consumption
pattern in the data. The model of risk sharing with limited commitment implies this partial
sharing of the transfer. In addition, using the structural estimation results of this paper, the
policy effects on both eligible and ineligible households can be predicted ex ante.5

I simulate the effects of counterfactual transfers targeting the poor, as well as the effects of
introducing aggregate insurance. I compare the policy effects when the transfer is assumed
to increase consumption directly, and when it raises income. In this way, I quantify the
mistake made when predicting policy effects if informal insurance arrangements are ignored.
I also study the effects of the introduction of formal aggregate insurance by simulation.
This research may provide guidance for the evaluation and design of redistributive policies
or micro-insurance programs as well, taking into account existing informal arrangements to
share risk.

This paper is also related to the literature on explaining consumption inequality given
income inequality. Krueger and Perri (2006) study whether limited risk sharing due to en-
forcement constraints can account for the fact that within-group cross-sectional consumption
inequality increased less than income inequality in the United States over the period 1980-
2003. Their model provides the desirable qualitative predictions. However, it implies too
much risk sharing when calibrated to US data.6 On the other hand, Blundell, Pistaferri, and
Preston (2008) document that income shocks have become less persistent, and thereby easier
to insure against. The present paper estimates a structural model of how consumption is
allocated, given income, and could predict the effects of changes in the variance of transitory
shocks and in the persistence of households’ income process on the consumption allocation,
thus on cross-sectional consumption inequality.

The rest of the paper is structured as follows. Section 2 details the theoretical models of
risk sharing, building on Kocherlakota (1996), LTW, Kehoe and Perri (2002), and others. In
section 3, the empirical models are set up, and (simulated) maximum likelihood estimators are
derived allowing for measurement error in consumption. Section 4 presents the household
survey data from Thailand. Section 5 contains the estimation results for the structural

5See Todd and Wolpin (2006, 2008) on ex-ante program evaluation.
6Note that, in their quantitative analysis, Krueger and Perri (2006) consider an economy with production,

while I consider an endowment economy, and focus on the sharing rule.
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models, both with and without preference and income risk heterogeneity, as well as the
statistical tests to compare the models. Policy simulations are presented in section 6. In
section 7, some extensions to the empirical models are discussed. In particular, I consider a
utility function that depends on time-varying household observables, unobservable individual
effects, and preference shocks. In addition, I allow for measurement error in income, as well
as in consumption. Concluding remarks are presented in section 8.

2 Models of risk sharing

Suppose that there are N infinitely-lived, risk-averse households in a community. They
consume a private and perishable consumption good c. Each household i maximizes its
expected lifetime utility,

E0

∞�

t=1

δtui (cit) ,

where E0 is the expected value at time 0 calculated with respect to the probability measure
describing the common beliefs, δ ∈ (0, 1) is the (common) discount factor, and cit is the
consumption of household i at time t. The instantaneous preferences of household i are
described by the isoelastic (CRRA) utility function

ui (cit) =
c1−σi
it − 1

1− σi
, (1)

where σi > 0 is the coefficient of relative risk aversion of household i.
Suppose that random income, denoted Yi for household i, follows a Markov process and

is independent across households. Let st denote the state of the world that describes the
income realizations of all households in the community at time t, and st denote the history
of states, that is, st = (st, ..., s1). The distribution of Yi, ∀i, is common knowledge ex ante,
and so are income realizations ex post at each time t. That is, there are no informational
problems. Note also that income is exogenous. In other words, the effect of risk on choices
among different income generating processes is ignored. In addition, individual savings are
assumed to be absent.7 I interpret the model as predicting consumption shares, given income
shares and aggregate consumption in the community. In other words, any difference between
household consumption and income is thought of as a transfer to or from the rest of the
community, and not as saving or dissaving explicitly.

7Ligon, Thomas, and Worrall (2000) allow for individual savings in the model of risk sharing with limited
commitment. In this case, randomization is needed to make the problem convex.
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This section considers three models in turn. First, it considers the model of perfect risk
sharing. Second, subsection 2.2 mentions the benchmark of autarky. Third, the model of
risk sharing with limited commitment is detailed in subsection 2.3.

2.1 Perfect risk sharing

To find the Pareto-optimal allocations, we solve the social planner’s problem. The (utilitar-
ian) social planner maximizes a weighted sum of households’ excepted lifetime utilities,

max
{cit(st)}

�

i

λi

∞�

t=1

�

st

δtπ
�
st

�
ui

�
cit

�
st

��
,

where λi is the (initial) Pareto-weight of household i in the social planner’s objective, and
π (st) is the probability of state st occurring, subject to the resource constraint

�

i

cit

�
st

�
≤

�

i

yit

�
st

�
,∀st,∀t,

where yit (st) is the income, or, endowment, of household i at time t and state st.
The well-known result that

u�k (ckt (st))

u�i (cit (st))
=

λi

λk
,∀st,∀t, (2)

that is, the ratio of marginal utilities for any two households i and k is constant over time
and across states of the world, follows from the first order conditions of the social planner’s
problem (Borch, 1962; Wilson, 1968). Equation (2) implies that all idiosyncratic risks are
insured away, and households share aggregate risk efficiently. In particular, less risk-averse
households bear more uninsurable risk. With the utility function (1), condition (2), for any
st and t, is

c−σk
kt

c−σi
it

=
λi

λk
. (3)

2.2 Autarky

When households are in autarky, the problem is trivial, since individual savings have been
assumed absent. The model predicts that

cit

�
st

�
= yit

�
st

�
,∀st,∀t,∀i. (4)

Let Uaut
i (st) denote the expected lifetime utility, or, the value function, of household i in

autarky at state st and time t. Under the assumption that income is Markovian, the value
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of autarky can be computed by iterating the Bellman equation

Uaut
i (st) = ui (yit (st)) + δ

�

st+1

π (st+1 | st) Uaut
i (st+1) . (5)

2.3 Risk sharing with limited commitment

To find the constrained-efficient consumption allocations, I follow Kehoe and Perri (2002)
(for the case of an endowment economy), and solve the following problem: The social planner
maximizes a weighted sum of households’ expected lifetime utilities,

max
{cit(st)}

�

i

λi

∞�

t=1

�

st

δtπ
�
st

�
ui

�
cit

�
st

��
,

where π (st) is the probability of history st = (s1, s2, ..., st) occurring, and cit (st) denotes the
consumption of household i when history st has occurred; subject to the resource constraints

�

i

cit

�
st

�
≤

�

i

yit (st) ,∀st,∀t, (6)

and the enforcement constraints,

∞�

r=t

�

sr

δr−tπ
�
sr | st

�
ui (cir (sr)) ≥ Uaut

i (st) ,∀st,∀t,∀i, (7)

where π (sr | st) is the probability of history sr occurring given that history st has occurred up
to time t. The right hand side has been defined in equation (5). The problem is not recursive,
because future decision variables enter into today’s enforcement constraints. Therefore, even
if income is i.i.d. or follows a Markov process, consumption may depend on the whole history
of income realizations.

The enforcement constraints (7) assume that, if a household deviates, other households
in the community do not enter into any risk sharing arrangement with it in the future. Note
that reversion to autarky is the most severe subgame perfect punishment in this environment.
In other words, it is an optimal penal code in the sense of Abreu (1988). We might also call
reversion to autarky a trigger strategy, or the breakdown of trust. Future research should
examine whether alternative specifications of the outside option would improve the model’s
fit to data. Alternatives include allowing for storage, community punishment for reneging,
and limiting the time length of exclusion from insurance arrangements.

Denoting the multiplier on the enforcement constraint of household i (7) by δtπ (st) µi (st),
and the multiplier on the resource constraint (6) by δtπ (st) ρ (st), when history st has oc-
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curred, the Lagrangian is

∞�

t=1

�

st

δtπ
�
st

�
�
�

i

λiui

�
cit

�
st

��

+ µi

�
st

�
� ∞�

r=t

�

sr

δr−tπ
�
sr | st

�
ui (cir (sr))− Uaut

i (st)

�

+ ρ
�
st

�
�

�

i

yit (st)− cit

�
st

�
��

.

Using the ideas of Marcet and Marimon (2009), the Lagrangian can also be written in the
form

∞�

t=1

�

st

δtπ
�
st

�
�
�

i

Mi

�
st−1

�
ui

�
cit

�
st

��

+µi

�
st

� �
ui

�
cit

�
st

��
− Uaut

i (st)
�

+ ρ
�
st

�
�

�

i

yit (st)− cit

�
st

�
��

,

where Mi (st) = Mi (st−1) + µi (st) with Mi (s0) = λi (see also Kehoe and Perri, 2002). In
words, Mi (st) is the initial weight of household i plus the sum of the Lagrange multipliers
on its enforcement constraints along the history st.

The first order condition with respect to cit (st) can be written as

Mi

�
st

�
u�i

�
cit

�
st

��
− ρ

�
st

�
= 0. (8)

There are also standard first order conditions relating to the resource and enforcement con-
straints, with complementarity slackness conditions. To illustrate this, let us consider two
households sharing risk, households i and k. Combining the first order conditions (8) for
these two households for history st at time t, we have

u�k (ckt (st))

u�i (cit (st))
=

Mi (st)

Mk (st)
=

λi + µi (s1) + µi (s2) + ... + µi (st)

λk + µk (s1) + µk (s2) + ... + µk (st)
≡ xi

�
st

�
, (9)

where xi (st) can be thought of as the relative Pareto-weight assigned to household i when
history st has occurred, normalizing the weight of household k to 1 at each time t.

The vector of relative weights x (st), with elements xi (st) defined in (9), can be used as
a state variable in order to rewrite the problem in a recursive form (Marcet and Marimon,
2009). The current income state st does not tell us everything we need to know about the
past. Only (st, xt−1) does this, where xt−1 is the vector of relative weights, equal to the ratio
of marginal utilities, inherited from the previous period. In other words, xt−1 is a sufficient
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statistic for everything that happened in the past. The solution consists of policy functions
for the consumption allocation and the new relative weight, with support over the extended
state space (st, xt−1). That is, cit (st, xt−1), ∀i, and xt (st, xt−1) are to be determined. At last,
the value functions can be written recursively as

Vi (st, xt−1) = ui (cit (st, xt−1)) + δ
�

st+1

π (st+1) Vi(st+1, xt (st, xt−1)). (10)

The solution is fully characterized by a set of state-dependent intervals on the relative
weight xi, that give the possible relative weights in each income state for household i (LTW).
Denote the interval for household i for state s by [xs

i , x
s
i ]. Denote by xit the new relative

weight of household i to be found at time t. Suppose that last period the ratio of marginal
utilities was xi,t−1, and today the income state is s. The relative weight of household i today
is determined by the following updating rule (LTW):

xit =






xs
i if xi,t−1 > xs

i

xi,t−1 if xi,t−1 ∈ [xs
i , x

s
i ]

xs
i if xi,t−1 < xs

i

(11)

Numerical dynamic programming allows us to solve for the optimal intervals, and thereby
the consumption allocation, given the income processes, utility functions, and discount rates
of the households. As the number of periods tends to infinity, the initial weights in the social
planner’s objective only matters if perfect risk sharing is self-enforcing (Kocherlakota, 1996).

Let FYi (FYk
) summarize the income process of household i’s (k’s). Remember that σi

(σk) parametrizes the utility function of household i (k). Then, we can solve numerically for
the optimal intervals that depend on σi, σk, δ, FYi , and FYk

, and then we can find xit given st

(or, yit and ykt) and xi,t−1. Details are in the Appendix. Once we know xit, ∀i, the first order
conditions (9) and the resource constraint (6) give the consumption allocation predicted by
the model.

3 Empirical models

Let us first specify the utility function (1). Assume that σi is a linear function of observables.
In particular,

σi = 1 + z�iβ,

where β is a parameter vector to be estimated, and zi represents a vector of time-invariant
observable covariates of household i. Note that zi does not contain an (additional) constant,
as in Dubois (2000). A normalization is needed, because the consumption risk borne by each
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household is determined by its risk tolerance relative to the average risk tolerance in the
community. Further, if the coefficient on the constant were a free parameter, then, taking all
households as risk neutral, any consumption allocation would be Pareto optimal.8 Remember
that the above theoretical models assume perfect information, thus the preferences of each
household are known to everybody in the community, but the econometrician only observes
zi, ∀i.

Assume that consumption is measured with a multiplicative measurement error that is
log-normally distributed. Let c∗it denote consumption observed by the econometrician, and
let exp (εit) be the multiplicative measurement error in household i’s consumption at time t.
Then, we may write

c∗it = exp (εit) cit,

where εit is independently and identically distributed (i.i.d.) across households and time,
and εit ∼ N (0, γ2), where γ2 is to be estimated.9 Note that true consumption cit is observed
by all households in the community. Measurement error in income is ignored for now, and is
introduced in an extension in section 7.

I model the allocation of observed consumption c∗t ≡ (c∗1t, ..., c
∗
it, ..., c

∗
Nt), for t = 2, ..., T ,

determined by the history of income realizations, time-constant household characteristics,
observed consumption at time 1, c∗1, and parameters. In mathematical terms, we would like
to know how the following conditional density could be specified based on the above models
of risk sharing:

f
�
c∗T , ..., c∗2 | c∗1, yT , ..., y1, Z; β, δ, γ2, FY , λ

�
, (12)

where yt, for t = 1, ..., T , is the vector of income realizations for households at time t, Z =

[z1, ..., zi, ..., zN ]� is the matrix of household observables for all households, θ = (β, δ, γ2, FY )

are the structural parameters to be estimated10 where FY summarizes households’ income
processes, and the vector λ is a nuisance parameter. Each of the above theoretical models
allows us to factorize the density (12). In particular, we may write

�

t=2,...,T

f
�
c∗t | c∗t−1, yt, Z; β, δ, γ2, FY , xt−1

�
, (13)

8This is because marginal utility is constant for risk-neutral households. Thus any consumption allocation
would keep the ratio of marginal utilities constant.

9I have allowed for measurement error in consumption to account for the error term in our estimating
equations. In the consumption insurance literature, preference shocks are often used to introduce randomness,
or, as in Cochrane (1991), consumption growth is measured with error. These alternative assumptions are
not suitable in the case of risk sharing with limited commitment, as will be explained below.

10Below θ often denotes a subset of these parameters, and is used as a short form for ‘structural parameters
to be estimated.’
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where xt−1 is the state variable, which has elements xi,t−1 and is not observed. I deal with
this issue below.

For the limited commitment case, LTW have shown that the updating rule (11) holds for
both the 2- and the N -household case. In the empirical part of their paper, they approximate
the N -household economy by looking at each household i sharing risk with the ‘rest of
the community.’ I follow their approach in this paper. This results in important gains in
computation time, since the N -household case would require solving the model with N +

(N − 1) state variables, since the state variables would be each household’s income and the
relative Pareto-weights. I often call the rest of the community household k. Household k

can also be thought of as the chief of the community, coordinating transfers. I evaluate the
models in terms of how well they explain the allocation of consumption in each community
at each time t, but take changes in aggregate consumption as given. Equivalently, I study
how well the models explain each household’s consumption relative to mean consumption in
the community.

I normalize the coefficient of relative risk aversion of household k to 1, that is, uk (ckt) =

log ckt, and think of explanatory variables in the utility function as deviations from their
community mean hereafter, abusing notation.11 This means assuming that the village chief’s
risk aversion coefficient is the equal to average risk aversion. Normalize also the Pareto-weight
of household k to 1, that is, λk = 1. This is without loss of generality, since only relative
Pareto-weights matter. Further, I assume that ckt is well measured, since the variance of the
measurement error in mean consumption in the community is only a fraction of the variance
of the measurement error in each household’s consumption. This assumption is only for
notational simplicity. When preferences are heterogeneous, I use the logarithm of household
size at the first month to capture heterogeneity in risk preferences, that is, I include it as zi.
I do not aim to find the best way to capture differences in the curvature of the current utility
function across households. I only want to see whether some heterogeneity would improve
the model’s fit to data, and if there is a statistical difference between a heterogenous and a
homogenous model, whether predicted policy effects differ in an economic sense.

The next three subsections detail in turn how the model of perfect risk sharing (subsection
3.1), autarky (3.2), and risk sharing with limited commitment (3.3) are estimated. The
estimations are done using (simulated) pseudo maximum likelihood estimators, and Vuong’s
(1989) tests are applied to statistically compare the models. Subsection 3.4 expands on model
selection.

11Note also that, when preferences are homogeneous, meaning β = 0 here, the coefficient of relative risk
aversion is normalized to 1, that is, ui (cit) = log cit, ∀i.
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3.1 Perfect risk sharing

In the case of perfect risk sharing, the current consumption allocation should only depend
on current and not past exogenous variables. It depends neither on the discount factor, nor
on income processes. However, it depends on the time-constant unobservables, xt−1 = λ, ∀t.
That is, the state variable is constant and equal to the initial relative Pareto-weights in the
social planner’s objective. Thus (13) can be written as

�

t=2,...,T

f
�
c∗t | yt, Z; β, γ2, λ

�
. (14)

Further, c∗t only depends on today’s income realizations through aggregate income.
Let us consider household i and the ‘average’ household, k. Taking the logarithm of the

first order condition with respect to (true) consumption for these two households, equation
(3), noting that σk = 1 and λk = 1, we obtain

σi log cit − log ckt = log λi.

Replacing for σi and rearranging give

log
�

cit

ckt

�
= −z�iβ log cit + log λi. (15)

In terms of measured consumption c∗it, (15) reads

log
�

c∗it
ckt

�
= −z�iβ log c∗it + log λi + (1 + z�iβ) εit.

Now, let us take first differences to eliminate log λi. Doing so and rearranging yields

log
�

c∗it
ckt

�
= log

�
c∗i,t−1

ck,t−1

�
− z�iβ log

�
c∗it

c∗i,t−1

�
+ (1 + z�iβ) (εit − εi,t−1) . (16)

Estimating (16), I implicitly assume that the ratio of marginal utilities observed at time t−1

contains all the information available on λi.
Let ψ2 (θ) ≡ 2 (1 + z�iβ)2 γ2, and

dprs
it (θ) ≡

�
log

�
c∗it
ckt

�
− log

�
c∗i,t−1

ck,t−1

�
+ z�iβ log

�
c∗it

c∗i,t−1

��
/ψ (θ) .

Then, we may write the likelihood of observation it as

Lprs
it (θ) = φ (dprs

it (θ)) ,
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where φ is the density of the standard normal distribution. Finally, the pseudo maximum
likelihood estimator (MLE) maximizes

�prs (θ) =
N�

i=1

T�

t=2

log φ (dprs
it (θ)) , (17)

with respect to θ, that is, β and the variance γ2. The model is also estimated without
preference heterogeneity for comparison. This means setting β = 0. Thus the only parameter
that remains to be estimated is γ2.

I do not assume that the model is correctly specified, therefore I compute the variance-
covariance matrix of the estimated parameters without assuming that the information ma-
trix equality holds. I also take into account serial correlation. In particular, the variance-
covariance matrix is estimated by Â−1B̂Â−1, where Â is the estimated Hessian, that is,

Â =
�N

i=1

�T
t=2−∇2

θ�it(θ̂), and B̂ =
�N

i=1

�T
t=2 ŝitŝ�it +

�N
i=1

�T
t=2

�
r �=t ŝirŝ�it,

where ŝit = ∇θ�it(θ̂)� is the score evaluated at the estimated parameters, and where the
second term in the expression for B̂ accounts for serial correlation (Wooldridge, 2002). Both
the first and second derivatives of the log-likelihood function can be computed analytically
here.

3.2 Autarky

In the autarky case, there is no state variable. Further, preferences do not matter. Therefore,
we may simply write the likelihood of the consumption allocation for t = 2, ..., T as

�

t=2,...,T

f
�
c∗t | yt; γ

2
�
. (18)

Taking the logarithm of (4) and introducing measured consumption give

log c∗it = log yit + εit.

The consumption of household i relative to mean consumption is

log
�

c∗it
ckt

�
= log

�
yit

ykt

�
+ εit, (19)

where I have just added and subtracted log ckt = log ykt to have the same dependent variable
in the equation to be estimated as above. In terms of the allocation of consumption within
a community, the autarky model says that the consumption share of household i should be
the same as its income share.
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Let
daut

it (θ) ≡ (log c∗it − log yit) /γ.

The likelihood of observation it is

Laut
it (θ) = φ

�
daut

it (θ)
�
,

and the log-likehood function to be maximized is

�aut (θ) =
N�

i=1

T�

t=2

log φ
�
daut

it (θ)
�
. (20)

The only parameter to be estimated is γ2. I allow for misspecification and serial correlation
when computing the variance of the estimated parameter.

3.3 Risk sharing with limited commitment

Remember that in the limited commitment case, the (true) ratio of marginal utilities from
the last period xt−1 is the state variable in the recursive version of the model. It is a sufficient
statistic for everything that happened in the past, including the initial condition. In other
words, instead of conditioning on the whole history of income state realizations st, and the
initial Pareto-weights in the social planner’s objective λ, it is sufficient to condition on the
current income state st and xt−1. However, unlike in the perfect risk sharing case, the
consumption allocation may also depend on the discount factor δ and the income processes
FY . Remember also that xt−1 is not observed in (13). Therefore, we have to condition on
x∗t−1 with elements x∗i,t−1 =

�
c∗i,t−1

�1+z�
iβ /ck,t−1, the observable ratio of marginal utilities at

time t − 1, instead of xt−1 with elements xi,t−1 = (ci,t−1)
1+z�

iβ /ck,t−1. With measurement
error, all past values of consumption could be informative of xi,t−1. For tractability, I only
deal with the density (13).

Let us consider once again household i sharing risk with household k. According to the
theoretical model of section 2.3, the first order condition can be written as

log
�

cit

ckt

�
= −z�iβ log cit + log xit, (21)

replacing xit for λi in (15). Given xt−1, preferences, current income realizations, and income
processes, we can solve numerically for the relative Pareto-weight of household i at time t.
In mathematical terms, we can compute xit (st, xt−1), ∀i (see equations (10) and (11)).

Let g() denote the function relating xit to observables, parameters, and xi,t−1. That is,
xit = g (yt, xi,t−1, zi; θ), with θ = (β, δ, FY ). Note that, in general, g() cannot be expressed
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analytically, but its value can be computed given any set of argument values. Replacing for
xit in (21) gives

log
�

cit

ckt

�
= −z�iβ log cit + log g (yt, xi,t−1, zi; θ) . (22)

Remember that, instead of cit, the econometrician observes c∗it = exp (εit) cit. Then, in terms
of observable consumption (22) is

log
�

c∗it
ckt

�
= −z�iβ log c∗it + log g (yt, xi,t−1, zi; θ) + (1 + z�iβ) εit. (23)

The first econometric issue is the identification of the discount factor δ. The second issue
is that measurement error influences the updating of the state variable. That is, among the
arguments of g() in equation (23), instead of xi,t−1 only

x∗i,t−1 = (exp (εi,t−1))
1+z�

iβ xi,t−1 (24)

is observed. I deal with these issues in the next two subsections.

3.3.1 Identifying the discount factor

In the perfect risk sharing case, the predicted consumption allocation is independent of δ,
the discount factor. The question is whether we can identify this parameter in the case of
risk sharing with limited commitment. Proposition 1 states that the answer is yes, if some
but not perfect risk sharing occurs.

Before giving a formal proof, I illustrate the role of δ in determining the consumption allo-
cation with an example. Let us consider two ex-ante identical households, whose preferences
are described by the utility function u() = log(). Both households face the random prospect
Ỹ = (20, 1/2; 10, 1/2), and I assume that their incomes are perfectly negatively correlated.
Thus, there are only two income states, {(y1t = 20, y2t = 10), (y1t = 10, y2t = 20)}, ∀t.
Finally, assume that λ = 1. If agents stay in autarky, nothing is transferred in both states.
If perfect risk sharing occurs, a transfer of 5 is made in both states, and both households
consume 15. The model of risk sharing with limited commitment can predict any transfer
between 0 and 5, and the exact amount depends on the households’ patience, that is, on δ

(see Figure 1). For example, if δ = 0.7, the transfer is 1.0074; if δ = 0.75, it is 2.5382; if
δ = 0.8, 4.0772 is transferred.

Denote by δ the discount factor such that, ∀δ ≥ δ, perfect risk sharing is self-enforcing,
and by δ the discount factor such that, ∀δ ≤ δ, all households stay in autarky.12

12LTW have shown that δ and δ exist.
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Figure 1: The transfer from the household earning 20 today,
to its risk sharing partner receiving 10, as a function of δ
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Proposition 1. The parameter δ is identified if δ ∈
�
δ, δ

�
, that is, if some informal insurance

is achieved and at least one enforcement constraint binds.

Proof. Let us prove this for the case with homogeneous risk preferences. The argument
for the heterogeneous case is similar. Compared to the perfect risk sharing case, additional
information can only come from binding enforcement constraints. Suppose that at time t

households i’s enforcement constraint is binding. That is, observed consumption is such that
a positive transfer is made, but the ratio of marginal utilities is not the same as at time
t − 1.13 Let us rewrite (26) with equality and with z�iβ = 1 − σ = 0. Simple algebra then
gives

log yit (st)− log cit (st, xt−1) = δ
�

st+1

π (st+1)
�
Vi(st+1, xt (st, xt−1))− V aut

i (st+1)
�
,

where the left hand side is the utility cost of the transfer household i makes today, and the
right hand side is the welfare gain of sharing risk according to the informal insurance contract,
rather than staying in autarky in the future. If the right hand side is strictly monotonic and
continuous in δ, and only this constraint ever binds, we could perfectly match household i’s
consumption at time t from the data, with an appropriately chosen unique δ.

13Considering the example above, a transfer strictly greater than 0, but strictly less than 5 is observed.
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The expected future gain of insurance is strictly increasing in δ, for δ ∈
�
δ, δ

�
, since a

higher δ relaxes all enforcement constraints. Note that as δ approaches 1, perfect risk sharing
(the first best) is self-enforcing by the well-known folk theorem. On the other extreme, when
it is close to 0, no voluntary transfers are made. In between, the higher δ is, the closer
transfers get to their first-best level. That is, when δ is higher, more informal insurance
is achieved, and consumption is smoother across income states. In other words, a higher δ

means a better enforcement technology.
It is easy to see that V aut

i (st+1) is continuous in δ. As for Vi(st+1, xt), LTW have shown
that the limits of the optimal state-dependent intervals, which fully characterize the solution
of the model, are continuous in δ. Since Vi(st+1, xt) is a continuous function of these limits,
it is itself continuous in δ. It follows that one binding enforcement constraint identifies δ.

3.3.2 Measurement error

Let εj
i,t−1 denote a realization of measurement error in household i’s consumption at time t−1,

drawn from the distribution N (0, γ2). Knowing x∗i,t−1 and εj
i,t−1, we can easily compute xi,t−1

(see equation (24)). Then, g (yt, xi,t−1, zi; θ) = g
�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
. To deal with the fact

that measurement error enters the updating of the state variable, I first write the likelihood
of each it observation conditional on εj

i,t−1. Then, averaging the conditional likelihood over
J draws, I integrate εi,t−1 out. That is, in the case of risk sharing with limited commitment
with measurement error, I use a simulated pseudo maximum likelihood estimator (SMLE).

Conditional on εj
i,t−1, (23) becomes

log
�

c∗it
ckt

�
= log

�
ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�

ĉkt

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
�
− z�iβ log

�
c∗it

ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
�

+ (1 + z�iβ) εit. (25)

Note that, when perfect risk sharing is self-enforcing, (25) is equivalent to (16). This is
because

log

�
ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�

ĉkt

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
�

+ z�iβ log ĉit

�
yt, x

∗
i,t−1, ε

j
i,t−1, zi; θ

�

= log
�

c∗i,t−1

ck,t−1

�
+ z�iβ log c∗i,t−1 − (1 + z�iβ) εit−1

in that case. Similarly, we get back the estimating equation of autarky, equation (19), if
δ ≤ δ.

Using (5) and (10), and replacing for the utility function using (1) with σi = 1 + z�iβ, the
enforcement constraint of household i at time t, that the predicted consumption allocation
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has to satisfy, can be written in a recursive form as

cit (st, xt−1)
−z�

iβ − 1

−z�iβ
+ δ

�

st+1

π (st+1) Vi (st+1, xt (st, xt−1)) ≥

≥ yi (st)
−z�

iβ − 1

−z�iβ
+ δ

�

st+1

π (st+1) V aut
i (st+1) . (26)

This inequality is to be used in the numerical solution of the model, with

cit (st, xt−1) = ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
and xit (st, xt−1) = g

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
.

Let us now consider alternative assumptions to generate residuals in the estimating equa-
tion (25). Preference shocks are not suitable, because today’s shock would drop out of the
equation. Assuming that consumption growth is measured with error, as in Cochrane (1991)
for example, we could not take measurement error properly into account in the limited com-
mitment case, since we would have to draw εj

i,t−1 from a random walk.

3.3.3 The simulated pseudo maximum likelihood function

Let ψ2 (θ) ≡ (1 + z�iβ)2 γ2, and

dlc
it

�
yt, x

∗
i,t−1, ε

j
i,t−1, zi; θ

�
≡

�
log

�
c∗it
ckt

�
− log

�
ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�

ĉkt

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
�

(27)

+z�iβ log

�
c∗it

ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
�
− (1 + z�iβ) εj

i,t−1

�
/ψ (θ) .

Then, the likelihood of observation it given εj
i,t−1 is

Llc
it (θ) = φ

�
dlc

it

�
yt, x

∗
i,t−1, ε

j
i,t−1, zi; θ

��
.

Making J draws for εj
i,t−1, the simulated pseudo likelihood of observation it is

Llc
it (θ) =

1

J

J�

j=1

φ
�
dlc

it

�
yt, x

∗
i,t−1, ε

j
i,t−1, zi; θ

��
.

Finally, the simulated pseudo log-likelihood function to be maximized is

�lc (θ) =
N�

i=1

T�

t=2

log

�
1

J

J�

j=1

φ
�
dlc

it

�
yt, x

∗
i,t−1, ε

j
i,t−1, zi; θ

��
�

. (28)

Allowing for misspecification, the SMLE consistently estimates the pseudo-true values of
the parameters and is asymptotically normal, if both the number of it observations, that
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I denote by M , and the number of simulations J tend to infinity, and
√

M/J → 0 (see
Gouriéroux and Monfort, 1997, for example). When computing the variance-covariance ma-
trix, the information matrix equality is not assumed to hold, and possible serial correlation
is taken into account, as in the perfect risk sharing case. The score and the Hessian are
computed numerically.

3.3.4 Estimation

The estimation is done in three steps. A preliminary step (i) involves estimating an autore-
gressive process for households’ income and fitting a Markov chain to that process. Then, (ii)
the inner optimization computes the consumption allocation predicted by the model, given
the observable covariates and parameters. Finally, (iii) the log-likelihood (28) is maximized
over the remaining structural parameters, θ = (β, δ, γ2). Now I turn to the details of each of
these steps.

(i) Estimation of the income processes. First of all, the fact that income may be negative
has to be dealt with. I follow Rosenzweig and Wolpin (1993) and assume that households have
a form of disaster insurance, meaning that they can at least consume at the subsistence level.
The subsistence level is chosen to be the mean of the lowest 5% of measured consumption in
the village. Those who earn more than this level are thought of as having a claim on current
village consumption proportional to their additional income.

I assume that the logarithm of each household’s income follows an AR(1) process, common
to all households in a village or a group of households. I estimate

log(yit) = (1− ρ)µ + ρ log(yi,t−1) + ξit.

The parameters are pinned down by the following moments:

µ = E(log(yit))

ρ = Corr(log(yit), log(yi,t−1))

σ2
ξ = (1− ρ2)V ar(log(yit))

I choose the support points for the Markov chain following Kennan (2006). In particular,
the points are quantiles of the income distribution. I then apply Tauchen (1986)’s method
to the logarithm of these points to compute the transition matrix. To find a Markov chain
approximation for the village mean income, I simulate the household processes assuming
that they are independent, compute mean income, and then perform the same steps as for
household incomes.
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(ii) Inner optimization. We have to solve the model of risk sharing with limited commit-
ment to find the predicted consumption allocation. The Bellman equation (10) is solved by
iteration. A grid is defined over the continuous state variable xi. At iteration h, we solve for
the new consumption values in states where an enforcement constraint is binding using (26)
with equality, while the ratio of marginal utilities stays constant in other states. The values
from iteration h − 1 are kept for Vi (st+1, xt) in (26). At the first iteration, the values of
perfect risk sharing are used. The algorithm to solve for the constrained-efficient risk sharing
contract, given observables and structural parameters, does not impose much additional dif-
ficulty relative to the case without preference heterogeneity and heterogeneity in Yi, except
for computation time. Computation time is proportional to the number of households. The
appendix gives more details on the algorithm. This step leads to the predicted consumption
values, ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
and ĉkt

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
, ∀i, to be replaced in equation

(25).
(iii) Outer optimization. The likelihood maximization is done, after a grid search, using

a standard optimization algorithm available in R.14 The preliminary grid search is necessary,
since we can only identify δ on the interval

�
δ, δ

�
, see Proposition 1. It also provides good

initial guesses for the parameter values.
The maximum-likelihood estimates of the structural parameters (β, δ, and γ2) are ob-

tained by iterating between the dynamic program that solves for the predicted consumption
allocation and the likelihood maximization routine. For comparison, the model is also esti-
mated without preference heterogeneity. In that case only δ and γ2 are to be estimated.

3.3.5 Simulation and approximation

The estimation of the model of risk sharing with limited commitment involves both simulation
and approximation. I take the number of simulations J = 50, because I have maximum 240
it observations per village, thus J >

√
M . Computation time is only moderately increased

when adding additional draws, because the optimal intervals, which fully characterize the
solution of the model, do not have to be recomputed.15

The continuous state variable xi has to be discretized, and I use a 30-point grid.16 Com-
putation time is approximatively proportional to the number of income states, which is
8× 5 = 40, and the number of grid points on xi. Increasing the number of grid points would

14See www.r-project.org.
15Below I check that the results are robust to changing J . In particular, I repeat the estimation of the

model of risk sharing with limited commitment with heterogeneous households setting J = 100.
16A robustness check with 100 grid points for a couple of villages verifies that the parameter estimates are

not sensitive to changing the number of grid points.
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be beneficial in better approximating the true solution of the model. We are limited by the
cost in terms of computation time. As Ackerberg, Geweke, and Hahn (2009) point out, in
terms of the asymptotic properties of the maximum likelihood estimator, approximation error
in computed dynamic models has similar effects as a limited number of simulations, and the
results from the literature on simulated maximum likelihood estimation apply (Hajivassiliou
and Ruud, 1994, Gouriéroux and Monfort, 1997).

3.4 Model selection

To statistically compare the above models, I use model selection tests introduced by Vuong
(1989). Vuong proposes likelihood ratio-based statistics to compare nested and non-nested
models. These statistics allow us to test the null hypothesis that two competing models are
equally close to the true data generating process, against the alternative that one model is
closer. Neither model has to be correctly specified.

The tests are based on the difference between the log likelihood values of the two models
being compared. Suppose that we want to compare model 1 and model 2 using M observa-
tions. Denote the log likelihood of observation m for model 1 (2) at the estimated parameter
vector by �1

m (�2
m). The likelihood ratio is defined as

LR =
M�

m=1

�
�1
m − �2

m

�
.

Denote the number of parameters to be estimated by q1 (q2) for model 1 (2).
If the two models are non-nested, then, under the null hypothesis that the two models

are equally close to the true data generating process,

LR√
M ω̂

⇒ N (0, 1) ,

where ω̂ is the estimated standard deviation of the likelihood ratio, that is,

ω̂2 =
1

M

M�

m=1

�
�1
m − �2

m

�2 −
�

1

M

M�

m=1

�
�1
m − �2

m

�
�2

,

and where ⇒ means convergence in distribution. If the two models are nested, and we want
to allow for the possibility that the unconstrained model is not correctly specified, then,
under the null,

2LR ⇒ Mq1+q2 (·; κ̂) ,
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where Mq1+q2 (·; κ̂) is the cumulative distribution function of a weighted sum of (q1 + q2)
χ2 distributions with degrees of freedom equal to 1 (Vuong, 1989).17 The p-values of the
weighted χ2 distribution are simulated. I do 100,000 replications.

I compare seven models: risk sharing with limited commitment with heterogeneous pref-
erences and heterogeneous income processes (LCui,ri),18 with heterogeneous preferences but
homogeneous income processes (LCui,r), with homogeneous preferences but heterogeneity in
income processes (LCu,ri), the homogenous case (LCu,r), and the benchmark models of perfect
risk sharing with heterogeneous preferences (PRSui), perfect risk sharing with homogeneous
preferences (PRSu), and autarky (AUT). LCui,ri nests LCu,ri and the benchmark models.
LCui,r nests LCu,r as well as the benchmark models. LCu,ri and LCu,r nest PRSu and AUT.
PRSui nests PRSu. The remaining combinations are non-nested.

4 Data

I use the publicly available part of the Townsend Thai Monthly Surveys. Data from the first
24 monthly interviews are currently available (120 months of data exist). The household
roster has not been released yet, thus some basic information about households is missing,
such as age and education of household members.

The Monthly Baseline Survey was conducted in August 1998 on 720 households in 16
villages in 4 tambon,19 one in each of 4 provinces20 in Thailand. The provinces are Buriram
and Srisaket in the poor Northeast region, and Lopburi and Chachoengsao in the richer
Central region. 45 households per village were randomly selected to be included in the
monthly survey, and reinterviewed monthly from September 1998. Information about some
frequently purchased items, such as food, is collected weekly. This data set is thus likely to
provide better measures of income and consumption. Data collection and release are ongoing,
therefore the survey will provide a long panel on households. This advantage is, however,

17The weights κ̂ can be computed by finding the real, nonzero eigenvalues of the matrix
�
−B̂1(Â1)−1 − B̂1,2(Â2)−1

B̂2,1(Â1)−1 B̂2(Â2)−1

�
,

where Â1 =
�N

i=1

�T
t=2−∇2

θ�
1
it, B̂1 =

�N
i=1

�T
t=2 ŝ1

itŝ
1
it
�, similarly for model 2, and B̂1,2 = B̂2,1� =�N

i=1

�T
t=2 ŝ1

itŝ
2
it
�.

18The upper index ui refers to heterogeneous preferences, and the upper index ri refers to heterogenous
income processes, emphasizing the heterogeneity in income risk faced. Upper index u will refer to homogenous
preferences and r to homogenous income processes.

19Tambon is a local government unit in Thailand. As of the 2009 there are 7255 tambon, not including
Bangkok.

20There are 75 chagwat (provinces) in Thailand.
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Table 1: Descriptive statistics
Variable Mean Sd Min Max Observations
Non-durable consumptiona 8580.3 6176.0 117.5 67366.0 3262
Non-dur. cons. per capitaa 2228.9 1474.3 29.4 11321.5 3262
Incomea 14547.2 28497.1 −148638.8 362722.9 3262
Income per capitaa 3675.5 6746.6 −37159.7 55313.9 3262
Household size 4.153 1.762 1 13 3262
Log household size 1.327 0.463 0 2.565 3262
aMeasured in current Thai baht per quarter. Prices hardly changed in the period. In particular, according
to the Thai Ministry of Trade, the Rural Consumer Price Index varied between 87.8 and 87.9 for the years
1998-2000 with 2002 serving as the base. In 2002, approximately 42 Thai baht were worth 1 US dollar.

cannot be exploited in this paper.
I construct a measure of non-durable consumption and income using both the weekly

and monthly interviews. Some big expenses and revenues are assigned to a month in the
raw data. For the rest, I first assign consumption and income to days taking into account
the exact dates of interviews, and then aggregate to quarters. I drop the top 1% per capita
consumption and income observations. I end up with a 7-period panel starting with the
4th quarter of 1998 and ending with the 2nd quarter of 2000, and a balanced panel of 491
households. While I do not have sufficient data available to consider annual consumption
and income, aggregation to quarters is likely to reduce measurement error if recall errors are
uncorrelated across months. To parametrize preference heterogeneity, I use the logarithm of
household size in October 1998 (the first month used).

On average, daily nondurable consumption per capita is 83.26 Thai baht, which is about
2.25 2002 US dollars and about 2.75 2010 US dollars. The difference between non-durable
consumption reflects durable consumption and investment.

Before turning to the structural results, I present reduced form evidence on how nun-
durable consumption reacts to income. I regress (i) the logarithm of consumption on loga-
rithm of income and (ii) the logarithm of per capita consumption on the logarithm of per
capita income, controlling for village×quarter dummies. I then add household size or the
logarithm of household size as a control. Finally, I add household fixed effects. Table 2
presents results for total household consumption and Table 3 for per capita consumption.
Unfortunately, adult-equivalent consumption cannot be constructed with the data currently
available, because the age of household members in not available.

Tables 2 shows that a 1 percent increase in total household income leads to an increase
of 0.17 to 0.21 percent (p-value: 0.000) in total household nondurable consumption. Table 3
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Table 2: Dependent variable: logarithm of nondurable consumption
Logarithm of income 0.212∗∗∗ 0.176∗∗∗ 0.170∗∗∗ 0.070∗∗∗ 0.069∗∗∗ 0.067∗∗∗

(0.012) (0.011) (0.011) (0.011) (0.011) (0.011)
Household size 0.112∗∗∗ 0.105∗∗∗

(0.005) (0.013)
Log household size 0.443∗∗∗ 0.418∗∗∗

(0.019) (0.050)
Village×time dummies yes yes yes yes yes yes
Household fixed effects no no no yes yes yes
Observations 2854 2854 2854 2854 2854 2854

Robust standard errors are in parentheses. ∗∗∗ indicates significance at the 1% level.

Table 3: Dependent variable: logarithm of per capita nondurable consumption
Logarithm of per 0.182∗∗∗ 0.171∗∗∗ 0.172∗∗∗ 0.078∗∗∗ 0.068∗∗∗ 0.068∗∗∗

capita income (0.011) (0.011) (0.011) (0.010) (0.010) (0.010)
Household size −0.091∗∗∗ −0.126∗∗∗

(0.005) (0.013)
Log household size −0.357∗∗∗ −0.500∗∗∗

(0.017) (0.054)
Village×time dummies yes yes yes yes yes yes
Household fixed effects no no no yes yes yes
Observations 2852 2852 2852 2852 2852 2852

Robust standard errors are in parentheses. ∗∗∗ indicates significance at the 1% level.

shows that for per capita consumption, the coefficient is between 0.17 and 0.18. Controlling
for household fixed effects in addition, the coefficient is about 0.07 with p = 0.000 (both for
total and per capita nondurable consumption), thus this reduced-form test strongly rejects
perfect risk sharing.

5 Structural Estimation and model selection results

I consider seven models: risk sharing with limited commitment with and without preference
heterogeneity and with heterogeneous and homogeneous income processes (LCui,ri , LCui,r,
LCu,ri , and LCu,r), perfect risk sharing with and without heterogeneous preferences (PRSui

and PRSu respectively), and autarky (AUT). I measure consumption and income in per capita
terms. Aggregate consumption in the village is assumed to be exogenous, and I look at each
household’s consumption relative to the village mean. Vuong’s (1989) tests are performed
to statistically compare the seven models pairwise. The computations have been done using
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the software R (see www.r-project.org).
I drop the village with only 17 households in the final sample. For the remaining 15

villages, data for between 24 and 40 households are available.
Before turning to the main results, some preliminary steps are necessary (see subsection

3.3.4). I estimate an AR(1) process for the logarithm of households’ endowments. Remember
that endowments differ from incomes because of the assumed availability of disaster insurance.
I denote the endowments by y too, abusing notation. The persistence of the logarithm of the
endowment (ρ) is between 0.14 and 0.76. The variance of the shocks (σ2

ξ ) is between 0.22
and 0.88 across the 15 villages.

The support points of the Markov chain on the level of income are chosen as suggested
by Kennan (2006). Households’ income may take 7 different values. Then Tauchen (1986)’s
method is used to find the transition matrix. When income processes are heterogenous, I
estimate processes for four groups separately. The four groups are created based on whether
the household has mean income below or above the village median, and whether the standard
deviation of its income is below or above the median standard deviation.

The average correlation coefficient of any two households’ incomes in the 15 villages is on
average 0.016, therefore the assumption that households incomes are independent is consistent
with the data. I estimate an AR(1) process for the village mean income on simulated data
from the household income processes. I then proceed to find the approximating Markov chain
as for households.

Note: I present some results for one village only, the 7
th

village in the data set. In my

final sample, there are 34 households in this village. Computations for the whole sample are

in progress. For Village 7, the estimated AR(1) process for household’ endowment is

log(yit) = (1− 0.289)× 1.660 + 0.289 log(yi,t−1)

and σ2
ξ = 0.319. For the village mean income, the estimated AR(1) process is

log(ykt) = (1− 0.181)× 1.846 + 0.181 log(yk,t−1)

and σ2
ξ = 0.008.

5.1 Main results

Table 4 shows the structural estimation results for nondurable consumption for all the models
for Village 7. The second panel shows the model selection test statistics, conducting Vuong’s
(1989) tests for nested and non-nested models as appropriate.

(...)
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Table 4: Risk sharing in Village 7, nondurable consumption
LCui,ri LCui,r LCu,ri LCu,r PRSui PRSu AUT

β (preference 0.860∗∗∗

heterogeneity) (0.168)
δ (annual discount 0.925 0.901∗∗∗

factor) () (0.001)
γ2 (var of meas- 0.082 0.062∗∗∗ 0.049∗∗∗ 0.049∗∗∗ 0.319∗∗∗

urement error) () (0.013) (0.006) (0.007) (0.028)
Log likelihood −29.92 −31.47 −46.80 −51.59 −172.9
Observations 204 204 204 204 204

Vuong’s tests
Notes: LCui,ri (LCui,r): equation (25) is estimated by maximizing the log-likelihood function (28) assuming
heterogeneous (homogeneous) income risk when estimating FYi , ∀i. LCu,ri (LCu,r): equation (25) with β = 0
is estimated assuming that income risk is heterogeneous (homogeneous). PRSui : equation (16) is estimated
by maximizing the log-likelihood function (17). PRSu: equation (16) with β = 0 is estimated. AUT: equation
(19) is estimated by maximizing the log-likelihood function (20). In the first panel, standard errors are in
parentheses. They have been calculated taken into account misspecification and serial correlation. In the
second panel, p-values of Vuong’s tests are in parentheses, indicating whether the model of the line can be
rejected to be as close to the true generating process as the model of the column. In the case of nested
models, the p-values are simulated. ∗∗∗ indicates significance at the 1% level.

5.2 Robustness checks

I first look at whether the results are robust to changing the number of simulations J in the
limited commitment case. I increase J to 100. Second, I check for the effects of approximation
error when computing the solution of the risk sharing with limited commitment model. In
particular, I increase the number of grid points to 50 when discretizing the state variable
xi. Third, I increase the number of income states for each household to 8. I only do the
estimation with each of these changes for the LCu,r model. The results are presented in Table
??.

6 Policy simulations

In this section, I examine the effects of two types of counterfactual policies. First, I consider
counterfactual transfers targeting the poor. The poor are defined as having below median
mean consumption, that is 109 rupees per week per adult equivalent. I look at the effects of
(i) a one-time transfer and (ii) a permanent transfer to the poor on consumption by eligible
and ineligible households.

Second, I consider the introduction of formal aggregate insurance. As a result, village
mean consumption can be perfectly smoothed. Attanasio and Ríos-Rull (2000) show that in
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the context of the model, welfare may decrease as a result of aggregate insurance. I study
how much self-enforcing insurance would be crowded out by this type of insurance according
to the estimated model.

6.1 Transfers to the poor

I simulate the effects of the following two social policies: (i) the poor receive a one-time
unconditional cash transfer of 1000 baht at time t, and (ii) the poor receive an unconditional
cash transfer of 1000 baht in all periods starting from time t. Mean income of the poor is
about 4000 baht per quarter, thus the transfer increases income by 25 percent on average.
This is similar in magnitude to the transfer received by households in the Progresa program
in Mexico, see Gertler (2004), for example.21 I consider the introduction of the policy at
each time t = 2, ..., 7, and average over the predicted consumption changes at the time of
the introduction of the program. I assume that the one-time transfer is seen as a shock, and
that it increases permanent income so little that the decision power of recipients does not
increase. In the case of a permanent transfer, there is a change in income processes, which
are important in determining insurance transfers when commitment is limited. Since this
means that decision powers change, the informal risk sharing contract is renegotiated.

Were households in autarky, or, under the policymaker’s assumption the transfer increases
consumption directly, eligible households’ consumption should increase by 1000 baht, while
consumption by ineligible households should be unaffected. On the other hand, if households
share risk perfectly, the transfers to the poor become part of the common pool, and consump-
tion by each household should increase by about 500 baht. Any variation in consumption
changes should come from differences in risk preferences.

(...)

6.2 Aggregate insurance

(...)

7 Extensions

In this section, I develop a more general empirical model. In particular, I allow preferences to
depend on (i) unobservable individual effects and (ii) time-varying household characteristics;

21Progresa is a conditional cash transfer program. In this exercise, I cannot take such conditionality into
account. In other words, I do not look at changes in household behavior other than with respect to insurance
transfers. Neither do I deal with how poor households could be identified in practice.
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further, (iii) preference shocks are introduced, and (iv) income is measured with error as
well as consumption. I show that the predicted consumption allocation is not affected by
the individual effects, and argue that the other extensions are possible in theory. They are,
however, infeasible due to prohibitively long computation time.

Instead of (1), let us now specify the utility function as

uit (cit) = exp (ξit)
c1−σit
it − 1

1− σit
, (29)

where
ξit = ηi + w�

itα + εη
it,

and the coefficient of relative risk aversion is

σit = 1 + z�itβ,

where ηi is a time-constant unobservable individual effect, wit and zit are vectors of observable
characteristics of household i at time t, α and β are parameter vectors to be estimated, and
εη

it is a normally distributed preference shock with mean 0 and variance γ2
η . Note that σit

is only allowed to depend on observable covariates. Finally, let y∗it be income observed by
the econometrician. Measurement error in income is assumed to be multiplicative and log-
normally distributed, that is,

y∗it = exp (εy
it) yit,

and εy
it ∼ N

�
0, γ2

y

�
.

7.1 Perfect risk sharing

The first order condition for household i, sharing risk with the rest of the community, can
now be written as

σit log cit − ξit − log ckt = log λi.

Replacing for ξit and σit, in terms of measured consumption we have

(1 + z�itβ) log c∗it − (1 + z�itβ) εit − ηi − w�
itα− εη

it − log ckt = log λi.

First differencing and rearranging give

log
�

c∗it
ckt

�
= log

�
c∗i,t−1

ck,t−1

�
− z�itβ log c∗it + z�i,t−1β log c∗i,t−1 + w�

itα− w�
i,t−1α

+ εη
it − εη

i,t−1 + (1 + z�itβ) εit −
�
1 + z�i,t−1β

�
εi,t−1.

Thus ηi drops out along with log λi. The error term is now distributed as

N
�
0, 2γ2

η + (1 + z�itβ)2 γ2 +
�
1 + z�i,t−1β

�2
γ2

�
.
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7.2 Autarky

In the autarky case, preferences do not play a role. Thus only the additional measurement
error in income has to be taken into account. Instead of (19), the equation to be estimated
is

log
�

c∗it
ckt

�
= log

�
y∗it
ykt

�
+ εit − εy

it,

and γ2 and γ2
y are not jointly identified.

7.3 Risk sharing with limited commitment

Instead of (23), the first order condition now is

log
�

c∗it
ckt

�
= −z�iβ log c∗it + ηi + w�

itα + εη
it + log g (yt, xi,t−1, Zi, Wi; θ, ηi) + (1 + z�iβ) εit, (30)

where Zi and Wi are matrices of observable covariates of household i at different times, and
θ now includes the vector α as well.

Let us first deal with the individual effect ηi, assuming zit = zi, ∀t, and ignoring the other
time-varying components of the utility function (wit and εη

it) for the moment. Suppose that
we know the realization of measurement error in household i’s consumption at time t − 1,
denoted εj

i,t−1, drawn from the distribution of εi,t−1, N (0, γ2). I show that

g
�
yt, x

∗
i,t−1, ε

j
i,t−1, zi; θ, ηi

�
= exp (−ηi) g

�
yt, x

∗
i,t−1, ε

j
i,t−1, zi; θ

�

= exp (−ηi)
ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�1+z�
iβ

ĉkt

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

� ,

where ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
and ĉkt

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
are consumption by households

i and k respectively, predicted by the model, normalizing ηi = 0. Replacing this in equation
(30), ηi drops out. The fact that the function g() is homogeneous of order one in ηi is the
direct consequence of the following claim.

Claim 1. ĉit

�
yt, x∗i,t−1, ε

j
i,t−1, zi; θ

�
= ĉit

�
yt, c∗i,t−1, zi, ε

j
i,t−1; θ, ηi

�
. That is, the consumption

allocation predicted by the model of risk sharing with limited commitment does not depend on

the individual effects.

Proof. To see this, let us take a closer look at the enforcement constraint of some household
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i, that can be written as (7) in general. Replacing the utility function (1) in (7) gives

exp (ηi)
cit (st)1−σi − 1

1− σi
+

∞�

r=t+1

�

sr

δr−tπ (sr) exp (ηi)
cir (sr)1−σi − 1

1− σi
≥

≥ exp (ηi)
yit (st)

1−σi − 1

1− σi
+

∞�

r=t+1

�

sr

δr−tπ (sr) exp (ηi)
yir (sr)

1−σi − 1

1− σi
. (31)

Both sides can be divided by exp (ηi), thereby eliminating the individual effects. When no
enforcement constraint is binding, we are back to perfect risk sharing, where exp (ηi) appears
multiplicatively on both sides of xit = xi,t−1.

Then, with the utility function (29), a typical enforcement constraint can be written as

exp (w�
itα + εη

it)
cit (st)−z�

itβ − 1

−z�itβ
+

∞�

r=t+1

�

sr

δr−tπ (sr) exp (w�
irα + εη

ir)
cir (sr)−z�

irβ − 1

−z�irβ
≥

≥ exp (w�
itα + εη

it)
yit (st)

−z�
itβ − 1

−z�itβ
+

∞�

r=t+1

�

sr

δr−tπ (sr) exp (w�
irα + εη

ir)
yir (sr)

−z�
irβ − 1

−z�irβ
.

Note that future household characteristics and preference shocks enter into today’s enforce-
ment constraint. Therefore, some assumptions have to be made on households’ expectations
about their future characteristics and preference shocks.

If we assume that households are myopic, in the sense that they do not expect their
characteristics to change relative to the rest of the village, and further that they do not
expect preference shocks to differ from today’s, then we may divide the above equation by
exp (w�

itα + εη
it) = exp (w�

irα + εη
ir) ,∀r > t. In this case computation time is only multiplied

by the number of time periods. However, the assumption that households are always surprised
by a change in any of their characteristics is very strong.

Alternatively, we may assume that households form rational expectations, and their ex-
pectations about their characteristics next period are the observed values. Preference shocks
can be integrated out using simulation, if we make some assumption about their distribu-
tion. To keep things tractable, I assume that preference shocks are i.i.d. over time and across
households. Given household characteristics and a realization of the preference shock today,
the enforcement constraint can be written in a recursive form as

exp (w�
itα + εη

it)

�
ĉi (st, xt−1)

−z�
itβ − 1

−z�itβ
− yi (st)

−z�
itβ − 1

−z�itβ

�
≥ δ

�

st+1

π (st+1)×

� �
V aut

i

�
st+1, wi,t+1, zi,t+1, ε

η
i,t+1

�
− Vi

�
st+1, xt (st, xt−1) , wi,t+1, zi,t+1, ε

η
i,t+1

��
f

�
εη

i,t+1

�
dεη

i,t+1.
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Thus the model should be solved on an extended state space that includes household char-
acteristics. In practice, a grid has to be defined over each characteristic. Today’s preference
shock also has to be integrated out by simulation. Computation time thus becomes pro-
hibitively long.

Note that, once we have computed the consumption allocation predicted by the model,
ĉit

�
yt, c∗i,t−1, ε

j
i,t−1, Zi, Wi; θ

�
and ĉkt

�
yt, c∗i,t−1, ε

j
i,t−1, Zi, Wi; θ

�
, then

log g (yt, xi,t−1, Zi, Wi; θ, ηi) = exp (−ηi − w�
itα− εη

it)
ĉit

�
yt, c∗i,t−1, ε

j
i,t−1, Zi, Wi; θ

�1+z�
iβ

ĉkt

�
yt, c∗i,t−1, ε

j
i,t−1, Zi, Wi; θ

� .

Thus, along with ηi, w�
itα and εη

it drop out from equation (30). Therefore, adding measurement
error in consumption is necessary to account for the residual in the estimating equation.

Finally, let us look at what changes if income is measured with error, as well as con-
sumption. First, given the income processes, measurement error does not affect the optimal
intervals that characterize the constrained efficient risk sharing contract, since the model is
solved using a grid on income. Second, the introduction of measurement error in income may
plague the estimation of the income process. We could perturbate observed income, and then
recompute the model given a matrix of draws of measurement error. Computation time is
then proportional to the number of matrices of draws. Third, today’s income observation
directly affects consumption predicted by the model. Once again, simulation is a simple way
to deal with this problem, and the solution of the model does not have to be recomputed,
thus computation time increases only moderately due to this third point.

8 Concluding remarks

This paper first performed statistical tests to compare seven models of risk sharing. Prelim-
inary structural estimation results suggest that limitations in the enforcement of informal
insurance contracts and heterogeneity in preferences and in income risk are important in
explaining the consumption allocation in sixteen villages in rural Thailand.

Using structural estimation results, this paper then simulated the effects of a simple social
policy and the introduction of aggregate insurance. The model predicts that consumption
by both eligible and ineligible households should increase, consistently with the empirical
findings of Angelucci and De Giorgi (2009). Research on the structural modeling of how
consumption is allocated between households in poor communities can serve as an input for
policy evaluation and design. Policy makers and members of non-governmental organizations
could have a better understanding of the effects of their programs, such as redistributive
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policies or micro-insurance programs, by taking into account existing informal arrangements
to share risk.

Several interesting extensions are possible. First, whether heterogeneity in the discount
factor across households is important should also be addressed. Second, other models of
risk sharing could be incorporated into the analysis, like the model of risk sharing with
private information (Wang, 1995). In a recent paper, Kinnan (2010) finds that asymmetric
information about income realizations is important in accounting for partial insurance in these
Thai villages. Whether such a model is useful for predicting the consumption allocation and
quantitative policy effects is to be studied. Another important task for future work is to
allow for individual savings, as in Ligon, Thomas, and Worrall (2000). Fourth, it is to be
examined whether introducing more heterogeneity across households would mean that the
model of risk sharing sharing with limited enforcement could better capture the amount of
risk sharing in other contexts, in particular, in the United States, since the homogenous model
predicts too much insurance (Krueger and Perri, 2006). Finally, when complete markets do
not exist to insure against income fluctuations, households are expected to choose safer jobs,
or safer production technologies in agriculture. In other words, they smooth income, not just
consumption (Morduch, 1995). These ideas could be formalized in the context of this paper,
endogenizing income by allowing households to choose between several income generating
processes. Then, the cost of imperfect consumption insurance in terms of lower expected
incomes could be quantified.

32



References

Abreu, D. (1988). On the Theory of Infinitely Repeated Games with Discounting. Econo-

metrica 56 (2), 383–396.

Ackerberg, D., J. Geweke, and J. Hahn (2009). Comments on “Convergence Properties of the
Likelihood of Computed Dynamic Models” by Fernández-Villaverde, Rubio-Ramírez and
Santos. Econometrica 77 (6), 2009–2017.

Ales, L. and P. Maziero (2009). Non-exclusive Dynamic Contracts, Competition, and the
Limits of Insurance. Mimeo.

Altug, S. and R. A. Miller (1990). Household Choices in Equilibrium. Econometrica 58 (3),
543–570.

Alvarez, F. and U. J. Jermann (2000). Efficiency, Equilibrium, and Asset Pricing with Risk
of Default. Econometrica 68 (4), 775–797.

Angelucci, M. and G. De Giorgi (2009). Indirect Effects of an Aid Program: How Do Cash
Transfers Affect Ineligibles’ Consumption? American Economic Review 99 (1), 486–508.

Attanasio, O. and J.-V. Ríos-Rull (2000). Consumption Smoothing in Island Economies:
Can Public Insurance Reduce Welfare? European Economic Review 44 (7), 1225–1258.

Blundell, R., L. Pistaferri, and I. Preston (2008). Consumption Inequality and Partial Insur-
ance. American Economic Review 98 (5), 1887–1921.

Borch, K. (1962). Equilibrium in a Reinsurance Market. Econometrica 30 (3), 424–444.

Coate, S. and M. Ravallion (1993). Reciprocity without Commitment: Characterization and
Performance of Informal Insurance Arrangements. Journal of Development Economics 40,
1–24.

Cochrane, J. H. (1991). A Simple Test of Consumption Insurance. Journal of Political

Economy 99 (5), 957–976.

Dercon, S. and P. Krishnan (2003a). Food Aid and Informal Insurance. UNU-WIDER
Research Paper, World Institute for Development Economic Research.

Dercon, S. and P. Krishnan (2003b). Risk Sharing and Public Transfers. Economic Jour-

nal 113, 86–94.

33



Dubois, P. (2000). Assurance complète, hétérogénéité des préférences et métayage au Pak-
istan. Annales d’Economie et de Statistique 59, 1–36.

Dubois, P., B. Jullien, and T. Magnac (2008). Formal and Informal Risk Sharing in LDCs:
Theory and Empirical Evidence. Econometrica 76 (4), 679–725.

Fafchamps, M. (1999). Risk Sharing and Quasi-Credit. Journal of International Trade and

Economic Development 8 (3), 257–278.

Foster, A. D. and M. R. Rosenzweig (2001). Imperfect Commitment, Altruism, and the Fam-
ily: Evidence from Transfer Behavior in Low-Income Rural Areas. Review of Economics

and Statistics 83 (3), 389–407.

Gertler, P. (2004). Do Conditional Cash Transfers Improve Child Health? Evidence from
PROGRESA’s Control Randomized Experiment. American Economic Review 94 (2), 336–
341.

Gouriéroux, C. and A. Monfort (1997). Simulation-based Econometric Methods. Oxford
University Press, Oxford.

Grimard, F. (1997). Household Consumption Smoothing Through Ethnic Ties: Evidence
from Côte d’Ivoire. Journal of Development Economics 53 (2), 391–422.

Hajivassiliou, V. A. and P. A. Ruud (1994). Classical Estimation Methods for LDV Models
Using Simulation. In R. F. Engle and D. L. McFadden (Eds.), Handbook of Econometrics,
Volume 4, pp. 2383 – 2441. Elsevier.

Kehoe, P. J. and F. Perri (2002). International Business Cycles with Endogenous Incomplete
Markets. Econometrica 70 (3), 907–928.

Kennan, J. (2006). A Note on Discrete Approximations of Continuous Distributions. Mimeo.

Kinnan, C. (2010). Distinguishing Barriers to Insurance in Thai Villages. Mimeo.

Kocherlakota, N. R. (1996). Implications of Efficient Risk Sharing without Commitment.
Review of Economic Studies 63 (4), 595–609.

Krueger, D. and F. Perri (2006). Does Income Inequality Lead to Consumption Inequality?
Evidence and Theory. Review of Economic Studies 73 (1), 163–193.

34



Ligon, E. (1998). Risk Sharing and Information in Village Economies. The Review of Eco-

nomic Studies 65 (4), 847–864.

Ligon, E., J. P. Thomas, and T. Worrall (2000). Mutual Insurance, Individual Savings, and
Limited Commitment. Review of Economic Dynamics 3 (2), 216–246.

Ligon, E., J. P. Thomas, and T. Worrall (2002). Informal Insurance Arrangements with
Limited Commitment: Theory and Evidence from Village Economies. Review of Economic

Studies 69 (1), 209–244.

Mace, B. J. (1991). Full Insurance in the Presence of Aggregate Uncertainty. Journal of

Political Economy 99 (5), 928–956.

Marcet, A. and R. Marimon (2009). Recursive Contracts. Mimeo.

Mazzocco, M. and S. Saini (2010). Testing Efficient Risk Sharing with Heterogeneous Risk
Preferences. Mimeo.

Morduch, J. (1995). Income Smoothing and Consumption Smoothing. Journal of Economic

Perspectives 9 (3), 103–114.

Rosenzweig, M. R. and K. I. Wolpin (1993). Credit Market Constraints, Consumption
Smoothing, and the Accumulation of Durable Production Assets in Low-Income Coun-
tries: Investments in Bullocks in India. Journal of Political Economy 101 (2), 223–244.

Schulhofer-Wohl, S. (2010). Heterogeneity and Tests of Risk Sharing. Mimeo.

Tauchen, G. (1986). Finite State Markov-chain Approximations to Univariate and Vector
Autoregressions. Economics Letters 20 (2), 177–181.

Thomas, J. and T. Worrall (1988). Self-Enforcing Wage Contracts. Review of Economic

Studies 55 (4), 541–554.

Todd, P. E. and K. I. Wolpin (2006). Assessing the Impact of a School Subsidy Program
in Mexico: Using a Social Experiment to Validate a Dynamic Behavioral Model of Child
Schooling and Fertility. American Economic Review 96 (5), 1384–1417.

Todd, P. E. and K. I. Wolpin (2008). Ex Ante Evaluation of Social Programs. Mimeo.

Townsend, R. M. (1994). Risk and Insurance in Village India. Econometrica 62 (3), 539–591.

35



Udry, C. (1994). Risk and insurance in a rural credit market: An empirical investigation in
northern Nigeria. Review of Economic Studies 61 (3), 495–526.

Vuong, Q. H. (1989). Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses.
Econometrica 57 (2), 307–333.

Wang, C. (1995). Dynamic Insurance with Private Information and Balanced Budgets. Re-

view of Economic Studies 62 (4), 577–595.

Wilson, R. (1968). The Theory of Syndicates. Econometrica 36 (1), 119–132.

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT
Press, Cambridge, Massachusetts.

36



Appendix

This appendix details how to compute the consumption allocation predicted by the model.
That is, we want to find ĉit relative to mean consumption in the community ĉkt, for each
household i at each time t, taking preference parameters and the income processes as given.22

Consider some household i sharing risk with the rest of the community, ‘household’ k.
Take preference parameters β, the discount factor δ, and the income processes FYi and FYk

as given. The aim is to solve for the state-dependent optimal intervals on the relative Pareto
weight of household i, that fully characterize the solution (LTW).

First, define a grid over the continuous variable xi (I define the same points for all st).
The support of the grid is the range of ratios of marginal utilities of household k and i given
the income and consumption observations. I define an equidistant grid on log xi of 30 points.
Second, guess a solution for the value functions, that is, guess V 0

i (st, xi,t−1), for each grid
point. The algorithm does not converge from any initial guess for the value functions, but
the value of perfect risk sharing will do.23

Then, proceed to update the guess. Suppose we are at iteration h. Let us look at grid point
(s̃t, x̃i,t−1). Three cases have to be distinguished: (a) neither enforcement constraint binds,
(b) the enforcement constraint for household i binds, and (c) the enforcement constraint for
household k binds. Note that the two enforcement constraints cannot bind at the same time,
because only one of the two households may be called upon to make a positive net transfer.

We first suppose that the enforcement constraints do not bind, that is, we try to keep
xi constant. This means setting x̂h

it = x̃i,t−1 at state s̃t, where the upper index h refers to
iteration h. Then, using the first order condition and the resource constraint, we get the
consumption allocation

�
ĉh
it, ĉ

h
kt

�
. Now the enforcement constraints have to be checked. This

means verifying whether

ui

�
ĉh
it

�
+ δ

�

st+1

π (st+1 | s̃t) V h−1
i

�
st+1, x̂

h
it

�
≥ Uaut

i (s̃t) (32)

22The first step in estimation involves determining these distributions (see main text), while the last step
is the maximization over the remaining structural parameters, which is done using a standard optimization
algorithm available in R (function optim() with method BFGS with bounds (L-BFGS-B), which is a quasi-
Newton method). See www.r-project.org. Here, I am talking about the computation between these steps.

23Characterizing the convergence properties of the algorithm is left for future research. However, we know
that the algorithm does not converge to the constrained-efficient solution from any initial guess for the value
functions. For example, if we set the guesses for V 0

i (st, xi,t−1) equal to the autarkic values, every iteration
yields these same autarkic values. This is natural, since autarky is also a subgame perfect Nash equilibrium
(SPNE).
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and
log ĉh

kt + δ
�

st+1

π (st+1 | s̃t) V h−1
k

�
st+1, x̂

h
kt

�
≥ Uaut

k (s̃t) . (33)

Note the upper index h−1 for Vi and Vk, that is, we use the value function from the previous
iteration.

(a) The enforcement constraints (32) and (33) do not bind. This is the easy case, since we
have already computed x̂h

it and the consumption allocation assuming that the enforce-
ment constraints do not bind. What remains to be done is to set

V h
i (s̃t, x̃i,t−1) = ui

�
ĉh
it

�
+ δ

�

st+1

π (st+1 | s̃t) V h−1
i

�
st+1, x̂

h
it

�

and
V h

k (s̃t, x̃i,t−1) = log ĉh
kt + δ

�

st+1

π (st+1 | s̃t) V h−1
k

�
st+1, x̂

h
it

�
.

(b) The enforcement constraint (32) is binding. We look for ĉh
it and x̂h

it to satisfy (32) with
equality and the first order condition. Since we do not know V h−1

i

�
st+1, x̂h

it

�
for any

value of x̂h
it, only for the points on the grid, I do linear interpolation. Finally, we update

the value function as in case (a).

(c) The enforcement constraint (33) is binding. We proceed similarly as in case (b).

Now we are done with grid point (s̃t, x̃t−1). We have to do the above steps at all other
grid points as well. Then the hth iteration is complete. We continue iterating until the policy
functions converge. In the end, we find the range of xi’s that can be optimal in some state s

to find the solution in the form [xi(s), xi(s)].
Computing the consumption of household i at time t, relative to mean consumption in the

community, as predicted by the model is then done as follows. Remember that c∗i,t−1 is the ob-
served consumption by household i at time t−1, and εj

i,t−1 is a realization of measurement er-
ror drawn from N (0, γ2), and γ2 is given. I compute xi,t−1 =

�
exp

�
−εj

i,t−1

�
c∗i,t−1

�1+z�
iβ /ck,t−1,

and check whether it is in the optimal interval for today’s state st. Since only a discrete num-
ber of income states have been considered, I map observed incomes into the income states
of the model by picking the closest point for each household. We have to consider the above
three cases.

(a) If xi,t−1 ∈ [xi(s), xi(s)], then we set xit = xi,t−1.
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(b) If xi,t−1 < xi(s), then we determine it from (32) with equality, using a linear interpola-
tion of the value functions from the last iteration.

(c) If xi,t−1 < xi(st, xi), then we use (33) with equality, and proceed similarly as in case
(b).

Finally, we use the first order condition and the resource constraint to determine the predicted
consumption allocation. We may then write the likelihood of observation it, given εj

i,t−1, by
plugging the ĉit and ĉkt computed here into (27).
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