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Abstract

This paper studies an analytically tractable model of the formation and evolution of chains
of production. Over time, entrepreneurs accumulate techniques to produce a good using labor
and some other good as an intermediate input. The value of a technique depends on both the
productivity embodied in the technique and the cost of the particular inputs. When producing,
each entrepreneur selects the technique that delivers the most cost effective combination. The
collection of known production techniques form a web of interweaving and overlapping potential
chains of production: the input-output architecture of the economy. The model delivers a rich
microstructure of firm level shocks and interactions as firms discover new techniques and switch
suppliers in response to changes in input prices. Changes in a firm’s marginal cost depend
on shocks all along its many potential supply chains, and the size of a firm’s customer base
expands as other entrepreneurs find ways to use the firm’s output as an intermediate input.
Dispersion across firms in the rate which links are formed can have enormous consequences for
aggregate output (either positive or negative), as this determines how productivity gains from
newly discovered techniques diffuse through the network.
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An entrepreneur is constantly searching for new ways to produce. When he meets another

entrepreneur, he may develop a new technique for making his good using the other’s as an input.

Over time he accumulates different ways of producing his good. If one of his potential suppliers

innovates and is able to lower her price, that technique becomes more attractive. One can visualize

the set of all techniques known to entrepreneurs as a network, where each node is an entrepreneur

and techniques are links between them. When any of the entrepreneurs discovers a new, more

efficient technique, the productivity gains diffuse through the network. How large those effects are

and how quickly these more efficient techniques are developed hinge on both the structure and the

density of the network.

When many entrepreneurs are in close proximity and are exposed to each others’ products,

techniques are discovered frequently, giving each entrepreneur many options to choose from. At a

point in time, each entrepreneur uses only her most cost effective technique, but as an economy

evolves substitution across techniques can be very important. For example, a technique that uses

oil to produce electricity might be useful when oil is cheap; when the price of oil rises, the electricity

producer may substitute toward a technique that uses coal.

Over time, the collection of known production techniques form a dynamic web of interweaving

and overlapping potential chains of production. One can think of the information stored in this

network as the set of supply chains (chains of techniques) available to make each final product.

Changes in a entrepreneur’s marginal cost can come from changes anywhere along her many supply

chains, and these are passed on to the entrepreneur’s customers. A technique that is not currently

cost effective enough may later become so if there are enough cost reductions upstream.

Aggregate productivity is literally embedded in the network of techniques, and both the density

and the structure of the network matter. In a more dense network, each entrepreneur has access
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to more techniques which, on average, allow them to find more efficient production methods. This

allows them to lower their costs, passing those gains on to their customers, further increasing

aggregate productivity.

The structure of the network determines how broadly and quickly productivity gains diffuse to

other entrepreneurs through lower prices. Consider an entrepreneur who discovers an extremely

cost effective technique. If the firm has many potential customers (i.e., many other firms have

access to techniques that use the good), those lower prices will ripple down many supply chains. If,

however, the firm has few potential customers, the lower prices may not have much of an immediate

impact. Eventually, if other firms are able to discover techniques that use the good, the innovation

will become socially beneficial.

An advantage of the setup is its tractability. For the baseline case, there is a closed form

expression for aggregate output, and more generally a simple formula relating the density of the

network to aggregate productivity. A simple extension that allows for alternative configurations of

the network, with the finding that dispersion in the rate at which firms are involved with newly

formed techniques can have enormous consequences for aggregate productivity, both positive and

negative.

The notion that business networks play a large role in economic activity has a long history. For

an entrepreneur to fully take advantage of her talents, it is useful to have many contacts: to know

which other firms would make the best business partners, to get access to better fitting and cheaper

inputs, and to find other entrepreneurs who can make use of the good she produces. While such

interactions are no doubt an important part of economic activity, it can be challenging to write

down a model that is tractable enough to get at the aggregate implications but also flexible enough

to begin to quantify the importance of these kinds of interactions. The goal of this paper is to take
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a step in this direction. The main contribution of the paper is finding a probabilistic structure that

allows the incorporation of such a network into a macro model in a tractable way.

Understanding how business networks and chains of productions impact productivity can be

useful in several areas. For example, in a dense city entrepreneurs come across each other frequently,

potentially given them ideas for new techniques. Some of the gains from agglomeration within a

city may come from putting entrepreneurs in close proximity. This gives rise to a more densely

populated network of techniques in which firms have more options to choose from, leading to more

efficient production and higher aggregate output.1

Alternatively, consider a small village in which the state of technology is poor. Transferring

several techniques may not be helpful as a technique has no value in isolation; without the required

inputs the technique cannot be used. Further, if the productivity embodied in the technique is

relationship specific (e.g., two entrepreneurs work particularly well together), then transferring the

techniques may not even be feasible.

This paper is related to several disparate literatures. While there are other models that use

networks, the structure of the model is most closely connected to the work of Kortum (1997), Eaton

and Kortum (2002), Alvarez et al. (2008), and Lucas (2009) who study flows of ideas.

The idea that network structure determines how shocks propagate through an economy has

arisen in the real business cycle literature, beginning with Long and Plosser (1983). Recently,

the discussion has centered on whether shocks to particularly well connected sectors can prove

important enough to account for aggregate fluctuations.2 These models typically assume that each

1This complements but is a distinct channel from the learning in Lucas (2009) in which proximity makes it easier
for good ideas to be copied.

2See Horvath (1998), Dupor (1999), Carvalho (2007), Acemoglu et al. (2010), and Foerster et al. (2008). This
literature has focused on the sectoral level both because the most fine input-output data is at that level and because
solving these models involves inverting matrices, which becomes computationally intensive as the number of nodes
in the network grows large.
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sector has a representative firm that produces using a Cobb-Douglas production function, using

inputs from each other sector.

While there are several differences between those models and the one presented here, let me point

to an interesting connection. The model presented here provides a microfoundation for the Long

and Plosser model in the following sense: If firms are divided into sectors, and all techniques in a

sector are augmented by a sector specific neutral technology shock, then a log-linear approximation

around the steady state is the Long and Plosser model. In this approximation, there is directed

mapping between the share parameters of the Cobb-Douglas sectoral production function in the

Long and Plosser model and the quantity of techniques that firms in one sector have formed that use

inputs from firms in a different sector in this model. While the model responds similarly to sectoral

productivity shocks when aggregated to the sectoral levels, this masks a lot of activity under the

hood. In this model, in response to a negative productivity shock to all firms in a sector, some of

those firms’ customers will choose alternative supply chains in response to the higher input prices,

while other customers will simply swallow the higher prices and pass those on to their customers.

Models in this literature have taken the sectoral input-output structure as a primitive, with

the explicit assumption that the representative firms at the sectoral level have fixed Cobb-Douglas

production functions. This is difficult to reconcile with the large long-run changes in input-output

shares over time. The particular microfoundation provided by this model is particularly attractive

in that it allows for the Long and Plosser model as a local approximation but also gives a clean

interpretation of changes in the sectoral input-output matrix over time.

Jones (2008) uses a similar model to argue the input-output structure can help us understand

cross country income differences. In that setup misallocation in one sector raised input prices in

other sectors, and the magnitude of the overall effect depends on the input-output structure.
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This paper proceeds as follows: Section 1 describes the basic technology, setting up and solving a

social planner’s problem. In this section there are simple formulas relating the density of the network

to aggregate output. In addition, I discuss market structures that could be overlaid on the economic

environment. Section 2 describes the size distribution. Section 3 generalizes the model presented

in the first section to multiple types, to allow for more interesting network configurations. Section

4 describes how alternative configurations relate both aggregate output and the way productivity

gains from new techniques diffuse through the network.

1 The Baseline Model

1.1 Economic Environment

There is a mass of infinitely-lived firms, and each firm is associated with a particular good. Each

good can be used both as an intermediate input and for final consumption. A representative

consumer has Dixit-Stiglitz preferences over the goods and supplies labor inelastically (both of

these can easily be relaxed).

At a given point in time, firm j has access to several techniques to produce its good. Each

technique φ = {j, i, z} consists of three components: (i) the good that is produced, j; (ii) the good

used as an input, i; and (iii) a production technology associated with using that input, indexed by

the productivity parameter z:

y =
1

αα(1− α)1−α zx
αL1−α

where y is the quantity of output of good j produced, x is the quantity of good i used as an input,

L is labor.
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Given a menu of techniques and input prices, each firm will maximize profits. In principle a

firm can produce using more than one technology, but since the production functions are constant

returns to scale, generically the firm will choose the best price/productivity combination available.

At a given time, the state of the economy can be summarized by the set of available techniques,

Φ(t).

Firms discover and lose access to techniques (draws) over time according to a random process.

Time is continuous and each firm receives draws at the arrival rate Λ̃(t). A technique that exists

becomes infeasible at rate δ.3

Let ω(n, t) be the fraction of firms with access to n techniques at time t. It will be useful to

characterize the evolution of ω(n, t) over time. This satisfies:

ω̇(n, t) = Λ̃(t)ω(n− 1, t) + (n+ 1)δω(n+ 1, t)− Λ̃(t)ω(n, t)− nδω(n, t) (1)

ω(n, t) increases when a firm with n − 1 techniques discovers a new one and when a firm with

n+ 1 techniques loses one of their n+ 1 techniques. Similarly ω(n, t) decrease when a firm with n

techniques either gains a new technique or loses one of its n techniques. If at some t0 the distribution

of ω (n, t0) is given by a poisson distribution with mean λ̃ (t0), then a solution to equation (1) is

such that ω(n, t) is also given by a Poisson distribution4 with mean λ̃(t), where λ̃(t) satisfies the

differential equation

˙̃
λ(t) = Λ̃(t)− δλ̃(t) (2)

To interpret this, it helps to take the limit as t0 → −∞ (and imposing that λ̃ (t0) doesn’t blow up

3δ plays a small role in the analysis and setting δ = 0 would change little. It is included (i) for generality and (ii)
so that when Λ̃(t) is constant there is a well defined steady state.

4In fact, for an arbitrary initial distribution, the distribution of links will converge asymptotically to Poisson
distribution.
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in the process) giving

λ̃(t) =

∫ t

−∞
e−(t−τ)δΛ̃(τ)dτ

This is closely related to the fact that the sum of independent Poisson random variables is also a

Poisson random variable. The takeaway from this is that regardless of history of
{

Λ̃(τ)
}
τ≤t

, the

distribution of ω(n, t) at a given point in time can be summarized by a single number, λ̃(t).

1.2 Planner’s Problem

For the most part, I will focus on a planner’s problem in order to build intuition about the economic

environment and to describe solution techniques without getting bogged down with the details of a

particular market structure. There are many market structures that could be layered on top of the

technological environment. In Section 1.8 I will discuss two such market structures, both of which

decentralize the planner’s solution.

Consider the problem of a planner that takes the network of techniques as given but seeks to

make production decisions and allocate labor to maximize the utility of the representative agent.

Let y0
j be production of good j for final consumption, and let Φj be the set of techniques available

to produce good j. For a technique φ = {j, i, z}, define the following quantities:

• yj(φ) is the quantity of good j produced using technique φ

• xi(φ) is the quantity of good i used as an input in the production of j using technique φ

• L(φ) is the quantity of labor used in production of j using technique φ

• zji(φ) is the productivity parameter associated with technique φ

Formally, the planner chooses an allocation
{
y0
j , {yj(φ), xi(φ), L(φ)}φ∈Φj

}
j

to maximize final
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consumption:

max

(∫
j∈J

(y0
j )

ε
ε−1

) ε
ε−1

subject to: (i) technological constraints

yj(φ) ≤ 1

αα(1− α)1−α zji(φ)xi(φ)αL(φ)1−α, ∀φ ∈ Φj , j ∈ J

(ii) goods feasibility constraints

y0
j +

∑
φ∈Φk,k∈J

xj(φ) ≤
∑
φ∈Φj

yj(φ), ∀j ∈ J

and (iii) a labor resource constraint

∫
j∈J

∑
φ∈Φj

L(φ) ≤ L

On the left hand side of the second constraint consists is the sum of final output of good j and

output used as an intermediate among all of the techniques that use good j. On the right hand side

is the quantity of good j produced using each of the techniques available. In the third constraint,

the left hand side is the total labor used with each technique across all firms.

Let MCj be the marginal social cost of producing good j (the multiplier on the goods feasibility

constraint for j), and let w be the marginal social cost of labor (the multiplier on the labor resource

constraint). The first order necessary conditions from this problem imply that for each φ ∈ Φj ,

MCj
w
≤ 1

zji(φ)

(
MCi
w

)α
(with equality if yj(φ) > 0) (3)
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For each technique, the right hand side of equation (3) gives the marginal social cost of producing

good j using that technique. The left hand side is the actual marginal social cost of producing

good j, i.e., the marginal social cost associated with the technique that is actually used.

It will be convenient to define qj ≡ 1
MCj

as a measure of the efficiency of producing good j. If

we choose units of utility so that w = 1, we can rewrite equation (3) as

qj ≥ zji(φ)qαi (with equality if yj(φ) > 0) (4)

1.3 The Cross Sectional Distribution

Let F (q) be the cross section distribution of efficiency given the decision of the planner. This is an

object that will need to be solved for.

If firm j gets a single draw of a potential supplier, there are two parts that determine how useful

it is: a productivity parameter, z, drawn from an exogenous distribution H(z), and the efficiency

of the supplier, qi. Recall from equation (4) that if firm j use a positive quantity of input i, firm j

will produce at efficiency qj = zji(φ)qαi . Let G(q) be the cumulative distribution of the efficiency

associated with a single random draw. Given equation (4), we can write G(q) as

G(q) =

∫ ∞
0

F

((q
z

) 1
α

)
dH(z) (5)

To interpret this, note that for each z, F
(( q

z

) 1
α

)
is the portion of potential suppliers that, in

combination with that z, would leave the firm with efficiency less than or equal to q.

We now ask, what is the probability that, given all of its draws, a firm has efficiency less than
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q? We can write this as

Pr (Q ≤ q) =
∞∑
n=0

Pr (All n draws are ≤ q)ω (n)

=
∞∑
n=0

G (q)n
λ̃ne−λ̃

n!

= e−λ̃[1−G(q)]

To interpret this last expression, if λ̃ [1−G (q)] is a parameter of a Poisson distribution (the arrival

rate of techniques that would provide efficiency better than q), then e−λ̃[1−G(q)] is the probability

that no such techniques arrived.

When the number of firms is large, a standard abuse of the law of large numbers gives Pr (Q ≤ q) =

F (q). We can substitute the expression for G(q) from equation (5) to get a fixed point problem for

the distribution of efficiency F (q):5

F (q) = e
−λ̃
[
1−
∫∞
0 F

(
( qz )

1
α

)
dH(z)

]
(6)

This is a key equation, highlighting the recursive nature of the network. The behavior of network

depends on whether λ̃ ≷ 1. The more interesting case in which λ̃ � 1 will be the focus of the

remainder of this paper. For completeness I will discuss both cases here, but one could skip to the

next subsection.

Few Techniques: λ̃ ≤ 1

If firm j does not have access to any techniques, it cannot produce. Similarly, if firm j has

5We could similarly write this as an equivalent fixed point problem in for G(q), the distribution of efficiency
provided by a single technique:

G(q) =

∫ ∞
0

e
−λ̃

[
1−G

(
( qz )

1
α

)]
dH(z)
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techniques but its suppliers do not, then those suppliers will not be able to produce and consequently

neither will firm j. Continuing with this logic, if a supply chain is finite, it is not viable.

When λ̃ ≤ 1, there are so few techniques available almost all firms have no access to viable supply

chains. For almost all of the goods the marginal social cost of producing is infinite. Consequently,

F (q) = 1 for all q. When λ̃ ≤ 1, one can show that the mapping f 7→ e
−λ̃
[
1−
∫∞
0 f

(
( qz )

1
α

)
dH(z)

]
is a

contraction with the unique solution f = 1.

Many Techniques: λ̃ > 1

As λ̃ crosses the critical value of 1, enough techniques are added that a positive fraction of

firms will be able to produce. One can show that given λ̃, the fraction F will have no access to

viable supply chains and will be unable to produce. F is the minimum solution to the equation

F = e−λ̃(1−F ), and specifically if λ̃ > 1 then F ∈ (0, 1).

When λ̃ > 1, there are multiple solutions to equation (6). Note that since equation (6) was

derived from necessary conditions, not sufficient conditions, so one must check which of these

solutions to equation (6) actually solves the planner’s problem.6

First note that there are two solutions in which F (q) is constant for all q. The first is F (q) = 1

for all q, which again corresponds to zero efficiency (infinite marginal social cost) for all goods.

The rationale is different than in the λ̃ ≤ 1 case; here, if the marginal social cost of every input

is infinite, then the marginal social cost of each output must be infinite as well. The allocation

that arises from this solution is feasible, but it is dominated by another feasible allocation and is

therefore not the solution to the planner’s problem.

There is a second constant solution, F ∈ (0, 1), which follows a similar circular logic. The

6As will be clear from the logic, multiple solutions to necessary conditions are actually a feature of most models
in which a portion of output is used simultaneously as input, such as a standard growth model with roundabout
production.
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constant solution F (q) = F corresponds to infinite marginal social cost for those firms that cannot

produce, and zero marginal social cost for all other firms. The rationale is similar: if inputs have

zero marginal social cost, output has zero social cost. Unfortunately, this leads to an infeasible

allocation, and is therefore not a solution to the planners problem either.7

There exists a third solution as well, which is feasible and solves the social planners problem.

This will be discussed further below.

The starkly different behavior of the network when λ̃ crosses 1 is called a phase transition.

This phase transition is a typical feature of random networks, a result known as the Erdos-Renyi

Theorem.8

1.4 The Allocation of Labor and Welfare

Once we have solved for the cross sectional distribution of efficiency given the network of techniques,

we next need to assign the correct quantity of labor to each firm to ensure sufficient quantities of

intermediate goods are produced. We take advantage of a convenient property of the model. Let

Lkj be the quantity of labor used in the kth-to-last stage of production of good j (so the L0
j is the

labor used in production of final good j, L1
j is the labor used to make the inputs for that, etc.).

Further, define Lk ≡
∫
J L

k
j to be the total labor used for the kth-to-last stage of production across

7These two constant solutions have further economic meaning. Given the distribution of productivity draws H(·)
with support [z, z̄] with 0 ≤ z ≤ z̄ ≤ ∞, let q and q̄ be the lowest and highest possible efficiencies among firms that
are able to produce. q (q̄) is derived from the supply chain in which every technique has the worst (best) possible

productivity draw, so that q = z
1

1−α (q̄ = z̄
1

1−α ). If λ̃ > 1 the solution to the planners problem must have F (q̄) = 1
and F (q) = F , the two constant solutions to equation (6). One can see that it must be the case that F (q̄) and F (q)
are constant solutions to equation (6) by thinking through the derivation of that equation.

8See Kelly (1997) and Kelly (2005) for examples in which this kind of phase transition is given an economic
interpretation.
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all goods. It is straightforward to show that

Lk+1
j = αLkj (7)

and by aggregating across firms it easily follows that Lk+1 = αLk. So, total labor used in the

economy across all stages of production, is

L =
∞∑
k=0

Lk =
∞∑
k=0

αkL0 =
1

1− α
L0 (8)

If L units of labor are supplied, then L0 = (1−α)L units are used in the final stage of production.

We now use several more first order conditions from the planners problem to arrive at an ex-

pression for total final consumption. Define Q ≡
(∫

J q
ε−1
j

) 1
ε−1

, a standard productivity aggregator

for economies with Dixit-Stiglitz preferences. The first order conditions with respect to y0 and L(φ)

imply
y0
j

Y 0 =
(
qj
Q

)ε
and (1 − α)

yj(φ)
L(φ) = wqj respectively for each j. Given the constant returns to

scale in production, the latter equation implies y0
j = 1

1−αwqjL
0
j . Combining these gives (recalling

that we chose units of utility so that w = 1)

L0
j

1− α
= Y 0Q−εqε−1

j

We can now use the labor resource constraint to write

L =
L0

1− α
=

∫
J

L0
j

1− α
=

∫
J
Y 0Q−εqε−1

j = Y 0/Q (9)
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or more conveniently

Y 0 = QL (10)

1.5 The Supply Chain Interpretation

Given the structure of the network, we can back out the production technology used by the social

planner to produce each good. With notation analogous to Section 1.4, we can define qkj to be

the efficiency of the kth firm in the chain of production for good j, and zkj to be the productivity

parameter in production of the kth step. This means that along the supply chain for good j,

qkj = zkj

(
qk+1
j

)α
. By definition, q0

j = qj , so we make repeated substitutions to get

qj = q0
j = z0

j

(
q1
j

)α
= z0

j

[
z1
j

(
q2
j

)α]α
= ...

=

∞∏
k=0

(
zkj

)αk

From above, we know that the total quantity of labor used to make j across all stages of

production is L̄j ≡ 1
1−αL

0
j . For the final stage of production, we know that y0

j = 1
1−αwqjL

0
j , so

substituting in, we have an expression for a production function describing the total social cost of

producing good j:

y0
j =

[ ∞∏
k=0

(
zkj

)αk]
L̄j (11)

1.6 A Parametric Assumption

I now describe a special case that proves to be analytically tractable. Assume that the productivity

parameter embodied in a technique is drawn from a Pareto distribution, H(z) = 1 −
(
z
z0

)−ζ
. We

make the restriction that ζ > ε − 1 so that utility will be bounded. In addition, parameterize
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the arrival rate (and initial condition) of draws so that Λ̃(t) = Λ(t)z−ζ0 which implies that λ̃(t) =

λ(t)z−ζ0 .

With these assumptions, lowering z0 has two effects: (i) each firm discovers new techniques

more frequently and (ii) a larger fraction of the techniques have low productivity. In fact, the

parameterization is such that varying z0 has no impact on the number of draws above any threshold

ẑ (above z0), the two effects cancel exactly. The only change that occurs with a lower z0 is that

there are now more (extra) relatively bad ideas.

We then look at the limit of a sequence of economies as z0 → 0. This adds many relatively

unproductive techniques (low z) to the economy without changing the number of productive tech-

niques (high z). The assumption ensures that the measure of firms without access to any techniques

goes to zero, filling out more of the network.

In this special case, we can show that every solution F (·) to equation (6) follows a Frechet

distribution. To see this, note that we can use the change of variables x = (q/z)1/α to write

1−G(q) =

∫ ∞
z0

H ′(z)

(
1− F

((q
z

) 1
α

))
dz

=

∫ (
q
z0

) 1
α

0
H ′
( q

xα

)
(1− F (x)) qαx−α−1dx
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Using the functional form H ′(z) = ζzζ0z
−ζ−1, we can then write

λ̃ [1−G(q)] = λz−ζ0

∫ (
q
z0

) 1
α

0
ζzζ0

( q

xα

)−ζ−1
(1− F (x)) qαx−α−1dx

= q−ζλ

∫ (
q
z0

) 1
α

0
αζxαζ−1 (1− F (x)) dx

For any F (·), as z0 → 0, this expression will clearly go to q−ζ multiplied by a constant. Label this

constant θ, so that equation (6) can be written as F (q) = e−θq
−ζ

, the cumulative distribution of a

Frechet random variable. Note that the exponent ζ is the same as that of the Pareto distribution

H.

We next solve for θ, which was defined to satisfy

θ = λ

∫ ∞
0

αζxαζ−1 (1− F (x)) dx

Integrating by parts gives

θ = λ

∫ ∞
0

xαζF ′(x)dx (12)

Plugging in the functional form F (q) = e−θq
−ζ

and making the substitution s = θx−ζ gives

θ = λ

∫ ∞
0

θαs−αe−sds

so that θ satisfies

θ = Γ(1− α)λθα
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where Γ(·) is the gamma function.9

With this, we can compute Q, the relevant measure of welfare:

Q =

(∫ ∞
0

qε−1dF (q)

) 1
ε−1

= θ1/ζΓ

(
1− ε− 1

ζ

) 1
ε−1

Putting these together, we get an expression for final consumption:

Y = κλ
1

1−α
1
ζL (13)

where the constant of proportionality is κ = Γ(1− α)
1

1−α
1
ζ Γ
(

1− ε−1
ζ

) 1
ε−1

.

1.7 Dynamics

All relevant aggregate dynamics can be summarized by two equations

Y = κλ
1

1−α
1
ζL

and

λ̇(t) = Λ(t)− δλ(t)

If the (normalized) arrival rate of new techniques Λ(t) is constant over time (and if δ > 0), then

there is a steady state with

λss =
Λ

δ

Alternatively if the arrival rate of new techniques is growing over time, say Λ(t) = Λeγt, then

9I write the equation this way rather than solving for θ directly in order to emphasize the fact that the equation
has three non-negative roots, two of which are zero and infinity. In addition, in later sections it will be easier to see
parallels with the analogous expressions when this equation when written in this form.
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there is a balanced growth path (for any δ ≥ 0) with

λ̇

λ
= γ and

Ẏ

Y
=

1

1− α
1

ζ
γ

1.8 Market Structure and Decentralized Equilibria

TO BE COMPLETED

There are at least two valid interpretations of the technology, and for each interpretation there

is a natural market structure. The first interpretation is basically the one described in the introduc-

tion. Individual entrepreneurs discover techniques, and the technology embodied in each technique

is relationship specific. When relationship specific productivity is important, there is an element

of bilateral market power. In this kind of environment, a market structure that involves might be

a natural benchmark.

An alternative interpretation is that the technology embodied in a technique is non-rival and

freely available for others to replicate. In this interpretation, each good is produced by an island

of identical firms, and labor is perfectly mobile across islands. The state of technology can be still

be represented as a network, but each node is an island of firms producing a single good rather

than an individual entrepreneur. Again, the network represents the input-output architecture of

the economy, but among islands of firms. In this interpretation perfect competition might be a

more natural benchmark with all prices are set at marginal cost. It is straightforward to show that

the allocation will decentralize the planner’s solution.

In the first interpretation with relationship specific technology, the problem is trickier. I will

argue that the most natural interpretation is to allow for two part tariffs, and that this will also

decentralize the planners solution.
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Monopolistic competition across final goods leads to a uniform markup of ε
ε−1 . This gives

surplus for each final good that is divided across firms in that supply chain. If firms are allowed to

bargain bilaterally and write complete contracts, then I conjecture that the resulting equilibrium

will decentralize the efficient allocation. Contracts will resemble two part tariffs, with a fee and a

per unit price. The per unit price will equal marginal cost, but firms will bargain over the fee to

split the surplus from the relationship.

In this decentralization, the inputs, outputs, and labor used by each firm are the same as

the the efficient allocation. Each firm will choose the supplier that gives the best combination of

cost/productivity. While the division of surplus can be difficult to characterize, it has no effect on

the allocation of goods or labor. Since the marginal input price equals marginal cost, the quantity

supplied will be efficient, and since labor is supplied inelastically the monopoly markup on final

goods is not distortionary10.

This decentralization seems reasonable because input output relationships are generally long

term, so it would be surprising if the contracting terms remained inefficient. Anything other than

this kind of two part tariff would lead to double marginalization and leave surplus on the table.

In addition, the informational demands of these complete contract (in equilibrium) are not large.

Firms do not need to know that much about the environment to get the terms of the contract right.

I also believe this is the only tractable way to think about a decentralized equilibrium. Demand

curves facing firms are not continuous let alone differentiable, as lowering a price a little may allow a

supplier to beat out a competitor and give a spike in quantity demanded (or may allow the buyer to

lower its price enough to beat out its competitor, giving that buyer and consequently the supplier

10If labor were supplied elastically, the only differences between the planner’s allocation and the decentralized
equilibrium would be that less labor would be supplied because of the monopoly markups and all production would
scale down in proportion to the decrease in aggregate labor.
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a spike in quantity demanded). If two part tariffs are not available, solving for the optimal prices

(and consequently the allocation) is difficult.

2 Size Distribution

Here I discuss two dimensions of the cross sectional distribution of size. First I give expressions for

the conditional and unconditional distributions of number of customers (other firms that purchase

intermediate goods). Second, I describe the cross sectional distribution of employment.

2.1 Number of Customers

Consider a single draw of a technique that uses good i as an input. Given the efficiency, qi, we can

compute the probability that the technique is the buyer’s best available technique. To do this, we

first characterize the following object: For a potential customer that has drawn a technique that

uses i, what is the probability that it has no other techniques better than some efficiency level q?

Given the Poisson distribution over the number of techniques, a firm will have n − 1 other

techniques with probability e−λ̃λ̃n

n! . The CDF of efficiency delivered by each of these techniques if

G(q). We can therefore write the probability that the potential buyer has no other technique that

delivers better than q as:

∞∑
n=1

e−λ̃λ̃n

n!
G(q)n−1 =

1

G(q)

[ ∞∑
n=0

e−λ̃λ̃n

n!
G(q)n − e−λ̃

]
=
F (q)− e−λ̃

G(q)

Among techniques that use i as a supplier, the fraction that deliver efficiency less than q

is H
(
q
qαi

)
, with density 1

qαi
H ′
(
q
qαi

)
. We can now characterize the probability that a particular

technique is the potential buyer’s best technique:
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Pr (i is best|qi) =

∫ ∞
0

1

qαi
H ′
(
q̃

qαi

)
F (q̃)− e−λ̃

G(q̃)
dq̃

How many known techniques use a given firm as a potential supplier? In other words, How

many potential customers does a given supplier have? Across all firms, the distribution over the

number of potential customers follows a Poisson law with with mean λ̃. Since each one of those

techniques has an equal chance of being the potential buyer’s best technique, so the distribution

over the number of actual customers will also be a Poisson, with parameter:

λ̃

∫ ∞
0

1

qαi
H ′
(
q̃

qαi

)
F (q̃)− e−λ̃

G(q̃)
dq̃

Using the functional form for H and taking the limit as z0 → 0 yields

λ
qαζi
θ

So among firms with efficiency q, the distribution over the number of customers will be given by a

Poisson distribution with parameter λ q
αζ

θ . One can see that the distribution among high efficiency

suppliers first order stochastically dominates the distribution among low efficiency suppliers: high

efficiency firms get more customers.

We next look at the unconditional distribution over the number of customers among all firms.
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To find the mass of suppliers with n customers, we integrate over suppliers of each efficiency:

∫ ∞
0

(
λ
θ q
αζ
)n
e−

λ
θ
qαζ

n!
dF (q) =

∫ ∞
0

(
λθα

θ

(
θq−ζ

)−α)n
e
−
(
λθα

θ (θq−ζ)
−α)

n!
ζθq−ζ−1e−θq

−ζ
dq

=

∫ ∞
0

(
w−α

Γ(1−α)

)n
e
−
(

w−α
Γ(1−α)

)
n!

e−wdw

The second line uses the fact that θ = Γ(1− α)λθα.

It is notable that this distribution depends on only one parameter, α (the share of inputs in

production). This is because buyers choose to use the technique that gives the best combination of

efficiency (z) and input cost (q). α determines the relative importance of these two factors. Recall

that the efficiency associated with a single technique is zqα. If α is large, than the the share of

inputs is higher, and the cost of inputs becomes relatively more important. An increase in α makes

the techniques using high efficiency suppliers even more cost effective. In contrast, when α is low,

more weight is put on the idiosyncratic productivity associated with the technique. Because the

productivity draws are drawn from the same distribution regardless of the efficiency of the supplier,

lowering α increases the odds that a low efficiency firm will be able to attract customers; the low

efficiency becomes less relevant to its customers.

Figure 1 shows the distribution of customers for different values of α. When α is high, more

weight is put on the cost of inputs, so the distribution is more skewed. The tail is thicker, and but

there are also more firms without any customers. In contrast, when α is low, the middle of the

distribution is thicker.
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Figure 1: The Distribution of Customers

Figure 1a gives the mass of firms with n customers for several different values of the input share α. Figure 1b also
gives the mass of firms with n customers, but on a log-log plot, to better show the tail of the distribution.

2.2 Distribution of Employment

In characterizing the cross sectional distribution of employment, we first derive a convenient fact.

Let B (q|qi) be the the CDF of the efficiency of customers of suppliers with efficiency qi. In other

words, B (q|qi) is the distribution efficiency among firms whose best technique uses a supplier with

efficiency qi. We will show that in the limit as z0 → 0, B (q|qi) = F (q). We can solve for this

distribution of customers’ actual efficiency with an application of Bayes rule:

B′ (q|qi) =

1
qαi
H ′
(
q
qαi

)
F (q)−e−λ̃
G(q)∫∞

0
1
qαi
H ′
(
q̃
qαi

)
F (q̃)−e−λ̃
G(q̃) dq̃

The numerator is the density of efficiency delivered by techniques that use i, 1
qαi
H ′
(
q
qαi

)
, multiplied

by the probability that a such a technique is the potential customer’s best technique. The denom-

inator is the probability that the the a technique from i is the customer’s best technique. We can
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use the functional forms for H and take a limit as z0 → 0:

lim
z0→0

B′ (q|qi) = lim
z0→0

ζzζ0q
αζ
i q−ζ−1e−θq

−ζ∫∞
z0qαi

ζzζ0q
αζ
i q̃−ζ−1e−θq̃−ζdq̃

ζθq−ζ−1e−θq
−ζ

= lim
z0→0

F ′(q)

Knowing the efficiency of a supplier gives no information about the identity of its customer. That

is, there are no systematic differences between the customers of low and high efficiency suppliers.

This has two implications. First, it gives insight into the determinants of size. High efficiency

firms will (on average) be larger because they have more customers, not because their customers

are on average bigger.

Second we can treat the characteristics of customers as independent, identically distributed

random variables. This will be helpful in several ways. Of particular use here is the fact that we

can treat the size of a customer as an IID random variable.

Distribution of Employment

We are interested in adding together the labor used to make goods for final consumption and

for intermediate use for each customer. Since the latter can be treated as random variables, it will

be easiest to work with characteristic functions of the relevant distributions. To this end we define

several objects.

First, let χ(s) be the characteristic function associated with the cross sectional distribution of

employment. This is the central object of interest, but to get at it, we take several intermediate

steps. Next, let χ0 (s|q) be the characteristic function for labor used for final demand. If L0(q) is
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the (deterministic) quantity of labor used for final demand, we have

χ0 (s|q) =

∫ ∞
−∞

eislδ
(
l − L0(q)

)
dl = eisL

0(q)

∫ ∞
−∞

eisxδ(x)dx

= eisL
0(q)

where δ is the Dirac delta function.

We showed above that the quantity of labor used by a single customer is an IID random variable.

Recall also the convenient fact that if firm j uses Lj units of labor, j’s supplier will use Lij = αLj

units of labor to make the inputs for j. If Lj is an IID random variable, αLj is as well. With this

in mind, let χ1(s) be the characteristic function associated with the labor required to make the

inputs for a single customer.

χ1(s) =

∫ ∞
−∞

Pr (Lij = l) e−isldl =

∫ ∞
−∞

1

α
Pr

(
Lj =

l

α

)
e−isldl

=

∫ ∞
−∞

Pr

(
Lj =

l

α

)
e−i(αs)

l
αd

(
l

α

)
= χ(αs)

Let χint (s|q) be the characteristic function associated with the labor used for all intermediates

among firms with efficiency q. Using the fact that the characteristic function of the sum of in-

dependent random variables is the product of the characteristic functions of each of the random
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variables, we can write χint (s|q) as

χint (s|q) =
∞∑
n=0

χ1(s)n Pr (n customers|q) =
∞∑
n=0

χ1(s)n
(
λ
θ q
αζ
)n
e−λ

qαζ

θ

n!
= e−Λ qαζ

θ [1−χ1(s)]

= e−Λ qαζ

θ
[1−χ(αs)]

where the second equality uses the fact that among firms with efficiency q the distribution of

customers is Poisson with parameter λ q
αζ

θ .

We can put these together to derive an expression for χ(s|q), the characteristic function asso-

ciated with the distribution of employment among firms with efficiency q:

χ (s|q) = χ0 (s|q)χint (s|q) = eisL
0(q)e−

λ
θ
qαζ [1−χ(αs)]

Lastly we can integrate across firms, which delivers a single recursive equation that defines χ(s):

χ (s) =

∫ ∞
0

χ (s|q) dF (q) =

∫ ∞
0

eisL
0(q)e−

λ
θ
qαζ [1−χ(αs)]dF (q)

We now plug in the functional forms L0(q) =
(θq−ζ)

− ε−1
ζ

Γ
(

1− ε−1
ζ

) (1− α)L and dF (q) = θζq−ζ−1e−θq
−ζ
dq

to give

χ (s) =

∫ ∞
0

e

is

(θq−ζ)
− ε−1

ζ

Γ(1− ε−1
ζ )

(1−α)L


e−Λ

θα(θq−ζ)
−α

θ
[1−χ(αs)]θζq−ζ−1e−θq

−ζ
dq

and using a change of variables along with the fact that θ = Γ(1− α)λθα gives

χ(s) =

∫ ∞
0

exp

is t
− ε−1

ζ

Γ
(

1− ε−1
ζ

) (1− α)L− t−α

Γ(1− α)
[1− χ(αs)]− t

 dt (14)
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There are several things to note. First, as L changes, the distribution of labor scales uniformly.11

Second the distribution depends on only two parameters, α and ε−1
ζ . The share of intermediates

matters for the same reason as before, it determines the skew of the distribution of number of

customers. ε−1
ζ is a composite of two parameters, the elasticity of substitution in final consumption,

and ζ, the tail index of both H(·) (the Pareto distribution from which productivity shocks are

drawn) and F (·) (the cross sectional distribution of efficiency). In combination, these parameters

determine the skewness of the distribution of final consumption. When ζ is small, the efficiency

distribution has a thicker tail, inducing a thicker tail in the distribution of final consumption. When

ε is high, consumers are more willing to substitute toward low cost goods, also thickening the tail

of final consumption.

Equation (14) can be used to solve for χ(s) numerically.12 We can consequently use standard

methods to back out the distribution of employment form its characteristic function.

Figure 2 shows the distribution for the parameters α = ε−1
ζ = 1/2 and L = 1. One can see that

this density is quite skewed, with the mode well below the mean of 1.

3 Asymmetric Networks

The previous analysis studied a very specific type of network, and leaves open the question of

how alternative network configurations would affect aggregate productivity. For example, if many

11In fact, one could write the characteristic function associated with the fraction of labor used by each firm as
χ̂ (s) = χ

(
1
L
s
)
. This satisfies

χ̂ (s) =

∫ ∞
0

exp

is t
− ε−1

ζ

Γ
(

1− ε−1
ζ

) (1− α)− t−α

Γ (1− α)
[1− χ̂ (αs)]− t

 dt

12While equation (14) is a functional equation, it resembles a difference equation. One can solve this using a reverse
shooting algorithm, starting near the point χ(0) = 1 and interpolating.
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Figure 2: The Distribution of Employment

Figure 2a gives the density of employment with α = ε−1
ζ

= 1/2. Figure 2b gives right CDF on a log-log plot to show
the shape of the tail of the distribution.

firms are in the center of a city and others are in the outskirts, how would aggregate productivity

respond from this increased concentration? If some entrepreneurs were particularly active in finding

new techniques (and others particularly inactive), how would this change patterns of diffusion of

productivity gains from newly discovered techniques?

To get at these, we first extend the previous setup to allow for more interesting network con-

figurations. There are multiple types of firms, indexed by t ∈ T . The only structural difference

between firms of different types is how frequently they are involved with new techniques that are

discovered. Let Mt be the mass of each type t firms and, abusing notation, let T be the number of

types (in addition to the set of types).

The social planner’s problem is exactly the same as in Section 1.2 and all first order conditions

carry over. Instead of characterizing the distribution of efficiency across all firms, it will be conve-

nient to characterize the distribution among each type. Let Ft(q) be the fraction of type t firms

with efficiency less than q. We proceed to characterize these distributions by setting up a fixed

point problem.

We next define several objects that have analogs in Section 1. ωt(n; t′) is the fraction type t
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firms that have access to n techniques with suppliers of type t′. At a given point in time this follows

a Poisson distribution with mean λ̃t(t
′). Let Gt(q; t

′) be the distribution of efficiency provided by

a single technique drawn by a type t firm with supplier type t′. Gt(q; t
′) is then:

Gt(q; t
′) =

∫ ∞
0

Ft′

((q
z

) 1
α

)
dH(z)

Given Gt(q; t
′), we can compute Pr (Qt < q), the probability that all draws from all types are

less than some level q for a firm of type t:

Pr (Qt < q) =
∏
t′∈T

∞∑
n=0

ωt(n; t′)Gt(q; t
′)n = e−

∑
t′ λ̃t(t

′)[1−Gt(q;t′)]

The same abuse of the law of large numbers gives Ft(q) = Pr (Qt < q), giving the fixed point

problem, T functional equations for the T unknown functions {Ft(·)}t∈T :

logFt(q) = −
∑
t′∈T

λ̃t(t
′)

[
1−

∫ ∞
0

Ft′

((q
z

) 1
α

)
dH(z)

]
(15)

3.1 A Parametric Assumption

We will use the same functional forms as in the one type model, H(z) = 1−
(
z
z0

)−ζ
and λ̃t(t

′) =

λt(t
′)z−ζ0 . We will then look at the equilibrium of the limiting economy as z0 → 0. With a similar

argument, we will show that any set of solutions to equation (15) will follow Frechet distributions.

As before we can write

λ̃t(t
′)
[
1−Gt(q; t′)

]
= q−ζλt(t

′)

∫ (
q
z0

) 1
α

0
αζxαζ−1 (1− Ft′(x)) dx
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Substituting into equation (15) for each t′ we get

− logFt(q) = q−ζ
∑
t′∈T

λt(t
′)

∫ (
q
z0

) 1
α

0
αζxαζ−1 (1− Ft′(x)) dx

For any set of {Ft(·)}t∈T , as z0 → 0, this expression goes to q−ζ multiplied by a constant. For each

t, label this constant θt so that Ft(q) = e−θtq
−ζ

.

We next solve for {θt}t∈T , which are defined to satisfy

θt =
∑
t′∈T

λt(t
′)

∫ ∞
0

αζxαζ−1 (1− Ft′(x)) dx =
∑
t′∈T

λt(t
′)

∫ ∞
0

xαζF ′t′(x)dx

Plugging in the functional form for Ft′(q) gives

θt = Γ(1− α)
∑
t′∈T

λt(t
′)θαt′ (16)

Notice also that, as before, for any {λt(t′)}t,t′∈T there are three solutions to equation (16): θt =

0, ∀t ∈ T , θt =∞,∀t ∈ T , and a third solution that is the solution to the planner’s problem.

3.2 Aggregate Output

Given the distribution of efficiency across firms, total output will be Y 0 = QL where Qε−1 =∫
J q

ε−1
j (again, the analysis in the one type economy carries over). It will be convenient to define

Qt ≡
(∫∞

0 qε−1dFtq
) 1
ε−1 to be a productivity aggregator among firms of type t. We can then write

Qε−1 =
∑
t

MtQ
ε−1
t
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With the functional forms, we can write (as before):

Qt = θ
1/ζ
t Γ

(
1− ε− 1

ζ

) 1
ε−1

The productivity aggregator for the whole economy can then be written as

Qε−1 = Γ

(
1− ε− 1

ζ

)∑
t∈T

Mtθ
ε−1
ζ

t

4 Superstars and Productivity Spillovers

The purpose of this section is to demonstrate how the configuration of the network affects aggregate

output. We consider examples in which there are two types of firms, indexed by t ∈ {A,B}. The

total mass of firms is MA+MB = 1. Again, the types of firms differ only in how frequently they are

involved with new techniques that are discovered. For a firm of type t let λt be the (cumulative)

arrival rate of techniques, so that λt =
∑

t′ λt(t
′).

To focus on the influence of the configuration, I will hold the total number of techniques in the

network constant but vary the distribution of links. In other words, I will let {λt(t′)} and {Mt}

vary subject to

λ = MA (λA(A) + λA(B)) +MB (λB(A) + λB(B))

holding λ constant .

The heterogeneity across types is parameterized as follows: Let ρp ≡ λA
λB

= λA(A)+λA(B)
λB(A)+λB(B) (p is for

“producer”). This is a measure of how much more frequently type A firms discover new techniques.

If ρp > 1 type A firms discover new techniques faster.
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Similarly, let ρs ≡ (λA(B)+λB(A))/MA

(λA(B)+λB(B))/MB
(s is for supplier). This is a measure of how much more

frequently type A firms are suppliers for new techniques that get discovered. If ρs = 1 then the

probability of being a supplier is uniform across all firms. If ρs > 1, then a new technique is

relatively more likely to use a type A firm than would be suggested by MA and MB.

Given the values of ρp and ρs (along with the assumption that λA(B)
λA(A) = λB(B)

λB(A) which can easily

be abandoned) we can solve for the implied values of {λA(A), λA(B), λB(A), λB(B)}:

λA(A) =
ρsMA

ρsMA +MB

ρp
ρpMA +MB

λ

λA(B) =
MB

ρsMA +MB

ρp
ρpMA +MB

λ

λB(A) =
ρsMA

ρsMA +MB

1

ρpMA +MB
λ

λB(B) =
MA

ρsMA +MB

1

ρpMA +MB
λ

To compute aggregate output, we need an expression for the productivity aggregator Q =(∫
J q

1− 1
ε

j

) ε
ε−1

. Given the values of {λt(t′)}t,t′∈T we can solve for the values of θA and θB using

equation (16). With this, we can then solve for the productivity aggregator Q:

Qε−1 = MAQ
ε−1
A +MBQ

ε−1
B ∝MAθ

ε−1
ζ

A +MBθ
ε−1
ζ

B

where QA and QB are the productivity aggregators among firms of each type. We are interested

in how Q varies as the structure of the network changes.

Hubs

We first consider the case in which type A firms are hubs: they are more likely to discover

new techniques and they are relatively more likely to be the supplier when other firms get new
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techniques, as shown in Figure 3. Formally we set ρp = ρs and vary this common number for

various values of MA. The graph shows the aggregate output relative to the uniform network

(ρp = ρs = 1). Note that aggregate output rises (as ρp, ρs → ∞, relative productivity slowly falls

back to 1 for all three curves). Aggregate output is higher for the following reason: When ρp > 1,

type A firms draw many techniques and are therefore more productive. While type B firms draw

a smaller number of techniques, the techniques they do draw are likely to have type A firms as

suppliers, meaning that the type B firms are likely to get a low marginal cost. When ρp, ρs →∞,

the impact disappears, because all type B firms are essentially disconnected from the network.

Type A firms are more productive (there are more techniques among them) but there are fewer

firms, and consequently less gains from variety. These effects exactly offset, and aggregate output

is the same as the uniform case.

Figure 3: Varying Both ρp and ρs
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For intermediate values, the increase in aggregate output is larger when MA is small. This

happens because more techniques are concentrated within the type A firms, so productivity among

those firms is high. Type B firms are likely to have techniques that use type A firms, so that

they are increasingly able to benefit from the high productivity among type A that is due to the
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increased concentration. This is most stark as MA → 0, in which case the peak of the curve rises

unboundedly. More formally, for a given MA, set ρp = ρs = 1/2
MA

. Then limMA→0Q =∞.

An even more stark example (which is easier to analyze by hand) is ρp = MB
MA

and ρs →∞. This

leads to (normalizing λ = 1), λA(A) = 1/2
MA

, λB(A) = 1/2
MB

, λA(B) = λB(B) = 0. Here, no matter

how few type A firms there are, half of all total techniques are drawn by those firms. However, all

techniques use type A firms as inputs. Again, we have limMA→0Q =∞.

We next examine the case in which ρp varies but ρs = 1, shown in Figure 4. In this case type

A firms are more likely to discover new techniques, but no firm is more likely to be the object

of a new technique. Here we can see that total output is smaller than the uniform case for any

configuration (and the drop is persistent: as ρp → ∞, relative productivity stays depressed below

1). Here, while type A firms are more productive, as a group than they would be in the uniform

case, the type B firms are less able to take advantage of this, because the techniques they find

aren’t especially concentrated on the type A firms. As a result, type B firms are less productive in

than in the uniform case, so much so that this dominates the increased productivity among type

A firms.

Figure 4: Varying ρp, ρs = 1
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Lastly we examine the the case in which ρp = 1 but ρs varies, shown in Figure 5. Here

productivity is exactly the same as in the uniform case. Considering this and the previous case, we

can infer the different roles of ρp and ρs. ρp generates productivity differences across the different

types, as drawing more techniques leads to (on average) higher productivity. ρs determines how

much of these productivity differences spill over to the other types. In this case where ρp = 1, there

are no productivity differences to spill over, so varying ρs makes no differences. Compare this to

ρp > 1, in which case varying ρs can make a big difference.

Figure 5: ρp = 1, Varying ρs
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5 Conclusion

This paper has described a tractable model of the formation and evolution of chains of production.

The model aggregates easily, with simple formulas connecting the density of the network to ag-

gregate output. With more interesting network configurations, the model can be solved almost as

easily. We find that, holding the number of techniques constant, the particular configuration can

have an enormous impact on aggregate productivity.
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