
Ambiguity Shifts and the 2007–2008 Financial Crisis∗

Nina Boyarchenko

November 24, 2010

Abstract

I analyze the effects of model misspecification on default swap spreads and equity prices
for firms that are informationally opaque to the investors. The agents in the economy are
misspecification-averse and thus assign higher probabilities to lower utility states. This leads
to higher CDS rates, lower equity prices and lower expected times to default. Estimating the
model using data on financial institutions, I find that the sudden increase in credit spreads
in the summer of 2007 can be partially explained by agents’ mistrust of the signals observed
in the market. The bailout of Bear Stearns in March 2008 and the liquidation of Lehman
Brothers in September 2008 further exacerbated the agents’ doubts about signal quality and
introduced mistrust about the agents’ pricing models, accounting for the further increases
in credit spreads after these events.
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1 Introduction

When making consumption decisions, an investor faces uncertainty about both the relevant

underlying state and the data-generating process governing the evolution of the state. While

uncertainty about the state is risk that the investor understands and can model, uncertainty

about the data-generating process represents agents’ pessimism about their ability to identify

the correct model. This paper argues that prices of credit securities are sensitive to the investors’

preferences toward model uncertainty and that the implied time-variation in the level of model

uncertainty is a source of variation in credit spreads that explains the asymmetric response of

credit spreads to upturns and downturns in the economy.

I analyze the effects of model misspecification on default swap spreads in secondary markets

for the corporate debt of firms that are not perfectly transparent to the investors. The agents

in the economy are misspecification-averse and thus mistrust the statistical model of the funda-

mental value of assets of firms and of the firms’ observed earnings process. This mistrust reflects

the fact that, when it is difficult for investors to observe firms’ assets directly, they are forced to

rely on imprecise accounting information. In this situation, investors must draw inference from

accounting data and other publicly available information. Investors realize that, although they

may be able to pick a model of the fundamental asset value and the accounting signals to best

fit the historical data, this may not be the true data-generating model. Under the assumption

that investors are misspecification-averse, I derive the asset prices in the economy, explicitly

accounting for the implications of imperfect information and model misspecification.

I show several significant implications of model misspecification for the level and variation in

the term structure of secondary market default swap spreads. Compared to a model with perfect

information, model uncertainty increases the level of the yield curve and the default-swap spread

curve. Intuitively, in the presence of model misspecification, investors must be compensated for

the risk associated with choosing the “wrong” model to describe the evolution of the underlying

state. Notice that, as shown in Duffie and Lando [2001], introducing imperfect information to

a standard Black and Cox [1976] model has the additional benefit of being able to explain high
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credit spreads at short maturities.

Next, I show that model uncertainty exacerbates the imperfect information problem faced

by the representative investors in the secondary asset markets. In filtering information about

the underlying state from the imperfect signals, agents must take into account uncertainty

about both the model governing the evolution of the underlying state and the signals about the

underlying state. The misspecification-averse agent assigns higher probabilities to lower utility

states. Further, how much these probabilities are higher than under the reference model depends

on the current conditional probability vector under the reference model.

Model misspecification also impacts the joint probability distribution of the next period’s

signals and states. In particular, while in states of the economy when no firm defaults, the

misspecification averse agent perceives the probability of transitioning to a default state to be

higher than under the reference model. Thus, the expected time to default of each firm decreases,

increasing default-swap spreads. Further, the misspecification averse agent also perceives the

transition probability matrix associated with the underlying state to be time varying. The time-

variation in the transition probability matrix induces additional time-variation in the expected

time to default of each firm and, thus, in default swap spreads.

In this paper, I argue that the increases in CDS spreads observed during the 2007–2008

crisis were due to increases in investors’ doubts about the validity of their pricing models and

the quality of the signals available to market participants. On August 9, 2007, France’s largest

bank BNP Paribas announced that it was having difficulties because two of its off-balance-sheet

funds had loaded up on securities based on American subprime mortgages. But Paribas was

not alone in its troubles: a month before, the German bank IKB announced similar difficulties,

and the Paribas announcement was followed the next day by Northern Rock’s revelation that it

had only had enough reserve cash to last until the end of the month. These and other similar

announcements lead to a freeze of the credit markets as banks lost faith in each other’s balance

sheets. The situation was particularly surprising considering the market conditions shortly before

the crisis began. At the beginning of 2007, financial markets were liquidity-unconstrained and
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credit spreads were at historical lows. Even as late as May 2007, it would have been hard to

predict the magnitude of the response that the losses on subprime mortgages had generated.

Compared to the total value of financial instruments traded worldwide, the subprime losses were

relatively small: even the worst-case estimates put them at around USD 250 billion. 1 Further,

for investors familiar with the instruments, the losses were not unexpected. By definition, the

subprime mortgages were part of the riskiest segment of the mortgage market, so it was hardly

surprising some borrowers would default on the loans. Yet, despite their predictability, the

defaults had precipitated the current liquidity crisis that spread between the credit markets.

Using observations of the CDS spreads on financial institutions, I estimate the degree of

misspecification aversion of the investors in the secondary debt markets. To evaluate the changes

in investors’ aversion to misspecification during the crisis, I estimate the misspecification aversion

coefficient using three sub-periods– before the start of the crisis in July 2007, from the start of

the crisis to the bailout of Bear Stearns in March 2008, and from the bailout of Bear Stearns to

the liquidation of Lehman Brothers in September 2008 – and find that the three estimates are

not statistically significantly different, implying that investors’ misspecification preferences did

not change during the crisis. In terms of the model, this implies that the observed changes in

credit spreads during the financial crisis were due not to changing misspecification attitudes on

the part of the investors but rather due to an increase in the amount of misspecification in the

economy.

Since the investors’ aversion to misspecification did not change significantly during the crisis,

I use the pre-crisis estimate of the misspecification aversion coefficient to compute the model-

implied time series of CDS spreads, equity prices and the quantity of misspecification. Measuring

the amount of misspecification using the expected log likelihood ratio (or relative entropy)

between the reference and the worst-case models, I find that the amount of misspecification did

in fact increase during the financial crisis. Further, the way that total entropy is decomposed

into the contribution from misspecification of the distribution of the future signals and state

and the contribution from misspecification of the conditional distribution over the current state
1Source: Caballero and Krishnamurthy [2008b]
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changed during the crisis. More specifically, the initial BNP Paribas announcement in August

2007 lead to an increase in the relative entropy due to current period conditional probability

misspecification. Intuitively, the BNP Paribas announcement and the subsequent Northern

Rock revelations lead to an increase in ambiguity about the quality of the signals available to

market participants. The bailout of Bear Stearns and the bailout of Lehman Brothers, on the

other hand, lead to an increase in both components of entropy. That is, the effective default

of these two institutions increased not only investors’ doubts about the quality of the surviving

financial institutions (increasing entropy due to misspecification of distribution of future signals

and states), but also investors’ doubts about the quality of the signals in the market. Entropy

stabilizes toward the end of the crisis but at a higher level than before the start of the crisis.

To evaluate the quality of the fit of the model, I compare the model-implied CDS spreads

and equity prices to the corresponding quantities observed in the data. The model-implied

CDS spreads match both the levels and the changes in CDS spreads observed during the crisis,

although the performance of the model deteriorates after the liquidation of Lehman Brothers.

Further, although the model does not match the overall levels of equity prices and, in fact, is

not geared to do so, it does match the changes in equity prices observed during the crisis.

The rest of the paper is organized as follows. I review the related literature in Section 2. I

describe the model considered in the paper in Section 3. The results of the estimation of the

model are presented in Section 4. Section 5 concludes. Technical details are relegated to the

appendix.

2 Literature Review

A rapidly growing literature studies the behavior of asset prices in the presence of ambiguity

in dynamic economies. A substantial part of this literature considers investor ambiguity about

the data-generating model. Anderson et al. [2003] derive the pricing semigroups associated

with robust perturbations of the true state probability law. Trojani and Vanini [2002] use their

framework to address the equity premium and the interest rate puzzles, while Leippold et al.
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[2008] consider also the excess volatility puzzle. Gagliardini et al. [2009] study the term structure

implications of adding ambiguity to a production economy. This setting has also been used to

study the portfolio behavior of ambiguity-averse investors and the implications for the options

markets (see e.g. Trojani and Vanini [2004] and Liu et al. [2005]).

The second strand in the literature, however, assumes that, although the agents in the

economy know the “true” data-generating model, they face uncertainty about the quality of the

observed signal about an unobservable underlying. Chen and Epstein [2002] study the equity

premium and the interest rate puzzles in this set-up, and Epstein and Schneider [2008] consider

the implications for the excess volatility puzzle. The portfolio allocation implications of this

setting have also been studied extensively in e.g. Uppal and Wang [2003] and Epstein and Miao

[2003].

However, none of these papers study the relationship between ambiguity aversion and the

term structure of credit spreads. Following Hansen and Sargent [2005], Hansen and Sargent

[2007], I introduce model misspecification by considering martingale distortions to the reference

model probability law. As Hansen and Sargent [2007] show, the martingale distortion can be

factored into distortions of the conditional distribution of the underlying state (signal qulaity)

and the evolution law of the hidden state (asset value dynamics). I assume that the representative

investor in the secondary debt market has max-min preferences over consumption paths under

possible models.

This paper is also related to the literature on preference-based explanations for credit spreads.

Chen [2010] studies two puzzles about corporate debt: the credit spread puzzle – why yield

spreads between corporate bonds and treasuries are high and volatile – and the under-leverage

puzzle – why firms use debt conservatively despite seemingly large tax benefits and low costs

of financial distress. The paper argues that both of these puzzles can be explained by two

observations: defaults are more highly concentrated during bad times, when marginal utility

is high, and the losses associated with default are higher during such times. Thus, investors

demand high risk premia for holding defaultable claims, including corporate bonds and levered
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firms.

Using similar intuition, Chen et al. [2009] argue that the credit spread puzzle can be explained

by the covariation between default rates and market Sharpe ratios. That is, investors must be

compensated more for holding credit risk securities because default rates (and, hence, expected

losses from default) increase at the same time as market returns are more uncertain. More

specifically, the authors investigate the credit spread implications of the Campbell and Cochrane

[1999] pricing kernel calibrated to equity returns and aggregate consumption data. Identifying

the historical surplus–consumption ratio from aggregate consumption data, the paper finds that

the implied level and time-variation of spreads match historical levels well.

3 Model

In this section, I present the economy considered in this paper. I begin by describing the reference

model used for pricing credit securities and then proceed to the misspecification problem faced

by the representative agent in the economy.

3.1 Reference model

As the reference model, I consider a modified version of the Black and Cox [1976] economy.

Consider a (sector of the) economy consisting of I firms, indexed by i = 1, . . . , I and denote by

Ait = eait the fundamental value of the assets of firm i at date t = 1, 2, . . .. To fix ideas, assume

that there are ny = 12 data periods in a year, so that each period corresponds to a month. I

assume that the log-asset value of each firm can be decomposed into the sum of two components:

(3.1) ait = zit + ρizct,

where zit is an idiosyncratic shock to the asset value of firm i, zct is an aggregate shock to

the asset values of all the firms in the sector and ρi is the loading of firm i on the aggregate

component. Denote by zt = [z1t, . . . , zIt, zct]
′ the vector of the components of asset values at
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date t. I assume that the vector zt evolves according to an N -state Markov chain, with possible

values ξ1, . . . , ξN and the transition probability matrix Λ defined as:

(3.2) {Λ}jk ≡ λjk = P (zt+1 = ξk| zt = ξj) .

There are two types of agents in the economy: managers and investors. All the day-to-day

operations of the firm are delegated to the respective manager. I assume that there are no agency

problems between a firm’s managers and the equity holders of the firm, so that the managers act

in the best interest of the equity holders. Further, similarly to Duffie and Lando [2001], I assume

that the managers are better informed about the firm they manage than the participants in the

public markets and, in particular, that the managers of the firm observe perfectly the evolution

of the fundamental value of the firm’s assets. To prevent information spill-over, I assume that

managers are precluded from trading in the public assets markets.

In this paper, I abstract from modeling the operational decisions of the firm managers and, in

particular, from modeling the optimal capital structure, dividend payment and default decisions

faced by the managers. As in Leland [1994] and Duffie and Lando [2001], I assume that each

firm i issues perpetual debt with face value Di. This debt is serviced by a constant coupon rate

Ci. While firm i is in operation, it generates a constant fraction δi of assets as cash-flows which

accrue, minus the coupon payments, as equity in the firm.

The managers decide on behalf of the equity holders when to default. As in Black and Cox

[1976], I abstract from modeling the liquidation decision faced by the managers and assume

instead that a firm defaults automatically whenever the fundamental value of the firm’s assets

reaches the lowest possible value implied by the Markov chain {zt}+∞t=1 . In particular, denote by

ξji the ith element of the asset values vector in state j, ξj . Let i∗ = argminj=1,...,Nξji + ρiξjc

be the state index at which firm i achieves its lowest possible value and by aBi = ξi∗ the

corresponding state. Then the (stochastic) default date τi of firm i is the first hitting time of

the state aBi : τi = inf {t : zt = aBi}. In economic terms, the exogenous default rule can be

interpreted as a debt covenant. The firm is liquidated at the present value of the discontinued
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cash flows, with the proceeds distributed among the firm’s primary debt holders and the equity

holders receiving 0. For simplicity, I assume that each firm has a single default state and that

firms do not default simultaneously. Notice that, since managers observe perfectly the asset

value evolution of the firm under their management, there is no uncertainty about the firm

being liquidated upon hitting its default boundary. Finally, denote by aB =
⋃I
i=1 aBi the union

of the default states of all the firms and by acB its complement, which is the set of states where

none of the firms default.

Consider now the participants in the public markets. Similarly to Duffie and Lando [2001],

I assume that the representative investor does not observe the true evolution of asset values

in the sector and receives instead imperfect, unbiased signals about the fundamental value of

the assets of each firm, Âit = eyit , and the aggregate component of asset values in the sector,

Âct = eyct . More specifically, assume that yit = ait + uit and yct = zct + uct where the signal

errors ut = [u1t, . . . , uIt, uct]
′ are serially uncorrelated and normally distributed, independent of

the true realization of zt: ut ∼ N (u,Σu). Here, u is the mean signal error and Σ−1
u the signal

quality. At each date t, the representative agent also observe whether any of the default states

have been reached and any of the firms have been liquidated. Thus, the information set of the

representative agent at date t is:

Gt = σ
{
ys, 1zs∈acB : s = 1, . . . , t

}
,

where yt = [y1t, . . . , yIt, yct]
′ is the full signal vector at date t.

Denote by pjt the probability, conditional on the date t information set of the representative

investors, of the vector z being in state j at date t:

pjt = P (zt = ξj | Gt) .

For mathematical reasons, it is easier to formulate the updating rule in terms of unnormalized
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probabilities ~πt, which are related to the proper probabilities by:

pjt =
πjt∑N
j=1 πjt

, j = 1, . . . , N.

Let πj0 = P(z1 = ξj) be the prior probability. Then the following result holds.

Lemma 3.1. (Wonham Filter)

Assume that the transition probability matrix, Λ, and the prior distribution πj0 are known.

Then the date 1 update to the unnormalized probability vector is given by:

(3.3) πj1 = 1ξj /∈aBπj0f(y1 − ξj), j = 1, . . . , N,

where f(·) is the density function of the observation errors, u. For t > 1, the “predict” step of

the update to the unnormalized probability vector is given by:

(3.4) π̃t+1 = diag(f(yt+1))Λ′~πt,

where f(y) = [f(y − ξ1), . . . , f(y − ξN )]′ and diag(·) creates a diagonal matrix from the vector

·. Then, conditional on no firm defaulting in period t+ 1, the updated unnormalized probability

vector is given by:

~πt+1 = diag(1acB )π̃t+1,

where 1acB =
[
1ξ1∈acB , . . . ,1ξN∈acB

]′
.

Proof. See e.g. Frey and Schmidt [2009].

Finally, consider the utility of the representative agent. I assume the representative agent is

risk-neutral and, thus, holds all the claims to the firm’s asset value. Thus, the date t expected

present value of the utility of the representative agent is given by:

(3.5) Jt = E

[
+∞∑
s=0

βs
I∑
i=1

δiAi,t+s

∣∣∣∣∣Gt
]
,
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where β is the subjective discount factor. For the discussion below, it is useful to represent the

expected present value of utility in recursive form:

(3.6) Jt = E

[
I∑
i=1

δiAit + β1zt+1∈acBJt+1 + β

I∑
i=1

1zt+1=aBi
Jτi

∣∣∣∣∣Gt
]
,

where Jτi is the value function of the representative agent in case firm i defaults.

3.2 Asset prices

In this paper, I consider three types of claims to the assets of the firm: a claim to the firm’s

equity, a zero-coupon, risky bond and a credit default swap (CDS) written on the bond. Recall

that equity in firm i accrues as a constant fraction δi of the fundamental asset value and that

the equity holders receive 0 in case of the firm being liquidated. Thus, the date t price of a claim

to equity of firm i, Vit, is given by:

Vit = E

[
τi∑
s=0

βs(δiAi,t+s − Ci)

∣∣∣∣∣Gt
]
,

where τi is the (stochastic) default date of the firm i. Notice that the equity price satisfies the

Euler equation:

(3.7) Vit = E [δiAit − Ci + β1τi>t+1Vi,t+1| Gt] .

Consider now the default-swaps written on the primary debt of firm i. With a given maturity

T , a default-swap is an exchange of an annuity stream at a constant coupon rate until maturity

or default, whichever is first, in return for a payment of X at default, if default is before T , where

X is the difference between the face value and the recovery value on the stipulated underlying

bond. A default swap can thus be thought of as a default insurance contract for bond holders

that expires at a given date T , and makes up the difference between face and recovery values in

the event of default.
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I assume, as typical in practice, that the default-swap annuity payments are made semian-

nually, and that the default swaps maturity date T is a coupon date. As in Duffie and Lando

[2001], I take the underlying bond for the default swap on firm i to be the consol bond issued

by firm i. Recall that, in case of default, the debt holders receive the present value of the dis-

continued cash flows. Thus, the payment Xi per unit of primary debt if firm i defaults before

the swap maturity date T is given by:

Xi = 1−
δi(I − βΛ)−1

i∗ e
ξ

(1− β)Di
.

The at-market default-swap spread is the annualized coupon rate ci(t, T ) that makes the default

swap sell at date t for a market value of 0. Thus, with T = t + 6n for a given positive integer

n,2 the CDS spread is given by:

(3.8) ci(t, T ) =
2XiE

[
βτi−t1τi<T

∣∣Gt]∑n
s=1 β

6sE [1τi≥t+6s| Gt]
.

Default-swap spreads are a standard for price quotation and credit information in bond markets.

In this setting, they have the additional virtue of providing implicitly the term structure of credit

spreads for par floating-rate bonds of the same credit quality as the underlying consol bond, in

terms of default time and recovery at default. Denote by Bi(t, T ) the date t price of a zero-

coupon bond with maturity date T on the debt of firm i. The implicit discount curve is then

given by:

Bi (t, t+ 6) =
1

1 + ci (t, t+ 6)

Bi (t, t+ 6s) =
1− ci(t,t+6s)

2

∑s−1
j=1Bi (t, t+ 6j)

1 + ci (t, t+ 6s) /2
.

2Recall that there are 12 data periods in a year
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3.3 Model misspecification

This paper studies asset prices in a setting where the representative agent makes decision rules

robust to possible misspecifications of asset value and accounting signals models. In reality, the

correct specification assumption of the reference model is overly restrictive. It implies that, even

though the participants in the public markets only observe imperfect signals about the evolution

of the fundamental asset value, they can still correctly identify the parametric model that governs

the relevant dynamics. More realistically, I assume that the representative investor in the firm

fears misspecification of the probability law generated by the model above and believes instead

that the signals are related to the true asset value realizations by a family of likelihoods.

As in Hansen and Sargent [1995], Hansen et al. [1999], Tallarini Jr. [2000] and Anderson et al.

[2003], I model preferences of the representative agent in the presence of model misspecification

using the recursion:

(3.9) Jt = −θ log E
[

exp
[
−U(zt) +Rt(βJt+1)

θ

]∣∣∣∣Gt] ,
where:

Rt(βJt) ≡ −θ log E
[

exp
(
−βJt+1

θ

)∣∣∣∣Ft] .
The risk-sensitive recursion (3.9) replaces the standard utility recursion (3.6), incorporating

the representative agent’s misspecification doubts in two steps.3 First, the tilted continuation

function Rt makes an additional risk adjustment to the continuation value function of the

representative agent, accounting for misspecification fears about the fundamental asset value

evolution dynamics. Second, the tilted expectations over the current period utility adjusts
3Notice that the recursion (3.9) can be rewritten as:

Jt = −θ log E
»

exp

»
−U(zt) + βJt+1

θ

–˛̨̨̨
Gt

–
.

The recursion (3.9) allows for easier interpretation of the corresponding worst-case likelihood. Further, the more
general form (3.9) allows, for the representative agent to have different attitudes toward misspecification of future
signals and state and misspecification of the conditional distribution over the current state. For more details on
this formulation, see Hansen and Sargent [2007].
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for misspecification fears about the filtered probability distribution over the current state. As

emphasized by Hansen and Sargent [1995], the log-exp specification of the recursion links risk-

sensitive control theory and a more general recursive utility specification of Epstein and Zin

[1989]. The degree of the representative agent’s aversion to misspecification is quantified by

θ−1. When θ−1 = 0, the risk-sensitive recursion (3.9) reverts to the usual utility recursion under

Von Neumann-Morgenstern form of state additivity. For values of θ−1 greater than zero, the

recursion (3.9) implies an increased aversion to risk vis a vis the Von Neumann-Morgenstern

specification. Maenhout [2004] links the degree of misspecification to the value function itself, so

that the agent becomes more misspecification-averse as the present value of her utility increases.

To understand better the recursion (3.9), consider the following static optimization problem:

(3.10) min
m≥0; E[m]=1

E [mV ] + θE [m logm] .

The random variable m is the likelihood ratio between the reference model and an alternative

model. m implies a distorted expectation operator: Ẽ [V ] = E [mV ]. The optimization problem

(3.10) then minimizes the expected value of the payoff V under alternative models but is pe-

nalized in utility terms for deviations from the reference model (parametrized by m = 1). The

term E[m logm] measures the discrepancy in relative entropy terms between the reference model

and an alternative model. As noted in Jacobson [1973], the relative entropy E [m logm] is the

expected log-likelihood between the reference and the misspecified models. Thus, the parameter

θ can be interpreted as a penalization parameter for large deviations away from the reference

model. The problem (3.10) can thus be interpreted as a robust way of alternating probability

measures. The minimizing choice of m, the so-called worst-case model, is given by:

m∗ =
exp

(
−1
θV
)

E
[
exp

(
−1
θV
)]
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and the outcome of the minimization problem by:

−θ log E
[
exp

(
−1
θ
V

)]
.

Thus, in choosing between alternative models, the representative agent tilts the probability

toward bad (in terms of payoffs) states.

Turn now back to the recursion (3.9). Hansen and Sargent [2007] show that, corresponding

to the tilted continuation function Rt is the worst-case likelihood ratio:

(3.11) φt(zt+1, yt+1) =
exp

(
−βJt+1

θ

)
E
[

exp
(
−βJt+1

θ

)∣∣∣Ft] .
φt captures the difference between the evolution of future signals and states under the misspec-

ified model and under the reference model. In particular, φt is the date t probability distortion

to the joint distribution of next period’s signals and state. Relative to the reference model dis-

tribution, φt tilts the joint distribution toward lower continuation value states, decreasing the

expected future value of the continuation utility. Similarly, corresponding to the recursion (3.9),

is the worst-case likelihood ratio:

(3.12) ψt(z) =
exp

(
−U(z)+Rt(βJt+1)

θ

)
E
[

exp
(
−U(z)+Rt(βJt+1)

θ

)∣∣∣Gt]
between the conditional distribution over the state at date t under the misspecfied and reference

models. ψt tilts the conditional distribution toward lower utility states, decreasing the expected

value of utility at the current date.

An alternative interpretation of the recursion (3.9) is in terms of the smooth robustness

preferences of Klibanoff et al. [2005] and Klibanoff et al. [2009] and recursive preferences of

Epstein and Zin [1989]. In the smooth ambiguity preference setting, the representative agent does

not choose the “worst-case model” and instead assigns a preference ordering to the alternative

models. In particular, let u be the agent’s utility over realizations of consumption, µ index
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different models, f the agent’s utility function over different models and π the belief vector

over the different models. Then, an agent with the smooth robustness preferences evaluates

consumption according to:

f−1 (Eπ [f (E [u|µ])]) .

Compare this to the recursion (3.9). Notice first that the tilted continuation utility, R(Jt+1),

corresponds to the continuation utility for an agent with Epstein and Zin [1989] preferences, so

corresponding to the inner expectation conditional on a “model” in smooth utility preferences,

the worst-case utility model evaluates future consumption using Epstein and Zin [1989] pref-

erences conditional on the current state. The recursion (3.9) then uses an exponential utility

function to rank continuation values and current period utilities for different realizations of the

state.

To quantify the amount of distortion in the economy, Hansen and Sargent [2007] introduce

measures of the conditional relative entropy between the reference and the distorted models.

In particular, under the full information setting, the conditional relative entropy between the

reference and the worst case model of the future state and signals evolution is defined as:

ε1t (φt+1, ξj) =
N∑
k=1

∫
τ(ξk, yt+1|ξj)φ(ξk, yt+1) log φ(ξk, yt+1)dyt+1

and the conditional relative entropy between the reference and the worst case model of the

current state by:

ε2t (ψt) =
N∑
j=1

pjψj logψj .

The total conditional relative entropy between the reference model and the worst case model at

date t is then given by:

(3.13) εt = ε2t (ψt) + Ẽ
[
ε1t (φt+1, zt)

∣∣Gt] ≡ ε2t (ψt) + ε̂1t (φt+1).

In general, the recursion (3.9) does not have a closed-form solution. Instead, I look for a
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first order approximation to the representative agent’s value function around the point θ−1 = 0,

which corresponds to the solution under the reference model. Notice that the approximation

I construct here is different in its nature from the small noise approximations constructed in

Campi and James [1996] and Anderson et al. [2010] as, instead of approximating the reference

model value function around the deterministic steady state, I approximate around the value

function corresponding to the zero signal precision case.4 The following result holds:

Lemma 3.2. The first order approximation to the value function around the point θ−1 = 0 is

given by:

(3.14) J(π; θ−1) = J0(π) + θ−1J1(π) +O2(θ−1),

where J0(π) is the reference model value function and J1(π) is the first order derivative of

the value function around θ−1 = 0. In the non-default states of the economy, the first order

approximation to J0 and J1 in terms of log-deviations, π̂, from the stationary distribution π of

the underlying Markov chain are given, respectively, by:

J0(π) ≈ γ00 + γ′01diag(π)π̂(3.15)

J1(π) ≈ γ10 + γ′11diag(π)π̂,(3.16)

where the coefficients γ00, γ01, γ10 and γ11 solve the system (C.2)-(C.6). The first order approx-

imation to the implied distortion to the conditional joint distribution of next period’s signals and

state is then given by:

(3.17) φt(z∗, y∗|z = ξj) = 1 + θ−1
(
ϕ0j + ϕ′π,jdiag(π)π̂ + ϕ′y,j log f(y∗)

)
,

where the constant coefficients ϕ0, ϕπ and ϕy satisfy (C.8)-(C.10), and the first order approxi-

4When the signal precision approaches 0, the agent is does not update the conditional probability distribution
and, hence, the stationary distribution can be used as the prior distribution.
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mation to the implied distortion to the conditional distribution of the current state by:

(3.18) ψt(ξj) = 1 + θ−1
[
ζ0j + ζ ′1jdiag(π)π̂

]
,

where the coefficients ζ0 and ζ1 satisfy (C.11)-(C.12).

Proof. See Appendix C.1.

Notice that J0 is the value function of the representative agent under the reference model.

The vector γ01 captures the first-order dependence of the reference model value function on the

conditional distribution of the hidden state. From (C.3) we can see that the right hand side of

the equation determining γ01,j is positive when the agent’s utility in state j is higher than the

stationary probability distribution weighted average of utility in different states. Thus, γ01,j is

positive for states that have higher utility and negative for lower utility states. Intuitively, the

expected present value of the representative agent’s utility should be higher when the probability

of the economy being in a good state is higher and lower when the probability of being in a

bad state is higher. The value function derivative J1 captures the first order depedence of the

value function of the representative agent on the degree of her risk sensitivity. The fact that

J1 is time-varying implies that the agent’s perceived risk attitudes change depending on the

conditional distribution of the hidden state, with the vector γ11 describing the loadings on the

individual components of the probability vector.

Consider now the implied distorted transition probablity matrix. Using (3.17), we have:

λ̃jk ≡ P̃ (zt+1 = ξk| zt = ξj)

≈ λjk
[
1 + θ−1

(
ϕ0j + ϕ′π,jdiag(π)π̂ + ϕ′y,j∆

1
k

)]
.(3.19)

Notice that this implies that, unlike the reference model, the transition probability matrix under

the misspecified model is time-dependent. This effect introduces additional time variation into

asset prices above that implied by the time evolution of fundamental asset values under the

reference model.
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3.3.1 Numerical example

To illustrate the impact of model misspecification on the representative investor’s value function,

I consider an example of a duopoly, where the (log) fundamental asset value evolves according to

a five state Markov chain. In particular, assume that the two firms are symmetric in the coupon

payment on their debt, Ci, the face value of their debt, Di, the value of assets at default, aBi ,

cash-flows as a fraction of assets, δi, and the loadings on the aggregate component, ρi. I assume

that the face value of the coupon bond is Di = 300, serviced with the coupon rate Ci = 6.

Each firm generates a fraction δi = 5% of assets as cash flows and loading ρi = 1 of the log

fundamental asset value on the aggregate asset value. At default, the value of assets of firm i is

aBi = Ci/δi = 120. The matrix ξ of possible values for the Markov state, zt, is given by:

Firm 1 (z1) Firm 2 (z2) Common (zc)

State 1 log(2C/δ) log(2C/δ) log(2C/δ

State 2 log(C/δ) log(2C/δ) log(2C/δ)

State 3 log(C/δ) log(C/δ) log(C/δ)

State 4 0 log(C/δ) log(C/δ)

State 5 log(C/δ) 0 log(C/δ)

Recall that the log fundamental asset value of firm i is given by ait = zit+ρizct. Notice that state

ξ4 is the default state of firm 1 and the state ξ5 is the default state of firm 2. The transition

probability matrix, Λ, is chosen to have an equal probability of either staying in the same

non-default state or transitioning to another non-default state and a much lower probability of

transitioning to a default state:

Λ =



0.3125 0.3125 0.3125 0.0312 0.0312

0.3125 0.3125 0.3125 0.0312 0.0312

0.3125 0.3125 0.3125 0.0312 0.0312

0.0435 0.0435 0.0435 0.4348 0.4348

0.0435 0.0435 0.0435 0.4348 0.4348


.
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In Fig. 1 and Fig. 2, I plot the differences between the distorted transition probability matrix

and the reference model transition probability matrix as a function of different combinations

of the probabilities of state 1, p1, and of state 2, p2, for θ−1 = 0.5 and θ−1 = 1, respectively.

Notice first that, as expected, under the misspecified model, the transition probabilities are

shifted toward transitioning to default states. Further, as θ−1 increases, so that the agent

becomes more misspecification-averse, this effect is larger. Next, notice that the effect is greater

when the agent is more uncertain about the current state. That is, the greatest distortion to the

transition probabilities occurs when (under the reference model) the agent has equal probabilities

of being in any one of the non-default state. Intuitively, as the uncertainty about the state of

the economy decreases under the reference model, the agent has relatively less misspecification

concerns. Consider now the distorted probabilities over the current state, plotted in Fig. 3.

Consistent with the intuition that the misspecification-averse agent tilts probabilities toward

lower-utility states, we see that the probability of being in state 3 increase as misspecification

aversion increases. Similarly to the case of transition probabilities, the impact of misspecification

aversion is highest when the agent is most uncertain about which non-default state the economy

is in.

3.4 Asset prices under the misspecified model

Since the representative agent evaluates expectations under the worst-case measure when making

consumption decisions, the Euler equation holds under the worst-case measure. Therefore, assets

can be priced using the Euler equation under the worst-case measure. In particular, under the

misspecified model, the date t price of a claim to the equity of firm i satisfies:

(3.20) Vit = Ẽ [δiAit − Ci + β1τi>t+1Vi,t+1| Gt] .

As with the value function, consider a first order expansion of the equity price around the

reference model equity price. That is, I look for a first order approximation to the solution of
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the worst-case Euler equation (3.20) in the form:

(3.21) Vi(πt; θ−1) = Vi0(πt) + θ−1Vi1(πt) +O2(θ−2).

The following result holds:

Lemma 3.3. The first order approximations in terms of log-deviations from the stationary

distribution to the value of equity of firm i under the reference model, Vi0, and to the derivative

of the value equity of firm i, Vi1, are given, respectively, by:

Vi0(πt) = νi,00 + ν ′i,01diag(π)π̂ +O2(π̂)(3.22)

Vi1(πt) = νi,10 + ν ′i,11diag(π)π̂ +O2(π̂),(3.23)

where the coefficients νi,00, νi,01, νi,10 and νi,11 solve the system of linear equations in Appendix

C.2.

Proof. See Appendix C.2.

Consider now the CDS spreads under the misspecified model. Recall that the spread on a

default swap with maturity T = t+ 6n on the primary debt of firm i is given by:

(3.24) ci(t, T ) =
2XẼ

[
βτi−t1τi<T

∣∣Gt]∑n
k=1 β

6sẼ [1τi≥t+6s| Gt]
.

The misspecification concerns of the representative agent influence the CDS calculations in two

ways. First, the conditional probability of the current state is distorted using ψ(ξj), with the

lower utility states receiving a higher probability. Second, the transition probability matrix Λ

is replaced with the time-dependent distorted probability matrix Λ̃. Introduce the following

notation:

Υ (π, t, T ) = Ẽ
[
βτi−t1τi<T

∣∣Gt]
Ψ (π, t, T ) = Ẽ [1τi≥T | Gt] ,
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so that:

ci(t, T ) =
2XiΥ (π, t, T )∑n

k=1 β
6sΨ (π, t, t+ 6s)

.

By definition:

Υ (π, t, T ) =
N∑
j=1

pjtψ(ξj)
T−t∑
s=1

βsẼ [1τi=t+s| zt = ξj ]

=
N∑
j=1

pjtψ(ξj)
T−t∑
s=1

βsP̃ (τi = t+ s| zt = ξj)

Ψ (π, t, T ) =
N∑
j=1

pjtψ(ξj)

(
1−

T−t∑
s=1

Ẽ [1τi=t+s| zt = ξj ]

)

=
N∑
j=1

pjtψ(ξj)

(
1−

T−t∑
s=1

P̃ (τi = t+ s| zt = ξj)

)
.

Let q̃nij = P̃ (zt+n = ξj , zt+n−1 6= ξj , . . . , zt+1 6= ξj | zt = ξi) be the probability that t+n is the first

hitting time of state j conditional on being in state i at date t, so that P̃ (τi = t+ n| zt = ξj) =

q̃nji∗ . Introduce also the matrix of the first hitting time probabilities: Q̃n =
{
q̃nij

}N
i,j=1

and let

Q̃n0 = diag(Q̃n). Then, from Seneta [1981], Q̃n is given recursively by:

Q̃n = Λ̃Q̃n0 .

Notice that, since Λ̃ is time-dependent, the first hitting time distribution under the misspecified

model is also time-dependent.

Consider again the numerical example of Section 3.3.1. In Fig. 4, I plot the 5 year CDS rates

for different values of θ−1 when no defaults have occurred. There are two effects of increasing

misspecification aversion. First, as the agent becomes more misspecification averse, the CDS

spreads increase since, under the misspecified model, the agent perceived a greater probability of

transition to a default state. Second, notice that, for a given value of θ−1, the CDS rate decreases

as the agent becomes more certain about the state. As the agent becomes more misspecification

averse, this effect increases. Intuitively, as the agent becomes more sure about the underlying
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state, she has less misspecification concerns about the conditional distribution of the current

state, reducing the impact of misspecification concerns.

In Fig. 5, I consider also the percentage increase in the 5 year CDS rate of one firm after the

other firm defaults. Since the more misspecification-averse representative agent places a higher

probability on the third state, the percentage increase in CDS rates is smaller for higher values

of θ−1. That is, since the misspecification averse agent already has pessimistic views about the

future, observing the default of one firm does not decrease her expectation about the time to

default of the other firms as much as it does for the representative agent under the reference

model.

Consider now the contagion effect of the default of firm i at date τi on the expected time to

default of the surviving firms. I will use the following property of Markov chains:

Lemma 3.4. Let {Xt}t≥0 be a Markov chain on the probability space (Ω,F ,P) with transition

matrix P and state space I. Define the hitting time of a subset A of I to be the random variable

τA : Ω → {0, 1, 2, . . .} such that τA(ω) = inf {t ≥ 0 : Xt(ω) ∈ A}. Denote by kA(i) the mean

time taken for (Xt)t≥0 to reach A after starting from state i:

kA(i) = E [τA|X0 = i] .

Let Q denote the matrix obtained by deleting the rows and columns corresponding to the set A

from P . Then:

(3.25) kA(i) =
∑
j /∈A

(I −Q)−1
ij

Proof. See e.g. Seneta [1981].

Similarly to Frey and Schmidt [2010], I define the contagion effect as the change in the expected

time to default of firm j at the default time τi of firm i, which is given by:

(3.26) k̂aBj (τi)− k̂aBj (τi − 1) ≡ Ẽ
[
kaBj

∣∣∣Gτi]− Ẽ
[
kaBj

∣∣∣Gτi−1

]
.
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Notice that there are two opposing effects of observing one of the firms default. On the one

hand, it reveals to the representative agent the current state of the economy, thus reducing the

misspecification concerns faced by the agent. On the other hand, the conditional probability of

the other firms defaulting next period increases as the agent knows that the aggregate component

of the fundamental value is in its lowest state.

Consider once again the numerical example of Section 3.3.1. In Fig. 6, I plot the expected

time to default for different values of the misspecification parameter, θ−1. Notice that, as θ−1

increases, the expected time to default overall decreases. Intuitively, as the agent’s misspecifica-

tion aversion increases, the probability of transitioning to a default state increases, decreasing

the expected time to default. In Fig. 7, I plot the percentage change in expected time to default

after the other firm defaults. Since the more misspecification-averse representative agent places

a higher probability on the third state, the percentage decrease in expected time to default

decreases less for higher values of θ−1. That is, since the misspecification averse agent already

has pessimistic views about the future, observing the default of one firm does not decrease her

expectation about the time to default of the other firms as much as it does for the representative

agent under the reference model.

4 The 2007–2008 Financial Crisis

In this section, I calibrate the model in Section 3 using data on financial institutions. Although

the returns on the equity of financial institutions accounts for a small portion of the overall level

of consumption in the economy, these institutions were at the forefront of the 2007 financial

crisis and, thus, to understand the asset price movements during the crisis, it is important to

understand the movements in the prices of claims on these institutions. I begin by estimating the

parameters of the reference model using the observations of book equity of financial institutions

as firm-specific signals and the Case-Schiller 10 Cities Housing (CS10) Index as the signal about

the common component of the asset values. I choose observations of the CS10 Index as the

aggregate signal to capture the exposure of the financial institutions to risks associated with the
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national housing market. Notice from Table 1 that the financial institutions considered have

higher correlations with the CS10 Index than with stock market indices, such as the S&P 500

index.

Next, I use historical observations of CDS spreads on financial institutions prior to the start

of the crisis to estimate a value for θ – the model misspecification preference parameter. Using

this estimate, I compute the implied relative entropy between the reference and the worst-case

models and decompose the entropy calculation into the contributions from misspecification of

the signal model and misspecification of the fundamental value of assets model for the whole

time series. Finally, I compare the model-implied CDS rates and equity prices to the observed

time series.

4.1 Estimating the reference model

To estimate the reference model, I use historical observations of the firm-specific signals and the

aggregate signal. Below, I provide the outline of the estimation procedure. The details of the

estimation are provided in Appendix A.

As observations of firm-specific signals, I use balance sheet data from COMPUSTAT. In

particular, I use observations of book equity as the accounting signals. As observations of the

aggregate signals, I take the time series of the Case-Schiller 10 Cities index. Notice that, while

balance sheet data are observed at a quarterly frequency only, observations of the CS10 Index are

available at a monthly frequency. The procedure described in Appendix A accounts explicitly

for this dual frequency of observations. Notice that, to estimate the reference model, I only use

observations up to Q2 2007 to avoid introducing measurement error by including observations

of the accounting signal which reflect mark-downs taken since the start of the crisis, as well

as the increased ambiguity discount in credit derivatives held on the balance sheets of these

institutions.

Recall that the reference model is described by the parameters:

• Λ, {ξj}Nj=1: transition probability matrix and states of the fundamental asset values
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• {ρi}Ii=1: firm-specific loadings on the common component

• Σu: signal error covariance matrix

• {Di, Ci}Ii=1: level of perpetual debt and coupon payments

• {δi}Ii=1: fraction of assets generated as cash-flows.

I begin the estimation by identifying the face value of the perpetual bond issued by firm i,

Di, with the last pre-crisis (Q2 2007) observation of the firm’s value of long-term debt; notice

that, since the model-implied debt has infinite maturity, long-term debt is a better measure

than total debt as it excludes short-term liabilities. The coupon payment, Ci, is then chosen to

make the level of debt Di optimal. Following the model assumption that each firm generates a

constant fraction δi of assets as cash-flows, I identify δi as the time-series average of the total

earnings as a fraction of total assets. The rest of the parameters are estimated using the Gibbs

sampling procedure of Appendix A.

The estimated reference model parameters are presented in Tables 2 – 3 and the filtered

time series of the expected fundamental value of each firm’s assets under the reference model is

plotted in Fig. 9. Notice first that, while changes in the filtered fundamental asset values mimic

the observed changes in the corresponding book values, the level of the fundamental asset values

are lower than that of the book values. Notice also that the states of the economy are highly

persistent. The probability of the firm-specific component of asset values staying in the same

state next period is around 54% and the probability of the aggregate component of asset values

staying in the same state next period is around 99%. Notice also that, although book values

have a high correlation with the Case Schiller 10 Index, the estimated firm-specific loadings on

the aggregate component of asset values is lower, ranging from 27% for JP Morgan and less than

1% for Bear Stearns. Finally, notice that the signal errors have low cross-correlations of at most

7% and a higher variance, ranging from 73% for the Case Schiller 10 Index to 15% for Goldman

Sachs.
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4.2 Estimating the misspecification preference parameter

Consider now estimating the misspecification preference parameter, θ−1. Rewrite the CDS

equation (3.24) as:

0 = 2XiΥ (π, t, T )− ci(t, T )
n∑
k=1

β6sΨ (π, t, t+ 6s) .

To estimate θ−1, I assume that the CDS rates are observed with a measurement error. In

particular, assume that the observation equation is given by:

0 = 2XiΥ (π, t, T )− ĉi(t, T )
n∑
k=1

β6sΨ (π, t, t+ 6s) + εiT,t,

where ĉi(t, T ) are the observed CDS rates and the vector of maturity-specific measurement errors

εit = [εi1,t, . . . , εiT,t] is normally distributed and i.i.d. across time and firms: εi ∼ N(0,Σε).

Taking the point estimates from the Gibbs sampling procedure as estimates of the reference

model parameters, I make draws of θ−1 using a Random Walk Metropolis algorithm with a flat

prior. The accept/reject probability for the draws of θ−1 is the ratio of the likelihood of the

CDS rates for all firm, at all available data points and for all available maturities.

I conduct three estimations of the parameter θ−1 using different data sub-periods: the pre-

crisis period, the period from the start of the crisis to the bailout of Bear Stearns and the

period from the bailout of Bear Stearns to the liquidation of Lehman Brothers. The results of

these estimations are presented in Table 4. Notice that the three different periods do not yield

significantly different estimates of θ−1, suggesting that the investors attitudes toward model

misspecification do not change significantly during the crisis period. Instead, the observed

changes in CDS rates are due to shifts in what kind of misspecification the agents are more

concerned about.

Consider now the model-implied time series evolution of credit spreads. Since the estimate

of θ−1 does not change during the crisis, I use the pre-crisis estimate of θ−1 to compute the

model-implied CDS spreads. Table 5 presents the observed 5 year CDS spreads for the financial
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institutions at five dates of interest – before the start of the crisis, July 2007, at the start of

the crisis in August 2007, after the bailout of Bear Stearns in March 2008, after the liquidation

of Lehman Brothers in September 2008 and after the introduction of TARP in October 2008 –

together with the model-implied CDS rates at these dates. Notice first that the model-implied

CDS rates follow the observed pattern of increasing during the financial crisis. Further, for most

institutions, the implied CDS rates match the levels of CDS spreads over time, although the

performance of the estimated model worsens after the liquidation of Lehman Brothers.

To evaluate how misspecification shifts during the crisis, I compute the entropy contributions

from misspecification of the joint distribution of next period’s signals and state and misspecifica-

tion of the conditional probability distribution of the current state. Notice first that the entropy

contribution from the misspecification of the conditional probability distribution of the current

state is much smaller than the contribution from the misspecification of the joint distribution

of next period’s signals and state. Notice also that both components of entropy increase after

the BNP Paribas announcement in August 2007, which is consistent with the Caballero and

Krishnamurthy [2008a] intuition that ambiguity increased during the crisis. The period between

the bailout of Bear Stearns and the liquidation of Lehman Brothers in September 2008 on the

other hand only lead to increase in the entropy from the misspecification of the conditional prob-

ability distribution of the current state. Intuitively, while investors observed the bailout of Bear

Stearns, they were not sure that the government would conduct any more bailouts, increasing

the overall uncertainty in the economy.

To further understand the time series evolution of asset prices during the crisis, consider the

time series evolution of expected time to default of the financial institutions. Table 6 presents

the expected time to default for the financial institutions at five dates of interest – before the

start of the crisis, July 2007, at the start of the crisis in August 2007, after the bailout of Bear

Stearns in March 2008, after the liquidation of Lehman Brothers in September 2008 and after

the introduction of TARP in October 2008 – together with the percentage change in the time to

default relative to the previous month. The initial BNP Paribas announcement in August 2007
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only lead to a decrease in the expected time to default for only Bank of America and Goldman

Sachs. The bailout of Bear Stearns lead to a decrease in expected time to default of all firms,

except for Bank of America. Notice, however, that while the increase in expected time to default

for Bank of America was small – only 2% , the decrease in expected time to default for the other

firms was much larger – from 16% for Morgan Stanley to 32% for JP Morgan. Thus, overall, the

bailout of Bear Stearns induced contagion effects on the rest of the financial institutions, with

the degree of contagion varying across firms. Similarly, the liquidation of Lehman Brothers lead

to a decrease in the expected time of default for all firms except Bank of America and Goldman

Sachs. It is important to note that, for these two institutions, the increase in expected time to

default was significant – 20% for Bank of America and 120% for Goldman Sachs.

Compare this to the evolution of expected times to default under the reference model, pre-

sented in Panel B of Table 6. Notice first that, under the reference model, the expected time to

default is longer at all dates than under the misspecified model. Intuitively, the misspecification-

averse agent perceives the probability of default next period to be greater than under the refer-

ence model, decreasing the expected time to default. Next, consider the time evolution of the

expected times to default. The initial BNP Paribas announcement leads to a slight ( 0.03%)

decrease in the expected time to default for each of the institutions. As under the misspecified

model, the decrease in the expected time to default is much greater after the bailout of Bear

Stearns. Notice, however, that the decrease under the reference model is greater than under the

misspecified model. Intuitively, since the misspecification-averse agent already has more pes-

simistic views of the future, observing the bailout of Bear Stearns did not have as a large of an

impact on her beliefs as it did on the beliefs under the reference model. Similarly, the decrease

under the reference model after the liquidations of Lehman Brothers is larger than under the

misspecified model. After introduction of TARP in October 2008, however, the increase in the

expected time to default under the reference model is much smaller than under the misspecified

model.

Finally, consider the implied time series evolution of equity prices during the crisis. Fig.
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11 plots the observed evolution of equity prices together with the model-implied evolution.

Although we cannot hope to match the level of equity prices since the firm earnings model in

the paper is extremely simplistic, the model should be able to match the observed movements in

equity prices. Comparing the model-implied evolution to the true evolution of equity prices, we

see that the model-implied equity prices lag the observed equity prices. This is not surprising

since the signals used to construct the time series evolution of conditional probabilities are

backward-looking; for example, the Case-Schiller 10 Index is constructed using observations

over the previous three months. The model is able to capture the overall downward trend of

equity prices during the crisis and especially well the sharp drop in equity prices after the bailout

of Bear Stearns and after the liquidation of Lehman Brothers.

5 Conclusion

In this paper, I consider the implications of model misspecification for default swap spreads.

Using an incomplete information version of the Black and Cox [1976] model of credit spreads as

the reference model, I find that introducing misspecification concerns exacerbates the imperfect

information problem faced by the representative agent. This leads to an increased level of default

swap spreads overall and greater sensitivity of CDS spreads to bad news. The misspecification-

averse agent perceives the probability of default next period to be higher than under the reference

model, increasing CDS spreads and decreasing expected time to default. Observing a bad signal

not only increases the conditional probability of being in a low-payoff state in the current period

but also increased the perceived probability of default in the next period.

To investigate whether the model can produce reasonable magnitudes of CDS spreads, I

estimated the parameters of the reference model using observations of the book value of equity of

several financial institutions as firm-specific signals and of Case Schiller 10 Index as observations

of aggregate signals. The misspecification preference parameter θ−1 was then estimated using

observations of CDS spreads for the financial institutions over time. The results of the estimation

procedure suggest that, while agents’ preference toward model misspecification did not change
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during the crisis, the amount of entropy in the economy and how that entropy is decomposed into

the contributions from misspecification of the joint distribution of next period’s signals and state

and misspecification of the conditional probability distribution of the current state did change.

In particular, the initial BNP Paribas announcement in August 2007 lead to an increase in

both components of entropy and, especially, in the entropy from from misspecification of the

joint distribution of next period’s signals and state. The period between the bailout of Bear

Stearns and the liquidation of Lehman Brothers in September 2008 on the other hand only lead

to increase in the entropy from the misspecification of the conditional probability distribution

of the current state.

Examining the implied time-series evolution of equity prices, I find that, while the model is

able to match the overall movements of the equity prices, the model-implied equity prices lag

the observed equity prices. A possible avenue of future research is to estimate the model under

the assumption that the representative agent in the economy observes more information than

the econometrician estimating the model. While allowing for equity prices to adjust quicker to

news in the market, this would also allow us to estimate the model at a higher frequency and,

thus, extract more information from the observed CDS spreads.

Notice that, while the model described in this paper is geared toward explaining the observed

increases in CDS spreads, similar intuition could be used to explain observed changes to prices

of collateralized debt obligations (CDOs) and other complex securities. In fact, since arguably

CDOs have a more complicated underlying structure than default swaps, model misspecification

concerns would be even more relevant in pricing these securities. A formal treatment of this

problem, however, is left for future research.
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A Reference Model Estimation

I estimate the time series parameters of the reference model using a Gibbs sampling procedure.
Recall the Gibbs sampling allows to sequentially make parameter draws from conditional pos-
teriors. Because the model can be broken down into as many conditional posteriors as needed,
it is possible to fully estimate the reference model specified in Section 3.

Recall that for the model of Section 3.1, the observations in the economy are given by:

yit = ξi,st + ρiξI+1,st + uit, i = 1, . . . , I
yct = ξI+1,st + uct,

where st is the indicator of the state at date t. In reality, observations of book value occur at
a quarterly frequency while observations of the aggregate signal occur at a monthly frequency.
Denote by ny the number of periods in between observations of firm-specific signals and by ty
the number of available observations of the firm-specific signals.

To reduce the number of parameters to be estimated, I impose additional restrictions on the
model. In particular, I assume that the vector of the firm-specific components zft ≡ [z1t, . . . , zIt]
of the hidden state vector z evolves independently of the aggregate component, zct. That is, I
assume that zft and zct evolve as two independent Markov chains. The vector of firm-specific
components zf evolves as an nf -state Markov chain, with values ζf1, . . . , ζf,nf and transition
probability matrix Ωf defined by:

{Ωf}jk ≡ ωf,ik = P (zf,t+1 = ζfk| zft = ζfj) .

Similarly, the aggregate component zct evolves as an nc Markov chain, with values ζc1, . . . , ζcnc
and transition matrix Ωc defined by:

{Ωc}jk ≡ ωci,jk = P (zc,t+1 = ζck| zct = ζcj) .

I impose also the assumption that the signal errors of the aggregate signal are uncorrelated with
the signal errors of the firm-specific signals but allow for the errors of the firm-specific signals
to be cross-sectionally correlated. That is, I partition the signal covariance matrix into:

Σu =
[

Σuf
~0I,1

~01,I Σuc

]
,

where Σuf is the covariance matrix of the firm-specific signals and Σuc is the variance of the
aggregate signal. Notice that this formulation allows me to estimate the firm value at default
directly from the signal observations: since zft and zct evolve as two independent Markov chains,
it is possible to recover the lowest value of the firm-specific component and the lowest value of
the common component without observing default.

Denote by Θ the full set of parameters to be estimated:

Θ =
{

Ωf ,Ωc, ζf1, . . . , ζfnf , ζc1, . . . , ζcnc , ρ1, . . . , ρI ,Σuf ,Σuc, {sft}
ty
t=1 , {sct}

T
t=1

}
and by Θ−A the set of all parameters except A: Θ−A = Θ \ A. With the above assumptions,

35



the main steps in the Gibbs procedure are as follows:

Step 1. Conditional on a draw of Θ−Ωf , make a draw of Ωf

Step 2. Conditional on a draw of Θ−Ωc , make a draw of Ωc

Step 3. Conditional on a draw of Θ−{ζci}nci=1
, make a draw of ζc1, . . . , ζc,nc

Step 4. Conditional on a draw of Θ−{ζfi}nfi=1

, make a draw of ζf1, . . . , ζf,nf

Step 5. Conditional on a draw of Θ−{ρi}Ii=1
, make a draw of ρ1, . . . , ρI

Step 6. Conditional on a draw of Θ−Σuf , make a draw of Σuf

Step 7. Conditional on a draw of Θ−Σuc , make a draw of Σuc

Step 8. Conditional on a draw of Θ−{sct}Tt=1
, make a draw of {sct}Tt=1

Step 9. Conditional on a draw of Θ−{sft}tyt=1

, make a draw of {sft}
ty
t=1

Step 10. Permute the state indicators

For the conditional posteriors below, I rely on Gibbs sampling results for regime-switching
models. The initial application of MCMC estimation methods to regime-switching models in due
to Albert and Chib [1993], who estimate an autoregressive model with Markov jumps following
a two-state Markov process. McCulloch and Tsay [1994] extend this to situations where the
regime-switching model includes non-regime-specific (common) components. For the most part
(and in the algorithm below), practical MCMC estimation uses the principle of data augmenta-
tion and treats the indicators of the state of the latent Markov chain as missing data. Treating
observations of the latent Markov chain as missing data allows for the use of conjugate priors in
estimating the parameters of the model. For a more exhaustive discussion of the use of MCMC
methods for estimating the parameters of Markov chains, see Fruhwirth-Schnatter [2006].

A.1 Conditional on a draw of Θ−Ωf , make a draw of Ωf

Denote by Ω̃f the ny-periods-ahead transition probability matrix of the firm-specific value vector
zft: Ω̃f = Ωny

f . Since obsevations of the firm-specific signals occur only every ny periods and
the aggregate signals are not informative about the firm-specific state, I make draws of Ω̃f and
then infer the corresponding draw of Ωf . Generalizing the results of Albert and Chib [1993] and
McCulloch and Tsay [1994] to the multiple state case, the conjugate prior for the jth row of Ω̃f

is :
ω̃f,j ∼ Dir

(
αfj1, . . . , α

f
j,nf

)
,

where Dir denotes the Dirichlet distribution5. The posterior is then given by:

ω̃f,j ∼ Dir
(
αfj1 + nfj1, . . . , α

f
j,nf

+ nfjnf

)
,

5Recall that the Dirichlet distribution generalizes the beta distribution to the multinomial case
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where nfjk is the number of times the Markov chain zf transitions from state j to state k in the

current draw of {sft}
ty
t=1. Once a draw of Ω̃f is made, the corresponding draw of the original

transition probability matrix is computed as Ωf = Ω̃
1
ny

f .

A.2 Conditional on a draw of Θ−Ωc, make a draw of Ωc

Similarly to Ω̃f , the conjugate prior for the jth row of Ωc is the Dirichlet distribution:

ωc,j ∼ Dir
(
αcj1, . . . , α

c
j,nc

)
,

and the posterior is given by:

ωc,j ∼ Dir
(
αcj1 + ncj1, . . . , α

c
j,nc + ncj,nc

)
,

where ncjk is the number of times the Markov chain zc transitions from state j to state k in the
current draw of {sct}Tt=1.

A.3 Conditional on a draw of Θ−{ζci}nci=1
, make a draw of ζc1, . . . , ζc,nc

To derive the conditional posterior of ζci, i = 1, . . . , nc, notice that the firm-specific signals con-
tain information about the common component of the fundamental asset values. In particular,
notice that the likelihood function of the signals is given by:

L (y|Θ) ∝ exp

{
−1

2

ty∑
τ=1

(
yf,τ∆y − ζf,sf,τ∆y

− ρζc,sc,τ∆y
− uf

)′
Σ−1
uf

(
yf,τ∆y − ζf,sf,τ∆y

− ρζc,sc,τ∆y
− uf

)}

× exp

{
−1

2

T∑
t=1

(yct − ζc,sct − uc)2

Σuc

}

Let i1 < i2 < . . . < inj denote all the time indices such that scik = j and let yc,j =(
yci1 , . . . , ycinj

)′
. The conjugate prior is given by:

ζcj ∼ N
(
ζc,0j , ΣucA

−1
c,0j

)
and the conditional prior by:

ζcj ∼ N
(
ζ̄cj , ΣucĀ

−1
cj

)
,

where

Ācj = nyjΣucρ
′Σ−1
uf ρ+ nj +Ac,0j

ζ̄cj = Ā−1
cj

Σucρ
′Σ−1
uf

nyj∑
k=1

(yf,τk∆y − ζf,s1τk∆y
− ūf ) +

nj∑
k=1

(yc,ik − uc) +Ac,0jζc,0j
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A.4 Conditional on a draw of Θ−{ζfi}nf
i=1

, make a draw of ζf1, . . . , ζf,nf

Denote: ỹft = yft − ρζcsct − ū. Let j1 < j2 < . . . < jnj denote all the time indices such that

sfjk = j and let ỹfj =
(
ỹf,j1 , . . . , ỹf,jnj

]′
. Then the conjugate prior distribution is:

ζfj ∼ N
(
ζf,0j , ΣufA

−1
f,0j

)
and the conditional posterior by:

ζfj ∼ N
(
ζ̄fj , Σuf Ā

−1
fj

)
,

where:

Āfj = nj +Af,j0

ζ̄fj = Ā−1
fj

[ nj∑
k=1

ỹf,jk +Af,j0ζf,j0

]

A.5 Conditional on a draw of Θ−{ρi}Ii=1,Σuf
, make a draw of ρ1, . . . , ρI and

Define: ỹft = yft − uf − ζfsft . The prior distribution for the vector ρ is then

ρ ∼ N
(
β0,ΣufA

−1
0ρ

)
and the conjugate posterior is given by:

ρ ∼ N
(
β∗,ΣufA

−1
∗,ρ
)
,

where:

A∗,ρ =
ty∑
t=1

ζ2
c,sct +A0ρ

β∗ = A−1
∗,ρ

( ty∑
t=1

ỹftζc,sct +A0ρβ0

)
.

The conjugate prior for Σuf is given by:

Σuf ∼ IW (ν, V )

and the posterior is given by:
Σuf ∼ IW (ν + ty, V + S),
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where

S =
ty∑
t=1

(
ỹf,t∆y − ρζc,sc,t∆y

)′ (
ỹf,t∆y − ρζc,sc,t∆y

)
+ (β∗ − β0)′A0ρ(β∗ − β0).

A.6 Conditional on a draw of Θ−Σuc, make a draw of Σuc

In this case, the conjugate prior is an inverse χ2-distribution:

Σuc ∼
νcs̄

2
c

χ2(νc)

and the conditional posterior by:

Σuc ∼
νcs̄

2
c + TEc

χ2(νc + T )
,

where:

TEc =
T∑
t=1

(yct − ζcsct − uc)2.

A.7 Conditional on a draw of Θ−{sct}Tt=1
, make a draw of {sct}Tt=1

Denote by Sct the history of observations of the aggregate regime up to date t, Sc,−t the full
history of the aggregate regime except at date t. The conditional posterior is then given by:

P
(
sct| {ycτ}Tτ=1, Sc,−t

)
∝ P(sct|sc,t−1)P(sc,t+1|sct) exp

{
−1

2
(yct − ζc,sct)2

Σuc

}
t 6= nny, n ∈ N

P
(
sct| {ycτ}Tτ=1, Sc,−t

)
∝ P(sct|sc,t−1)P(sc,t+1|sct) exp

{
−1

2
(yct − ζc,sct)2

Σuc

}
× exp

{
−1

2
(
yft − ζf,sft − ρζcsct

)′Σ−1
uf

(
yft − ζf,sft − ρζcsct

)}
t = nny, n ∈ N

A.8 Conditional on a draw of Θ−{sft}ty
t=1

, make a draw of {sft}tyt=1

Denote Sft the history of observations of the firm-specific regime up to date t, Sf,−t the full his-
tory of observations of the firm-specific regime except at date t. Then, the conditional posterior
for sft is given by:

P
(
sft| {yfτ}Tτ=1, Sf,−t

)
∝ P(sft|sf,t−1)P(sf,t+1|sft) exp

{
−1

2
(
yft − ζf,sft − ρζcsct

)′Σ−1
uf

(
yft − ζf,sft − ρζcsct

)}
.

A.9 Permute the state indicators

As discussed in Fruhwirth-Schnatter [2001], the behavior of the sampler described above is
somewhat unpredictable, and the sampler might be trapped at one modal region of the Markov
mixture posterior distribution or may jump occasionally between different model regions causing
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label switching. A simple but efficient solution to obtain a sampler that explores the full Markov
mixture posterior distribution is suggested in Fruhwirth-Schnatter [2006]. Each draw from the
Gibbs sampler is concluded by selecting randomly one of nf ! possible permutations of the current
labeling of the firm-specific states and one nc! possible permutations of the current labeling of
the aggregate states. This permutation is then applied to the transition probability matrices Ωf

and Ωc, the state-specific parameters ζf and ζc and the state indicators styf and sTc .

B Model Misspecification

In this section, I describe the derivation of the risk-sensitive recursion (3.9) and the distor-
tions (3.11)-(3.12) to the filtering distributions. I rely on the results of Hansen and Sargent
[2005], Hansen and Sargent [2007] to formulate the model misspecification problem faced by the
representative investor.

Let Mt be a non-negative Ft-measurable random variable, with E [Mt] = 1. Using Mt

as a Radon-Nikodym derivative generates a distorted probability measure that is absolutely
continuous with respect to the probability measure over Ft generated by the model (3.1). Under
the distorted measure, the expectation of a bounded Ft-measurable random variable Wt is
Ẽ [Wt] = E [MtWt].

To construct the implied (distorted) conditional density, Hansen and Sargent [2007] factor
the martingale Mt into one-step-ahead random variables. More specifically, for a non-negative
martingale {Mt}t≥0 form:

mt+1 =

{
Mt+1

Mt
if Mt > 0

1 if Mt = 0

Then Mt+1 = mt+1Mt and, for any t ≥ 0, the martingale Mt can be represented as:

Mt = M0

t∏
j=1

mj ,

where the random variable M0 has unconditional expectation equal to unity. Notice that, by
construction, mt+1 has date t conditional expectation equal to unity. Thus, for a bounded
Ft+1-measurable random variable Wt+1, the distorted conditional expectation implied by the
martingale {Mt}t≥0 is constructed as:

Ẽ [Wt+1| Ft] ≡
E [Mt+1Wt+1| Ft]

E [Mt+1| Ft]
=

E [Mt+1Wt+1| Ft]
Mt

= E [mt+1Wt+1| Ft] ,

provided that Mt > 0. LetMt be the space of all non-negative Ft-measurable random variables
mt for which E [mt| Ft−1] = 1. The elements of Mt+1 represent all possible distortions of the
conditional distribution over Ft+1 given Ft; that is, each mt+1 ∈ Mt+1 represents a possible
distortion to the underlying asset value dynamics. The amount of distortion introduced by
mt+1 is measured each period using the conditional relative entropy between the reference and
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distorted models:

(B.1) ε1t (mt+1) = E [mt+1 logmt+1| Ft] .

To introduce distortion to the signal model, consider factoring the martingale Mt in a dif-
ferent way. More specifically, introduce the Gt-measurable random variable M̂t = E [Mt| Gt] and
define:

ht =

{
Mt

M̂t
if M̂t > 0

1 if M̂t = 0

The Gt-measurable random variable M̂t implies a likelihood ratio for the partial information
set Gt while the Ft-measurable random variable ht represents distortions to the probability
distribution over Ft given Gt. Define Ht to be the space of all non-negative Ft-measurable
random variables ht for which E [ht| Gt] = 1. Similarly to (B.1), the amount of distortion
induced by ht is measured as:

(B.2) ε2t (ht) = E [ht log ht| Gt] .

To solve for the worst-case likelihood, introduce an entropy penalization parameter θ > 0
which captures the beliefs of the representative agent about the amount of misspecification in
the economy: as θ increases, the set of admissible alternative models decreases, with the limiting
case θ = ∞ corresponding to only the reference model being admissible. Begin by considering
the full-information case. Corresponding to each Ft+1-measurable random variable mt+1 is a
relative density φ(z∗, y∗). The minimizing agent solves:

min
φ≥0

N∑
j=1

∫
[W (ξj , π∗, y∗) + θ log φ(ξj , y∗)]φ(ξj , y∗)τ(ξj , y∗|z, y)dy∗

subject to:
N∑
j=1

∫
φ(ξj , y∗)τ(ξj , y∗|z, y)dy∗ = 1,

where ∗ denote next period values and τ(z∗, y∗|z, y) is the joint transition probability:

(B.3) τ(z∗, y∗|z, y) = |2πΣu|−
1
2 λzz∗ exp

[
−1

2
(y∗ − z∗ − u)′Σ−1

u (y∗ − z∗ − u)
]
.

The solution to the minimization problem implies a transformation T 1 that maps the value
function that depends on next period’s state (ξj , π∗, y∗) into a risk-adjusted value function that
depends on the current state (z, π, y):

(B.4) T 1(W |θ) = −θ log
N∑
j=1

∫
exp

(
−W (ξj , π∗, y∗)

θ

)
τ(ξj , y∗|z, y)dy∗.
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The minimizing choice of φ is given by:

φt(z∗, y∗) =
exp

(
−W (z∗,π∗,y∗)

θ

)
E
[

exp
(
−W (z∗,π∗,y∗)

θ

)∣∣∣Ft] .
Similarly, corresponding to each Gt-measurable random variable ht is a relative density ψ(z),

with the worst-case distortion given as the solution to:

min
ψ≥0

N∑
j=1

[
Ŵ (π, ξj) + θ logψ(ξj)

]
ψ(ξj)pj

subject to:
N∑
j=1

ψ(ξj)pj = 1.

This implies another operator:

(B.5) T 2(Ŵ |θ)(π) = −θ log
N∑
j=1

exp

(
−Ŵ (π, ξj)

θ

)
ψ(ξj)pj .

The corresponding minimizing choice of ψ is given by:

ψt(z) =
exp

(
−Ŵ (π,z)

θ

)
E
[

exp
(
−Ŵ (π,z)

θ

)∣∣∣Gt] .
C Proofs

C.1 Proof of Lemma 3.2

To obtain a first order approximation to the value function around the point θ−1 = 0, we need
to take a second order expansion of the risk-sensitive recursion. In particular, approximate:

exp
[
−J(p; θ−1)

θ

]
≈ 1− J(p, 0)θ−1 +

1
2

[
J(p; 0)2 − 2

∂J(p; 0)
∂θ−1

]
θ−2

exp
[
−U(ξj) + βJ(p; θ−1)

θ

]
≈ 1− [U(ξj) + βJ(p, 0)] θ−1 +

1
2

(
[U(ξj) + βJ(p, 0)]2 − 2β

∂J(p; 0)
∂θ−1

)
θ−2.

Denote: J0(p) = J(p; 0), J1(p) = ∂J(p;0)
∂θ−1 , so that:

exp
[
−J(p; θ−1)

θ

]
≈ 1− J0(p)θ−1 +

1
2

[
J0(p)2 − 2

∂J0(p)
∂θ−1

]
θ−2

exp
[
−U(ξj) + βJ(p; θ−1)

θ

]
≈ 1− [U(ξj) + βJ0(p)] θ−1 +

1
2

(
[U(ξj) + βJ0(p)]2 − 2βJ1(p)

)
θ−2.

42



Substituting into the risk-sensitive recursion and equating coefficients on powers of θ−1, we
obtain the following system of equations for J0(p) and J1(p):

J0(p) =
N∑
j=1

pj

∑
k∈acB

λjk |2πΣu|−
1
2

∫
[U(ξj) + βJ0(p∗)] df(y∗ − ξk) +

I∑
i=1

λji∗ [U(ξj) + βJτi0 ]


2J1(p) = J0(p)2 +

N∑
j=1

pj
∑
k∈acB

λjk |2πΣu|−
1
2

∫ (
2βJ1(p∗)− [U(ξj) + βJ0(p∗)]2

)
df(y∗ − ξk)

+
N∑
j=1

pj

I∑
i=1

λji∗
(

2βJτi1 − [U(ξj) + βJτi0 ]2
)

Jτi0 =
∑
k∈acB

λi∗k |2πΣu|−
1
2

∫
[U(ξi∗) + βJ0(p∗)] df(y∗ − ξk) +

I∑
j=1

λi∗j∗
[
U(ξi∗) + βJ

τj
0

]
2Jτi1 = (Jτi0 )2 +

∑
k∈acB

λi∗k |2πΣu|−
1
2

∫ (
2βJ1(p∗)− [U(ξi∗) + βJ0(p∗)]2

)
df(y∗ − ξk)

+
I∑
j=1

λj∗i∗
(

2βJτj1 −
[
U(ξi∗) + βJ

τj
0

]2)
.

To solve the above system, notice that, since the unnormalized probability vector π is pro-
portional to the conditional probability vector p, we can use π as the state variable as long as
we recognize that J0 and J1 are homogeneous of degree 0 in π, so that J0(απ) = J0(π) and
J1(απ) = J1(π) ∀α ∈ R. Recall that pj = πj/(1′Nπj), so that, in terms of π, we can rewrite the
above system as:

J0(p) =
N∑
j=1

πj
1′Nπj

∑
k∈acB

λjk |2πΣu|−
1
2

∫
[U(ξj) + βJ0(p∗)] df(y∗ − ξk) +

I∑
i=1

λji∗ [U(ξj) + βJτi0 ]


2J1(p) = J0(p)2 +

N∑
j=1

πj
1′Nπj

∑
k∈acB

λjk |2πΣu|−
1
2

∫ (
2βJ1(p∗)− [U(ξj) + βJ0(p∗)]2

)
df(y∗ − ξk)

+
N∑
j=1

πj
1′Nπj

I∑
i=1

λji∗
(

2βJτi1 − [U(ξj) + βJτi0 ]2
)

I look for a first order approximation to the solution in terms of log deviations from the steady
state conditional distribution. In particular, denote by π the stationary distribution of the
Markov chain {zt}t≥0: π = Λ′π. Notice that π is the steady state conditional distribution in the
limiting case of arbitrarily uninformative signals where Σ−1

u = 0. Introduce π̂ to be the vector
of log deviations from the stationary distribution:

(C.1) π̂jt =
{

log π̃jt − log πj ; j ∈ acB
0 j ∈ aB

,
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where π̃jt = f(yt−ξj)
∑N

k=1 λkjπk,t−1 is the unnormalized probability vector before conditioning
on observations of default at date t, and approximate:

J0(π) ≈ J0(π) +
∂J0(π)′

∂π
diag(π)π̂

J0(π)2 ≈ J0(π)2 + 2J0(π)
∂J0(π)′

∂π
diag(π)π̂

J1(π) ≈ J1(π) +
∂J1(π)′

∂π
diag(π)π̂.

For simplicity, denote: γ00 = J0(π), γ01 = ∂J0(π)
∂π , γ10 = J1(π), and γ11 = ∂J1(π)

∂π , so that:

J0(π) ≈ γ00 + γ′01diag(π)π̂
J0(π)2 ≈ γ2

00 + 2γ00γ
′
01diag(π)π̂

J1(π) ≈ γ10 + γ′11diag(π)π̂.

Notice that the restrictions J0(απ) = J0(π) and J1(απ) = J1(π) imply that:∑
j∈acB

γ01,jπj = 0

∑
j∈acB

γ11,jπj = 0.

Consider now the updating rule for log deviations from the steady state. Recall that unnor-
malized probabilities are updated according to:

π∗i = f(y∗ − ξj)
N∑
k=1

λkjπk,

or, equivalently,
π∗j
πj

= f(y∗ − ξj)
∑
k∈acB

λkj
πk
πj

πk
πk
.

Taking logs of both sides, we obtain the following updating rule for log deviations from the
stationary distribution:

π̂∗j = log f(y∗ − ξj) + log

∑
k∈acB

λkj
πk
πj

exp(π̂k)

 .

Approximating once again around π̂ =
−→
0 , we obtain:

π̂∗j ≈ log f(y∗ − ξj) + log

∑
k∈acB

λkj
πk
πj

+

∑
k∈acB

λkjπk

−1 ∑
k∈acB

λkjπkπ̂k.
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Denote: L0j = log
(∑

k∈acB
λkj

πk
πj

)
, L1,jk =

(∑
k∈acB

λkjπk

)−1
λkj , so that the first order ap-

proximation to the evolution equation is given by:

π̂∗j ≈ log f(y∗ − ξk) + L0j + L′1jdiag(π)π̂.

Notice also that, after observing the default state of firm i, i∗, the predicted vector of conditional
distribution is given by:

π̂∗j = log f(y∗ − ξj) + log λi∗j − log πj , ∀j ∈ acB.

Similarly, approximate:
pj =

πj
1′Nπ

=≈ πj(1 + π̂j − π′π̂).

Substituting into the above system and equating coefficients, we obtain the following system:

γ00 =
∑
j∈acB

πj

U(ξj) + β
∑
k∈acB

λjk
(
γ00 + γ′01diag(π)diag(1acB )[∆1

k + L0]
)(C.2)

+β
∑
j∈acB

πj

I∑
i=1

λji∗J
τi
0

γ01,j = U(ξj) + β
∑
k∈acB

λjk
(
γ00 + γ′01diag(π)diag(1acB )[∆1

k + L0]
)

(C.3)

+β
I∑
i=1

λji∗J
τi
0 − γ00 + βγ′01diag(π)diag(1acB )L′1j

 ∑
l,k∈acB

πlλlk


Jτi0 =

∑
k∈acB

λi∗k

(
U(ξi∗) + β

[
γ00 + γ′01diag(π)diag(1acB )

(
∆1
k + Ld0i∗

)])
(C.4)

+
I∑
j=1

λi∗j∗
[
U(ξi∗) + βJ

τj
0

]
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2γ10 = γ2
00 −

∑
j∈acB

πjU(ξj)2 + 2β
∑

j,k∈acB

πjλjk
(
γ10 + γ′11diag(π)diag(1acB )[∆1

k + L0]
)

(C.5)

+β
∑
j∈acB

πj

I∑
i=1

λji∗
[
2Jτi1 − 2U(ξj)Jτi0 − β (Jτi0 )2

]
−2β

∑
j,k∈acB

πjλjkU(ξj)
(
γ00 + γ′01diag(π)diag(1acB )[∆1

k + L0]
)

+β2γ00

∑
j,k∈acB

πjλjkU(ξj)
(
γ00 + 2γ′01diag(π)diag(1acB )[∆1

k + L0]
)

2γ11,j = 2γ00γ01,j + γ2
00 − 2γ10 − U(ξj)2(C.6)

+2β
∑
k∈acB

λjk
(
γ10 + γ′11diag(π)diag(1acB )[∆1

k + L0]
)

+β
I∑
i=1

λji∗
[
2Jτi1 − 2U(ξj)Jτi0 − β (Jτi0 )2

]
−2β

∑
k∈acB

λjkU(ξj)
(
γ00 + γ′01diag(π)diag(1acB )[∆1

k + L0]
)

+β2γ00

∑
k∈acB

λjkU(ξj)
(
γ00 + 2γ′01diag(π)diag(1acB )[∆1

k + L0]
)

+2β (γ11 − (1− βγ00)γ01)′ diag(π)diag(1acB )L′1j

 ∑
l,k∈acB

πlλlk


2Jτi1 = (Jτi0 )2 + 2β

∑
k∈acB

(
γ10 + γ′11diag(π)diag(1acB )[∆1

k + Ld0i]
)

(C.7)

+
I∑
j=1

λi∗j∗
[
2βJτj1 −

(
U(ξi∗) + βJ

τj
0

)]
− U(ξi∗)2

∑
k∈acB

λi∗k

−2βU(ξi∗)
∑
k∈acB

λi∗k

(
γ00 + γ′01diag(π)diag(1acB )[∆1

k + Ld0i]
)

+β2γ00

∑
k∈acB

λi∗k

(
γ00 + 2γ′01diag(π)diag(1acB )[∆1

k + Ld0i]
)
,

where ∆1
k is a constant vector given by:

∆1
kj = −1

2
− 1

2
(ξj − ξk)′Σ−1

u (ξj − ξk).

Consider now the distortion to the conditional joint distribution of next period’s signals and
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state. Recall that, in terms of the value function, this is given by:

φt(z∗, y∗; θ−1) =
exp

(
−βJ(π∗;θ−1)

θ

)
E
[

exp
(
−βJ(π∗;θ−1)

θ

)∣∣∣Ft] .
Taking a first order around the point θ−1 = 0, we obtain:

φ0(z∗, y∗|z = ξj) + θ−1φ1(z∗, y∗|z = ξj) = 1− θ−1β (J0(π∗)− E [J0(π∗)| zt = ξj ]) .

Equating coefficients, we obtain:

φ0(z∗, y∗|z = ξj) = 1
φ1(z∗, y∗|z = ξj) = −β (J0(π∗)− E [J0(π∗)| zt = ξj ]) .

Substituting for J0, we obtain:

φ1(z∗, y∗|z = ξj) = ϕ0 + ϕ′πdiag(π)π̂ + ϕ′y log f(y∗),

where:

ϕ0,jk =



β
(∑I

i=1 λji∗J
τi
0 − γ00 − γ′01diag(π)diag(1acB )L0

)
+β
∑

l∈acB
λjl
[
γ00 + γ′01diag(π)diag(1acB )(∆1

k + L0)
]

j, k ∈ acB
β
(∑I

i=1 λji∗J
τi
0 − J

τk
0

)
+

+β
∑

l∈acB
λjl
[
γ00 + γ′01diag(π)diag(1acB )(∆1

k + L0)
]

j ∈ acB, k ∈ aB
β
(∑I

i=1 λj∗i∗J
τi
0 − γ00 − γ′01diag(π)diag(1acB )Ld0j

)
+β
∑

l∈acB
λj∗l

[
γ00 + γ′01diag(π)diag(1acB )Ld0j

]
j ∈ aB, k ∈ acB

β
(∑I

i=1 λj∗i∗J
τi
0 − γ00 − γ′01diag(π)diag(1acB )Ld0j

)
+β
∑

l∈acB
λj∗l

[
γ00 + γ′01diag(π)diag(1acB )Ld0j

]
j, k ∈ aB

(C.8)

ϕπ,jk =


βγ′01diag(π)diag(1acB )L1

(∑
l∈acB

λjl − 1
)

j, k ∈ acB
βL′1diag(π)diag(1acB )γ01

∑
k∈acB

λjk j ∈ acB, k ∈ aB
0 j ∈ aB

(C.9)

ϕy,jk =


−βγ′01diag(π)diag(1acB ) j, k ∈ acB
−βdiag(π)diag(1acB )γ01 j ∈ aB, k ∈ acB

0 k ∈ aB
(C.10)

Turn now to the distortion to the current period’s conditional probability vector. Recall that
this is given by:

ψt(z) =
exp

(
−U(z)+Rt(βJ(p∗))

θ

)
E
[

exp
(
−U(z)+Rt(βJ(p∗))

θ

)∣∣∣Gt] .
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Approximating once again around the point θ−1 = 0, we obtain:

ψ0(ξj) + θ−1ψ1(ξj) = 1− θ−1
N∑
k=1

λjk |2πΣu|−
1
2

∫
[U(ξj) + βJ0(π∗)] df(y∗ − ξk)

+θ−1
N∑

k,l=1

λlk |2πΣu|−
1
2

∫
[U(ξl) + βJ0(π∗)] df(y∗ − ξk).

Substituting for J0(π∗) and equating coefficients, we obtain:

ψ0(ξj) = 1

ψ1(ξj) =
N∑
l=1

pl [U(ξl)− U(ξj)] + β

N∑
l=1

pl

I∑
i=1

(λli∗ − λji∗)Jτi0

+β
N∑
l=1

pl
∑
k∈acB

(λlk − λjk)
[
γ00 + γ′01diag(π)diag(1acB )

[
∆1
k + L0 + L1diag(π)π̂

]]
Recall that, in terms of log-deviations from the steady state, pl ≈ πl (1 + π̂l − π′π̂). We can
represent:

ψ1(ξj) = ζj0 + ζ ′j1diag(π)π̂,

where:

ζj0 =
∑
l∈acB

πl

U(ξl) + β
∑
k∈acB

λlk
[
γ00 + γ′01diag(π)diag(1acB )(∆1

k + L0)
](C.11)

+β
∑
l∈acB

πl

I∑
i=1

λli∗J
τk
0 − U(ξl)

−β
∑
k∈acB

λlk
[
γ00 + γ′01diag(π)diag(1acB )(∆1

k + L0)
]
− β

I∑
i=1

λli∗J
τk
0

ζj1,k = −ζk0 + βγ′01diag(π)diag(1acB )L′1k

 ∑
l,m∈acB

πlλlm −
∑
l∈acB

λkl

 .(C.12)

C.2 Proof of Lemma 3.3

Notice first that, substituting the first order expansion to the value of equity of firm i into the
worst-case Euler equation and equating coefficients on the powers of θ−1, we obtain the following
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system for Vi0 and Vi1:

Vi0(π) = −Ci +
∑
j∈acB

δiAij + β
∑
k∈acB

λjk |2πΣu|−
1
2

∫
Vi0(π∗)df(y∗ − ξk) + β

∑
k 6=i

λjk∗V
τk
i0


V
τj
i0 = −Ci + δiAij∗ + β

∑
k∈acB

λj∗k |2πΣu|−
1
2

∫
Vi0(π∗)df(y∗ − ξk) +

∑
k 6=i

λj∗k∗V
τk
i0



Vi1(π) =
∑
j∈acB

pjψ1(ξj)

δiAij + β
∑
k∈acB

λjk |2πΣu|−
1
2

∫
Vi0(π∗)df(y∗ − ξk) + β

∑
k 6=i

λjk∗V
τk
i0


+β

∑
j,k∈acB

pjλjk |2πΣu|−
1
2

∫
[Vi0(π∗)φ1(ξk, y∗|ξj) + Vi1(π∗)] df(y∗ − ξk)

+β
∑
j∈acB

pj
∑
k 6=i

λjk∗ [V τk
i0 φ1(ξk∗ |ξj) + V τk

i1 ]

V
τj
i1 = β

∑
k∈acB

λj∗k |2πΣu|−
1
2

∫
[Vi0(π∗)φ1(ξk, y∗|ξj) + Vi1(π∗)] df(y∗ − ξk)

+β
∑
k 6=i

λj∗k∗
[
V τk
i0 φ1(ξk∗ |ξ∗j ) + V τk

i1

]
,

where Aij is the fundamental value of asset of firm i in state j. Substituting the approximations
(3.22)-(3.23) and equating coefficients, we obtain:

νi,00 = −Ci +
∑
j∈acB

πj

δiAij + β
∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB )(L0 + ∆1

k)
]

+ β
∑
k 6=i

λjk∗V
τk
i0


νi,01,j = δiAij + β

∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB )(L0 + ∆1

k)
]

+ β
∑
k 6=i

λjk∗V
τk
i0

−νi,00 + β
∑
k 6=i

λjk∗V
τk
i0 + βν ′i,01diag(π)diag(1acB )L′1j

∑
l,k∈acB

πlλlk

V
τj
i0 = −Ci + δiAij∗ + β

∑
k 6=i

λj∗k∗V
τk
i0 + β

∑
k∈acB

λj∗k

[
νi,00 + ν ′i,01diag(π)diag(1acB )

(
∆1
k + Ld0j

)]
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νi,10 =
∑
j∈acB

πjζj0

δiAij + β
∑
k 6=i

λjk∗V
τk
i0 + β

∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB )(L0 + ∆1

k)
]

+β
∑

j,k∈acB

πjλjk
[
νi,10 + ν ′i,11diag(π)diag(1acB )(L0 + ∆1

k)
]

+β
∑

j,k∈acB

πjλjk
[
νi,00 + ν ′i,01diag(π)diag(1acB )(L0 + ∆1

k)
]
ϕ0,jk

+β
∑

j,k∈acB

πjλjk
[
νi,00ϕ

′
y,jk∆

1
k + ν ′i,01diag(π)diag(1acB )∆2

kϕy,jk
]

+β
∑
j∈acB

πj
∑
k 6=i

λjk∗ [V τk
i0 ϕ0,jk∗ + V τk

i1 ]

νi,11,j = ζj0

δiAij + β
∑
k 6=i

λjk∗V
τk
i0 + β

∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB )(L0 + ∆1

k)
]

+β
∑
k∈acB

λjk
[
νi,10 + ν ′i,11diag(π)diag(1acB )(L0 + ∆1

k)
]

+β
∑
k∈acB

λjk
[
νi,00 + ν ′i,01diag(π)diag(1acB )(L0 + ∆1

k)
]
ϕ0,jk − νi,10

+β
∑
k∈acB

λjk
[
νi,00ϕ

′
y,jk∆

1
k + ν ′i,01diag(π)diag(1acB )∆2

kϕy,jk
]

+ β
∑
k 6=i

λjk∗ [V τk
i0 ϕ0,jk∗ + V τk

i1 ]

+
∑
l∈acB

ζl1,j

δiAil + β
∑
k 6=i

λlk∗V
τk
i0 + β

∑
k∈acB

λlk
(
νi,00 + ν ′i,01diag(π)diag(1acB )(L0 + ∆1

k)
)

+βν ′i,01diag(π)diag(1acB )L′1j
∑
l,k∈acB

πlζl0λlk + βν ′i,11diag(π)diag(1acB )L′1j
∑
l,k∈acB

πlζl0λlk

+βν ′i,01diag(π)diag(1acB )L′1j
∑
l,k∈acB

πlλlk
[
ϕ0,lk + ϕ′y,lk∆

1
k

]
+ β

∑
l∈acB

∑
k 6=i

πlλlk∗V
τk
i0 ϕπ,lk∗,j

+β
∑
l,k∈acB

πlλlk
[
νi,00 + ν ′i,01diag(π)diag(1acB )(L0 + ∆1

k)
]
ϕπ,lk,j

V
τj
i1 = β

∑
k∈acB

λj∗k

[
νi,00 + ν ′i,01diag(π)diag(1acB )(Ld0j + ∆1

k)
]
ϕ0,j∗k

+β
∑
k∈acB

λj∗k
[
νi,00ϕ

′
y,j∗k∆

1
k + ν ′i,01diag(π)diag(1acB )∆2

kϕy,j∗k
]

+β
∑
k∈acB

λj∗k

[
νi,10 + ν ′i,11diag(π)diag(1acB )(Ld0j + ∆1

k)
]

+ β
∑
k 6=i

λj∗k∗ (V τk
i0 φ1(ξk∗ |ξj∗) + V τk

i1 )
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where ∆2
k is a constant matrix given by:

∆2
k,jl ≡ |2πΣu|−

1
2

∫ (
1
2

(y∗ − ξj − u)′Σ−1
u (y∗ − ξj − u)

)(
1
2

(y∗ − ξj − u)′Σ−1
u (y∗ − ξj − u)

)
df(y∗ − ξk)

=
1
4
[
(ξk − ξj)′Σ−1

u (ξk − ξj)
] [

(ξk − ξl)′Σ−1
u (ξk − ξl)

]
+

1
4

(ξk − ξj)′Σ−1
u (ξk − ξj)

+
1
4

(ξk − ξl)′Σ−1
u (ξk − ξl) + (ξk − ξl)′Σ−1

u (ξk − ξj) +
5
4
.

D Risk aversion benchmark

In this section, I investigate the performance of a power utility model in explaining the time
series evolution of credit spreads and equity prices. Instead of solving the portfolio allocation
problem of the representative risk-averse agent, I take the stochastic discount factor as given. In
particular, let St,t+s be the stochastic discount factor between dates t and t+ s. In an economy
where the representative agent evaluates consumption paths using a power utility function:

u(Kt) =
K1−γ
t

1− γ
,

where Kt ≡ K(zt) =
∑I

i=1 δiAi(zt) is the level of consumption at date t and γ > 0 is the degree
of risk aversion, the stochastic discount factor is given by:

(D.1) St,t+s = βs
K−γt+s
K−γt

.

Consider first the CDS spread on a swap with maturity T = t + 6n on the consol bond of
firm i. In the economy with the risk-averse representative agent, this is given by:

ci(t, T ) =
2XiE

[
βτi−tK−γτi 1τi<T

∣∣∣Gt]∑n
s=1 β

6sE
[
K−γt+6s1τi≥t+6s

∣∣∣Gt] .
Notice that:

E
[
βτi−tK−γτi 1τi<T

∣∣Gt] =
T−t∑
s=1

βsE
[
1τi=t+sK

−γ
t+s

∣∣∣Gt]
E
[
K−γt+6s1τi≥t+6s

∣∣∣Gt] = E
[
K−γt+6s

∣∣∣Gt]− 6s∑
k=1

E
[
K−γt+6s1τi=t+k

∣∣∣Gt] .
Let q(n)

ij = P (zt+n = ξj , zt+n−1 6= ξj , . . . , zt+1 6= ξj | zt = ξi) be the probability that t+ n is the
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first hitting time of ξj conditional on being in state i at date t. Then:

E
[
K−γt+s1τi=t+s

∣∣∣Gt] =
N∑
j=1

pjtq
(s)
ji∗K(aBi)

−γ

E
[
K−γt+s

∣∣∣Gt] =
∑
j∈acB

pjt

N∑
k=1

{Λs}jk K(ξk)−γ

E
[
K−γt+s11τi=t+s2

∣∣∣Gt] =
∑
j∈acB

pjtqji∗
N∑
k=1

{
Λs1−s2

}
jk
K(ξk)−γ .

Table 7 presents the 5 year CDS spreads on the financial institutions for different levels of risk
aversion at four of interest – before the start of the crisis, July 2007, at the start of the crisis in
August 2007, after the bailout of Bear Stearns in March 2008 and after the liquidation of Lehman
Brothers in September 2008 – together with the observations of the 5 year CDS spreads at these
dates. Notice first that while the model-implied credit spreads do increase during the crisis, the
magnitude of the model-implied spreads remains much smaller than that of the observed CDS
spreads. The only exception is JP Morgan, the model-implied spreads for which exceed the
observed ones during the crisis. Notice also, that the dependence on the degree of risk aversion
is not monotone. In particular, although the spreads increase initially as the degree of risk
aversion increases, further increases in risk aversion decrease the model-implied CDS spreads.

Consider now the date t price of a claim to the equity of firm i. Using the stochastic discount
factor of the risk-averse agent, the equity price satisfies the Euler equation:

(D.2) Vit = E [δiAit − Ci + St,t+11τi>t+1Vi,t+1| Gt] .

Similarly to the case with model misspecification, I look for a first order approximation to the
equity price in terms of log deviations from the steady state:

Vir(πt) = νir,0 + ν ′ir,1diag(π)π̂t +O2(π̂t).

Substituting into the Euler equation and equation coefficients, we obtain:

νir,0 =
∑
j∈acB

πj

δiAij − Ci + β
∑
k∈acB

K(ξk)−γ

K(ξj)−γ
λjk
[
νir,0 + ν ′ir,1diag(π)diag(1acB

(
L0 + ∆1

k

)]
+β

∑
j∈acB

πj
∑
k 6=i

λjk∗
K(ξk∗)−γ

K(ξj)−γ

νir,1j = δiAij − Ci + β
∑
k∈acB

K(ξk)−γ

K(ξj)−γ
λjk
[
νir,0 + ν ′ir,1diag(π)diag(1acB

(
L0 + ∆1

k

)]
+β
∑
k 6=i

λjk∗
K(ξk∗)−γ

K(ξj)−γ
− νir,0 + βν ′ir,1diag(π)diag(1acB )L′1j

∑
l,k∈acB

πlλlk
K(ξk)−γ

K(ξl)−γ
.
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Similarly, at the time of default of firm j, the equity price of firm i solves:

V
τj
ir = δiAij∗ − Ci + β

∑
k∈acB

K(ξk)−γ

K(ξj∗)−γ
λj∗k

[
νir,0 + ν ′ir,1diag(π)diag(1acB )

(
L0 + L1diag(π)π̂ + ∆1

k

)]
+β
∑
k 6=i

λj∗k∗
K(ξk∗)−γ

K(ξj∗)−γ
V τk
ir .
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Figure 1: Differences between the reference transition probabilities and the misspecification-
implied transition probabilities for θ = 0.5. The parameters used are those of Section 3.3.1.
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Figure 2: Differences between the reference transition probabilities and the misspecification-
implied transition probabilities for θ = 1. The parameters used are those of Section 3.3.1.
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BAC BSC Citi GS JPM MER MS WB WFC
δ 3.67 3.41 3.97 4.46 9.67 3.39 4.69 3.13 3.13
D 1398608 381237.992 2093112 891128 1338831 1034133 1160482 647525 492564
X 47.61 70.20 67.91 98.77 75.05 66.96 65.11 45.07 46.35
C 530.96 120.85 767.83 669.21 496.40 305.24 404.80 225.59 202.27

Table 2: Parameters estimated outside the MCMC procedure of Appendix A. δ, the fraction of
assets generated as payoffs, and X, the payment in case of default, are reported in percentage
terms; D is the face value of the consol bond, taken to be the last available observation of
long-term debt; C is the monthly coupon payment on the consol bond.
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ζf

BAC BSC Citi GS JPM MER MS WB WFC
7.40 7.98 9.66 5.54 10.00 9.21 9.11 9.37 9.13
9.83 6.92 9.58 5.29 9.99 9.10 9.00 9.28 9.02
9.75 7.93 6.91 5.19 9.92 9.08 8.98 9.27 8.99
9.74 7.91 9.55 0.13 9.91 9.04 8.97 9.25 8.95
9.86 7.99 9.71 5.57 8.00 9.01 8.91 9.17 8.86
9.98 8.07 9.90 5.99 10.11 8.02 8.87 9.16 8.85
9.89 7.99 9.73 5.66 10.03 9.12 6.82 9.14 8.85
9.73 7.91 9.54 5.19 9.91 8.98 8.88 7.49 8.84
9.75 7.92 9.59 5.21 9.95 9.01 8.90 9.19 7.05
9.73 7.88 9.52 5.05 9.90 8.99 8.87 9.14 8.84
9.74 7.94 9.58 5.28 9.91 9.04 8.91 9.16 8.88
9.86 8.01 9.73 5.66 10.02 9.12 8.99 9.27 8.98
9.69 7.89 9.49 5.10 9.90 8.98 8.85 9.10 8.80
9.71 7.89 9.54 5.16 9.88 9.02 8.87 9.13 8.85
9.71 7.91 9.55 5.14 9.90 9.01 8.87 9.13 8.83
9.78 7.94 9.60 5.37 9.95 9.03 8.93 9.18 8.89
9.75 7.92 9.57 5.30 9.93 9.03 8.92 9.18 8.87
9.83 7.97 9.67 5.47 10.00 9.09 8.98 9.23 8.96

ζc

4.06 4.82

ρ

BAC BSC Citi GS JPM MER MS WB WFC
0.20 0.00 0.09 0.01 0.27 0.09 0.09 0.06 0.01

Ωc

99.32 0.68
0.54 99.46

Ωf

54.90 2.74 2.63 2.56 2.71 2.68 2.60 2.58 2.66 2.70 2.53 2.63 2.73 2.64 2.63 2.63 2.70 2.75
2.58 55.04 2.61 2.68 2.69 2.73 2.66 2.66 2.65 2.66 2.59 2.57 2.62 2.64 2.69 2.59 2.74 2.61
2.63 2.65 55.12 2.65 2.60 2.59 2.72 2.66 2.71 2.68 2.67 2.65 2.59 2.69 2.57 2.57 2.63 2.62
2.63 2.65 2.61 55.08 2.63 2.75 2.53 2.63 2.68 2.62 2.65 2.65 2.63 2.69 2.67 2.62 2.69 2.62
2.62 2.64 2.57 2.73 54.93 2.60 2.73 2.63 2.70 2.62 2.66 2.59 2.59 2.73 2.66 2.62 2.70 2.68
2.68 2.64 2.67 2.62 2.63 54.99 2.80 2.59 2.59 2.64 2.59 2.65 2.55 2.77 2.68 2.57 2.70 2.62
2.79 2.66 2.64 2.67 2.67 2.61 54.87 2.68 2.70 2.58 2.67 2.67 2.63 2.69 2.66 2.59 2.63 2.60
2.65 2.54 2.76 2.65 2.75 2.76 2.47 54.97 2.69 2.63 2.72 2.65 2.54 2.61 2.72 2.61 2.65 2.62
2.70 2.67 2.60 2.64 2.84 2.67 2.65 2.66 54.98 2.59 2.52 2.58 2.73 2.64 2.67 2.73 2.56 2.57
2.73 2.58 2.65 2.70 2.64 2.63 2.74 2.62 2.67 54.76 2.69 2.56 2.69 2.62 2.74 2.67 2.58 2.73
2.70 2.58 2.71 2.64 2.58 2.65 2.68 2.62 2.51 2.78 55.04 2.71 2.61 2.57 2.62 2.68 2.66 2.65
2.63 2.65 2.58 2.68 2.62 2.57 2.61 2.62 2.57 2.66 2.75 55.23 2.62 2.56 2.66 2.69 2.74 2.57
2.64 2.66 2.64 2.57 2.57 2.75 2.69 2.66 2.64 2.67 2.60 2.57 55.08 2.53 2.64 2.76 2.64 2.69
2.58 2.59 2.63 2.60 2.64 2.69 2.65 2.61 2.65 2.63 2.61 2.58 2.68 54.96 2.60 2.73 2.79 2.81
2.61 2.66 2.67 2.66 2.60 2.59 2.67 2.65 2.75 2.67 2.75 2.66 2.60 2.60 54.82 2.71 2.68 2.63
2.74 2.67 2.53 2.65 2.65 2.61 2.66 2.73 2.72 2.61 2.62 2.72 2.62 2.76 2.70 54.82 2.51 2.65
2.67 2.65 2.61 2.58 2.70 2.66 2.68 2.71 2.68 2.61 2.65 2.60 2.70 2.59 2.74 2.70 54.87 2.58
2.59 2.64 2.66 2.63 2.52 2.64 2.67 2.69 2.65 2.64 2.66 2.76 2.62 2.72 2.61 2.70 2.71 54.88

Σu

BAC BSC Citi GS JPM MER MS WB WFC CS10
BAC 31.92 3.85 8.56 -0.05 7.85 3.71 5.99 6.69 5.76 0
BSC 3.85 25.47 3.85 0.01 4.02 2.34 3.14 3.63 2.81 0
Citi 8.56 3.85 32.76 -0.04 7.49 3.80 6.21 6.67 6.23 0
GS -0.05 0.01 -0.04 14.45 -0.03 0.01 -0.06 -0.02 -0.03 0

JPM 7.85 4.02 7.49 -0.03 35.26 4.10 5.10 7.12 5.23 0
MER 3.71 2.34 3.80 0.01 4.10 25.42 2.96 3.63 3.08 0
MS 5.99 3.14 6.21 -0.06 5.10 2.96 27.16 4.76 4.32 0
WB 6.69 3.63 6.67 -0.02 7.12 3.63 4.76 29.20 4.88 0

WFC 5.76 2.81 6.23 -0.03 5.23 3.08 4.32 4.88 27.54 0
CS10 0 0 0 0 0 0 0 0 0 72.93

Table 3: Reference model parameters estimated using the MCMC procedure of Appendix A.
The transition probability matrices Ωf and Ωc as well as the covariance matrix Σu are reported
in percentage terms. The parameters are estimated using 10000 draws from the Gibbs sampler,
with a 1000 draw burn-in period.
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Pre-crisis Pre- Bear Stearns Pre- Lehman Brothers
θ−1 0.52 0.43 0.51

St.Dev. 0.026 0.031 0.029

Table 4: Estimates of the misspecification parameter θ−1 and the standard deviation of the
parameter using different periods of observations of CDS rates. Draws are made using the
Metropolis-Hastings procedure.

BAC BSC Citi GS JPM MER MS WB WFC

July 31 2007
36.2 161.7 37.2 81.2 55 74.7 75.2 39.5 35.9
29.6 51.3 34.9 71.2 54.7 73.8 73.2 39.3 38.7

August 31 2007
39.7 135.7 45.5 68.8 45.4 71.7 68.8 39.4 35
22.1 128.7 41.4 36.5 43.2 72.2 64.7 32.3 32.2

March 31 2008
86.8 122.7 138.2 115 87.5 195.8 153.9 142.8 80.8
65.1 157.0 128.62 133.9 85.3 109.7 93.4 83.2 90.9

September 30 2008
170 143.3 301.7 452.5 143.8 410.8 1022 385.8 170

102.7 144.5 486.4 482.8 152.6 380.03 317.3 386.5 138.1

October 31 2008
133.1 120.2 197.6 313.3 119.9 216.2 413.3 121 97.2
133.3 161.3 178.8 380.7 146.6 203.5 416.26 131.3 93.1

Table 5: Observed 5 year CDS rates and model-implied 5 year CDS rates at four different dates.
The reference model parameters are estimated using the Gibbs sampling procedure of Appendix
A and the misspecification parameter θ−1 using the Metropolis-Hastings procedure
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Panel A: Misspecified Model

BAC BSC Citi GS JPM MER MS WB WFC

July 31 2007
9.47 8.66 9.89 9.42 7.43 10.73 11.28 11.07 10.93
28.16 -24.32 -22.76 134.71 -10.12 -14.55 -1.26 -14.59 -14.61

August 31 2007
7.39 11.48 12.88 3.95 8.31 12.59 11.46 13.00 12.84

-21.92 32.53 30.19 -58.01 11.95 17.41 1.63 17.44 17.50

March 31 2008
7.55 0.00 10.32 3.84 5.62 10.13 9.58 10.60 10.42
2.06 -100.00 -19.46 -4.24 -31.99 -19.24 -16.12 -18.17 -18.51

September 30 2008
9.08 – 9.59 8.79 7.07 10.43 10.99 10.77 10.63
20.42 – -26.21 120.86 -14.97 -15.87 -2.80 -15.87 -15.91

October 31 2008
7.47 – 12.98 3.67 8.06 12.21 11.15 12.63 12.47

-17.77 – 35.38 -58.28 13.95 17.08 1.39 17.27 17.27

Panel B: Reference Model

BAC BSC Citi GS JPM MER MS WB WFC

July 31 2007
16.47 16.47 16.47 16.47 16.47 16.47 16.47 16.47 16.47
0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

August 31 2007
16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46 16.46
-0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03

March 31 2008
11.23 0.00 11.26 11.23 11.21 11.19 11.21 11.22 11.21
-31.74 -100.00 -31.63 -31.79 -31.88 -31.98 -31.90 -31.81 -31.87

September 30 2008
11.23 – 11.25 11.25 11.26 11.22 11.21 11.22 11.22
-28.05 – -27.97 -27.99 -27.92 -28.12 -28.18 -28.13 -28.15

October 31 2008
11.32 – 11.35 11.34 11.35 11.32 11.31 11.32 11.31
0.81 – 0.85 0.84 0.79 0.84 0.85 0.87 0.85

Table 6: Expected time to default and the percentage change in the expected time to default
relative to previous month for different financial institutions. Panel A: expected time to de-
fault perceived by the misspecification-averse agent. Panel B: expected time to default under
the reference model. The reference model parameters are estimated using the Gibbs sampling
procedure of Appendix A and the misspecification parameter θ−1 using the Metropolis-Hastings
procedure.
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July 31 2007

Data 0 0.5 1 2 3 4 5
BAC 36.2 1.3 1.4 1.6 1.7 1.7 1.5 1.2
BSC 161.7 1.6 1.6 1.6 1.6 1.4 1.0 0.7
Citi 37.2 1.4 1.5 1.5 1.6 1.5 1.2 0.9
GS 81.2 1.4 1.4 1.3 1.2 1.0 0.8 0.5

JPM 55 1.2 1.8 2.7 5.7 10.8 17.9 25.9
MER 74.7 1.4 1.5 1.6 1.7 1.6 1.4 1.0
MS 75.2 1.4 1.5 1.6 1.8 1.7 1.5 1.1
WB 39.5 1.4 1.5 1.6 1.7 1.7 1.5 1.1

WFC 35.9 1.4 1.5 1.6 1.7 1.7 1.4 1.1

August 31 2007

Data 0 0.5 1 2 3 4 5
BAC 39.7 1.9 2.1 2.2 2.5 2.5 2.2 1.7
BSC 135.7 2.1 2.1 2.1 2.0 1.7 1.3 0.9
Citi 45.5 2.0 2.1 2.2 2.2 2.1 1.7 1.2
GS 68.8 2.0 2.0 1.9 1.8 1.5 1.1 0.7

JPM 45.4 1.8 2.6 3.9 8.2 15.6 25.9 37.5
MER 71.7 2.0 2.1 2.2 2.4 2.3 2.0 1.5
MS 68.8 2.0 2.1 2.3 2.5 2.5 2.2 1.6
WB 39.4 2.0 2.1 2.3 2.5 2.5 2.1 1.6

WFC 35 2.0 2.1 2.3 2.4 2.4 2.0 1.5

March 31 2008
Data 0 0.5 1 2 3 4 5

BAC 86.8 19.0 19.4 19.6 19.2 17.3 13.9 9.9
BSC 122.7 861.4 795.8 729.6 591.7 445.4 301.7 181.3
Citi 138.2 19.5 19.3 18.9 17.4 14.7 11.1 7.4
GS 115 20.2 18.8 17.4 14.2 10.7 7.2 4.2

JPM 87.5 18.6 26.2 36.5 67.9 116.0 176.8 237.7
MER 195.8 20.4 20.6 20.6 19.6 17.2 13.4 9.3
MS 153.9 19.9 20.2 20.4 19.8 17.7 14.1 9.9
WB 142.8 19.8 20.1 20.2 19.5 17.3 13.7 9.5

WFC 80.8 19.7 19.9 20.0 19.1 16.8 13.2 9.2

September 30 2008

Data 0 0.5 1 2 3 4 5
BAC 170 19.2 19.6 19.8 19.5 17.5 14.1 10.0
BSC 143.3 19.8 18.8 17.7 14.9 11.6 8.1 4.9
Citi 301.7 19.8 19.6 19.2 17.7 15.0 11.3 7.5
GS 452.5 19.7 18.4 17.0 13.9 10.5 7.0 4.1

JPM 143.8 17.5 24.6 34.3 63.9 109.2 166.4 223.8
MER 410.8 19.7 19.9 19.8 18.9 16.6 13.0 9.0
MS 1022 20.0 20.3 20.5 19.9 17.8 14.2 9.9
WB 385.8 20.1 20.4 20.5 19.7 17.5 13.9 9.7

WFC 170 19.7 20.0 20.0 19.2 16.9 13.3 9.2

Table 7: Observed five year CDS and implied CDS for different levels of the risk aversion
coefficient, γ, at four different dates. The reference model parameters are estimated using the
Gibbs sampling procedure of Appendix A.
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Figure 3: Differences between the reference conditional probabilities and the misspecification-
implied conditional probabilities. Left column: θ = 0.1; right column: θ = 1. The parameters
used are those of Section 3.3.1.
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Figure 4: 5 year CDS rate for various values of the misspecification parameter θ−1 when no
defaults have occurred. The parameters used are those of Section 3.3.1.
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Figure 5: Percentage change in the 5 year CDS rate for various values of the misspecification
parameter θ−1 after the other firm defaults. The parameters used are those of Section 3.3.1.
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Figure 6: Expected time to default for various values of the misspecification parameter θ−1 when
no defaults have occurred. The parameters used are those of Section 3.3.1.
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Figure 7: Percentage change in the expected time to default for various values of the misspeci-
fication parameter θ−1 after the other firm defaults. The parameters used are those of Section
3.3.1.
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Figure 8: Evolution of the five year CDS spreads for financial institutions over the course of the
crisis. Data source: Datastream
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Figure 9: Filtered estimates of fundamental asset value evolution (left-hand scale) and the ob-
served book value evolution (right-hand scale) for different financial institutions. Parameters are
estimated using the Gibbs Sampling procedure of Appendix A with 10000 draws and 1000 draw
burn-in. The different states are weighted using the reference model conditional probabilities.
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Figure 10: Components of relative entropy between the reference and misspecified models over
time. Upper panel: entropy due to misspecification of the joint signals and states dynamics;
central panel: entropy due to misspecification of the current period conditional probability; lower
panel: total entropy. The right hand scale in each panel is the three month moving average of
the corresponding entropy measure. The misspecification parameter, θ−1 is estimated using a
Metropolis-Hastings algorithm and observations of CDS spreads.
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Figure 11: Value of equity under the misspecified model (left-hand scales) and the observed value
of equity (right-hand scale) of the different financial institutions over time. The misspecification
parameter, θ−1 is estimated using a Metropolis-Hastings algorithm and observations of CDS
spreads.
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