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Abstract

Consider a seller who can trade an endowment of a perfectly divisible good, the
quality of which she privately knows. Buyers compete for this good by offering menus
of non-exclusive contracts, so that the seller can privately trade with several buyers.
In this setting, we show that an equilibrium exists under mild conditions, and that
aggregate equilibrium allocations are generically unique. Although the good for sale is
divisible, in equilibrium the seller ends up trading her whole endowment, or not trading
at all. Trades take place at a price equal to the expected quality of the good, conditional
on the seller being ready to trade at that price. Our model thus provides a novel
strategic foundation for Akerlof’s (1970) results. It also contrasts with competitive
screening models in which contracts are assumed to be exclusive, as in Rothschild and
Stiglitz (1976). Latent contracts that are issued but not traded in equilibrium play an
important role in our analysis.
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1 Introduction

A fundamental reason why markets can fail is that the quality of the goods for sale is

privately known by the sellers who offer them. In such a case, buyers may be concerned

by the fact that, at any given price, only sellers of low quality goods are ready to trade.

Despite the growing role of institutions such as certification or rating agencies, it is widely

believed that this adverse selection phenomenon still represents a major obstacle to the

efficient functioning of financial, insurance, and second-hand markets.

Two main approaches have been proposed to model markets prone to adverse selection.

In Akerlof (1970), non-divisible goods of uncertain quality are traded on a market where

privately informed sellers and uninformed buyers act as price takers. In the spirit of general

equilibrium analysis, it is assumed that all trades must take place at the same price, that

equates supply and demand. Since rational buyers are only ready to pay for the average

quality traded, sellers of high quality goods are deterred from offering them; this may in some

cases lead to a complete market breakdown.1 In Rothschild and Stiglitz (1976), uninformed

buyers compete by offering informed sellers contracts for different quantities of a divisible

good. The strategic interactions between buyers are thus explicitly modeled. Contracts are

exclusive: each seller can trade with at most one buyer, which requires that all agents’ trades

can be perfectly monitored at no cost. Different unit prices for different quantities emerge

in equilibrium, which allows sellers to credibly communicate their private information. This

leads to lower levels of trade compared to the complete information case. For instance, in

the context of insurance markets, high risk agents obtain full insurance, and hence sell all

of their risk, while low risk agents signal their quality by selling only part of their risk, at a

higher unit price.

Following Rothschild and Stiglitz (1976), most theoretical and applied contributions to

the literature on competition under adverse selection have considered frameworks in which

contracts are exclusive. This assumption is sometimes appropriate: for instance, in the case

of car insurance, law typically forbids agents to take out multiple policies on a single vehicle.

However, there are also many markets where exclusivity is not enforceable, usually because

little information is available about the agents’ trades. Competition on financial markets

is often non-exclusive, as each agent can trade with multiple partners who cannot monitor

each others’ trades with the agent. Over-the-counter markets, where little information on

1To ease the exposition, we implicitly assume in this introduction that the quality of a good from a
buyer’s point of view and the opportunity cost for a seller of giving away this good move together. The
formal analysis in the remainder of the paper does not rely on such an assumption.
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trading volumes or on the net position of counterparties is publicly available, are a case in

point. Other examples include the US credit card industry (Rysman (2007)), the US life

insurance market (Cawley and Philipson (1999)), and the UK annuity market (Finkelstein

and Poterba (2002, 2004)). Moreover, as the case of over-the-counter markets suggests,

trades on non-exclusive markets are not restricted to take place at the same unit price.

Hence a theory of non-exclusive competition should allow for arbitrary trades, and avoid a

priori restrictions such as linear pricing. Finally, to represent interactions in markets with a

fixed number of participants, such a theory should also be of a strategic nature. Consistent

with these features, this paper is an attempt to understand the impact of adverse selection

in a strategic environment where buyers compete through non-exclusive contracts for the

purchase of a divisible good.

Specifically, we shall consider the following simple model of trade. A seller endowed with

a given quantity of a good may trade it with a finite number of buyers. The seller and the

buyers have linear preferences over quantities and transfers exchanged. In line with Akerlof

(1970), the quality of the good is the seller’s private information. Unlike in his model, and

in line with Rothschild and Stiglitz (1976), the good is assumed to be perfectly divisible, so

that the seller can trade any fraction of her endowment. Buyers are strategic, and compete

by simultaneously offering menus of bilateral contracts, or, equivalently, price schedules: in

particular, there is no presumption that all trades should take place at the same unit price.

After observing the menus offered, and conditional on her private information, the seller

decides which contracts to trade. Unlike in Rothschild and Stiglitz (1976), competition is

non-exclusive: the seller can trade with several buyers, subject only to the constraint that

the aggregate quantity traded does not exceed her endowment. For pedagogical purposes,

we first consider a simple free entry example with a two-type distribution of quality, which

affords an intuitive geometrical illustration of our arguments. We then turn to the case of

a general distribution of quality, which offers a more flexible framework for applications.

In this context, we aim at answering the following questions. Does an equilibrium always

exist? Are equilibrium allocations uniquely determined? Do different types of the seller

end up trading different allocations? At which prices do trades take place? What menus of

contracts are required to sustain an equilibrium?

As a contrast to our results, it is useful to consider what would happen in this environment

if buyers were to compete in menus of exclusive contracts. In that case, the analysis and

the predictions of the model are in line with those in Rothschild and Stiglitz (1976). First,

equilibria, whenever they exist, are separating: the seller can credibly signal the quality of
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the good she offers by trading only part of her endowment. Hence fractional trades are

a necessary feature of equilibrium, despite the linearity of preferences. Second, the very

existence of an equilibrium is problematic. When quality has a two-type distribution, pure

strategy equilibria exist if and only if the probability that the good is of low quality is high

enough. When quality is continuously distributed, pure strategy equilibria fail to exist under

very weak assumptions on the buyers’ preferences.2

The analysis of the non-exclusive competition game yields strikingly different results.

First, pure strategy equilibria exist for a large class of quality distributions, that includes

all continuous distributions. Next, aggregate equilibrium allocations are generically unique,

and feature no fractional trades: depending on whether quality is low or high, the seller

either trades her whole endowment or does not trade at all. Thus equilibria typically exhibit

partial pooling, and are characterized by a threshold level of quality that separates the two

trading regimes. These allocations can be supported by simple menu offers. For instance,

there always exists an equilibrium in linear price schedules, whereby each buyer offers to

purchase any quantity at the same unit price. This price is equal to the expectation of

the quality of the good, conditional on the seller being ready to trade at that price. While

non-linear price schedules are also consistent with equilibrium, this price turns out to be

the unit price of any contract traded in any equilibrium. That all trades take place at the

same unit price is therefore not an assumption, but rather a consequence of our analysis.

Consequently, all equilibria have the Bertrand-like feature that all buyers earn zero expected

profits, regardless of their number.

These results are of course in line with Akerlof’s (1970) classic study of the market for

lemons, for which they provide a novel strategic foundation. It is therefore worth stressing the

distinctive features of our model. First, the seller can trade any fraction of her endowment

(divisibility). Second, contracting between the buyers and the seller is bilateral, and the

seller can simultaneously trade with several buyers (non-exclusivity). Third, there is a finite

number of strategic buyers (imperfect competition). Fourth, buyers can offer arbitrary menus

of contracts (price schedules). Along with the simplicity of its predictions, these assumptions

make the model applicable to a rich variety of situations.

An important insight of our analysis is that non-exclusivity has two consequences for the

set of deviations that are available to any given buyer. On the one hand, non-exclusivity

tends to expand this set, as the buyer may choose to complement the other buyers’ offers

2See Attar, Mariotti, and Salanié (2009, Proposition 7) for a precise statement. That the non-existence
problem is particularly severe when the seller’s private information is continuously distributed is in line with
Riley (1985, 2001).
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by proposing the seller to trade an additional quantity. We call this behavior pivoting, and

paradoxically it allows each buyer to benefit from the aggressive offers of his competitors.

Compared to the exclusive case, in which pivoting is ruled out by assumption, this tends

to mitigate competition. For instance, such deviations prevent one from supporting the

usual Rothschild and Stiglitz’s (1976) allocation in equilibrium. On the other hand, non-

exclusivity also gives the other buyers more instruments to block deviations. This makes it

difficult to design one’s menu offer so as to attract the seller precisely when the quality of the

good she offers lies in some target set. Suppose for instance that the equilibrium price is low,

so that high quality endowments are not traded, and that some buyer attempts to deviate

and purchase only these. To attract a seller of a high quality good, this cream-skimming

deviation must involve trading a relatively small quantity at a relatively high price. However,

this contract becomes also attractive to the seller of a low quality good if, along with it, she

can also trade the remaining part of her endowment with the other buyers at the equilibrium

price. Thus cream-skimming deviations can be blocked by latent contracts, that is, contracts

that are not traded in equilibrium, but which the seller finds it profitable to trade at the

deviation stage. As the above example suggests, these latent contracts need not be complex

nor exotic: in the linear price schedule equilibrium, all the latent contracts are issued at the

equilibrium price. We show that, in general, many contracts need to be issued to support

the equilibrium allocations. This is particularly striking when the distribution of quality is

discrete, since then only finitely many contracts are effectively traded, while infinitely many

latent contracts must be issued. In particular, no equilibrium can in this case be sustained

through direct revelation mechanisms.

Related Literature Pauly (1974) and Jaynes (1978) are the first authors to analyze

competition through non-exclusive contracts in markets prone to adverse selection. Pauly

(1974) stresses that Akerlof-like outcomes will typically prevail in insurance markets where

intermediaries are restricted to post linear price schedules. Jaynes (1978) shows that the

separating equilibria characterized by Rothschild and Stiglitz (1976) are vulnerable to entry

by an intermediary proposing additional trades that could be concealed from the rest of the

industry. In addition, he argues that the non-existence problem identified by Rothschild

and Stiglitz (1976) can be overcome if the sharing of information about agents is explicitly

modeled as part of the game among intermediaries.3

This paper is also closely related to the literature on common agency between competing

principals dealing with a privately informed agent. Following Stole (1990) and Martimort

3See Hellwig (1988) for a discussion of the relevant extensive form for the inter-firm communication game.
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(1992), a number of recent contributions have used standard mechanism design techniques

to construct equilibrium allocations in common agency games with incomplete information.4

The basic idea is that, given a profile of menus offered by his competitors, the best response

of each principal can be computed by focusing on simple menu offers that correspond to

direct revelation mechanisms. In practice, however, this best response can be effectively

characterized only to the extent that the agent’s indirect utility function that represents

her preferences in her relationship with this principal satisfies certain regularity conditions.

These conditions, such as continuity and single-crossing, are robustly violated in our model,

because we impose no a priori structure on the menus offered by the buyers, and because

the seller faces a capacity constraint. As a result, the standard methodology does not

apply. Instead, we derive restrictions on candidate equilibrium allocations by testing them

against a set of well chosen deviations. Remarkably, this procedure allows us to obtain a full

characterization of aggregate equilibrium allocations.

Biais and Mariotti (2005) construct a linear price schedule equilibrium for a version of

our non-exclusive trading game, in which gains from trade arise because the seller is more

impatient than the buyers. They focus on the particular case where the unconditional average

value of the good for the buyers is equal to the highest possible value of the good for the

seller. This non-generic situation arises endogenously in a model where the seller is the issuer

of a security, which she can optimally design ex-ante. By contrast, our analysis is general,

in that we allow for a large class of quality distributions, and offer a full characterization of

aggregate equilibrium allocations, which are shown to be generically unique.

Another related paper in the common agency literature is Biais, Martimort, and Rochet

(2000), who study a financial market in which uninformed market-makers compete in a

non-exclusive way by supplying liquidity to an informed insider. Unlike the seller in our

model, the insider has strictly convex preferences and faces no capacity constraint. Using the

methodology outlined above, Biais, Martimort, and Rochet (2000) construct an equilibrium

in which market-makers post convex price schedules, and that is unique within that class.5

One of the main features of this equilibrium is that each market-maker is indispensable in

providing utility to the insider; as a result, market-makers end up earning strictly positive

profits. This makes this equilibrium rather different from those we characterize in our setting:

indeed, using a pivoting argument, we show that no buyer is ever indispensable, as the

4See for instance Biais, Martimort, and Rochet (2000), Martimort and Stole (2003, 2009), Calzolari
(2004), Laffont and Pouyet (2004), or Khalil, Martimort, and Parigi (2007).

5Piaser (2006) shows that, given these restrictions, this equilibrium can actually be sustained through
direct revelation mechanisms.
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aggregate equilibrium allocations must remain available to the seller in the hypothetical

case where some buyer would withdraw his menu offer. Hence our results hold regardless of

the number of competing buyers. Another difference is that all trades take place at the same

unit price in any equilibrium of our model, while unit prices vary with the insider’s private

information in the equilibrium constructed by Biais, Martimort, and Rochet (2000). We

postpone until Section 5.2 a detailed analysis of the relationships between these two trading

environments.

The importance of latent contracts as a strategic device to sustain equilibria has been

mainly emphasized in moral hazard environments.6 Hellwig (1983) and Arnott and Stiglitz

(1991) argued that latent contracts play the role of threats to deter entry in insurance markets

where agents’ effort decisions are non-contractible. As a result, positive profits for active

intermediaries typically arise in equilibrium. These intuitions have been extended by Bizer

and DeMarzo (1992) and Kahn and Mookherjee (1998) to situations where intermediaries

act sequentially, while the equilibrium features of latent contracts and the corresponding

welfare implications have been further examined by Bisin and Guaitoli (2004) and Attar and

Chassagnon (2009). A key insight of our analysis is that latent contracts can also be used

to deter cream-skimming deviations in adverse selection environments.

Ales and Maziero (2009) study a model of non-exclusive competition where workers

privately informed about their labor productivity shocks insure their idiosyncratic risk by

contracting with several insurance companies. Unlike in our model, in which the seller’s

participation decisions are made at the interim stage, workers choose the firms from whom

they will purchase insurance ex ante, before any uncertainty is realized. Then, in any

of the following periods, they observe their current productivity shocks and make their

consumption and labor decisions. Firms compete at date zero by offering menus of contracts

for each relevant period. Productivity shocks have no impact on their profits. This private

value assumption stands in sharp contrast with the analysis developed in the present paper,

where, as in Akerlof (1970), the quality of the seller’s good directly affects the buyers’ profits.

This assumption notably implies that firms have no incentive to attract a strict subset of

workers’ types by using cream-skimming deviations. As a result, firms are effectively engaged

in Bertrand-like price competition. Ales and Maziero (2009) show that the only aggregate

equilibrium allocation involves no wealth redistribution between different types of workers,

and that it can be supported by linear price schedules. In contrast with our results, no

worker is excluded from trade, and firms earn zero profit on each traded contract, which

6See however Piaser (2010) for a general discussion of the role of latent contracts in incomplete information
environments.
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rules out cross-subsidization. Latent contracts play a role in sustaining the equilibrium, as

they guarantee that firms cannot unilaterally gain by redistributing wealth from productive

to unproductive workers.

An alternative approach to the study of non-exclusive competition under adverse selection

has been suggested by Bisin and Gottardi (1999, 2003) in the context of general equilibrium

analysis. They focus on situations where none of the agents’ trades can be monitored. As

a consequence, the terms of each contract must be independent of the exchanges made in

every market, which forces prices to be linear. It should be noted that when this restriction

is postulated, competitive equilibria may fail to exist in robust circumstances (Bisin and

Gottardi (1999, 2003)). To restore existence, some non-linearity in prices, or, equivalently,

some observability of trades must be reintroduced in the model. This can be achieved through

bid-ask spreads (Bisin and Gottardi (1999)) or entry fees (Bisin and Gottardi (2003)). By

contrast, the present paper starts from the alternative assumption that buyers can commit

to arbitrary menu offers, which we see as a natural feature of competition in contracts.

The paper is organized as follows. Section 2 describes the model. In Section 3, we analyze

a two-type example of our model under free entry. Section 4 provides a detailed analysis

of the general model with an arbitrary distribution of quality. In Section 5, we discuss the

robustness of our results. Section 6 concludes.

2 Non-Exclusive Trade under Adverse Selection

2.1 The Model

There are two kinds of agents: a single seller, and a finite number of buyers indexed by

i = 1, . . . , n, where n ≥ 2. The seller has an endowment consisting of one unit of a perfectly

divisible good that she can trade with one or several buyers. Let qi be the quantity of

the good purchased by buyer i, and ti the transfer he makes in return. Feasible trades

((q1, t1), . . . , (qn, tn)) are such that qi ≥ 0 for all i and
∑

i q
i ≤ 1. Thus the quantity of

the good purchased by each buyer must be at least zero, and the sum of these quantities

cannot exceed the seller’s endowment. We take the latter as a basic technological, or capacity

constraint, to which the seller’s choices are subject. Observe that, in contrast with quantities,

no restrictions are made on the sign of transfers.

Our specification of preferences follows Samuelson (1984) and Myerson (1985). The

seller’s profit from trading (Q, T ) =
(∑

i q
i,
∑

i t
i
)

in the aggregate is

T − θQ,
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where θ is the seller’s opportunity cost of giving away her endowment. Each buyer i’s profit

from trading (qi, ti) is

v(θ)qi − ti.

Here v(θ) is a measurable function of θ that stands for the quality of the good from the

buyers’ point of view. Observe that there are no externalities across buyers beyond the

fact that the quantities they trade cannot in the aggregate exceed the seller’s endowment.

In particular, there are no efficiency gains from trading with several buyers. We typically

assume that v(θ) is not a constant function of θ, so that both the seller and the buyers care

about the realization of θ. In most of our analysis, however, and unless otherwise stated,

we do not require v(θ) to be increasing or continuous in θ. Gains from trade arise in this

common value environment if v(θ) > θ with strictly positive probability.

In line with Akerlof (1970), mutually beneficial trades are potentially impeded because,

at the trading stage, the seller is privately informed of her opportunity cost, and hence

of the quality of the good. Following standard terminology, we shall refer to θ as to the

type of the seller. Denote by P the distribution of θ, by E the corresponding expectation

operator, and by F the corresponding distribution function. We let θ ≡ inf {θ : F (θ) > 0}
and θ ≡ sup{θ : F (θ) < 1}, and we assume that −∞ < θ < θ < ∞. The distribution P

may be continuous, discrete, or mixed. In any case, the function v is taken to be bounded

over the support of P. It will sometimes be convenient to think as any point in [θ,∞) as a

type, even if it does not belong to the support of P, and accordingly to define the functions

v and F over the whole of [θ,∞). The following assumption will be maintained throughout

the paper.

Assumption 1 If θ is an atom of P, then v(θ) ≥ θ.

Assumption 1 imposes no restriction on v when P is continuous. When P is discrete,

Assumption 1 requires that, with probability 1, there are gains from trade between the

seller and the buyers. This guarantees that an equilibrium always exists under non-exclusive

competition; on the contrary, one can construct examples in which no equilibrium exists if

Assumption 1 fails to hold.

Trading is non-exclusive in the sense that no buyer can contract on the trades that

the seller makes with other buyers.7 Thus, as in Biais, Martimort and Rochet (2000) or

7In particular, buyers cannot make transfers contingent on the whole profile of quantities (q1, . . . , qn)
traded by the seller. This distinguishes our trading environment from a menu auction à la Bernheim and
Whinston (1986).
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Segal and Whinston (2003), a contract describes a bilateral trade between the seller and a

particular buyer; a menu is a set of such contracts. The timing of events in our non-exclusive

competition game is as follows. First, buyers compete in menus for the good offered by the

seller.8 Then, the seller can simultaneously trade with several buyers, subject to her capacity

constraint. Formally:

1. Each buyer i offers a menu of contracts, that is, a set Ci of quantity-transfer pairs

(qi, ti) ∈ [0, 1]× R that contains at least the no-trade contract (0, 0).9

2. After privately learning her type θ, the seller selects one contract (qi, ti) from each of

the menus Ci offered by the buyers, subject to the constraint that
∑

i q
i ≤ 1.

A pure strategy for the seller is a function that maps each type θ and each menu profile

(C1, . . . , Cn) into a vector of contracts ((q1, t1), . . . , (qn, tn)) ∈ C1 × . . . × Cn such that∑
i q
i ≤ 1. To ensure that any type θ’s profit maximization problem

max

{∑
i

ti − θ
∑
i

qi : (qi, ti) ∈ Ci for all i and
∑
i

qi ≤ 1

}
(1)

has a solution, we require the buyers’ menus Ci to be compact sets. The correspondence of

optimal choices associated to (1) has then nonempty compact values and is upper hemicon-

tinuous with respect to θ, so that it admits a measurable selection.10 Thus we can safely

assume that, for any menu profile the buyers may offer, the seller’s strategy is measurable

with respect to her type, which implies in turn that the buyers’ expected profits are well

defined mathematically. Throughout the paper, the equilibrium concept is pure strategy

perfect Bayesian equilibrium.

2.2 Applications

Our model is basically a model of trade, with the following features: (i) a seller faces several

potential buyers; (ii) the good they trade is divisible; (iii) its quality is the seller’s private

information; (iv) the seller may trade with several buyers; (v) the buyers cannot contract on

each other’s trades with the seller. It is easy to think of many markets for which (ii)–(iv)

hold; (i) and (v) deserve more care. Consider first the single seller assumption (i). While it

8As established by Peters (2001) and Martimort and Stole (2002), there is no need to consider more
general mechanisms in this multiple principal single agent setting.

9This requirement allows one to deal with participation in a simple way. It reflects the fact that the seller
cannot be forced to trade with any particular buyer.

10This follows, respectively, from Berge’s maximum theorem, and from Kuratowski and Ryll-Nardzewski’s
selection theorem (Aliprantis and Border (1999, Theorems 16.31 and 17.13)).

9



may be suited to certain applications, many others typically involve multiple sellers. This

does not mean that our analysis is not relevant in such instances, however. Indeed, we

show in Section 5.1 that our characterization of equilibria remains more generally valid in

multiple buyer multiple seller environments where contracting is both bilateral and private.

With regard to the non-exclusivity assumption (v), it should be noted that the mere fact

that an agent engages in multiple contractual relationships, as in (iv), is not evidence that

trades with third parties are not contractible. With these caveats in mind, the following

examples illustrate some possible applications.

Financial Markets In a first interpretation of the model, the seller is an issuer or an

underwriter attempting to raise cash by selling a security backed by some underlying assets,

and the buyers are outside investors. As in DeMarzo and Duffie (1999), or Biais and Mariotti

(2005), gains from trade may arise in this context even if all parties are risk neutral, provided

the issuer discounts future cash-flows at a higher rate than investors do; this may reflect credit

constraints or, in the financial services industry, binding minimum capital requirements. In

this case, the marginal cost of the security for the issuer, that is, its value to her if retained,

is only a fraction of the value of the security to the investors: formally, θ = δv(θ) for some

discount factor δ ∈ (0, 1). Here Q is the total fraction of the security sold by the issuer,

while 1 − Q is the residual fraction of the security that the issuer retains. It is natural to

assume that, at the issuing stage, the issuer has better information than the investors about

the value of the underlying assets, and hence about the value of the security she issues. Non-

exclusivity in this context means that individual investors may not observe the total fraction

of the security sold to the market. The above specification of preferences could also be used

to model trade in an over-the-counter market, where exchanges are typically bilateral and

unobservable to third parties.

Labor Market In an alternative interpretation of the model, the seller is a self-employed

worker, and the buyers are her clients. The worker can provide services to several clients,

and divide her time endowment accordingly. This is the case in legal or financial services,

where a consultant commonly works on behalf of several firms or individuals; similarly, a

craftsman typically has many customers, and a salesman can represent different companies.

The worker’s type θ is her opportunity cost of selling one unit of her time to any given

client, while v(θ) is the productivity of a worker of type θ. Here Q is the total fraction of

time spent working, while 1 − Q is the residual fraction of time that the worker can spend

on leisure. In the above examples, it seems reasonable to assume that trades with third
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parties are not observable, and thus a fortiori not contractible, from the perspective of each

of the worker’s clients. This stylized labor market model differs from the one studied by

Mas-Colell, Whinston and Green (1995, Chapter 13, Section B) in that labor is divisible,

and competition for the worker’s services is non-exclusive.

Insurance Markets The last interpretation of our model is motivated by the fact that

competition on some insurance markets, such as the UK annuity market, is de jure non-

exclusive. The seller is a risk averse agent, and the buyers are insurance companies, with

whom she can trade a risk. The agent has wealth W , and can incur a loss L with privately

known probability ξ. An insurance contract with company i consists of a reimbursement ri

and of a premium pi. To model the agent’s preferences, we rely on Yaari’s (1987) dual theory

of choice under risk: the agent’s utility is linear in wealth but nonlinear in probabilities. As

a result, the utility she derives from aggregate reimbursements R =
∑

i r
i and aggregate

premia P =
∑

i p
i is

W − P − f(ξ)(L−R),

while the profit of insurance company i is

pi − ξri.

One assumes that overinsurance is prohibited, so that R is at most equal to L. Letting

ti ≡ −pi, qi ≡ ri, θ ≡ −f(ξ) and v(θ) ≡ −ξ leads back to our model. Gains from trade arise

in this context if, with strictly positive probability, f(ξ) > ξ, so that the agent puts more

weight on the occurrence of a loss than the insurance companies do.

3 A Two-Type Example with Free Entry

In this section, we illustrate our main results in a simplified version of our model where there

is free entry of buyers, and the seller’s type can be either low, θ = θ, or high, θ = θ, for

some θ > θ > 0. To further simplify the exposition, we assume that the quality of the good

increases with the type of the seller, that is, v(θ) > v(θ), and that it would be efficient to

trade no matter the type of the seller, that is, v(θ) > θ and v(θ) > θ. Finally, to avoid trivial

cases, we assume that ν ≡ P[θ = θ] ∈ (0, 1). Note that this model can be interpreted as

a linearized version of Rothschild and Stiglitz’s (1976), the key difference with their setting

being that competition is non-exclusive.

For a given equilibrium, let (Q, T ) and (Q, T ) be the aggregate equilibrium allocations

of the two types of the seller, which they trade with the incumbent buyers. An immediate
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implication of incentive compatibility is that Q cannot be higher than Q. If the two types of

the seller trade different aggregate allocations in equilibrium, we say that the equilibrium is

separating ; otherwise, we say that the equilibrium is pooling. The key tool for characterizing

these allocations is that the entrant may use them as a support for proposing attractive

additional trades to some type of the seller, a technique we referred to as pivoting in the

introduction.

Mild Adverse Selection Whenever E[v(θ)] > θ, adverse section is mild, in the sense that

each type would be ready to sell her endowment at a price E[v(θ)]. We show that in this

case any equilibrium must be pooling, with (Q, T ) = (Q, T ) = (1,E[v(θ)]). To see this,

suppose that Q < 1 in a candidate equilibrium, a situation depicted on Figure 1. The solid

line passing through (Q, T ) is the equilibrium isoprofit line of type θ, with slope θ. The

dotted line passing through (Q, T ) is an isoprofit line for the buyers, with slope E[v(θ)].

—Insert Figure 1 here—

Consider what happens if an entrant proposes an additional contract, represented by the

vector ~c. This contract allows the seller to trade the quantity 1−Q at a unit price between θ

and E[v(θ)]. Because its unit price is more than θ, it is strictly profitable for type θ to trade

this contract on top of (Q, T ). Because its unit price is less than E[v(θ)], and thus a fortiori

less than v(θ), this contract is profitable for the entrant whether type θ chooses to trade it

or not. This shows that, if E[v(θ)] > θ, then Q = 1. By incentive compatibility, this implies

that Q = 1 as well; therefore, any equilibrium must be pooling, with both types trading

efficiently. A standard Bertrand argument can then be used to show that T = T = E[v(θ)]:

competition bids up the price of the seller’s endowment to its average value E[v(θ)] for the

buyers, a price at which both types are ready to trade and buyers earn zero profit.

Which menus can be used to support this outcome? We will see in Proposition 2 below

that, whenever E[v(θ)] > θ, there exists an equilibrium in linear price schedules in which

at least two buyers stand ready to buy any quantity of the good at the constant unit price

E[v(θ)]. Let us simply indicate how such linear menu offers are enough to block one class

of deviations that have been emphasized in the literature on exclusive competition under

adverse selection, namely, cream-skimming deviations targeted at type θ. In the present

context, such deviations consist in proposing to type θ to signal herself by trading a quantity

less than 1, but at a unit price above E[v(θ)]. On Figure 2, potentially profitable cream-

skimming deviations are located in the triangle ABC, where point C corresponds to the

aggregate equilibrium allocation traded by both types of the seller.

12



—Insert Figure 2 here—

Consider one such deviation, (q, t). If competition were exclusive, the contract (q, t)

would be traded by type θ only, and would be profitable to the buyer that would issue it.

But, under non-exclusive competition, and given the postulated linear menu offer, each type

of the seller can combine (q, t) with the contract represented by the vector ~c, which allows the

seller to trade the quantity 1−q at unit price E[v(θ)]. In this way, the seller can, irrespective

of her type, reach the aggregate allocation D, which she prefers to her aggregate equilibrium

allocation C. Thus, if a buyer were to issue the contract (q, t), both types of the seller would

trade it; since t > E[v(θ)]q, this buyer would make losses. This shows that cream-skimming

deviations are blocked by linear price schedules with unit price E[v(θ)]. Proposition 2 below

shows that such menu offers more generally deter any deviation.

Severe Adverse Selection Whenever E[v(θ)] < θ, adverse selection is severe, in the sense

that type θ would no longer be ready to sell her endowment at price E[v(θ)].11 Yet E[v(θ)] is

the maximum price the buyers would be ready to pay for the seller’s endowment, assuming

that both types trade. Thus a pooling equilibrium is impossible, and any equilibrium must

be separating, with Q < Q. We first argue that, as under mild adverse selection, type θ must

trade efficiently in equilibrium, that is, Q = 1. To see this, suppose that Q < 1 in a candidate

equilibrium, a situation depicted on Figure 3. The solid line passing through (Q, T ) is the

equilibrium isoprofit line of type θ, with slope θ. The dotted line passing through (Q, T ) is

an isoprofit line for the buyers, with slope v(θ).

—Insert Figure 3 here—

Consider what happens if an entrant proposes an additional contract, represented by the

vector ~c. This contract allows the seller to trade the quantity 1−Q at a unit price between

θ and v(θ). Because its unit price is more than θ, it is strictly profitable for type θ to trade

this contract on top of (Q, T ). Because its unit price is less than v(θ), and thus a fortiori

less than v(θ), this contract is profitable for the entrant whether type θ chooses to trade it

or not. This shows that one must have Q = 1 in equilibrium.

Let us now examine the aggregate quantity Q < 1 traded by type θ in equilibrium.

Define p ≡ T−T
1−Q to be the slope of the line segment connecting the points (Q, T ) and (1, T ).

That is, p is the implicit unit price at which the quantity 1 − Q can be sold to move from

(Q, T ) to (1, T ). By incentive compatibility, p must lie between θ and θ. Yet a key feature

11The non-generic case where E [v(θ)] = θ is briefly discussed after Proposition 2.

13



of non-exclusivity is that equilibrium imposes a tighter lower bound on p. Indeed, we now

show that p cannot be less than v(θ). To see this, suppose that p < v(θ) in a candidate

equilibrium, a situation depicted on Figure 4. The solid line passing through (1, T ) is the

equilibrium isoprofit line of type θ, with slope θ. The dotted line passing through (Q, T ) is

an isoprofit line for the buyers, with slope v(θ).

—Insert Figure 4 here—

Consider what happens if an entrant proposes an additional contract, represented by the

vector ~c. This contract allows the seller to trade the quantity 1−Q at a unit price between

p and v(θ). Because its unit price is more than p, it is strictly profitable for type θ to trade

this contract on top of (Q, T ). Because its unit price is less than v(θ), and thus a fortiori

less than v(θ), this contract is profitable for the entrant whether type θ chooses to trade it

or not. This shows that one must have p ≥ v(θ) in equilibrium. Along with the fact that

necessarily T ≥ θ Q, this implies that the buyers’ aggregate profit

(1− ν)[v(θ)− T ] + ν[v(θ)Q− T ] = (1− ν)[v(θ)− p(1−Q)] + νv(θ)Q− T

is at most {E[v(θ)]− θ}Q. Since equilibrium profits must at least be zero, this shows that,

when E[v(θ)] < θ, then (Q, T ) = (0, 0); therefore type θ is completely excluded from trade.

The buyers’ aggregate profit then reduces to (1 − ν)[v(θ) − p]; since p cannot be less than

v(θ), p must actually be equal to v(θ). It follows that buyers earn zero profit, and that

(Q, T ) = (1, v(θ)).

There remains to construct menus that can be used to support this outcome. We will

see in Proposition 2 below that, whenever E[v(θ)] < θ, there exists an equilibrium in linear

price schedules in which at least two buyers stand ready to buy any quantity of the good

at the constant unit price v(θ). As in the mild adverse selection case, let us simply indicate

how such menu offers are enough to block cream-skimming deviations targeted at type θ. In

the present context, such deviations consist in proposing to type θ to move away from the

no-trade outcome by trading a relatively small quantity at a unit price above θ. On Figure

5, potentially profitable cream-skimming deviations are located in the triangle OAB, where

the origin O corresponds to the equilibrium allocation of type θ.

—Insert Figure 5 here—

Consider one such deviation, (q, t). If competition were exclusive, the contract (q, t)

would be traded by type θ only, and would be profitable to the buyer that would issue
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it. But, under non-exclusive competition, and given the postulated menu offer, type θ can

combine (q, t) with the contract represented by the vector ~c, which allows her to trade the

quantity 1 − q at unit price v(θ). In this way, type θ can reach the aggregate allocation

D, which she prefers to her aggregate equilibrium allocation C. Thus, if a buyer were to

issue the contract (q, t), both types of the seller would trade it; since t > θq > E[v(θ)]q, this

buyer would make losses. This shows that cream-skimming deviations are blocked by linear

price schedules with unit price v(θ). Proposition 2 below shows that such menu offers more

generally deter any deviation.

The above analysis provides some support for Akerlof’s (1970) original intuition. First, if

adverse selection is severe, only low quality endowments are traded in equilibrium. Second,

the price at which the seller can trade her endowment in equilibrium is the expectation of

the quality of the good, conditional on the seller being ready to trade at that price, that is,

depending on whether adverse selection is mild or severe, E[v(θ)] or v(θ).

These results contrast sharply with that which would obtain if contracts were assumed

to be exclusive, as in standard competitive screening models.12

First, the exclusive competition game has an equilibrium if and only if the probability

that the good is of high quality is low enough, while, under Assumption 1, the non-exclusive

competition game always has an equilibrium, as we show below in Proposition 2.

Second, all the equilibria of the exclusive competition game are separating, while, under

mild adverse selection, all the equilibria of the non-exclusive competition game are pooling.

In particular, cross-subsidies can take place under non-exclusive competition, unlike under

exclusive competition.

Third, even when adverse selection is severe, and all the equilibria of the non-exclusive

competition game are separating, their structure is very different from that of the separating

equilibria of the exclusive competition game. In the latter case, type θ is indifferent between

her equilibrium contract and that of type θ, who trades a strictly positive fraction of her

endowment. By contrast, in the former case, type θ strictly prefers her aggregate equilibrium

allocation to that of type θ, who does not trade at all. This reflects that non-exclusive

competition induces a specific cost of screening the seller’s type in equilibrium. Indeed, any

separating equilibrium must be such that no entrant has an incentive to induce type θ to

trade, along with the aggregate allocation (Q, T ), an additional quantity 1 − Q at some

mutually advantageous price. To eliminate any incentive for entrants to engage in such

12The analysis of the exclusive competition game in the two-type specification of this section is formally
analogous to that of Rothschild and Stiglitz’s (1976) competitive insurance model. See the supplement to
this paper (Attar, Mariotti, and Salanié (2010a)) for details.
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trades with type θ, the implicit unit price at which this additional quantity 1 − Q can be

sold in equilibrium must be at least v(θ), which in turn pushes Q down to zero. Intuitively

speaking, the mechanism by which type θ can signal herself by trading a nonzero fraction of

her endowment, as in the equilibria of the exclusive competition game, is shut down under

non-exclusive competition. This is because type θ could easily mimic this behavior and trade

the remaining fraction of her endowment at a fair price. Therefore, only pooling outcomes,

or separating outcomes in which type θ is excluded from trade, emerge in equilibrium.

Fourth, our analysis suggests that, in order to sustain an equilibrium in the non-exclusive

competition game, some contracts must be issued, the goal of which is to deter cream-

skimming deviations: such are for instance the contracts ~c depicted on Figures 2 and 5,

which block the deviations (q, t). Indeed, we show in Section 4.4 that, under a wide array of

circumstances, an infinite number of contracts must remain available if any buyer withdraws

his menu offer. In the case where the agent’s type space is finite, as in the example discussed

in this section, this shows that most contracts are latent: they are issued only to discipline

other buyers. By contrast, latent contracts are useless under exclusive competition.

4 Equilibrium Analysis: The General Case

We now turn to the analysis of the general model described in Section 2. Our goal is to

provide a complete characterization of aggregate equilibrium outcomes, to show that an

equilibrium always exists, and to identify properties of equilibrium menus. This program

raises a number of theoretical issues. Indeed, from a methodological viewpoint, a standard

insight for the analysis of common agency games with incomplete information is that in any

pure strategy equilibrium of such a game, each principal i acts like a monopolist facing an

agent whose preferences are represented by an indirect profit function of (θ, qi) that depends

on the menus offered by principals j 6= i.13 Whenever this function is well behaved, which

is the case under restrictive assumptions over the menus offered by principals j 6= i, one can

apply standard mechanism design techniques to characterize the best response of principal

i. This, however, is typically not the case in our model. The first reason is that we do

not impose any conditions over the menus offered by the buyers, besides that they consist of

compact sets of contracts. The second reason is that the seller makes choice under a capacity

constraint. Taken together, these two key features of our model imply that the seller’s

indirect profit function, viewed from the perspective of buyer i, might be discontinuous in

13See for instance Martimort and Stole (2009) for a recent exposition of this methodology.
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qi, and, furthermore, that it need not satisfy a single-crossing condition in (θ, qi).14 This in

turn makes it difficult to apply the standard methodology for common agency games to our

non-exclusive competition game. Instead, in line with the above two-type example, we fully

characterize aggregate equilibrium allocations by requesting that they survive well chosen

deviations.

4.1 The Monopsony Case

As a preliminary, it is useful to consider the case where there is a single buyer. Suppose

first that this monopsonist is constrained to use a simple fixed price contract, by means of

which he offers to purchase the seller’s endowment at some price p. Only types θ ≤ p are

then ready to accept this offer, with type p being indifferent. If type p is not an atom of P,

then her decision makes no difference to the monopsonist’s profit. If type p is an atom of

P, Assumption 1 implies that the monopsonist cannot make losses, and can possibly gain,

from purchasing type p’s endowment at price p. Assuming that the monopsonist can break

such ties in his favor, he earns a profit

w(p) ≡
∫

[θ,p]

[v(θ)− p] dF (θ). (2)

In the Appendix, we show that the function w : R→ R defined by (2) is right-continuous and

of locally bounded variation. Moreover, under Assumption 1, w is also upper semicontinuous.

Hence, since w vanishes over (−∞, θ) and is strictly decreasing over (θ,∞), w attains its

maximum at some point of [θ, θ]. To avoid ambiguities, define the monopsony price pm as

the highest such point.

One may ask whether the monopsonist could further increase his profit by offering the

seller a menu of contracts, allowing her to trade quantities in (0, 1), or, equivalently, by the

revelation principle, a truthful direct mechanism (Q, T ) : [θ, θ] → [0, 1] × R stipulating a

quantity and a transfer as a function of the seller’s report of her type.15 Samuelson (1984)

and Myerson (1985) have shown that, because of the linearity of preferences, the answer to

this question is negative when P has a continuous and strictly positive density over [θ, θ].

The same logic applies to our more general setting.

14This can be checked by considering the quantity z−i(θ, 1− qi), that represents the highest profit a seller
of type θ can get from trading with buyers j 6= i while selling quantity qi to buyer i, see (21) and (22).
Because the menus Cj are only requested to be compact, and may therefore correspond to discontinuous
price schedules, Berge’s maximum theorem does not apply to the function qi 7→ z−i(θ, 1 − qi): an increase
in qi may generate a downward jump in z−i(θ, 1 − qi). As a result, the seller’s indirect profit function
(θ, qi) 7→ −θqi + z−i(θ, 1 − qi) may fail to exhibit decreasing differences, unlike the seller’s profit function
over aggregate trades.

15It follows from the linearity of preferences that the monopsonist cannot increase his profit by offering a
stochastic mechanism.
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Lemma 1 The monopsonist cannot do better than offering to purchase the seller’s whole

endowment at price pm.

In the proof of Lemma 1, we actually establish a more general result for a parameterized

version of the monopsonist’s problem, which is key to the proof of the characterization result

that now follows.

4.2 Aggregate Equilibrium Allocations

In this section, we show that, generically, all equilibria of the non-exclusive competition

game lead to essentially the same aggregate equilibrium outcome. To this end, define p∗ as

the supremum of those p such that w(p) > 0, setting p∗ = θ if there are none. Intuitively,

p∗ is the highest price at which the seller’s endowment can be profitably bought. Since w

is right-continuous and upper semicontinuous, one necessarily has w(p∗) = 0. Whenever

F (p∗) > 0, this equality, given (2), can be rewritten under the more familiar form:

p∗ = E[v(θ) |θ ≤ p∗]. (3)

That is, p∗ is the expectation of the quality of the good, conditional on the seller being ready

to trade at price p∗. Note that if E[v(θ)] > θ, so that w(θ) > 0, then p∗ = E[v(θ)]. A further

implication of the right-continuity and upper semicontinuity of w is that p∗ may be an atom

of P only as long as v(p∗) = p∗. Therefore, in any case, if trade were to take place at price p∗,

the way type p∗ would trade at that price would be totally irrelevant to the buyers’ profits.

To avoid discussing non-generic cases, we shall thereafter assume the following.

Assumption 2 If p > p∗, then w(p) < 0.

A useful observation is that, under Assumption 2, one has E[v(θ)] ≤ θ if and only

if p∗ ≤ θ, with p∗ = θ if and only if E[v(θ)] = θ. Moreover, if F (p∗) > 0, p∗ is the

unique equilibrium price in a game where buyers strategically set prices, but are restricted

to bid for the seller’s whole endowment; alternatively, p∗ is the highest equilibrium price in

a competitive market in the spirit of Akerlof (1970), where sellers and buyers act as price

takers, and where each seller can deal with at most one buyer, to whom she can only sell

her whole endowment (Mas-Colell, Whinston, and Green (1995, Chapter 13, Section B)). If

one allows for arbitrary trades and non-exclusive competition, the following result holds.

Proposition 1 In any equilibrium of the non-exclusive competition game, the aggregate
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equilibrium allocations satisfy

(Q(θ), T (θ)) = (1, p∗) if θ ≤ θ < p∗,

(Q(θ), T (θ)) = (0, 0) if θ ≥ θ > p∗,

and each buyer earns zero profit.

Therefore, with the exception of type p∗, whose behavior, as discussed above, is irrelevant

to the buyers’ profits, aggregate quantities and transfers are the same in any equilibrium

of the non-exclusive competition game, and correspond to those that would obtain in the

highest price competitive equilibrium of Akerlof’s (1970) model: all the seller’s types θ < p∗

sell their whole endowment, while all the seller’s types θ > p∗ do not trade at all. Observe

in particular that if p∗ = θ and θ is not an atom of P, trade occurs with probability zero in

equilibrium, and the market breaks down completely. At the other extreme, if E[v(θ)] ≥ θ,

competition among buyers bids up the price p∗ of the seller’s endowment to its average value

E[v(θ)] for the buyers, a price at which all types in the support of P are ready to trade.

In general, since p∗ ≥ pm, there is no less trade under non-exclusive competition than in

the monopsony case, which does not come as a surprise. Finally, it should be noted that,

although the equilibrium outcomes of our model are in line with Akerlof (1970), a distinctive

feature of our approach is that buyers act strategically, and compete through non-exclusive

menus of contracts for the divisible good offered by the seller. Thus Proposition 1 provides a

novel game-theoretic foundation for Akerlof’s (1970) predictions in a setting where, besides

non-exclusivity, very little restrictions on feasible trades or instruments are imposed.

The intuition for Proposition 1 can be easily understood in the context of a free-entry

equilibrium. Suppose that p∗ > θ and that some type θ1 ∈ [θ, p∗) who is not an atom

of P sells an aggregate quantity Q(θ1) < 1 in equilibrium. Since incentive compatibility

implies that the aggregate quantity traded by the seller must be a nonincreasing function

of her type, it follows from the definition of p∗ that one can moreover choose θ1 so that

w(θ1) > 0. Suppose then that an entrant offers to buy a quantity 1 − Q(θ1) at unit price

θ1. Clearly, types θ > θ1 will reject this new contract, because its unit price is too low from

their viewpoint. By contrast, type θ1 is indifferent: she can accept the entrant’s offer, which

yields her no profit, and sell as before the remaining part Q(θ1) of her endowment to the

other buyers. Because types θ < θ1 are even more eager to sell, they will all choose to sell

their whole endowment, and therefore accept the entrant’s offer. Overall, the entrant’s profit

would then be [1−Q(θ1)]w(θ1) > 0, implying that entry would be profitable, a contradiction.

Thus aggregate trades must be constant and equal to 1 for types θ ∈ [θ, p∗). As for types
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θ ∈ (p∗, θ], it follows from the definition of p∗ that even a monopsonist would be unable to

extract profits from them. This implies that they must be completely excluded from trade

in equilibrium.

The actual proof of Proposition 1 is more delicate. For any buyer i, let (qi(θ), ti(θ)) be the

contract traded by type θ with buyer i. In line with the above free-entry argument, the key

idea is that any buyer i can pivot on the trades offered by his competitors: this essentially

amounts to offering a contract (qi(θ1) + 1−Q(θ1), t
i(θ1) + θ1[1−Q(θ1)]) which types θ < θ1

will trade along with the contracts (qj(θ1), t
j(θ1)), j 6= i, thereby selling the remaining part of

their endowment to the buyers other than i. However, one problem faced by any such buyer

i, as opposed to an entrant, is that he needs to make sure that the choices made by types

θ > θ1 in the menu he offers remain close to their equilibrium choices, so that the profits he

earns by trading with them do not vary too much compared to equilibrium. In particular,

buyer i must avoid negative sorting of these types following his deviation, which could occur

if he merely added the contract (qi(θ1) + 1−Q(θ1), t
i(θ1) + θ1[1−Q(θ1)]) to his equilibrium

menu: indeed, some types θ > θ1 could be indifferent between various contracts in buyer

i’s equilibrium menu, and could therefore punish him following his deviation by selecting

contracts that would be less favorable from his point of view. In the proof of Proposition 1,

we show how buyer i can circumvent this difficulty by offering contracts targeted at types

θ > θ1 that are both close to their equilibrium choices, and such that each of these types

has a unique best response given the menus offered by the other buyers. This restores a

form of strict incentive compatibility, without having recourse to any equilibrium refinement

concept. Finally, we show that, if some type θ1 ∈ [θ, p∗) who is not an atom of P sells an

aggregate quantity Q(θ1) < 1 in equilibrium, then a deviation such as that outlined above

is profitable to at least one buyer.

4.3 Equilibrium Existence

We now establish that the non-exclusive competition game always has an equilibrium. More

precisely, we show that there always exists an equilibrium in which all buyers post linear

price schedules. In this equilibrium, any quantity can be traded at a unit price equal to the

expected quality of the good, conditional on trade taking place.

Proposition 2 The non-exclusive competition game always has an equilibrium in which

each buyer offers the menu

{(q, t) ∈ [0, 1]× R+ : t = p∗q},
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and thus stands ready to purchase any quantity of the good at the constant unit price p∗.

The intuition for this result is as follows. Suppose that some buyer attempts to deviate

from the proposed menu. A contract (q, t) such that t < p∗q will not be traded by any type,

given that she can always trade the quantity q at price p∗q with the non-deviating buyers.

Thus the deviating buyer’s menu is attractive only if it contains a contract (q, t) such that

t ≥ p∗q. Since the seller has the option to trade any fraction of her endowment at unit

price p∗ with the non-deviating buyers, we can assume that all types θ < p∗ select the same

contract (q, t) from the deviating buyer’s menu, and then sell the remaining part 1−q of their

endowment at price p∗(1−q). Thus the profit that the deviating buyer earns by trading with

these types is F (p∗){E[v(θ) |θ ≤ p∗]q − t}, which is at most zero since E[v(θ) |θ ≤ p∗] = p∗

by (3), and since t ≥ p∗q by the above reasoning. Thus, given the postulated continuation

equilibrium, no buyer can deviate and make profits with types θ ≤ p∗. As for types θ > p∗,

we already observed that even a monopsonist would be unable to extract profits from them.

This is a fortiori true for a deviating buyer, which shows that no deviation from the candidate

equilibrium can be profitable.

Remark Applications of common agency games with incomplete information often impose

restrictions on the menus offered by the principals that guarantee that each agent’s type

has a unique best response (see Martimort and Stole (2009) for a discussion of this point).

When a notion of equilibrium refinement is introduced, attention is typically restricted to

strongly robust equilibria (Peters (2001)). An equilibrium of a common agency game is

strongly robust if the agent’s choice is optimal from the viewpoint of each principal, both

on the equilibrium path, and following a unilateral deviation by this principal. In our

non-exclusive competition game, this is demanding too much. Indeed, since an equilibrium

typically involves that different types of the seller pool and trade their whole endowment,

each buyer could always gain if the contracts he offers were only traded by those types of

the seller with whom he makes profits. Such positive sorting, however, is clearly inconsistent

with equilibrium. Related to this, in the equilibrium described in Proposition 2, the strategy

of the seller is constructed in such a way that if a buyer deviates, all types θ < p∗ pool and

trade the same contract with him; such a behavior in the continuation subgame is sufficient

to deter deviations.

It should be noted that the proof of Proposition 2 does not rely on Assumption 2. In light

of Proposition 1, what this assumption ensures is that p∗ is the unique unit price consistent

with a linear price schedule equilibrium. When it fails to hold, there may be non-generic
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situations in which multiple linear price schedule equilibria coexist. This is for instance

the case when the support of P consists of two points θ and θ such that θ < v(θ) < θ

and E[v(θ)] = θ. Then p∗ = v(θ), yet w(θ) = 0 in contradiction with Assumption 2.

In this case, it is easy to check that there exist two linear price schedule equilibria: a

separating equilibrium with unit price v(θ), in which only type θ actively trades, and a

pooling equilibrium with unit price E[v(θ)], in which both types θ and θ actively trade.

4.4 Equilibrium Menus

While the non-exclusive competition game always has a linear price schedule equilibrium,

the aggregate equilibrium allocations can be supported by different menu offers.16 Yet, as

we now show, equilibrium imposes significant restrictions on the structure of buyers’ menus.

We first characterize the equilibrium price of issued and traded contracts.

Proposition 3 In any equilibrium of the non-exclusive competition game, the unit price of

any issued contract is at most p∗, and the unit price of any traded contract is p∗.

This result illustrates how competition disciplines the buyers in our model: even though

they are allowed to propose arbitrary menus of contracts, they end up trading at the same

price in equilibrium. Moreover, even non-traded contracts must be issued at a unit price at

most equal to p∗. If p∗ belongs to the support of P, the proof is straightforward. Indeed,

suppose that a contract with unit price above p∗ were issued. Then, since type p∗ earns

zero profit in equilibrium, she would actually have a strict incentive to trade this contract

instead of those that she trades in equilibrium, and so would all types in a neighborhood of

p∗; each of these types would thereby earn more than her equilibrium profit, a contradiction.

If p∗ does not belong to the support of P, the proof shows that one of the buyers could

strategically use such a contract and pivot on it so as to increase his profit.

We now investigate which contracts need to be issued in order to support the aggregate

equilibrium allocations. From a strategic viewpoint, what matters for each buyer is the

outside option of the seller; for each buyer i, and for each menu profile (C1, . . . , Cn), this is

described by the set of aggregate allocations that remain available if buyer i withdraws his

menu offer Ci. One first has the following result.

Proposition 4 If p∗ > θ, then, in any equilibrium of the non-exclusive competition game,

the aggregate allocation (1, p∗) remains available if any buyer withdraws his menu offer.

16See Attar, Mariotti, and Salanié (2009, Proposition 6) on how to construct equilibria in non-linear price
schedules in a two-type specification of the model.
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The unique aggregate equilibrium allocation must therefore remain available even if a

buyer deviates from his equilibrium menu offer. When E[v(θ)] > θ, so that p∗ = E[v(θ)],

the reason is that this buyer may otherwise profitably attract the seller by offering to buy her

endowment at a price slightly below E[v(θ)]. The proof is more involved when E[v(θ)] ≤ θ,

that is, p∗ ≤ θ. Indeed, suppose for instance that θ < p∗ < θ and that P has full support

over [θ, θ]. Then, the equilibrium price is equal to the type p∗ of the marginal seller, which

makes it impossible for a buyer to screen types θ > p∗ from types θ < p∗ at the deviation

stage. Instead, we show that if the allocation (1, p∗) did not remain available if a buyer

removed his equilibrium offer, then for ε > 0 close enough to zero, this buyer could pivot

on the aggregate allocation that type p∗ − ε < p∗ would optimally trade with the other

buyers, and secure a strictly positive profit by trading with types θ < p∗−ε. The key insight

of Proposition 4 is that no buyer is essential in providing the seller with her aggregate

equilibrium allocation or her equilibrium utility. As an illustration, when there are two

buyers, there is no equilibrium in which each buyer would only offer to purchase half of the

seller’s endowment. This rules out Cournot-like outcomes in which the buyers would simply

share the market, and in which all issued contracts would be actively traded by some type

of the seller, as in Biais, Martimort, and Rochet (2000).

Equilibrium actually imposes much tighter restrictions on menus than those described

in Propositions 3 and 4. Indeed, suppose for instance that θ < p∗ < θ and that P is

nonatomic and has full support over [θ, θ]. In line with standard adverse selection models,

suppose further that v(θ) is strictly increasing in θ. We argue that, in this case, there is

no equilibrium in which each buyer only offers to trade the aggregate equilibrium allocation

(1, p∗). Indeed, any buyer could otherwise deviate by offering to purchase a quantity 1−δ at

price p∗ − (p∗ − ε)δ, for some small and strictly positive numbers δ and ε. By construction,

this is a cream-skimming deviation that is strictly appealing to types in
(
p∗ − ε, p∗ + εδ

1−δ

)
only. The deviating buyer would then earn a profit∫

[p∗−ε, p∗+ εδ
1−δ ]

[v(θ)(1− δ)− p∗ + δ(p∗ − ε)] dF (θ). (4)

Since p∗ > θ, and since w(p∗) = 0 and v is strictly increasing, one must have v(p∗) > p∗ by

(3). Moreover, since θ < p∗ < θ and P has full support over [θ, θ], P puts strictly positive

mass over any neighborhood of p∗. It follows that the deviating buyer’s profit (4) is strictly

positive for δ and ε close enough to zero, a contradiction. To block such deviations, contracts

must be issued that are not necessarily traded in equilibrium but which the seller has an

incentive to trade if a buyer attempts to deviate. In order to play this deterrence role, the
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corresponding allocations must remain available if any buyer withdraws his menu offer. For

instance, the above cream-skimming deviation is blocked if the quantity δ can always be

sold at unit price p∗, for then all types θ ∈
[
θ, p∗ + εδ

1−δ

)
have the same incentives to trade

the deviating buyer’s contract, resulting in a strictly negative profit for the deviating buyer.

This, in essence, is the logic underlying the linear price schedule equilibrium described in

Proposition 2. In this equilibrium, the number of contracts available off the equilibrium

path is large, since the menus offered by the buyers are infinite collections of contracts.

The following result generalizes this insight, reflecting that in equilibrium infinitely many

cream-skimming deviations need to be blocked.

Proposition 5 If p∗ > θ and there exists some θ0 ∈ (θ, p∗) such that∫
[θ0,p∗]

[v(θ)− p∗] dF (θ) > 0, (5)

then, in any equilibrium of the non-exclusive competition game, any quantity close enough

to zero remains available for trade if any buyer withdraws his menu offer.

Because
∫

[θ,p∗]
[v(θ) − p∗] dF (θ) = w(p∗) = 0, condition (5) holds for instance when v(θ)

is strictly increasing in θ, and there are at least two types in the support of P who differ

from p∗ and who actively trade in equilibrium.

Remark What if the only type in the support of P who differs from p∗ and who actively

trades in equilibrium is type θ, as in the two-type model of Section 3 when E[v(θ)] < θ?

Then, because w(p∗) = 0 and v(p∗) = p∗ if p∗ is an atom of P, one must have p∗ = v(θ). In

the Appendix, we show that if there exists p̃ > p∗ such that∫
[p∗,p̃]

[v(θ)− p̃] dF (θ) > 0, (6)

then, in any equilibrium of the non-exclusive competition game, infinitely many allocations

remain available if any buyer withdraws his menu offer.17 Condition (6) is easily verified when

the support of P consists of two types θ and θ such that θ < v(θ) and E[v(θ)] < θ < v(θ);

it is also satisfied when θ < v(θ) and the gains from trade v(θ)− θ are strictly increasing in

the seller’s type θ.

A key implication of these results is that, even when the seller’s type space is finite,

equilibrium menus should typically display an infinite number of latent contracts, the role

of which is only to deter deviations by the buyers. In light of the delegation principle for

17In contrast with Proposition 5, this only shows the necessity of a countably infinite number of contracts.
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common agency games (Peters (2001), Martimort and Stole (2002)), this suggests that a

rich communication structure implicitly lies behind our Akerlof-like equilibrium outcomes:

in a game where buyers would compete through arbitrary indirect mechanisms, subject to

non-exclusivity, an infinite number of messages should be available to the seller, allowing

her to communicate to each buyer information on deviations by the other buyers. Note by

contrast that, with a finite number of types, the corresponding equilibrium allocations could

not be supported if buyers were restricted to compete through simple direct mechanisms

that only ask the seller to communicate her type. The possibility to support equilibrium

allocations in a game relative to an arbitrary set of indirect mechanisms, but not in the

corresponding direct mechanism game, has been acknowledged as a failure of the revelation

principle in common agency games, and so far documented in purely abstract game-theoretic

examples.18 A contribution of our analysis is to exhibit a natural and relevant economic

setting that exhibits this feature.

It should be emphasized that standard arguments against the use of latent contracts

do not apply in our setting. For instance, latent contracts are often criticized for allowing

one to support multiple equilibrium allocations, and even for inducing an indeterminacy of

equilibrium.19 This is not the case in our model, since aggregate equilibrium allocations

are generically unique. Another common criticism is that some equilibrium allocations may

be only sustained by latent contracts that would make losses off the equilibrium path, in

the hypothetical case where they would be traded.20 Again, this need not be the case in

our model. For instance, in the equilibrium constructed in Proposition 2, one can assume

that, following a buyer’s deviation, all types θ < p∗ select the same contract (q, t) from the

deviating buyer’s menu, and then sell the remaining part 1− q of their endowment at price

p∗(1 − q) to any single one of the non-deviating buyers, who, therefore, according to (3),

would not make losses off the equilibrium path. One can actually construct examples of

equilibria sustained by latent contracts that would be strictly profitable to their issuers if

any type were to trade them.21

5 Robustness

In this section, we discuss the robustness of our results. We first examine the case where

18See, for instance, Peck (1997), Peters (2001), and Martimort and Stole (2002).
19In a complete information setting, Martimort and Stole (2003) show that latent contracts can be used

to support any level of trade between the perfectly competitive outcome and the Cournot outcome.
20Attar and Chassagnon (2009) provide an example of a moral hazard insurance economy in which latent

contracts with negative virtual profits are a necessary feature of equilibrium.
21See Attar, Mariotti, and Salanié (2009, Proposition 6(ii)).
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the buyers do not face a single seller, but several of them. We then compare our results

with those obtained by Biais, Martimort, and Rochet (2000) in a model of non-exclusive

competition under adverse selection where the seller has strictly convex preferences.

5.1 Trading with Multiple Sellers

Suppose now that the buyers i = 1, . . . , n face a finite number of sellers indexed by j =

1, . . . , l, where l ≥ 2. Each seller is endowed with one unit of a perfectly divisible good. Let

qij be the quantity of the good purchased by buyer i from seller j, and tij the transfer he makes

in return. Feasible trades ((q1
1, t

1
1), . . . , (q

n
1 , t

n
1 ), . . . , (q1

l , t
1
l ), . . . , (q

n
l , t

n
l )) are such that qij ≥ 0

for all i and j and
∑

i q
i
j ≤ 1 for all j. Seller j’s profit from trading (Qj, Tj) =

(∑
i q
i
j,
∑

i t
i
j

)
in the aggregate is

Tj − θjQj,

where θj is seller j’s opportunity cost of giving away her endowment. Each buyer i’s profit

from trading (
∑

j q
i
j,
∑

j t
i
j) is ∑

j

[v(θj)q
i
j − tij].

Each seller is privately informed of her opportunity cost. For expositional simplicity, and

unless stated otherwise, we assume that each seller’s type has marginal distribution P. We

shall also maintain Assumptions 1 and 2.

Bilateral Private Contracting Because the agents’ profit functions are separable, it is

natural to start with a decentralized trading structure, in which each buyer i proposes a menu

of contracts Ci
j to each seller j, who then makes her trading decisions without observing the

menus offered to the other sellers. That is, contracting is bilateral and private. In practice,

this is a key feature of important financial markets, such as limit order markets (Parlour and

Seppi (2008)), or over-the-counter markets (Brunnermeier (2009)). Bilateral contracting in

multiple principal multiple agent games has been studied under complete information by Prat

and Rustichini (2003). Our setting is different from theirs in that there are no externalities

across principals (buyers), and that there is incomplete information about the agents’ (sellers)

types. Moreover, Prat and Rustichini (2003) restrict principals to make simple take-it-or-

leave-it offers, while we allow buyers to offer arbitrary menus of contracts.22 The following

22Under bilateral contracting, one could consider more general communication mechanisms, by which each
principal would assign a contract to each agent, conditional on the message that this agent would send him,
but not on the other agents’ messages. In fact, Han (2006, Theorem 1) establishes that, as long as one
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result shows the robustness of our equilibrium characterization in a multiple buyer multiple

seller environment with bilateral and private contracting.

Lemma 2 In any equilibrium of the multiple buyer multiple seller non-exclusive competition

game with bilateral private contracting, each seller’s type different from p∗ trades the same

aggregate quantities and transfers as in any equilibrium of the multiple buyer single seller

non-exclusive competition game.

This result can easily be extended to the case of heterogenous buyers, provided the

corresponding functions vj and distributions Pj satisfy Assumptions 1 and 2.

Multilateral Public Contracting The restriction to bilateral private contracting plays

a key role in Lemma 2. If multilateral public contracting is allowed instead, a very large

number of allocations can be supported in equilibrium, by properly selecting the continuation

equilibria in the subgames played by the sellers following any buyer’s unilateral deviation.

Indeed, following this logic, Peters and Troncoso Valverde (2010) and Yamashita (2010)

establish folk theorems for a large class of multiple principal multiple agent games, which

includes the current setting.

Using the mechanisms introduced by Yamashita (2010), the equilibrium allocations of

the multiple buyer multiple seller non-exclusive competition game with multilateral public

contracting can be characterized as follows.23 Each buyer asks the sellers to report their

types and to vote for an incentive compatible allocation rule, which assigns an aggregate

trade to each profile of reports by the sellers. An allocation rule is selected if it receives the

majority of the sellers’ votes. Since the vote of each single seller is irrelevant if all the other

sellers vote for the same allocation rule, for each incentive compatible allocation rule there

is an equilibrium where each seller votes for it and truthfully reports her type. If a buyer

deviates towards a different mechanism, sellers can punish him by selecting an allocation rule

that provides him with his maxmin value, that is, with the maximal profit he earns when

his competitors select mechanisms that cause him the greatest harm, and sellers coordinate

on the worst continuation equilibrium from his point of view.24 In our setting, one can show

that, for each buyer i, this maxmin value vi is actually equal to zero. Indeed, one has vi ≥ 0,

restricts attention to pure strategy perfect Bayesian equilibria, any profile of equilibrium payoffs that is
supported by such bilateral communication mechanisms can as well be supported by letting each principal
independently offer a menu of contracts to each agent. This result holds both in the situation where all
agents publicly observe all offered mechanisms, and in the situation where each agent only observes the
mechanisms that are offered to her.

23Note that Yamashita’s (2010) results are obtained under the additional restriction l ≥ 3.
24See Yamashita (2010) for a precise definition.
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because buyer i always has the option not to trade. In addition, one also has vi ≤ 0, since

no buyer can make profits when his competitors stand ready to buy any quantity from each

of the buyers at the constant unit price p∗, in line with the linear price schedule equilibrium

described in Proposition 2. It is then an immediate implication of Yamashita (2010, Theorem

1) that any incentive compatible allocation in which each buyer’s profit is not less than zero

can be supported in equilibrium.

To provide a simple illustration of this result, suppose that each buyer commits to a

mechanism by which he offers to buy any quantity from each of the sellers at a constant unit

price equal to the monopoly price pm, unless at least l−1 sellers send him some message ¬m.

In this last contingency, he offers to buy any quantity from each of the sellers at a constant

unit price equal to the competitive price p∗. It is straightforward to check that the monopoly

price pm can be supported in equilibrium by having sellers send the message ¬m to each

non-deviating buyer in the subgame following any buyer’s unilateral deviation. A similar

reasoning guarantees that every price between p∗ and pm can be supported in equilibrium if

multilateral public contracting is allowed.25

5.2 Comparison with Biais, Martimort, and Rochet (2000)

In an influential paper, Biais, Martimort and Rochet (2000) study a model of non-exclusive

competition under adverse selection where the utility a type θ seller derives from trading

(Q, T ) in the aggregate is

T − θQ− α

2
Q2,

for some fixed parameter α > 0. One might be tempted to interpret our model as a limit

case of theirs when α goes to zero. Yet, this would overlook the fact that aggregate trades

in our model are subject to the capacity constraint Q ≤ 1, while aggregate trades in their

model are unrestricted, leading to strikingly different results.

Pooling and Capacity Constraints Recall first that, in the present paper, all the types of

the seller who trade in equilibrium sell their endowment at the same price, and are therefore

pooled on the same aggregate allocation. By contrast, in the equilibrium characterized by

Biais, Martimort, and Rochet (2000), all the types of the seller who trade are separated, and

end up trading different aggregate allocations. We now argue that the presence of a capacity

constraint is the key reason why our findings differ from theirs.

25The equilibrium mechanisms proposed in this example can easily be reformulated as recommendation
mechanisms like those considered in Yamashita (2010).
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To emphasize this point, it is useful to refer to a companion paper (Attar, Mariotti,

and Salanié (2010b)), in which we analyze a model of non-exclusive competition where the

seller can be of two types, with preferences that are strictly convex and satisfy a strict

single-crossing condition, but are otherwise arbitrary. These preferences encompass those

considered by Biais, Martimort, and Rochet (2000); they may also be used to approximate

those considered in the present paper.26 We show in Attar, Mariotti, and Salanié (2010b,

Proposition 4) that, when no restrictions on trades are imposed, there exists no pooling

equilibrium in which both types of the seller end up selling a strictly positive quantity. This

is because any active buyer could gain from trading a different contract with each type of

the seller, in such a way as to increase the aggregate trades of the type with the lowest

opportunity cost to sell, who offers a good of relatively lower quality. Hence one cannot

approximate the pooling outcome that may arise in our model as a limit of equilibrium

outcomes in a sequence of games where trades are unrestricted.

By contrast, when a capacity constraint is introduced, additional trades may not be

feasible anymore, and pooling equilibria may be supported. In this respect, it is interesting

to observe that the characterization results derived for the two-type example of Section 3

can be extended to situations where the seller has strictly convex preferences, as long as her

capacity constraint is effectively binding. Specifically, suppose that type θ’s preferences over

aggregate trades (Q, T ) are represented by u(θ,Q, T ), which is assumed to be continuously

differentiable and strictly quasiconcave in (Q, T ), and let τ(θ,Q, T ) be the corresponding

marginal rate of substitution of the good for transfers at (Q, T ). Here θ can take two

values θ and θ, such that v(θ) > v(θ) and τ(θ,Q, T ) > τ(θ,Q, T ): type θ provides a more

valuable good to the buyers than type θ, but at a higher opportunity cost. Consider then a

candidate equilibrium in linear price schedules. It is easily shown that a pooling equilibrium

obtains whenever τ(θ, 1,E[v(θ)]) < E[v(θ)], while a separating equilibrium obtains whenever

τ(θ, 0, 0) > E[v(θ)] > v(θ) > τ(θ, 0, 0).

Zero Profit? A key feature of our analysis is that buyers just break even in all equilibria.

This stands in sharp contrast with the equilibrium characterized by Biais, Martimort, and

Rochet (2000), in which buyers earn strictly positive profits. Yet, it should be noted that

26For instance, the preferences of a type θ seller over aggregate trades could be represented by the utility
function (Q,T ) 7→ T − θQ − α

p Q
p, for some fixed parameters α > 0 and p > 1. Biais, Martimort, and

Rochet’s (2000) specification corresponds to p = 2. As p goes to∞, this utility function converges uniformly
to our utility function (Q,T ) 7→ T − θQ over [0, 1] × R, while involving for any Q > 1 a penalty for the
seller that grows without bounds. As the discussion below suggests, however, there is a sense in which this
approximation of our setting is misleading, because it only mimics, at the level of preferences, the presence
of a capacity constraint, which has rather to do with the trading technology.
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this equilibrium is derived under the assumption that there is a continuum of seller’s types.

By contrast, in the two-type case, Attar, Mariotti, and Salanié (2010b) show that buyers

must earn zero profit in any equilibrium; this result notably applies to the situation where

the seller’s utility function is as specified in Biais, Martimort, and Rochet (2000). One is

therefore led to the conclusion that, if the seller has strictly convex preferences, and trades

are unrestricted, the properties of equilibria crucially depend on the cardinality of the set

of seller’s types. This suggests in any case that further work is needed to understand non-

exclusive competition in such environments. Observe by contrast that this difficulty does

not arise in the present paper, since our results are valid for any type distribution, whether

discrete, continuous, or mixed, as long as it satisfies Assumptions 1 and 2.

6 Conclusion

In this paper, we have studied a model of trade under adverse selection in which buyers

compete for a good, the quality of which is privately observed by the seller who offers it.

Two distinctive features of our model are that the good to be traded is divisible, and that

competition between buyers is non-exclusive. This means that the seller may choose to

trade with several of them, and, crucially, that contracting between the seller and each

buyer is bilateral, so that buyers cannot monitor each others’ trades with the seller. Besides

this, we impose very little restrictions on instruments: buyers can offer arbitrary menus of

contracts, or, equivalently, price schedules. In this setting, we show that equilibria exist

under mild conditions, unlike in standard models of exclusive competition under adverse

selection in the spirit of Rothschild and Stiglitz (1976). Aggregate equilibrium allocations are

generically unique, and correspond to the highest price competitive equilibrium in Akerlof’s

(1970) model. Linear price schedule equilibria exist in which buyers stand ready to purchase

any quantity at this constant unit price. While buyers act strategically, these results hold

regardless of their number. In addition, a large number of contracts is shown to be necessary

to support the equilibrium allocations, although only a small fraction of them may end up

being traded in equilibrium. The wide applicability of our assumptions, along with the

simplicity of the equilibrium predictions, suggest that our model could be easily used as a

building block in applications, for instance in finance or macroeconomics.

Our work may also be useful for studies of markets prone to adverse selection, because the

Akerlof-like outcomes we emphasize are a simple alternative to the Rothschild and Stiglitz-

like outcomes that are usually considered in the applied literature. Take for instance the
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question of testing for the presence of adverse selection on insurance markets.27 Most of

the literature relies on the idea that riskier agents should choose higher coverage, and thus

that one should observe a positive correlation between risk and coverage. It is fair to say

that, so far, empirical tests of this prediction have led to mixed results.28 Notice however

that some of these empirical studies focus on markets on which competition is non-exclusive,

such as life insurance (Cawley and Philipson (1999)), or annuity markets (Finkelstein and

Poterba (2002, 2004)). This leads to the following remarks. First, the positive correlation

property stated above is valid only as far as one can observe the total coverage chosen by

each agent. While this is a relatively easy task under exclusive competition, this is much

more demanding in terms of data when competition is non-exclusive. Next, our results

show that agents who buy some insurance end up with the same level of coverage, and

therefore that the positive correlation property does not hold anymore under non-exclusive

competition. Indeed, Finkelstein and Poterba (2002, 2004) find evidence of adverse selection

when comparing insured agents to non-insured agents, or when comparing agents who choose

backloaded annuities to agents with flatter annuity profiles. However, the evidence is much

weaker when it comes to comparing agents with different levels of coverage, a negative finding

they share with Cawley and Philipson (1999), and which is in line with our theoretical

results. Finally, another prediction of exclusive competition models is that coverage should

be priced at an increasing price. The above cited studies empirically reject this feature,

instead documenting linear pricing of coverage, with some bulk discounts apparently arising

from administrative costs. Once more, this finding is consistent with our results. At any

rate, these remarks suggest that more sophisticated procedures need to be designed in order

to test for the presence of adverse selection in markets where competition is non-exclusive.

27See Chiappori and Salanié (2003) and Cohen and Siegelman (2010) for surveys of that literature.
28Chiappori, Jullien, Salanié, and Salanié (2006) propose an explanation based on differences in profits

between contracts. Cohen and Siegelman (2010) discuss other possible explanations.
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Appendix

Proof of Lemma 1. Lemma 1 is a direct consequence of slightly stronger result, which

we now state for future reference. Consider the following constrained monopsony problem,

parameterized by (θ0, θ1, Q0, Q1), where θ ≤ θ0 < θ1 <∞ and 0 ≤ Q1 < Q0 ≤ 1:

max

{∫
[θ,θ1]

[v(θ)Q(θ)− T (θ)] dF (θ)

}
(7)

subject to the incentive compatibility and individual rationality constraints

T (θ)− θQ(θ) ≥ T (θ′)− θQ(θ′) ∀(θ, θ′) ∈ [θ, θ1]
2, (8)

T (θ)− θQ(θ) ≥ 0 ∀θ ∈ [θ, θ1], (9)

and to two additional constraints on quantities,

Q(θ) = Q0 ∀θ ∈ [θ, θ0), (10)

Q(θ) ≥ Q1 ∀θ ∈ [θ, θ1]. (11)

The clause (10) is empty if θ0 = θ; in this case, one must treat Q(θ) as an additional control

variable taking its values in [Q1, 1], while Q0 is irrelevant. We show below that the value of

problem (7)–(11) is

Q1w(θ1) +
[
1{θ0=θ}(1−Q1) + 1{θ0>θ}(Q0 −Q1)

]
max

θ∈[θ0,θ1]
{w(θ)}. (12)

Since the unconstrained monopsony problem corresponds to (θ0, θ1, Q0, Q1) = (θ, θ, 1, 0), it

follows from (12) and the definition of pm that the maximum profit that the unconstrained

monopsonist can earn is w(pm).

To derive (12), we will repeatedly use the following integration by parts formula for

functions of locally bounded variation (Dellacherie and Meyer, Chapter VI, Theorem 90).

Fact 1 Let a : [θ,∞) → R and b : [θ,∞) → R be two right-continuous functions of locally

bounded variation, and set a(θ−) ≡ 0 and b(θ−) ≡ 0 by convention. Then the function ab

is of locally bounded variation and

a(θ)b(θ) =

∫
[θ,θ]

[a(ϑ) db(ϑ) + b(ϑ−) da(ϑ)] (13)

for all θ ∈ [θ,∞).

The proof of Lemma 1 then goes through a series of steps.

Step 1 We first check that w is right-continuous, of locally bounded variation, and upper
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semicontinuous. For all (p, ε) ∈ R× R+, one has by (2)

|w(p+ ε)− w(p)| ≤
∫

(p,p+ε]∩[θ,θ]

|v(θ)− p| dF (θ) + εF (p+ ε),

which goes to zero as ε goes to zero because v is bounded over the support of P and F

is right-continuous. Hence w is right-continuous at any p ∈ R. Next, for each subdivision

θ = p0 < p1 < . . . < pk = θ of [θ, θ], one has by (2)

k∑
i=1

|w(pi)− w(pi−1)| ≤
k∑
i=1

∣∣∣∣∫
(pi−1,pi]

v(θ) dF (θ)− piF (pi) + pi−1F (pi−1)

∣∣∣∣
≤
∫

(θ,θ]

|v(θ)| dF (θ) + θ − θF (θ),

so that w is of bounded variation over [θ, θ]. Since w vanishes over (−∞, θ) and is affine

over (θ,∞), it follows that w is of locally bounded variation. Finally, for all (p, ε) ∈ R×R+,

one has by (2)

w(p− ε) = w(p) + εF (p− ε)−
∫

(p−ε,p]∩[θ,θ]

[v(θ)− p] dF (θ),

so that lim supε↓0w(p − ε) = w(p) − [v(p) − p] P[{p}] ≤ w(p) by Assumption 1. Since w is

right-continuous, it follows that it is also upper semicontinuous.

Step 2 Let U(θ) ≡ T (θ) − θQ(θ) for all θ ∈ [θ, θ1]. Standard considerations imply

that the incentive compatibility constraints (8) are equivalent to the two conditions that

U(θ) =
∫ θ1
θ
Q(ϑ) dϑ + U(θ1) for all θ ∈ [θ, θ1] and that the function Q be nonincreasing

over [θ, θ1] (see, for instance, Rochet (1985)). Clearly, at the optimum, the participation

constraint (9) must be binding at θ1, so that U(θ1) = 0. Substituting for U(θ) in the

objective function, and using Fact 1 with a(θ) = F (θ) and b(θ) =
∫ θ1
θ
Q(ϑ) dϑ, we obtain

that the problem (7)–(11) reduces to maximizing∫
[θ,θ1]

{[v(θ)− θ]Q(θ) dF (θ)− F (θ)Q(θ) dθ} (14)

subject to the constraint that Q be nonincreasing, and to the additional constraints (10)–

(11). Using Fact 1 with a(θ) = F (θ) and b(θ) = θ, we obtain that

w(θ) =

∫
[θ,θ]

v(ϑ) dF (ϑ)− θF (θ) =

∫
[θ,θ]

{[v(ϑ)− ϑ] dF (ϑ)− F (ϑ) dϑ}

for all θ ∈ [θ,∞). Hence the objective function (14) can be more compactly rewritten as∫
[θ,θ1]

Q(θ) dw(θ). (15)

Step 3 Since w is right-continuous and of bounded variation, one can decompose w into
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its continuous part wc and its jump part ∆w, and rewrite (15) as∫
[θ,θ1]

Q(θ) dwc(θ) +
∑

θ∈[θ,θ1]

Q(θ)∆w(θ),

where, since w is upper semicontinuous, ∆w(θ) ≡ w(θ) − w(θ−) ≥ 0 for all θ ∈ [θ, θ1]. As

Q is nonincreasing, there can be no loss in profit in assuming that Q is left-continuous. Let

then Q+ be the right-continuous regularization of Q such that Q+(θ1) = Q1. Using Fact 1

with a(θ) = w(θ) and b(θ) = Q(θ)−Q+(θ), we obtain that

[Q(θ)−Q1]w(θ1) =

∫
[θ,θ1]

{w(θ) d[Q(θ)−Q+](θ) + [Q(θ)−Q(θ)] dw(θ)}.

Using the fact that w(θ−) = 0, this yields∫
[θ,θ1]

Q(θ) dw(θ) = Q1w(θ1) +

∫
[θ,θ1]

w(θ) d[Q(θ)−Q+](θ). (16)

Let Q be the Lebesgue–Stieltjes measure over [θ, θ1] associated to the nondecreasing and

right-continuous function Q(θ)−Q+. Since Q+(θ1) = Q1, the mass of Q is Q(θ)−Q1. Two

cases must be distinguished. If θ0 > θ, then Q(θ) = Q0, and the mass of Q is Q0 − Q1;

besides, since Q = Q0 over [θ, θ0), Q does not charge [θ, θ0). If θ0 = θ, then Q(θ) is a control

variable in [Q1, 1], and the mass of Q can take any value in [0, 1 − Q1]. In any case, the

maximum in (16) is reached by putting all the mass of Q on a maximum point of w over

[θ0, θ1], and, since the maximal value of w over [θ,∞) is nonnegative, by setting Q(θ) = 1 if

θ0 = θ, which yields the profit (12). The result follows. �

Proof of Proposition 1. For each i, let (qi(θ), ti(θ)) be the contract traded by type θ

with buyer i, so that T (θ) =
∑

i t
i(θ) and Q(θ) =

∑
i q
i(θ), let bi(θ) ≡ v(θ)qi(θ) − ti(θ)

be the profit earned by buyer i when trading with type θ, and let U(θ) ≡ T (θ) − θQ(θ)

be the profit earned by type θ. Observe that, given the menus offered by the sellers, the

functions qi, ti, bi, Q, T , and U can be defined over the whole of [θ,∞), and not only on the

support of P. As explained in Section 2.1, the function (qi, ti) : [θ,∞)→ Ci can be chosen

to be measurable. Moreover, incentive compatibility implies that U(θ) =
∫ θ′
θ
Q(ϑ) dϑ+U(θ′)

for all (θ, θ′) ∈ [θ,∞)2, and that the function Q is nonincreasing over [θ,∞). Finally, for

θ large enough, one must have Q(θ) < 1; for, otherwise, one would have T (θ) ≥ θ for all

θ ≥ θ by individual rationality, and thus T (θ) =∞ for all θ ≥ θ by incentive compatibility,

leading to a negatively infinite aggregate profit for the buyers, a contradiction. Therefore

θ0 ≡ inf {θ ∈ [θ,∞) : Q(θ) < 1} is well defined. The bulk of the proof consists in showing

that θ0 ≥ p∗.
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Suppose then by way of contradiction that θ0 < p∗, and take some θ1 ∈ (θ0, p
∗) that is

not an atom of P; by construction, Q < 1 in a neighborhood of θ1. We now construct a

deviation that any buyer can employ. First, fix some number ε ∈ (0, 1−Q(θ1)), along with

some differentiable, strictly positive, and strictly decreasing function χε : [θ1, p
∗∨ θ]→ [0, ε],

with χε(θ1) = ε and χ′ε < 0 over (θ1, p
∗ ∨ θ). Next, for each θ ∈ [θ1, p

∗ ∨ θ], define υε(θ) ≡
ε +

∫ p∗∨θ
θ

χε(ϑ) dϑ. Finally, for each θ ∈ [θ1, p
∗ ∨ θ], define τε(θ) ≡ υε(θ) + θχε(θ). It is

straightforward to verify that the quantity-transfer schedule (χε, τε) is strictly individually

rational and strictly incentive compatible over [θ1, p
∗ ∨ θ]:

τε(θ)− θχε(θ) > 0 ∀θ ∈ [θ1, p
∗ ∨ θ],

τε(θ)− θχε(θ) > τε(θ
′)− θχε(θ′) ∀(θ, θ′) ∈ [θ1, p

∗ ∨ θ]2, θ 6= θ′.

Now consider what happens if some buyer i offered, instead of his equilibrium menu Ci, the

following contracts:

ci0 ≡ (qi(θ1) + 1−Q(θ1), t
i(θ1) + θ1[1−Q(θ1)] + υε(θ1)), (17)

ci1(θ) ≡ (qi(θ) + χε(θ), t
i(θ) + τε(θ)), θ ∈ [θ1, p

∗ ∨ θ]. (18)

The following lemma, the proof of which can be found below, shows how the different types

of the seller would react to this offer.

Lemma 3 If ε is close enough to 0, then, if buyer i offers the contracts (17)–(18), types

θ ∈ [θ, θ1) choose to trade ci0, while types θ ∈ (θ1, p
∗ ∨ θ] choose to trade ci1(θ).

A potential problem with the contract offer (17)–(18) is that it does not necessarily

constitute a compact menu of contracts, because the function ci1 defined by (18) might be

discontinuous over [θ1, p
∗ ∨ θ]. Yet, since ci1 is measurable, it follows from Lusin’s theorem

(Aliprantis and Border (1999, Theorem 10.8)) that, whatever ε ∈ (0, 1 − Q(θ1)) may be,

there exists a compact subset Kε of [θ1, p
∗ ∨ θ] with P[[θ1, p

∗ ∨ θ] \ Kε] < ε such that the

restriction of ci1 to Kε is continuous. It follows that

Ci
ε ≡ {(0, 0), ci0} ∪ {ci1(θ) : θ ∈ Kε}

is a compact menu.

¿From Lemma 3, if buyer i deviates by offering the menu Ci
ε, types θ ∈ [θ, θ1) choose to

trade ci0, while types θ ∈ Kε choose to trade ci1(θ). We do not know a priori how type θ1, or

the types θ ∈ (θ1, p
∗ ∨ θ] \Kε, would react to buyer i’s deviation. However, this only has a
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limited impact on buyer i’s profit, because θ1 is not an atom of P and P[[θ1, p
∗∨θ]\Kε] < ε.

Formally, the change in buyer i’s profit induced by this deviation is at least∫
[θ,θ1]

{[qi(θ1) + 1−Q(θ1)]v(θ)− ti(θ1)− θ1[1−Q(θ1)]− υε(θ1)− bi(θ)} dF (θ)

+

∫
Kε

[v(θ)χε(θ)− τε(θ)] P(dθ) + ε inf
(q,t,θ)∈Ciε×[θ1,p∗∨θ]\Kε

{v(θ)q − t− bi(θ)},

which must at most be zero in equilibrium. Letting ε go to zero and using the definition of

w, we obtain that

[qi(θ1) + 1−Q(θ1)]w(θ1) ≤
∫

[θ,θ1]

[ti(θ1)− θ1q
i(θ1) + bi(θ)] dF (θ).

Summing over i and using the definition of U(θ1) along with the fact that the buyers’

aggregate profit
∑

i b
i(θ) is [v(θ)− θ]Q(θ)− U(θ) for any type θ then yields

{Q(θ1) + n[1−Q(θ1)]}w(θ1) ≤
∫

[θ,θ1]

{[v(θ)− θ]Q(θ)− [U(θ)− U(θ1)]} dF (θ)

=

∫
[θ,θ1]

{[v(θ)− θ]Q(θ) dF (θ)− F (θ)Q(θ) dθ}, (19)

where the equality follows from the fact that U(θ)−U(θ1) =
∫ θ1
θ
Q(ϑ) dϑ for all θ ∈ [θ, θ1], and

from an integration by parts similar to that which led to (14); indeed, the right-hand side of

(19) is nothing but (14). Now, since Q is nonincreasing, Q(θ) ≥ Q(θ1) for all θ ∈ [θ, θ1], and,

by definition of θ0, Q(θ) = 1 for all θ ∈ [θ, θ0). Thus the buyers’ aggregate profit on the right-

hand side of (19) is at most equal to the value of problem (7)–(11) with (θ0, θ1, Q0, Q1) =

(θ0, θ1, 1, Q(θ1)), that is, by Lemma 1, Q(θ1)w(θ1) + [1 − Q(θ1)] maxθ∈[θ0,θ1] {w(θ)}. After

substituting in (19), and simplifying as Q(θ1) < 1, one finally obtains that

nw(θ1) ≤ max
θ∈[θ0,θ1]

{w(θ)}.

Since this inequality holds for all θ1 ∈ CF (θ0, p
∗) ≡ {θ ∈ (θ0, p

∗) : F (θ) = F (θ−)}, one can

take suprema to get

n sup
θ1∈CF (θ0,p∗)

{w(θ1)} ≤ sup
θ1∈CF (θ0,p∗)

{
max

θ∈[θ0,θ1]
{w(θ)}

}
≤ sup

θ∈[θ0,p∗)

{w(θ)},

which, since CF (θ0, p
∗) is dense in [θ0, p

∗), w is right-continuous, and n ≥ 2, implies that

sup
θ∈[θ0,p∗)

{w(θ)} ≤ 0.

This, however, contradicts the definition of p∗ as sup{p ∈ R : w(p) > 0}. This establishes

that θ0 ≥ p∗, as claimed.

36



Since Q is nonincreasing, it follows from the definition of θ0 as inf {θ ∈ [θ,∞) : Q(θ) < 1}
that Q = 1 over [θ, p∗). In particular, one must have T ≥ p∗ over [θ, p∗). If p∗ ≥ θ, one must

also have T ≤ E[v(θ)] = p∗, for, otherwise, the buyers’ aggregate profit would be strictly

negative.29 Hence, in that case, (Q, T ) = (1, p∗) over [θ, p∗), and the buyers earn zero profit,

which concludes the proof.

Now suppose that p∗ < θ. Then the buyers’ aggregate profit is at most equal to the

value of problem (7)–(11) with (θ0, θ1, Q0, Q1) = (p∗, θ, 1, 0), that is, by Lemma 1 and the

definition of p∗, maxθ∈[p∗,θ] {w(θ)} = 0. Thus each buyer earns zero profit in equilibrium.

Now, to determine Q over (p∗, θ], one can proceed as for (16). Specifically, if Q+ is the

right-continuous regularization of Q, then the buyers’ aggregate profit can be written as

Q+(θ)w(θ) +

∫
[p∗,θ]

w(θ) d[Q(θ)−Q+](θ), (20)

where the integral in (20) ranges over [p∗, θ] because Q = 1 over [θ, p∗), so that the Lebesgue–

Stieltjes measure Q over [θ,∞) associated to the function Q(θ)−Q+ does not charge [θ, p∗).

Since w(p∗) = 0 and w(p) < 0 if p > p∗ by Assumption 2, and since the buyers’ aggregate

profit is zero in equilibrium, one must have Q+(θ) = 0, so that the mass of Q is Q(θ); as

a result, it must be that Q = Q(θ)δp∗ , for, otherwise, the integral in (20) would be strictly

negative. Thus Q = 0 over (p∗, θ]. To pin down aggregate transfers, observe first that

T ≤ p∗ over [θ, p∗), for, otherwise, some types θ > p∗ would find it profitable to sell their

endowments, in contradiction with the fact that Q = 0 over (p∗, θ]. Since, as observed above,

T ≥ p∗ over [θ, p∗), it follows that T = p∗ over [θ, p∗). By definition of p∗, this implies that

the buyers’ aggregate profit from trading with types θ < p∗ is zero, see Footnote 25. Finally,

T = 0 over (p∗, θ], for types θ > p∗ keep their endowments, so that T ≥ 0 over (p∗, θ], and

some buyers would earn strictly negative profits if T took strictly positive values over (p∗, θ].

Hence the result. �

Proof of Lemma 3. The following notation will be useful. First, let

A−i ≡

{∑
j 6=i

(qj, tj) : (qj, tj) ∈ Cj for all j 6= i and
∑
j 6=i

qj ≤ 1

}
(21)

be the set of aggregate allocations that remain available if buyer i withdraws his menu offer

Ci. By construction, A−i is a compact set. Second, let

z−i(θ,Q) ≡ max{T−i − θQ−i : (Q−i, T−i) ∈ A−i and Q−i ≤ Q} (22)

29Recall that p∗ can be an atom of P only as long as v(p∗) = p∗, so that one always has p∗ = E [v(θ) |θ < p∗].
Thus, in the present case, if p∗ = θ, one has E [v(θ) | θ < θ] = E [v(θ)], and the buyers cannot make profits
from trading with type θ.
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be the highest profit that a seller of type θ can earn from trading with the buyers other than

i, when her remaining stock is Q. Notice that z−i(θ,Q) is nonnegative and nondecreasing

with respect to Q. Fix θ1 as in the proof of Proposition 1. The proof then goes through a

series of steps.

Step 1 First, we show that each type θ ∈ [θ1, p
∗ ∨ θ] strictly prefers ci1(θ) to not trading

with buyer i, and to any other ci1(θ
′), θ′ 6= θ. Indeed, in equilibrium, we have

U(θ) = T (θ)− θQ(θ) = ti(θ)− θqi(θ) + z−i(θ, 1− qi(θ)). (23)

Therefore a solution to the problem that defines z−i(θ, 1 − qi(θ)) is to trade (Q−i, T−i) ≡
(Q(θ)− qi(θ), T (θ)− ti(θ)) with the buyers other than i. Given buyer i’s deviation, if type

θ trades ci1(θ), she earns a profit

uε(θ, θ) ≡ ti(θ) + τε(θ)− θ[qi(θ) + χε(θ)] + z−i(θ, 1− qi(θ)− χε(θ)). (24)

By construction, χε(θ) < 1−Q(θ1). Hence, since Q is nonincreasing,

1− qi(θ)− χε(θ) > Q(θ1)− qi(θ) ≥ Q(θ)− qi(θ) = Q−i.

In particular, trading (Q−i, T−i) with the buyers other than i remains a feasible choice in

the problem that defines z−i(θ, 1− qi(θ)−χε(θ)). This implies that z−i(θ, 1− qi(θ)−χε(θ))
is at least as large as z−i(θ, 1 − qi(θ)); since χε(θ) > 0 and z−i(θ, ·) is nondecreasing, these

two terms must actually be equal. Therefore, using (23)–(24) along with the definition of

υε, we get that uε(θ, θ) = U(θ) + υε(θ). Since, by construction, υε(θ) > 0, it follows that

uε(θ, θ) > U(θ), and thus type θ has a strict incentive to trade actively with buyer i. Now

type θ could trade the contract ci1(θ
′), for some θ′ 6= θ, in which case she would earn a profit

uε(θ, θ
′) ≡ ti(θ′) + τε(θ

′)− θ[qi(θ′) + χε(θ
′)] + z−i(θ, 1− qi(θ′)− χε(θ′)). (25)

Because χε(θ
′) > 0,

z−i(θ, 1− qi(θ′)− χε(θ′)) ≤ z−i(θ, 1− qi(θ′)). (26)

Moreover, since the quantity-transfer schedule (χε, τε) is strictly incentive compatible,

τε(θ
′)− θχε(θ′) < υε(θ). (27)

Finally, incentive compatibility on the equilibrium path imposes that

ti(θ′)− θqi(θ′) + z−i(θ, 1− qi(θ′)) ≤ U(θ). (28)

Summing (26)–(28) and substituting in (25) yield uε(θ, θ
′) < U(θ) + υε(θ) = uε(θ, θ), and

thus θ strictly prefers ci1(θ) to any ci1(θ
′), θ′ 6= θ.
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Step 2 Second, we show that each type θ ∈ (θ1, p
∗ ∨ θ] strictly prefers ci1(θ) to ci0. We

know from Step 1 that any such type θ strictly prefers ci1(θ) to ci1(θ1). Moreover, trading ci0 is

equivalent to trading ci1(θ1) along with the contract (1−Q(θ1)−χε(θ1), θ1[1−Q(θ1)−χε(θ1)],

which has unit price θ1 < θ, and moreover restricts the trades type θ could do with the buyers

other than i. Hence each type θ ∈ (θ1, θ] strictly prefers ci1(θ1) to ci0.

Step 3 Third, we show that type θ1 is indifferent between ci0 and ci1(θ1). Arguing as in

Step 2, we get that type θ1 weakly prefers ci1(θ1) to ci0. On the other hand, type θ1 may trade

ci0 with buyer i, (Q(θ1)−qi(θ1), T (θ1)− ti(θ1)) with the buyers other than i, and end up with

a profit equal to U(θ1) + υε(θ1), which, by Step 1, is exactly the profit uε(θ1, θ1) that she

would earn by trading ci1(θ1). This proves our claim. This also shows that a solution to type

θ1’s profit maximization problem, once she has traded ci0, consists in selling the remaining

part Q(θ1)− qi(θ1) of her endowment to the buyers other than i.

Step 4 Fourth, we show that, if ε is close enough to zero, each type θ ∈ [θ, θ1) strictly

prefers ci0 to not trading with buyer i, and to any ci1(θ
′). From Step 3, we know that if she

trades ci0, type θ1 may optimally choose to sell the remaining part of her endowment to the

buyers other than i. Because the seller’s preference satisfy a strict single crossing condition,

this must also be the case for any type θ < θ1. Hence the profit of type θ when she trades

ci0 must be equal to

uε(θ, θ) = uε(θ1, θ1) + θ1 − θ = U(θ1) + υε(θ1) + θ1 − θ. (29)

Since U(θ1) = U(θ) −
∫ θ1
θ
Q(ϑ) dϑ and Q ≤ 1, one has U(θ1) ≥ U(θ) − θ1 + θ. Hence

(29) implies that uε(θ) ≥ U(θ) + υε(θ1). Since, by construction, υε(θ1) > 0, it follows that

uε(θ, θ) > U(θ), and thus type θ has a strict incentive to trade actively with buyer i. Now

type θ could trade some contract ci1(θ
′), in which case she would earn a profit uε(θ, θ

′) as in

(25). Using (26) and (28), one obtains that

uε(θ, θ
′) ≤ U(θ) + τε(θ

′)− θχε(θ′) = U(θ) + υε(θ
′) + (θ′ − θ)χε(θ′). (30)

Consider the function defined by ϕε(θ
′) ≡ υε(θ

′) + (θ′ − θ)χε(θ
′). By construction, ϕε is

continuous over [θ1, p
∗∨θ] and differentiable over (θ1, p

∗∨θ), with ϕ′ε(θ
′) = (θ′−θ)χ′ε(θ′) < 0

for all θ′ ∈ (θ1, p
∗ ∨ θ). Thus ϕε is strictly decreasing over [θ1, p

∗ ∨ θ], and from (30) one has

uε(θ, θ
′) ≤ U(θ) + υε(θ1) + (θ1 − θ)χε(θ1). (31)

It follows from (29) and (31) that, in order to show that, for ε close enough to zero, any type

θ ∈ [θ, θ1) strictly prefers ci0 to any ci1(θ
′), one only needs to establish that

U(θ) + (θ1 − θ)χε(θ1) < U(θ1) + θ1 − θ,
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or, equivalently, ∫ θ1

θ

Q(ϑ) dϑ < (θ1 − θ)[1− χε(θ1)]

for any such ε and θ. Since Q is nonincreasing and χε(θ1) = ε can be chosen arbitrarily close

to zero, this holds if and only if

1

θ1 − θ

∫ θ1

θ

Q(ϑ) dϑ < 1,

which indeed is true because Q ≤ 1 everywhere and Q < 1 in a left-neighborhood of θ1. The

result follows. �

Proof of Proposition 2. The result is obvious when p∗ = θ, for then even a monopsonist

could not extract any profit from the seller; only type θ can then trade actively, and any

contract featuring a strictly positive quantity for type θ must have unit price p∗ = θ, so as

not to attract types θ > θ.

Suppose now that p∗ > θ. The proof then goes through a series of steps.

Step 1 Given the menus offered, any best response of the seller leads to aggregate trades

(1, p∗) for types θ < p∗ and (0, 0) for types θ > p∗. The behavior of type p∗ is irrelevant to

the buyers’ profits, either because p∗ is not an atom, or, if it is, because then v(p∗) = p∗.

Assuming that in equilibrium each buyer trades the same quantity with each type of the

seller, all buyers earn zero profit as p∗ = E[v(θ) |θ ≤ p∗] by (3).

Step 2 Since any quantity can be sold at unit price p∗, each type θ ≤ p∗ attempts to

maximize

t− θq + (p∗ − θ)(1− q) = t− p∗q + p∗ − θ

over the set of contracts (q, t) offered by the deviating buyer. One can therefore construct

the seller’s strategy in such a way that each type θ ≤ p∗ selects the same contract (q, t)

from the deviating buyer’s menu. One must have t ≥ p∗q, for, otherwise, the seller would

be strictly better off selling the quantity q∗ to the other buyers at unit price p∗. Since

p∗ = E[v(θ) | θ ≤ p∗], this implies that no buyer can deviate and make profits with types

θ ≤ p∗. This concludes the proof if p∗ ≥ θ.

Step 3 If θ > p∗, a deviating buyer may also attempt to attract some types θ > p∗. Over

this set of types, he effectively acts as a monopsonist, since none of them has an incentive

to sell to the other buyers at unit price p∗. Now, take any contract (q, t) in the deviating
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buyer’s menu, and suppose that q > q, where (q, t) is constructed as in Step 2. Then, since

clearly t− p∗q ≥ t− p∗q, one a fortiori has t− θq > t− θq for all θ > p∗, so that each type

θ > p∗ would rather trade (q, t) than (q, t). It follows that types θ > p∗ sell at most q to

the deviating buyer. An upper bound to the deviating buyer’s profit is thus obtained by

maximizing ∫
[θ,θ]

[v(θ)q(θ)− t(θ)] dF (θ), (32)

subject to the seller’s incentive compatibility and individual rationality constraints

t− p∗q ≥ t(θ)− p∗q(θ) ∀θ ∈ (p∗, θ], (33)

t(θ)− θq(θ) ≥ t(θ′)− θq(θ′) ∀(θ, θ′) ∈ (p∗, θ]× [θ, θ], (34)

t(θ)− θq(θ) ≥ 0 ∀θ ∈ (p∗, θ], (35)

and to the two additional constraints that

(q(θ′), t(θ′)) = (q, t) ∀θ′ ∈ [θ, p∗], (36)

q ≥ q(θ) ∀θ ∈ (p∗, θ]. (37)

Constraints (33) and (37) imply that

t− θ′q ≥ t(θ)− θ′q(θ) ∀(θ, θ′) ∈ (p∗, θ]× [θ, p∗].

Together with (34) and (36), this implies that the schedule {(q(θ), t(θ)) : θ ∈ [θ, θ]} is

incentive compatible:

t(θ)− θq(θ) ≥ t(θ′)− θq(θ′) ∀(θ, θ′) ∈ [θ, θ]2.

Moreover, it follows from (35) and (36) along with the fact that t ≥ p∗q that this schedule

is individual rational:

t(θ)− θq(θ) ≥ 0 ∀(θ, θ′) ∈ [θ, θ]2.

Taking into account constraint (36), we therefore obtain that the deviating buyer’s profit is at

most equal to the value of the problem of problem (7)–(11) with (θ0, θ1, Q0, Q1) = (p∗, θ, q, 0),

that is, by Lemma 1, qmaxθ∈[p∗,θ] {w(θ)} = 0. Hence the result. �

Proof of Proposition 3. The result is obvious when p∗ = θ. Suppose then that p∗ > θ

and that some buyer i offers a contract ci = (qi, ti) at unit price ti

qi
> p∗ in equilibrium. One

must have qi < 1, for, otherwise, ci would give types θ < ti more than their equilibrium

41



profit. Now, any other buyer j could offer a menu consisting of the no-trade contract and of

the contract

cj(ε) ≡ (1− qi, (p∗ − ε)(1− qi)),

for some ε ∈
(
0, t

i−p∗qi
1−qi

)
such that p∗ − ε is not an atom of P; by definition of p∗ along

with the fact that p∗ > θ, one can furthermore choose ε so that w(p∗ − ε) > 0. If both

ci and cj(ε) were available, each type θ < p∗ − ε would sell her whole endowment at price

ti + (p∗ − ε)(1 − qi) by trading ci with buyer i and cj(ε) with buyer j, thereby increasing

her profit by a strictly positive amount ti − p∗qi − ε(1− qi) compared to what she earns in

equilibrium. By contrast, types θ > p∗ − ε do not gain by trading cj(ε) with buyer j, since

the unit price at which this contract is issued is too low from their point of view. Because

p∗ − ε is not an atom of P, buyer j’s equilibrium profit must thus at least be∫
[θ,p∗−ε]

[v(θ)− p∗ + ε](1− qi) dF (θ) = (1− qi)w(p∗ − ε),

which is strictly positive given qi < 1 and the choice of ε. This, however, is impossible,

because, by Proposition 1, each buyer earns zero profit in equilibrium. Hence, no contract

can be issued, and a fortiori traded, at a price above p∗ in equilibrium. We now show that

this implies that no contract can be traded at a price different from p∗ in equilibrium. To

see this, suppose first that a contract with unit price below p∗ is traded by some type θ < p∗

in equilibrium. Then, since, by Proposition 1, the aggregate allocation traded by type θ is

(1, p∗), a contract with unit price above p∗ must be traded in equilibrium, a contradiction.

There only remains the possibility that a contract with unit price below p∗ is traded by type

p∗ in equilibrium. (Of course, this argument is needed only if p∗ belongs to the support of

P.) However, since type p∗ earns zero profit, this would again imply that a contract with

unit price above p∗ is traded in equilibrium, a contradiction. The result follows. �

Proof of Proposition 4. Fix some equilibrium and some buyer i, and define the set A−i as

in (21). One must show that the aggregate allocation (1, p∗) traded by types θ < p∗ belongs

A−i. If not, then, since A−i is compact, there exists an open set of [0, 1]×R+ that contains

(1, p∗) and that does not intersect A−i. Moreover, any allocation (Q−i, T−i) ∈ A−i is such

that T−i ≤ p∗Q−i by Proposition 3. For each (θ,Q) ∈ [θ,∞) × [0, 1], define z−i(θ,Q) as

in (22). For ε strictly positive and close enough to zero, any solution to the maximization

problem that defines z−i(p∗−ε, 1) must be such that the quantity traded by type p∗−ε with

the buyers other than i is bounded away from 1: otherwise, there would exist a sequence
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{εn}n≥1 converging to zero and a sequence {(Q−i(p∗−εn, 1), T−i(p∗−εn, 1))}n≥1 in A−i such

that the sequence {Q−i(p∗ − εn, 1)}n≥1 converges to 1 and

T−i(p∗ − εn, 1)− (p∗ − εn)Q−i(p∗ − εn, 1) ≥ 0

for all n ≥ 1. Taking limits as n goes to infinity and using the fact A−i is compact, this would

imply that the quantity 1 can be traded in an aggregate allocation in A−i at a price at least

p∗, a contradiction. Let (Q−i(p∗ − ε, 1), T−i(p∗ − ε, 1)) be the solution to the maximization

problem that defines z−i(p∗− ε, 1) with highest quantity traded. From the above argument,

one can choose ε so that Q−i(p∗ − ε, 1) < 1. One can further choose ε so that p∗ − ε is not

an atom of P and, by definition of p∗ along with the fact that p∗ > θ, so that w(p∗− ε) > 0.

Buyer i could offer a menu consisting of the no-trade contract and of the contract

ci(ε) ≡ (1−Q−i(p∗ − ε, 1), (p∗ − ε)[1−Q−i(p∗ − ε, 1)]).

Consider any type θ < p∗−ε, and let (Q−i(θ, 1), T−i(θ, 1)) be a solution to the maximization

problem that defines z−i(θ, 1). By incentive compatibility, Q−i(θ, 1) ≥ Q−i(p∗ − ε, 1). If

Q−i(θ, 1) = Q−i(p∗ − ε, 1) and thus T−i(θ, 1) = T−i(p∗ − ε, 1), type θ could sell her whole

endowment at price T−i(θ, 1) + (p∗− ε)[1−Q−i(p∗− ε, 1)] by trading ci(ε) with buyer i and

(Q−i(θ, 1), T−i(θ, 1)) with the buyers other than i, thereby increasing her profit by a strictly

positive amount (p∗−ε−θ)[1−Q−i(p∗−ε, 1)] compared to what she could earn from trading

with buyers other than i only. If Q−i(θ, 1) > Q−i(p∗ − ε, 1), one has

T−i(p∗ − ε, 1)− (p∗ − ε)Q−i(p∗ − ε, 1) > T−i(θ, 1)− (p∗ − ε)Q−i(θ, 1)

by definition of Q−i(p∗ − ε, 1), from which it follows that

T−i(p∗ − ε, 1) + (p∗ − ε)[1−Q−i(p∗ − ε, 1)] > T−i(θ, 1) + (p∗ − ε)[1−Q−i(θ, 1)]

≥ T−i(θ, 1) + θ[1−Q−i(θ, 1)]

and finally that

T−i(p∗ − ε, 1) + (p∗ − ε)[1−Q−i(p∗ − ε, 1)]− θ > T−i(θ, 1)− θQ−i(θ, 1).

Thus, by trading ci(ε) with buyer i and (Q−i(p∗− ε, 1), T−i(p∗− ε, 1)) with the buyers other

than i, type θ would strictly increase her profit compared to what she could earn from trading

with the buyers other than i only. It follows that types θ < p∗ − ε would trade ci(ε) if this

contract were offered by buyer i. By contrast, types θ > p∗ − ε do not gain by trading ci(ε)

with buyer i, since the unit price at which this contract is issued is too low from their point

43



of view. Because p∗ − ε is not an atom of P, buyer i’s equilibrium profit must thus at least

be ∫
[θ,p∗−ε]

[v(θ)− p∗ + ε][1−Q−i(p∗ − ε, 1)] dF (θ) = [1−Q−i(p∗ − ε, 1)]w(p∗ − ε),

which is strictly positive given Q−i(p∗ − ε, 1) < 1 and the choice of ε. This, however, is

impossible, because, by Proposition 1, each buyer earns zero profit in equilibrium. Hence

the result. �

Proof of Proposition 5. Fix some equilibrium and some buyer i, and define the function

z−i as in (22). The following lemma, the proof of which can be found below, is key to the

result.

Lemma 4 For each Q ∈ [0, 1], the mapping θ 7→ z−i(θ,Q) + θQ is nondecreasing over

[θ,∞). Moreover, if this mapping is constant over some open interval of types, then, for

any type θ in this interval, and for any solution (Q−i(θ,Q), T−i(θ,Q)) to the maximization

problem that defines z−i(θ,Q), one has Q−i(θ,Q) = Q.

Observe that if Q−i(θ,Q) = Q, there must exist an aggregate allocation in A−i that

allows the seller to exactly trade the quantity Q. We now show that this is the case for any

quantity close enough to zero, which implies the result. Given Lemma 4, it is enough to

show that for each Q0 close enough to zero, the mapping θ 7→ z−i(θ,Q0) + θQ0 is constant

over some interval of types. To see this, fix some Q0 ∈ (0, 1) along with some θ0 ∈ (θ, p∗)

that satisfies (5); one can assume without loss of generality that θ0 is not an atom of P.

Suppose that, for all (θ′, θ′′) ∈ [θ, θ]2 such that θ′ < θ0 < θ′′,

z−i(θ′, Q0) + θ′Q0 < z−i(θ0, Q0) + θ0Q0 < z−i(θ′′, Q0) + θ′′Q0. (38)

Then buyer i could offer a menu consisting of the no-trade contract and of a contract

(1 − Q0, t0) such that type θ0 is indifferent between trading the contract (1 − Q0, t0) with

buyer i along with some aggregate allocation in A−i with the buyers other than i, and trading

with the latter only, and therefore earn her equilibrium profit as shown in Proposition 4:

t0 − θ0(1−Q0) + z−i(θ0, Q0) = p∗ − θ0.

Now, from (38), types θ > θ0 strictly prefer accepting buyer i’s offer to selling their whole

endowment at price p∗ to the buyers other than i, while types θ < θ0 strictly prefer the

latter option. As for types θ > p∗, they satisfy z−i(θ,Q0) = 0 since they earn zero profit in
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equilibrium. Hence, any such type accepts buyer i’s offer if t0 > θ(1−Q0), or, equivalently,

θ < θ1, where θ1 is implicitly defined by

t0 = θ1(1−Q0) = θ0(1−Q0) + p∗ − θ0 − z−i(θ0, Q0). (39)

It is easily checked that θ1 ≥ p∗ if and only if (p∗ − θ0)Q0 ≥ z−i(θ0, Q0), which is indeed the

case since, by Proposition 3, no contract is issued at a price above p∗ in equilibrium. It thus

follows that the contract (1 − Q0, t0) offered by buyer i attracts all types θ ∈ (θ0, θ1), with

θ0 < p∗ ≤ θ1, that types θ0 and θ1 are indifferent, and that all other types reject buyer i’s

offer. Because θ0 is not an atom of P, buyer i’s equilibrium profit must thus at least be∫
[θ0,p∗)

[v(θ)(1−Q0)− t0] dF (θ) + {[v(p∗)(1−Q0)− t0] P[{p∗}]} ∧ 0 +O(θ1 − p∗), (40)

where the mapping ε 7→ O(ε)
ε

is bounded in a neighborhood of zero. Now let Q0 go to zero.

Then z−i(θ0, Q0) goes to zero as (p∗−θ0)Q0 ≥ z−i(θ0, Q0) ≥ 0, so that, by (39), θ1 and t0 go to

p∗. Two cases can then arise. If p∗ is not an atom of P, then P[{p∗}] = 0, and the limit of (40)

is
∫

[θ0,p∗]
[v(θ)−p∗] dF (θ). If p∗ is an atom of P, then, from the definition of p∗ along with the

right-continuity and upper semicontinuity of w, v(p∗) = p∗; it follows that v(p∗)(1−Q0)− t0
goes to zero as Q0 goes to zero, and the limit of (40) is again

∫
[θ0,p∗]

[v(θ)−p∗] dF (θ). Finally,

recall that θ0 was chosen so that
∫

[θ0,p∗]
[v(θ)− p∗] dF (θ) is strictly positive. This, however,

is impossible, because, by Proposition 1, each buyer earns zero profit in equilibrium. Thus,

for each Q0 close enough to zero, the mapping θ 7→ z−i(θ,Q0) + θQ0 must be constant over

some open interval of types, and Lemma 4 applies. The result follows. �

Proof of Lemma 4. Fix (Q−i, T−i) ∈ A−i. Observe that, as long as Q−i ≤ Q and θ′ ≥ θ,

T−i − θ′Q−i = T−i − θQ−i + (θ − θ′)Q−i ≥ T−i − θQ−i + (θ − θ′)Q.

Taking maxima over (Q−i, T−i) ∈ A−i on both sides of this inequality yields

z−i(θ′, Q) ≥ z−i(θ,Q) + (θ − θ′)Q

for all Q ∈ [0, 1]. Since θ′ ≥ θ, the first part of the result follows. Now suppose that

z−i(θ′, Q) = z−i(θ,Q) + (θ − θ′)Q (41)

for some Q ∈ [0, 1] and θ′ > θ. We now show that (41) implies that for any such Q, and for

any solution (Q−i(θ,Q), T−i(θ,Q)) to the maximization problem that defines z−i(θ,Q), one
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has Q−i(θ,Q) = Q. To see this, observe that the trade (Q−i(θ,Q), T−i(θ,Q)) is also feasible

in the maximization problem that defines z−i(θ′, Q). Thus one must have

z−i(θ′, Q) ≥ T−i(θ,Q)− θ′Q−i(θ,Q) = z−i(θ,Q) + (θ − θ′)Q−i(θ,Q). (42)

Since θ′ > θ and Q−i(θ,Q) ≤ Q, it follows from (41)–(42) that Q−i(θ,Q) = Q, as claimed.

Hence the result. �

Proof of the Sufficiency Condition (6). Fix some equilibrium and some buyer i, and

define the set A−i as in (21). One must show that A−i is infinite. Observe first that, under

condition (6), there exists no deviation for any buyer i consisting of the no-trade contract

and of a contract (q̃, t̃) with q̃ > 0, such that type θ would be worse off trading this contract,

while type p̃ would be indifferent between trading it or not, that is, t̃ = p̃q̃. Indeed, suppose

the contrary holds. Then the contract (q̃, t̃) attracts all the types in the interval [p∗, p̃),

and, since type θ is the only type below p∗ in the support of P, none in the interval [θ, p∗).

Because p̃ in (6) can be chosen without loss of generality not to be an atom of P, buyer i’s

equilibrium profit must thus at least be

q̃

∫
[p∗,p̃]

[v(θ)− p̃] dF (θ),

which is strictly positive by (6). This, however, is impossible, because, by Proposition 1,

each buyer earns zero profit in equilibrium. Hence type θ must be attracted by any such

contract (q̃, t̃). Since, by Proposition 4, the equilibrium profit v(θ) − θ of type θ remains

available following buyer i’s deviation, this implies that

v(θ)− θ ≤ (p̃− θ)q̃ + z−i(θ, 1− q̃)

for all q̃ ∈ (0, 1], where the function z−i is defined as in (22). Moreover, by Proposition 3,

no contract can be issued at a price strictly above p∗ = v(θ). Thus

z−i(θ, 1− q̃) ≤ [v(θ)− θ](1− q̃)

for all q̃ ∈ (0, 1]. Letting Q ≡ 1 − q̃ and combining these two inequalities, one obtains the

following lower and upper bounds for z−i(θ,Q):

v(θ)− θ + (θ − θ)Q ≤ z−i(θ,Q) ≤ [v(θ)− θ]Q

for all Q ∈ [0, 1). Since these bounds are strictly increasing in Q and coincide at Q = 1, the

definition of z−i(θ, ·) implies that there exists a sequence in A−i composed of distinct points

that converges to (1, v(θ)). The result follows. �
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Proof of Lemma 2. Consider an equilibrium of the multiple buyer multiple seller non-

exclusive competition game with bilateral private contracting. Each buyer i proposes a vector

of menus (Ci
1, . . . , C

i
l ), and each seller j optimally chooses from the menus (C1

j , . . . , C
n
j ) that

are designed for her. Suppose now that some type θ 6= p∗ of seller j ends up trading an

aggregate allocation other than the allocation (Q(θ), T (θ)) that we showed in Proposition

1 to be the unique aggregate equilibrium allocation of type θ in the multiple buyer single

seller non-exclusive competition game with seller j. Hence, in this game, at least one buyer

i has a strictly better response C̃i
j 6= Ci

j to the menus (C1
j , . . . , C

i−1
j , Ci+1

j , . . . , Cn
j ) offered by

his competitors. Buyer i could thus deviate from (Ci
1, . . . , C

i
l ) in the multiple buyer multiple

seller non-exclusive competition game with bilateral private contracting by replacing Ci
j by

C̃i
j. As menus are private, the sellers other than i would not notice, and neither would the

buyers other than j. Therefore this deviation is profitable. Hence the result. �
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de Statistique, 28, 1–37.

[34] Martimort, D., and L. Stole (2002): “The Revelation and Delegation Principles in

Common Agency Games,” Econometrica, 70, 1659–1673.

[35] Martimort, D., and L. Stole (2003): “Contractual Externalities and Common Agency

Equilibria,” Advances in Theoretical Economics, 3, Article 4.

[36] Martimort, D., and L. Stole (2009): “Market Participation under Delegated and Intrin-

sic Common-Agency Games,” RAND Journal of Economics, 40, 78–102.

[37] Mas-Colell, A., M.D. Whinston, and J.R. Green (1995): Microeconomic Theory. New

York, Oxford: Oxford University Press.

50



[38] Myerson, R.B. (1985): “Analysis of Two Bargaining Problems with Incomplete Infor-

mation,” in Game-Theoretic Models of Bargaining, ed. by A.E. Roth. Cambridge, MA:

Cambridge University Press, 115–147.

[39] Parlour, C.A., and D.J. Seppi (2008): “Limit Order Markets: A Survey”, in Hand-

book of Financial Intermediation and Banking, ed. by A.V. Thakor and A.W.A. Boot.

Amsterdam: North-Holland, 63–96.

[40] Pauly, M.V. (1974): “Overinsurance and Public Provision of Insurance: The Roles of

Moral Hazard and Adverse Selection,” Quarterly Journal of Economics, 88, 44–62.

[41] Peck, J. (1997): “A Note on Competing Mechanisms and the Revelation Principle,”

Unpublished Manuscript, Ohio State University. Available at http://www.econ.ohio-

state.edu/jpeck/reveal.pdf.

[42] Peters, M. (2001): “Common Agency and the Revelation Principle,” Econometrica, 69,

1349–1372.

[43] Peters, M., and C. Troncoso Valverde (2010): “A Folk Theorem for Competing

Mechanisms,” Unpublished Manuscript, University of British Columbia. Available at

http://montoya.econ.ubc.ca/mike/multiple−agency.pdf.

[44] Piaser, G. (2006): “The Biais–Martimort–Rochet Equilibrium with Direct Mech-

anisms,” Department of Economics Research Paper Series No. 33/06, Università
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