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Abstract

We develop a framework for the analysis of dynamic oligopolies
with persistant sources of asymmetric information that enables ap-
plied analysis of situations of empirical importance that have been
difficult to deal with. The framework generates policies which are
“relatively” easy for agents to use while still being optimal in a mean-
ingful sense, and is amenable to empirical research in that its equilib-
rium conditions can be tested and equilibrium policies are relatively
ease to compute. We conclude with an example that endogenizes the
maintenance decisions of electricity generators when the costs states
of the generators are private information.
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This paper develops a framework for the analysis of dynamic oligopolies
with persistant sources of asymmetric information which can be used in a
variety of situations which are both of empirical importance and have not
been adequately dealt with in prior applied work. These situations include;
competition between producers when there is a producer attribute which
is unknown to its competitors and serially correlated over time, investment
games where the outcome of the investment is unobserved, or repeated auc-
tions for primary products (e.g. timber) where the capacity available to
process the quantity acquired by the auction is private information. Less
obviously, but probably more empirically important, the framework also al-
lows us to analyze markets in which the decisions of both producers and
consumers have dynamic implications, but consumers make decisions with
different information sets then producers do. As discussed below, this en-
ables an analysis of dyanmics in durable, experience, storeable, and network
good industries.

In building the framework we have two goals. First we want a frame-
work which generates policies which are “relatively” easy for agents to use
while still being optimal in some meaningful sense of the word. In particular
the framework should not require the specification and updating of play-
ers’ beliefs about their opponents types, as in Perfect Bayesian equilibrium,
and should not require agents to retain information that it is impractical for
them to acquire. Second we want the framework to be useable by empirical
researchers; so its conditions should be defined in terms of observable mag-
nitudes and it should generate policies which can be computed with relative
ease (even when there are many underlying variables which impact on the
returns to different choices). The twin goals of ease of use to agents and
ease of analysis by the applied research work out, perhaps not surprisingly,
to have strong complimentarities.

To accomplish these tasks we extend the framework in Ericson and Pakes
(1995) to allow for asymmetric information.1 Each agent’s returns in a given
period are determined by all agents’ “payoff relevant” state variables and
their actions. The payoff relevant random variables of producers would typi-
cally include indexes of their cost function, qualities of the goods they market,
etc., while in a durable good market those of consumers would include their
current holdings of various goods and the household’s own demographic char-

1Indeed our assumptions nest the generalizations to Ericson and Pakes (1995) reviewed
in Doraszelski and Pakes(2008).
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acteristics. Neither a player’s “payoff relevant” state variables nor its actions
are necessarily observed by other agents. Thus producers might not know
either the cost positions or the details of supplier contacts of their competi-
tors, and in the durable goods example neither consumers nor producers need
know the entire distribution of holdings crossed with household characteris-
tics (even though this will determine the distribution of future demand and
prices).

The fact that not all state variables are observed by all agents and that
the unobserved states may be correlated over time implies that variables
that are not currently payoff relevant but are related to the unobserved past
states of other agents will help predict other agent’s behavior. Consequenly
they will help predict the returns from a given agent’s current actions. So
in addition to payoff relevant state variables agents have “informationally
relevant” state variables. For example, in many markets past prices will be
known to agents and will contain information on likely future prices.

So the “types” of the agents, which are defined by their state variables, are
only partially observed by other agents and evolve over time. In the durable
goods example, the joint distribution of household holdings and characteris-
tics will evolve with household purchases, and the distribution of producer
costs and goods marketed will evolve with the outcomes of investment deci-
sions. As a result each agent continually changes its perceptions of the likely
returns from its own possible actions2.

Recall that we wanted our equilibrium concept to be testable. This, in
itself, rules out basing these perceptions on Bayesian posteriors, as these
posteriors are not observed. Instead we assume that the agents use the out-
comes they experienced in past periods that had conditions similar to the
conditions the agent is currently faced with to form an estimate of expected
returns from the actions they can currently take. Agent’s act so as to max-
imize the discounted value of future returns implied by these expectations.
So in the durable goods example a consumer will know its own demographics
and may have kept track of past prices, while the firms might know past
sales and prices. Each agent would then chose the action that maximized
its estimate of the expected discounted value of its returns conditional on
the information at its disposal. We base our equilibrium conditions on the

2Dynamic games with asymmetric information have not been used extensively to date,
a fact which attests (at least in part) to their complexity. Notable exceptions are Athey
and Bagwell, 2008, and Cole and Kochelakota (2001).
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consistency of each agents’ estimates with the true expected outcomes.
More formally we define a state of the game to be the information sets

of all of the players (each information set contains both public and private
information). An Experience Based Markov Equilibrium (hereafter, EBE)
for our game is a triple which satisfies three conditions. The triple consists
of; (i) a subset of the set of possible states, (ii) a vector of strategies defined
for every possible information set of each agent, and (iii) a vector of values for
every state that provides each agent’s expected discounted value of net cash
flow conditional on the possible actions that agent can take at that state.
The conditions we impose on this triple are as follows. The first condition is
that the equilibrium policies insure that once we visit a state in our subset
we stay within that subset in all future periods, visiting each point in that
subset repeatedly; i.e. the subset of states is a recurrent class of the Markov
process generated by the equilibrium strategies. The second condition is
that the strategies are optimal given the evaluations of outcomes. The final
condition is that optimal behavior given these evaluations actually generates
expected discounted value of future net cash flows that are consistent with
these evaluations on our (recurrent) subset of states.

We show that an equilibrium that is consistent with a given set of prim-
itives can be computed using a simple (reinforcement) learning algorithm.
Moreover the equilibrium conditions are testable, and the testing procedure
does not require computation of posterior distributions. Neither the iter-
ative procedure which defines the computational algorithm nor the test of
the equilibrium conditions have computational burdens which increase at a
particular rate as we increase the number of variables which impact on re-
turns; i.e. neither is subject to a curse of dimensionality. At least in principal
this should lead to an ability to analyze models which contain many more
state variables, and hence are likely to be much more realistic, then could be
computed using pointwise Markov Perfect equilibrium concepts3.

3For alternative computational procedures see the review in Doraszelski and Pakes,
2008. Pakes and McGuire,2001, show that reinforcement learning has significanat com-
putational advanatages when applied to full information dynamic games, a fact which
has been used in several applied papers; e.g. Goettler, Parlour, and Rajan, 2005, and
Berestenau and Ellickson, 2006. Goettler, Parlour, and Rajan, 2008, use it to approxi-
mate optimal behavior in finance applications. We show that a similar algorithm can be
used in games with asymmetric information and provide a test of the equilibrum condi-
tions which is not subject to a curse of dimensionality. The test in the original Pakes and
McGuire article was subject to such a curse and it made their algorithm impractical for
large problems.
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One could view our reinforcement learning algorithm as a description of
how players’ learn the implications of their actions in a changing environment.
This provides an alternative reason for interest in the output of the algorithm.
However the learning rule would not, by iteself, restrict behavior without
either repeated play or prior information on initial conditions. Also the
fact that the equilibrium policies from our model can be learned from past
outcomes accentuates the fact that those policies are most likely to provide an
adequate approximation to the evolution of a game in which it is reasonable
to assume that agent’s perceptions of the likely returns to their actions can
be learned from the outcomes of previous play. Since the states of the game
evolve over time and the possible outcomes from each action differ by state,
if agents are to learn to evaluate these outcomes from prior play the game
needs to be confined to a finite space.

When all the state variables are observed by all the agents our equilibrium
notion is similar to, but weaker than, the familiar notion of Markov Perfect
equilibrium as used in Maskin and Tirole (1988, 2001). This because we only
require that the evaluations of outcomes used to form strategies be consistent
with competitors’ play when that play results in outcomes that are in the
recurrent subset of points, and hence are observed repeatedly. We allow for
feasible outcomes that are not in the recurrent class, but the conditions we
place on the evaluations of those outcomes are weaker; they need only satsify
inequalities which insure that they are not observed repeatedly. In this sense
our notion of equilibrium is akin to the notion of Self Confirming equilibrium,
as defined by Fudenberg and Levine (1993) (though our application is to
dynamic games). An implication of using the weaker equilibrium conditions
is that we might admit more equilibria than the Markov Perfect concept
would.

The original Maskin and Tirole (1988) article and the framework for the
analysis of dynamic oligopolies in Ericson and Pakes (1995) layed the ground-
work for the applied analysis of dynamic oligopolies with symmetric informa-
tion. This led to a rather large both empirical and numerical literature on an
assortment of applied problems (see Benkard, 2004, or Gowrisankaran and
Town, 1997, for empirical examples and Doraszelski and Markovich, 2006,
or Besanko Doraszelski Kryukov and Satterthwaite, 2010 for examples of
numerical analysis). None of these models have allowed for asymmetric in-
formation. Our hope is that the introduction of asymmetric information in
conjunction with our equilibrium concept helps the analysis in two ways. It
enables the applied researcher to use more realistic behavioral assumptions
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and hence provide a better approximation to actual behavior, and it simpli-
fies the process of analyzing such equilibria by reducing its computational
burden.

As noted this approach comes with its own costs. First it is most likely
to provide an adequate approximation to behavior in situations for which
there is a relevant history to learn from. Second our equilibrium conditions
enhance the possiblity for multiple equilibria over more standard notions of
equilibria. With additional assumptions one might be able to select out the
appropriate equilibria from data on the industry of interest, but there will
remain the problem of chosing the equilibria for counterfactual analysis.

To illustrate we conclude with an example that endogenizes the mainte-
nance decisions of electricity generators. We take an admittedly simplified
set of primitives and compute and compare equilibria based on alternative
institutional constraints. These include; asymmetric information equilibria
where there are no bounds on agents memory, asymmetric information equi-
libria where there are such bounds, symmetric information equilibria, and
the solutions to the social planner problem.

The next section describes the primitives of the game. Section 2 provides
a definition of, and sufficient conditions for, our notion of an Experience
Based Markov Equilibrium. Section 3 provides an algorithm to compute and
test for this equilibrium, and section 4 contains our example.

1 Dynamic Oligopolies with Asymmetric In-

formation.

We extend the framework in Ericson and Pakes (1995) to allow for asymmet-
ric information.4 In each period there are nt potentially active firms, and we
assume that with probability one nt ≤ n < ∞ (for every t). Each firm has
payoff relevant characteristics. Typically these will be characteristics of the
products marketed by the firm or determinants of their costs. The profits
of each firm in every period are determined by; their payoff relevant random

4Indeed our assumptions nest the generalizations to Ericson and Pakes (1995), and
the amendments to it introduced in Doraszelski and Satterthwaite (2010), reviewed in
Doraszelski and Pakes(2008). The latter paper also provide more details on the underlying
model.

6



variables, a subset of the actions of all the firms, and a set of variables which
are common to all agents and account for common movements in factor costs
and demand conditions, say d ∈ D where D is a finite set. For simplicity we
assume that dt is observable and evolves as an exogenous first order Markov
process.

The payoff relevant characteristics of firm i , which will be denoted by
ωi ∈ Ωi, take values on a finite set of points for all i. There will be two
types of actions; actions that will be observed by the firm’s competitors mo

i ,
and those that are unobserved mu

i . For simplicity we assume that both take
values on a finite state space, so mi = (mo

i ,m
u
i ) ∈Mi.

5 Notice that, also for
simplicity, we limit ourselves to the case where an agent’s actions are either
known only to itself (they are “private”information), or to all agents (they
are “public”information). For example in an investment game the prices the
firm sets are typically observed, but the investments a firm makes in the
development of its products may not be. Though both controls could affect
current profits and/or the probability distribution of payoff relevant random
variables, they need not. A firm might simply decide to disclose information
or send a signal of some other form.

Letting i index firms, realized profits for firm i in period t are given by

π(ωi,t, ω−i,t,mi,t,m−i,t, dt), (1)

where π(·) : ×ni=1Ωi ×ni=1 Mi × D → R. ωi,t evolves over time and its
conditional distribution may depend on the actions of all competitors, that
is

Pω = { Pω(.| mi,m−i, ω); (mi,m−i) ∈ ×ni=1Mi, ω ∈ Ω}. (2)

Some examples will illustrate the usefulness of this structure.
A familiar special case occurs when the probabiliy distribution of ωi,t+1,

or Pω(.| mi,m−i, ω), does not depend on the actions of a firm’s competitors,
or m−i. Then we have a “capital accumulation” game. For example in
the original Ericson and Pakes (1995) model, m had two components, price
and and investment, and ω consisted of characteristics of the firm’s product

5As in Ericson and Pakes (1995), we could have derived the assumption that Ω andM
are bounded sets from more primitive conditions. Also the original version of this paper
(which is available on request) included both continuous and discrete controls, where
investment was the continuous control. It was not observed by agent’s oponents and
affected the game only through its impact on the transition probabilities for ω. Appendix
2 provides a way of explicitly incorporating continuous controls into our framework.
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and/or its cost function that the firm was investing to improve. Their ωi,t+1 =
ωi,t + ηi,t − dt, where ηi,t was a random outcome of the firm’s investment
whose distribution was determined by Pω(·|mi,t, ωi,t), and dt was determined
by aggregate costs or demand conditions.

Now consider a sequence of timber auctions with capacity constraints
for processing the harvested timber. Each period there is a new lot up for
auction, firms submits bids (a component of our mi), and the firm that
submits the highest bid wins. The quantity of timber on the lot auctionned
may be unknown at the time of the auction but is revealed to the firm
that wins the lot. The firm’s state (our ωi) is the amount of unharvested
timber on the lots the firm owns. Each period each firm decides how much
to bid on the current auction (our first component of mi) and how much
of its unharvested capacity to harvest (a second component of mi which is
constrained to be less than ωi). The timber that is harvested and processed is
sold on an international market which has a price which evolves exogenously
(our {dt} process), and revenues equal the amount of harvested timber times
this price. Then the firm’s stock of unharvested in t + 1, our ωi,t+1 is ωi,t
minus the harvest during period t plus the amount on lots for which the firm
won the auction. The latter, the amount won at auction, depends on m−i,t,
i.e. the bids of the other firms, as well as on mi,t.

Finaly consider a market for durable goods. Here we must explicitly
consider both consumers and producers. Consumers are differentiated by
the type and vintage of the good they own and their characteristics, which
jointly define their ωi, and possibly by information they have access to which
might help predict future prices and product qualities. Each period the
consumer decides whether or not to buy a new vintage and if so which one (a
consumer’s mi); a choice which is a determinant of the evolution of their ωi.
Producers determine the price of the product marketed and the amount to
invest in improving their product’s quality (the components of the producer’s
mi). These decisions are a function of current product quality and its own
past sales (both components of the firm’s ωi), as well as other variables which
effect the firm’s perceptions about demand conditions. Since the price of a
firm’s competitors’ will be a determinant of the firm’s sales, this is another
example where the evolution of the firm’s ωi,t+1 depends on m−i,t as well as
on mi,t.

The information set of each player at period t is, in principal, the his-
tory of variables that the player has observed up to that period. We restrict
ourselves to a class of games in which each agent’s strategies are a mapping
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from a subset of these variables, in particular from the variables that are
observed by the agent and are either “payoff” or “informationally” relevant,
where these two terms are defined as follows. The ”payoff relevant” variables
are defined, as in Maskin and Tirole (2001), to be those variables that are
not current controls and affect the current profits of at least one of the firms.
In terms of equation (1), all components of (ωi,t, ω−i,t, dt) that are observed
are payoff relevant. Observable variables that are not payoff relevant will be
informationally relevant if and only if either; (i) even if no other agent’s strat-
egy depend upon the variable player i can improve its expected discounted
value of net cash flows by conditioning on it, or (ii) even if player i’s strat-
egy does not condition on the variable there is at least one player j whose
strategy will depend on the variable. For example, say all players know ωj,t−1
but player i does not know ωj,t. Then even if player j does not condition its
strategy on ωj,t−1, since ωj,t−1 can contain information on the distribution of
the payoff relevant ωj,t which, in turn, will affect πi,t(·) through its impact
on mj,t, player i will generally be able to gain by conditioning its strategy on
that variable.6

As above we limit ourselves to the case where information is either known
only to a single agent (it is “private”), or to all agents (it is “public”). The
publicly observed component will be denoted by ξt ∈ Ω(ξ), while the privately
observed component will be zi,t ∈ Ω(z). For example ω−i,t−1 may or may
not be known to agent i at time t; if it is known ω−i,t−1 ∈ ξt, otherwise
ω−i,t−1 ∈ z−i,t. Since the agent’s information at the time actions are taken
consists of Ji,t = (ξt, zi,t) ∈ Ji, we assume strategies are functions of Ji,t, i.e.

m(Ji,t) : J i →M.

Notice that if ω−i,t is private information and affects the profits of firm i then
we will typically have πi,t ∈ zi,t.

We use our examples to illustrate. We can embed asymetric information
into the original Ericson and Pakes (1995) model by assuming that ωi,t has a
product quality and a cost component. Typically quality would be publically
observed, but the cost would not be and so becomes part of the firm’s private
information. Current and past prices are also part of public information set
and contain information on the firms’ likely costs, while investment may be
public or private. In the timber auction example, the stock of unharvested

6Note that these defintions will imply that an equilibrium in our restricted strategy
space will also be an equilibrium in the general history dependent strategy space.
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timber is private information, but the winning bids (and possibly all bids), the
published characteristics of the lots auctioned, and the marketed quantities
of lumber, are public information. In the durable good example the public
information is the history of prices, but we need to differentiate between
the private information of consumers and that of producers. The private
information of consumers consists of the vintage and type of the good it owns
and its own characteristics, while the firm’s private information includes the
quantities it sold in prior periods and typically additional information whose
contents will depend on the appropriate institutional structure.

Throughout we only consider games where both #×ni=1 Ω(ξ) and #×ni=1

Ω(z) are finite. This will require us to impose restrictions on the structure of
informationally relevant random variables, and we come back to a discussion
of situations in which these restrictions are appropriate below. To see why
we require these restrictions, recall that we want to let agents base decisions
on past experience. For the experience to provide an accurate indication of
the outcomes of policies we will need a visit a particular state repeatedly; a
condition we can only insure when there is a finite state space.

2 Experience Based Equilibrium.

For simplicity we assume all decisions are made simultaneously so there is
no subgame that occurs within a period. In particular we assume that at the
beginning of each period there is a realization of random variables and players
update their information sets. Then the players decide simultaneously on
their policies. The extension to sequential decisions within a period (as would
be required for the examples with dynamic consumers) are straightforward.

Let s combine the information sets of all agents active in a particular
period, that is s = (J1, . . . , Jn) when each Ji has the same public com-
ponent ξ. We will say that Ji = (zi, ξ) is a component of s if it con-
tains the information set of one of the firms whose information is com-
bined in s. We can write s more compactly as s = (z1, . . . , zn, ξ). So
S = {s : z ∈ ×ni=1Ωi(z), ξ ∈ Ω(ξ), for 0 ≤ n ≤ n} lists the possible states of
the world.

Firms’ strategies in any period are a function of their information sets, so
they are a function of a component of that period’s s. From equation (2) the
strategies of the firms determine the distribution of each firm’s information
set in the next period, and hence together the firms’ strategies determine the
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distribution of the next period’s s. As a result any set of strategies for all
agents at each s ∈ S , together with an initial condition, defines a Markov
process on S.

We have assumed that S is a finite set. As a result each possible sample
path of any such Markov process will, in finite time, wander into a subset
of the states in S, say R ⊂ S, and once in R will stay within it forever. R
could equal S but typically will not, as the strategies the agents chose will
often insure that some states will not be visited repeatedly, a point we return
to below7. R is referred to as a recurrent class of the Markov process as each
point in R will be visited repeatedly.

Note that this implies that the empirical distribution of next period state
given any current s ∈ R will eventually converge to a distribution which can
be constructed from the outcomes at those states. This will also be true of
the relevant marginal distributions, for example the joint distribution of the
Ji components of s that belong to different firms, or that belong to the same
firm in adjacent time periods. We use a superscript e to designate these
limiting empirical distributions, so pe(J ′i |Ji) for Ji ⊂ s ∈ R provides the
limit of the empirical frequency that firm i′s next period information set is
J ′i conditional on its current infromation being Ji ∈ R and so on8.

We now turn to our notion of Experience Based Equilibrium. It is based
on the notion that at equlibrium players expected value of the outcomes from
their strategies at states which are visited repeatedly are consistent with the
actual distribution of outcomes at those states. Accordingly the equilibrium
conditions are designed to insure that at such states; (i) strategies are optimal
given participants evaluations, and (ii) that these evaluations are consistent
with the empirical distribution of outcomes and the primitives of the model.

Notice that this implies that our equilibrium conditions could, at least in
principle, be consistently tested9. To obtain a consistent test of a condition

7Freedman, 1983, provides a precise and elegant explanation of the properties of Markov
chains used here. Though there may be more than one recurrent class associated with any
set of policies, if a sample path enters a particular R, a point, s, will be visited infinitely
often if and only if s ∈ R.

8Formally the empirical distribution of transitions in R will converge to a Markov
transition matrix, say pe,T ≡ {pe(s′|s) : (s′, s) ∈ R2}. Similarly the empirical distribution
of visits on R will converge to an invariant measure, say pe,I ≡ {pe(s) : s ∈ R}. Both
pe,T and pe,I are indexed by a set of policies and a particular choice of a recurrent class
associated with those policies. Marginal distributions for components of s are derived from
these objects.

9We say “in principle” here because this presumes that the researcher doing the testing
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at a point we must, at least potentially, observe that point repeatedly. So we
could only consistently test for conditions at points in a recurrent class. As
we shall see this implies that our conditions are weaker than “traditional”
equilibrium conditions. We come back to these issues, and their relationship
to past work, after we provide our definition of equilibrium.

Definition: Experience Based Markov Equilibrium. An Experience
Based Markov Equilibrium consists of

• A subset R ⊂ S;

• Strategies m∗(Ji) for every Ji which is a component of any s ∈ S;

• Expected discounted value of current and future net cash flow condi-
tional on the decision mi, say W (mi|Ji), for each mi ∈ Mi and every
Ji which is a component of any s ∈ S,

such that

C1: R is a recurrent class. The Markov process generated by any
initial condition s0 ∈ R, and the transition kernel generated by {m∗}, has R
as a recurrent class (so, with probability one, any subgame starting from an
s ∈ R will generate sample paths that are within R forever).

C2: Optimality of strategies on R. For every Ji which is a component
of an s ∈ R, strategies are optimal given W (·), that is m∗(Ji) solves

maxmi∈Mi
W (mi|Ji)

and

C3: Consistency of values on R. Take every Ji which is a component
of an s ∈ R. Then

W (m∗(Ji)|Ji) = πE(m∗(Ji), Ji) + β
∑
J
′
i

W (m∗(J
′

i )|J
′

i )p
e(J

′

i |Ji),

can access the union of the information sets available to the agents playing the game.
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where

πE(m∗(Ji), Ji) ≡
∑
J−i

πi

(
ωi,m

∗(Ji), ω−i,m
∗(J−i), dt

)
pe(J−i|Ji),

and{
pe(J

′

i |Ji) ≡
pe(J

′
i , Ji)

pe(Ji)

}
J
′
i

, and

{
pe(J−i|Ji) ≡

pe(J−i, Ji)

pe(Ji)

}
J−i

♠. (3)

Note that the evaluations {W (mi|Ji)} need not be correct for Ji not a
component of an s ∈ R. Nor do we require correctness of the evaluations for
the W (mi|Ji)’s associated with points in R but at policies which differ from
those in m∗i . The only conditions on these evaluations are that chosing an
mi 6= m∗i would lead to a perceived evaluation which is less than that from
the optimal policy (this is insured by condition C2)10. On the other hand
the fact that our equilibrium conditions are limited to conditions on points
that are played repeatedly implies that agents are able to learn the values of
the outcomes from equilibrium play, and we provide an algorithm that would
allow them to form consistent estimates of those outcomes below. Further
comments on our equilibrium notion follow.

Beliefs on types. Note also that our conditions are not formulated in
terms of beliefs about either the play or the “types” of opponents. There
are two reasons for this to be appealing to the applied researcher. First,
as beliefs are not observed, they can not be directly tested. Second, as we
will show presently, it implies that we can compute equilibria without ever
explicitly calculating posterior distributions.

Relationship to Self Confirming Equilibria. Experience Based Markov
Equilibria, though formulated for dynamic games, is akin to the notion of
Self Confirming Equilibria (Fudenberg and Levine,1993), that has been used
in other contexts11. Self Confirming Equilibria weaken the standard Nash

10The fact that our conditions do not apply to points outside of R or to mi 6= m∗i implies
that the conditional probabilities in equation (3) are well defined.

11See also Dekel, Fudenberg and Levine (2004) for an anlysis of self confirming equilib-
rium in games with asymmetric information.
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equilibrium conditions. It requires that each player has beliefs about op-
ponents’ actions and that the player’s actions are best responses to those
beliefs. However the players’ beliefs need only be correct along the equilib-
rium path. This insures that no players observes actions which contradicts its
beliefs. Our equilibrium conditions explicitly introduce the evaluations that
the agents use to determine the optimality of their actions. They are similar
to the conditions of Self Confirming Equilibria in that the most they insure
is that these evaluations are consistent with the opponents actions along the
equilibrium path. However we distinguish between states that are repeated
infinitely often and those that are not, and we do not require the evaluations
which determine actions at transitory states to be consistent with the play
of a firm’s opponents.

Boundary Points. It is useful to introduce a distinction made by Pakes
and McGuire (2001). They partition the points in R into interior and bound-
ary points. Points in R at which there are feasible (though inoptimal) strate-
gies which can lead to a point outside of R are labelled boundary points. In-
terior points are points that can only transit to other points in R no matter
which of the feasible policies are chosen (equilibrium or not). At boundary
points there are actions which lead to outcomes which can not be consistently
evaluated by the information generated by equilibrium play.

Multiplicity. Notice that Bayesian Perfect equilibria will satisfy our equi-
librium conditions, and typically there will be a multiplicity of such equilibria.
Since our experience based equilibrium notion does not restrict perceptions
of returns from actions not played repeatedly, it will admit an even greater
multiplicity of equilibria. There are at least two ways to select out a subset of
these equilibria. One is to impose further conditions on the definition of equi-
librium; an alternative which we explore in the next section. As explained
their, this requires a game form which enables agents to acquire information
on outcomes from non-equilibrium play.

Alternatively (or additionally) if data is available we could use it to re-
strict the set of equilibria. I.e. if we observe or can estimate a subset of
either {W (·)} or {m∗(·)} we can restrict any subsequent analysis to be con-
sistent with their values. In particular since there are (generically) unique
equilibrium strategies associated with any given equilibrium {W (·)}, if we
were able to determine the {W (·)} associated with a point (say through ob-
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servations on sample paths of profits) we could determine m∗i that point, and
conversely if we know m∗i at a point we can restrict equilibrium {W (·)} at
that point. Similarly we can direct the computational algorithm we are about
to introduce to compute an equilibria that is consistent with whatever data
is observed. On the other hand were we to change a primitive of the model
we could not single out the equlibria that is likely to result without further
assumptions (though one could analyze likely counterfactual outcomes if one
is willing to assume a learning rule and an initial condition; see Lee and
Pakes,2009).

2.1 Restricted Experience Based Equilibria.

Our condition C3 only requires correct evaluations of outcomes from equi-
librium actions that are observed repeatedly; i.e. for W (mi|Ji) at mi = m∗i
and Ji ⊂ s ∈ R. There are circumstances when imposing restrictions on
equilibrim evaluations of actions off the equilibrium path for states that are
observed repeatedly, that is at mi 6= m∗i for Ji ⊂ s ∈ R, might be natural,
and this subsection explores them.

Barring compensating errors, for agents to have correct evaluations of
outcomes from an mi 6= m∗i they will need to know; (i) expected profits and
the distribution of future states that result from playing playing mi, and (ii)
the continuation values from the states that have positive probability when
mi is chosen. Whether or not agents can obtain the information required
to compute expected profits and the distribution of future states when an
mi 6= m∗i is played depends on the details of the game, and we discuss this
further below. For now we assume that they can, and consider what this
implies for restricting the evaluations of outcomes from non-optimal actions.

Consider the restriction which assumes the analogue of C3 for allmi ∈Mi

at any Ji ⊂ s ∈ R. Then, at equilibrium, all outcomes that are in the
recurrent class are evaluated in a way that would be consistent with the
expected discounted value of returns that the action would yield were all
agents (including itself) to continue playing their equilibrium strategies; and
this regardless of whether the action that generated the outcome was an
equilibrium action. As in an unrestricted EBE outcomes that are not in
the recurrent class are evaluated by perceptions which are not required to
be consistent with any observed outcome12. As a result the restricted EBE

12We note that there are cases where it would be natural to require outcomes not in the
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insures that in equilibrium when agents are at interior points they evalute
all feasible actions in a way that is consistent with expected returns given
equilibrium play. However at boundary points only those actions whose
outcomes are in the recurrent class with probability one are evaluated in
this manner.

Definition: Restricted Experience Based Equilibrium. Let πE(mi, Ji)
be expected profits and {p(J ′i |Ji,mi)}J ′i be the distribution of J ′, both con-
ditional on (mi, Ji) and m∗−i. A strongly restricted EBE requires, in addition
to C1 and C2, that

W (mi |Ji) = πE(mi, Ji) + β
∑
J
′
i

W (m∗(J
′

i )|J
′

i )p(J
′

i |Ji,mi) (4)

for all mi ∈Mi and Ji ⊂ s ∈ R.

Notice that there is a sense in which this equilibrium concept imposes
a strong restriction on how agent’s react to non-equilibrium play by their
competitors. To see this recall that the outcome is J ′i = (ξ′, z′i), where ξ′

contains new public, and z′i new private, information. Competitors observe
ξ′ and ξ. Were an agent to play an mi 6= m∗i it may generate a ξ′ which is
not in the support of the distribution of ξ′ generated by (ξ,m∗i )

13. Then if we
impose the restrictions in equation (4) we impose constraints on the agent’s
evaluations of outcomes of actions which the agent’s competitors would see
as inconsistent with equilibrium play. For the agent to believe such estimates
are correct, the agent would have to believe that the competitor’s play would
not change were the competitor to observe an action off the equilibrium
path. We could have assumed that, in equilibrium, agents only need to have
correct evaluations for the outcomes of actions that competitor’s could see
as consistent with equilibrium play; i.e. actions which generate a support
for ξ′ which is contained in the support ξ′ conditional on (ξ,m∗i ). Then we

recurrent class to be consistent with publically available information on primitives. For
example even if a firm never exited from a particular state the agent might know its selloff
value, so it might be reasonable to require that the action of exiting to be evaluated at that
value. It is straightforward to impose such constraints on the computational algorithm
introduced in the next section.

13As an example consider the case where mi is observable. Then were the agent to play
m̃i 6= m∗i , m̃i would be in ξ′ and, provided there does not exist a J̃i = (ξ, z̃i) such that
m∗(ξ, z̃i) = m̃i, the support of ξ′ given (ξ, m̃i) will differ from that given (ξ,m∗i ).

16



would only restrict equilibrium beliefs about outcomes from actions that no
agent perceives as inconsistent with equilibrium play. We do not pursue this
further here, but it would be straightforward to modify the computational
algorithm introduced in section 3 to accomdoate this definition of a restricted
EBE rather than the one in equation (4).

As noted for agents to be able to evaluate actions in a manner consistent
with the restricted EBE they must know πE(mi, Ji) and {p(J ′i |Ji,mi)}J ′i for
mi 6= m∗i at all Ji ⊂ s ∈ R. Sometimes these objects can be computed
from the information generated by equilibrium play and/or knowledge of the
primitives of the problem, and sometimes they can not. We illustrate with
a familar game below. Note, however, that even if agents can access the
required information, to evaluate actions in the way assumed in a restricted
EBE they will have to incur the cost of storing additional information and
making additional computations; a cost we return to in the context of the
computational algorithm discussed in the next section.

Assume that πE(mi, Ji) can be consistently estimated14, and consider
conditions which enable the agent to consistently estimate p(J

′
i |Ji,mi) ≡

p(ξ′|z′i, Ji,mi)p(z
′
i|Ji,mi), ∀J ′i in the support of (mi, Ji), mi ∈ Mi and Ji ⊂

s ∈ R. We begin with a capital accumulation game in which mi is not
observed and only impacts the distribution of ξ through its impact on the
distribution of zi. For specificity sssume zi represent costs, mi is unobserved
cost reducing investment, and p(ξ′|z′i, Ji,mi) = p(ξ′|z′i, Ji). Assume also that
{z} evolves as a controled Markov process, so that p(z′i|Ji,mi) = p(z′i|zi,mi),
and is known from the primitives of the cost reducing process. Though costs
are not observed they are a determinant of prices which are, so in this game
past prices contain information on current costs.

Then an agent will be able to consistently estimate p(J
′
i |Ji,mi) whenever

the agent can consistently estimate p(ξ′|z′i, Ji). If p(ξ′|z′i, Ji) = p(ξ′|Ji) for

14Whether or not πE(mi 6= m∗i , Ji) can be consistently estimated depends on the
specifics of the problem, but it frequently can be. For a simple example consider an
investment game where the profit function is additively separable in the cost of invest-
ment or mi, so that πE(mi, Ji) = πE(m∗i , Ji) + m∗i − mi. If profits are not additively
separable in mi but mi is observed then it suffices that agents be able to compute profits
as a function of (Ji,mi,m−i), as in the computational example below and in differentiated
product markets in which the source of assymetric information is costs, equilibrium is
Nash in prices, and agents know the demand function. In auctions the agent can compute
πE(mi, Ji) if the agent can learn the distribution of the winning bid.
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all ξ′, as would be the case if the current period’s investment outcome did
not affect the current period’s prices, then the outcomes from equilibrium
play can be used to obtain consistent estimates of the required probabilities.
Now say p(ξ′|z′i, Ji) 6= p(ξ′|Ji) for some ξ′, as would occur if the innovation
in costs affected today’s prices. Equilibrium play generates {p(ξ′, z′i|Ji,m∗i )},
so since p(z′i|Ji,mi) is a primitive, the agent can consistently estimate

p(ξ′|z′i, Ji) =
(p(ξ′, z′i|Ji,m∗i )

p(z′i|zi,m∗i )

)
for every z′ in the support generated by m∗i . As a result the agent will be able
to consistently estimate the distribution of J ′i given (Ji,mi 6= m∗i ) whenever
the support of z′i given (zi,mi 6= m∗i ) is contained in that of (zi,m

∗
i ).

Now consider the same case but allow for an mi which generates a support
for z′i which is not contained in that generated bym∗i . An argument analogous
to that above will insure that the agent will be able to consistently estimate
p(ξ′|z′i, Ji) only if there is J̃i = (ξ̃, z̃i) ⊂ s ∈ R and associated m∗(ξ̃, z̃i), which
generate probabilities, p(ξ′|z′i, J̃i), equal to p(ξ′|z′, Ji) for every (ξ′, z′i) in the
support of (mi, Ji). This would occur in our example if current prices were
just a function of current costs and the public information, and we could find
a J̃i = (ξ, z̃i), i.e where the public information in J̃i is the same as that in Ji,
and the support of z′i given (m∗(J̃i), z̃i) contains that of (mi, zi).

The conditions when mi is observed are similar. When mi is observed
then mi will generally be a component of ξ′, so p(ξ′|z′i, Ji,mi) will no longer be
independent of mi (the exception is the case where all private information is
revealed, so mi is redundant). If mi ∈ ξ′ and ξ ∈ ξ′ (so there is no forgetting),
then the agent will be able to consistently estimate the distribution of J ′i
given (Ji,mi 6= m∗i ) only if there is another point in the recurrent class, say
J̃i = (ξ̃, z̃i) such that ξ̃ = ξ, m∗(ξ, z̃i) = mi, and the support of z′i given
(zi,mi) is contained in that given (z̃i,m

∗(J̃i))
15.

We show how to compute and test for a restricted EBE in section 3.

15Similar considerations apply to non capital accumulation games (games where a com-
petitor’s play affects the evolution of one’s own state), with the added complication that
since p(z′i|Ji,mi) depends on the competitor’s control, we also have to check whether we
can form those probabilities for mi 6= m∗i from equilibrium play.
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2.2 The Finite State Space Condition.

Our framework is restricted to finite state games. We now consider this re-
striction in more detail. We have already assumed that there was: (i) an
upper bound to the number of firms simultaneously active, and (ii) each
firm’s physical states (our ω) could only take on a finite set of values. These
restrictions insure that the payoff relevant random variables are finite di-
mensional, but they do not guarantee this for the informationally relevant
random variables, so optimal strategies could still depend on an infinite his-
tory16. We can insure that the informationally relevant random variables are
finite dimensional either; (i) through restrictions on the form of the game, or
(ii) by imposing constraints on the cognitive abilities of the decision makers.

One example of a game form which can result in a finite dimensional
space for the informationally relevant state variables is when there is peri-
odic simultaneous revelation of all variables which are payoff relevant to all
agents. Claim 1 of Appendix 1 show that in this case an equilibrium with
strategies restricted to depend only a finite history is an equilibrium to the
game with unrestricted strategies. Claim 2 of Appendix 1 shows that there is
indeed a restricted EBE for the game with periodic revelation of information.
The numerical analysis in section 4 includes an example in which regulation
generates such a structure. Periodic revelation of all information can also
result from situations in which private information can seep out of firms (say
through labor mobility) and will periodically do so for all firms at the same
time, and/or when the equilibrium has one state which is visited repeatedly
at which equilibrium play reveals the states of all players.

There are other game forms which insure finiteness. One example is when
the institutional structure insures that each agent only has access to a finite
history. For example consider a sequence of internet auctions, say one every
period, for different units of a particular product. Potential bidders enter the
auction site randomly and can only bid at finite increments. Their valuation
of the object is private information, and the only additional information
they observe are the sequence of prices that the product sold at while the
bidder was on-line. If, with probability one, no bidder remains on the site
for more than L auctions, prices more than L auctions in the past are not in

16The conditions would however insure finiteness in a game with asymmetric information
where the sources of asymmetric information are distributed independently over time (as
in Bajari, Benkard and Levin, 2007, or Pakes Ostrovsky and Berry, 2007).
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any bidder’s information set, and hence can not effect bids.17 Alternatively
a combination of assumptions on the functional forms for the primitives of
the problem and the form of the interactions in the market that yield finite
dimensional sufficient statistics for all unknown variables could also generate
our finite state space condition.

A different way to insure finiteness is through bounded cognitive abilities,
say through a direct bound on memory (e.g., agents can not remember what
occured more than a finite number of periods prior), or through bounds on
complexity, or perceptions. There are a number of reasons why such a restric-
tion may be appealing to empirical researchers. First it might be thought to
be a realistic approximation to the actual institutions in the market. Second
in most applications the available data is truncated so the researcher does not
have too long a history to condition on. Moreover in any given application
one could investigate the extent to which policies and/or outcomes depended
on particular variables either empirically or computationally.

To illustrate our computational example computes equilibria to finite
state games generated by both types of assumptions. Indeed one of the
questions we adress is whether the different assumptions we use to obtain
finiteness, all of which seem a priori reasonable, generate equilibria with
noticeably different policies. As we shall see for our example they do not.

3 An Algorithm for Computing an EBE.

This section shows that we can use a reinforcement learning algorithm to
compute an Experience Based Equilibrium. As a result our equilibria can be
motivated as the outcome of a learning process. In the reinforcement learn-
ing algorithm players form expectations on the value that is likely to result
from the different actions available to them and choose their actions opti-
mally given those expectations. From a given state those actions, together
with realizations of random variables whose distributions are determined by
them, lead to a current profit and a new state. Players use this profit to-
gether with their expectations of the value they assign to the new state to
update their expectation of the continuation values from the starting state.
They then proceed to chose an optimal policy for the new state, a policy

17Formally this example requires an extension of our framework to allows for state
variables that are known to two or more, but not to all, agents.
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which maximizes its expectations of the values from that state. This process
continues iteratively.

Note that the players’ evaluations at any iteration need not be correct.
However we would expect that if policies converge and we visit a point repeat-
edly we will eventually learn the correct continuation value of the outcomes
from the policies at that point. Our computational mimic of this process in-
cludes a test of whether our equilibrium conditions, conditions which insure
that continuation evaluations are in fact consistent with subsequent play, are
satisfied. We note that since our algorithm is a simple reinforcement learning
algorithm, an alternative approach would have been to view the algorithm
itself as the way players learn the values needed to choose their policies, and
justify the output of the algorithm in that way. A reader who subscribes to
the latter approach may be less interested in the testing subsection18.

We begin with the iterative algorithm for an EBE, then note the modifica-
tions required for a restricted EBE, and then move on to the test statistic for
both equilibrium concepts. A discussion of the properties of the algorithm,
together with its relationship to the previous literature and additional details
that can make implementation easier, is deferred until Appendix 2.

The algorithm consists of an iterative procedure and subroutines for cal-
culating initial values and profits. We begin with the iterative procedure.
Each iteration, indexed by k, starts with a location which is a state of the
game (the information sets of the players) say Lk = [Jk1 , . . . , J

k
n(k)], and the

objects in memory, say Mk = {Mk(J) : J ∈ J }. The iteration updates
both these objects. We start with the updates for an unrestricted EBE, and
then come back to how the iteative procedure is modified when computing a
restricted EBE. The rule for when to stop the iterations consists of a test of
whether the equilibrium conditions defined in the last section are satisfied,
and we describe the test immediately after presenting the iterative scheme.

Memory. The elements of Mk(J) specify the objects in memory at iter-
ation k for information set J , and hence the memory requirements of the
algorithm. Often there will be more than one way to structure the memory
with different ways having different advantages. Here we focus on a simple

18On the other hand, there are several issues that arise were one to take the learning
approach as an approximation to behavior, among them; the question of whether (and
how) an agent can learn from the experience of other agents, and how much information
an agent gains about its value in a particular state from experience in related states.
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structure which will always be available (though not necessarily always be
efficient); alternatives are considered in Appendix 2.

Mk(Ji) contains

• a counter, hk(Ji), which keeps track of the number of times we have
visited Ji prior to iteration k, and if hk(Ji) > 0 it contains

• W k(mi|Ji) for mi ∈Mi, i = 1, . . . , n.

If hk(Ji) = 0 there is nothing in memory at location Ji. If we require
W (·|Ji) at a Ji at which hk(Ji) = 0 we have an initiation procedure which
sets W k(mi|Ji) = W 0(mi|Ji). Appendix 2 considers choices of {W 0(·)}. For
now we simply note that high initial values tend to insure that all policies
will be explored.

Policies and Random Draws for Iteration k. For each Jki which is a
component of Lk call up W k(·|Jki ) from memory and choose mk(Jki ) to

maxm∈Mi
W k(m|Jki ).

With this {mk(Jki )} use equation (1) to calculate the realization of profits
for each active agent at iteration k (if d is random, then the algorithm has
to take a random draw on it before calculating profits). These same policies,
{mk(Jki )}, are then substituted into the conditioning sets for the distributions
of the next period’s state variables (the distributions in equation 2 for payoff
relevant random variables and the update of informationally relevant state
variables if the action causes such an update), and they, in conjunction with
the information in memory at Lk, determine a distribution for future states
(for {Jk+1

i }). A pseudo random number generator is then used to obtain a
draw on the next period’s payoff relevant states.

Updating. Use
(
Jki ,m

k(Jki ), ωk+1
i , dk+1

)
to obtain the updated location of

the algorithm

Lk+1 = [Jk+1
1 , . . . , Jk+1

n(k+1)].

To update the W it is helpful to define a “perceived realization” of the value
of play at iteration k (i.e. the perceived value after profits and the random
draws are realized), or
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V k+1(Jki ) = π(ωki , ω
k
−i,m

k
i ,m

k
−i, d

k) + maxm∈Mi
W k(m|Jk+1

i ) (5)

Note that to calculate V k+1(Jki ) we need to first find and call up the infor-
mation in memory at locations {Jk+1

i }nk+1

i=1 .19 Once these locations are found
we keep a pointer to them, as we will return to them in the next iteration.

For the intuition behind the update for W k(·|Jki ) note that were we to
substitute the equilibrium W ∗(·|Jk+1

i ) and πE(·|Jki ) for the W k(·|Jk+1
i ) and

πk(·|Jki ) in equation (5) above and use equilibrium policies to calculate expec-
tations, then W ∗(·|Jki ) would be the expectation of V ∗(·|Jki ). Consequently
we treat V k+1(Jki ) as a random draw from the integral determining W ∗(·|Jki )
and update the value of W k(·|Jki ) as we do an average, for example

W k+1(m|Jki ) =
1

hk(Jki )
V k+1(Jki ) +

(hk(Jki )− 1

hk(Jki )

)
W k(m|Jki )], (6)

which makes W k(Jki ) the simple average of the V r(Jri ) over the iterations at
which Jri = Jki . Though use of this simple average will satisfy Robbins and
Monroe’s (1951) convergence conditions, we will typically be able to improve
the precision of our estimates of the W (·) by using a weighting scheme which
downweights the early values of V r(·) as they are estimated with more error
than the later values.20

Completing The Iteration. We now replace the W k(·|J ik) in memory at
location Jki with W k+1(·|J ik) (for i = 1, . . . , nk) and use the pointers obtained
above to find the information stored in memory at Lk+1. This completes the
iteration as we are now ready to compute policies for the next iteration. The
iterative process is periodically stopped to run a test of whether the policies

19The burden of the search for these states depends on how the memory is structured,
and the efficiency of the alternative possiblities depend on the properties of the example.
As a result we come back to this question when discussing the numerical example below.

20One simple, and surprisingly effective, way of doing so is to restart the algorithm
using as starting values the values outputted from the first several million draws. The
Robbins and Monroe, 1951, article is often considered to have initiated the stochastic
approximation literature of which reinforcement learning is a special case. Their conditions
on the weighting function are that the sum of the weights of each point visited infinitely
often must increase without bound while the sum of the weights squarred must remain
bounded.
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and values the algorithm outputs are equilbirium policies and values. We
come back to that test presently.

Updating when computing a restricted EBE. The algorithm just de-
scribed only updates W k(mi|Ji) for mi = mk(Jki ), the policy that is optimal
given iteration k’s evaluations. Recall that we only expect correct evalua-
tions from outcomes that are updated repeatedly. Since this algorithm only
updates the continuation values of actions actually taken, if the algorithm
does converge to an EBE only the continuation values of equilibrium actions
are likely to satisfy C3. That is the algorithm is unlikely to provide correct
evaluations of outcomes from actions off its equilibrium path, and a restricted
EBE requires correct evaluations of some of those outcomes (the outcomes
in R).

When we want to compute a restricted EBE we modify the algorithm just
described to update all the {W k(m|Jki )}m∈Mi

, i.e. the continuation values for
all possible actions from a state whenever that state is reached. This insures
that whenever a non-equilibrium action has a possible outcome which is in
the recurrent class it will be evaluated correctly provided all recurrent class
points are evaluated correctly. To update W k(mi|Jki ) when mi 6= mk(Jki )
we take a random draw from the distribution of outcomes conditional on
that mi, use it and the random draws from the competing agent’s optimal
policies to form what the perceived value realization would have been had the
agent implemented policy mi 6= m∗i (the analogue of V k+1(Jki |mi) in equation
5), and use it to form W k+1(mi|Jki ) (as in equation 6). The rest of the
algorithm is as above; in particular we update the location using the draws
from the optimal policy. Note that this increases both the computational and
memory requirements of the algorithm significantly. Both the computational
burden and the memory requirements at a point, Lk, grows by a factor of
×nk
i=1#Mi/nk.

3.1 Testing for an EBE.

Assume we have aW vector in memory at some iteration of the algorithm, say
W k = W̃ , and we want to test whether W̃ generates an EBE on a recurrent
subset of S. To perform the test we need to check our equilibrium conditions
and this requires: (i) a candidate for a recurrent subset determined by W̃ ,
say R(W̃ ), and checks for both (ii) the optimality of policies and (iii) the
consistency of W̃ , on R(W̃ ).
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To obtain a candidate for R(W̃ ), start at any s0 and use the policies
implied by W̃ to simulate a sample path {sj}J1+J2j=1 . Let R(J1, J2, ·) be the
set of states visited at least once between j = J1 and j = J2. Provided J1
and J2 grow large R will become a recurrent class of the process generated
by W̃ . In practice to determine whether any finite (J1, J2) are large enough,
one generates a second sample path starting at J2 and continuing for another
J2 − J1 iterations. We then check to see that the set of points visited on the
second sample path are the same as those in R(J1, J2, ·).

The second equilibrium condition specifies that the policies must be op-
timal given W̃ . This is satisfied by construction as we chose the policies that
maximize W̃ (mi|Ji) at each Ji.

To check the third equilibrium condtion we have to check for the consis-
tency of W̃ with outcomes from the policies generated by W̃ on the points
in R. Formally we have to check for the equality in

W̃ (m∗i |Ji) = πE(m∗i , Ji) + β
∑
J
′
i

{
W̃ (m∗(J

′

i )|J
′

i )
}
pe(J

′

i |Ji).

In principle we could check this by direct summation for the points in R.
However this is computationally burdensome, and the burden increases ex-
ponentially with the number of possible states (generating a curse of di-
mensionality). So proceeding in this way would limit the types of empirical
problems that could be analyzed.

A far less burdensome alternative, and one that does not involve a curse
of dimensionality, is to use simulated sample paths for the test. To do this
we start at an s0 ∈ R and forward simulate. Each time we visit a state
we compute perceived values, the V k+1(·) in equation (5), for each Ji at
that state, and keep track of the average and the sample variance of those
simulated perceived values across visits to the same state, say{(

µ̂(W (m∗(Ji)|Ji)), σ̂2(W (m∗(Ji)|Ji))
)}

Ji⊂s,s∈R
.

An estimate of the mean square error of µ̂(·) as an estimate of W̃ (·) can be
computed as i.e. (µ̂(·)− W̃ )2. The difference between this mean square error
and the sampling variance, or σ̂2(W (m∗(Ji)|Ji)), is an unbiased estimate of
the bias squarred of µ̂(·) as an estimate of W̃ (·). We base our test of the
third EBE condition on these bias estimates.

More formally if we let E(·) take expectations over simulated random
draws, l index information sets, and do all computations as percentages for
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each W̃l(·) value, the expectation of our estimate of the percentage mean
square of µ̂(Wl) as an estimate of W̃l is

MSEl ≡ E[ ˆMSEl] ≡ E
( µ̂(Wl)− W̃l

W̃l

)2
= (7)

E
( µ̂(Wl)− E[µ̂(Wl)]

W̃l

)2
+
(E[µ̂(Wl)]− W̃l

W̃l

)2
≡ σ2

l + (Biasl)
2

Let ( ˆMSEs, σ
2
s , (Biass)

2) be the average of ( ˆMSEl, σ
2
l , (Biasl)

2) over the
information sets (the l) of the agents active at state s, and σ̂2

s be the analogous
average of σ̂2(Wl)/W̃

2
l . Then since σ̂2

s is an unbiased estimate of σ2
s , the law

of large numbers insures that an average of the σ̂2
s at different s converges

to the same average of σ2
s . Let hs be the number of times we visit point s.

We use as our test statistic, say T , an hs weighted average the difference
between the estimates of the mean square and that of the variance, and if→
indicates (almost sure) covergence, the argument above implies that

T ≡
∑
s

hs ˆMSEs −
∑
s

hsσ̂
2
s →

∑
hs(Biass)

2, (8)

a weighted average of the sum of squares of the percentage bias. If T is
sufficiently small we stop the algorithm; otherwise we continue 21.

Testing for a restricted EBE. Our test for a restricted EBE is similar
except that in the restricted case we simulate the mean and the variance
of outcomes for every mi ∈ Mi for each information set l, say (µ̂mi,l, σ̂

2
mi,l

),
for each Jl ⊂ s and s ∈ R. We then use the analogue of equation (7) to
derive estimates of { ˆMSEl,mi

} and average over mi ∈ Mi to obtain new

estimates of ( ˆMSEl, σ̂
2
l ). The test statistic is obtained by substituting these

new estimates into the formula for T in equation (8) above, and will be
labeled TR.

21Formally T is an L2(PR) norm in the percentage bias, where PR is the invariant
measure associated with (R, W̃ ). Appendix 2 comments on alternative possible testing
procedures, some of which may be more powerful than the test provided here.
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4 Example: Maintenance Decisions

in An Electricity Market.

The restructuring of electricity markets has focused attention on the design of
markets for electricity generation. One issue in this literature is whether the
market design would allow generators to make super-normal profits during
periods of high demand. In particular the worry is that the twin facts that
currently electricity is not storable and has extremely inelastic demand might
lead to sharp price increases in periods of high demand (for a review of the
literature on price hikes and an empirical analysis of their sources in Califor-
nia during the summer of 2000, see Borenstein, Bushnell, and Wolak, 2002).
The analysis of the sources of price increases during periods of high demand
typically conditions on whether or not generators are bid into or withheld
from the market, though some of the literature have tried to incorporate the
possiblity of “forced”, in constrast to “scheduled”, outages (see Borenstein,
et.al, 2002). Scheduled outages are largely for maintenance and maintenance
decisions are difficult to incorporate into an equilibrium analysis because, as
many authors have noted, they are endogenous.22

Since the benefits from incuring maintenance costs today depend on the
returns from bidding the generator in the future, and the latter depend on
what the firms’ competitors bid at future dates, an equilibrium framework
for analyzing maintenance decisions requires a dynamic game with strategic
interaction. To the best of our knowledge maintenance decisions of electric
utilities have not been analyzed within such a framework to date. Here we
provide a simple example that does endogenizes maintenance decisions and
then ask how asymmetric information effects the results.

Overview of the Model. In our model the level of costs of a generator
evolve on a discrete space in a non-decreasing random way until a mainte-
nance decision is made. In the full information model each firm knows the
current cost state of its own generators as well as those of its competitors.
In the model with asymmetric information the firm knows the cost position
of its own generators, but not those of its competitors.

22There has, however, been an extensive empirical literature on when firms do mainte-
nance (see, for e.g. Harvey, Hogan and Schatzki, 2004, and the literature reviewed their).
Of particular interest are empirical investigations of the co-ordination of maintenance
decsions, see, for e.g., Patrick and Wolak, 1997.
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Firms can hold their generators off the market for a single period and
do maintenance. Whether they do so is public information. If they do
maintenance the cost level of the generator reverts to a base state (to be
designated as the zero state). If they do not do maintenance they bid a supply
function and compete in the market. In periods when a generator is operated
its costs are incremented by a stochastic shock. There is a regulatory rule
which insures that the firms do maintenance on each of their generators at
least once every six periods.

For simplicity we assume that if a firm submits a bid function for produc-
ing electricity from a given generator, it always submits the same function
(so in the asymmetric information environment the only cost signals sent by
the firm is whether it does maintenance on each of its generators). We do,
however, allow for heterogeneity in both cost and bidding functions across
generators. In particular we allow for one firm which owns only big genera-
tors, Firm B, and one firm which only owns small generators, Firm S. Doing
maintenance on a large generator and then starting it up is more costly than
doing maintenance on a small generator and starting it up, but once oper-
ating the large generator operates at a lower marginal cost. The demand
function facing the industry distinguishes between the five days of the work
week and the two day weekend, with demand higher in the work week.

In the full information case the firm’s strategy are a function of; the cost
positions of its own generators, those of its competitors, and the day of the
week. In the asymmetric information case the firm does not know the cost
position of its competitor’s generators, though it does realize that its com-
petitors’ strategy will depend on those costs. As a result any variable which
helps predict the costs of a competitors’ generators will be informationally
relevant.

In the asymmetric information model Firm B’s perceptions of the cost
states of Firm S’s generators will depend on the last time each of Firm S’s
generators did maintenance. So the time of the last maintenance decision on
each of Firm S’s generators are informationally relevant for Firm B. Firm S’s
last maintenance decisions depended on what it thought Firm B’s cost states
were at the time those maintenance decisions were made, and hence on the
timing of Firm B’s prior maintenance decisions. Consequently Firm B’s last
maintenance decisions will generally be informationally relevant for itself.
As noted in the theory section, without further restrictions this recurrence
relationship between one firm’s actions at a point in time and the prior
actions of the firm’s competitors at that time can make the entire past history
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of maintenance decisions of both firms informationally relevant. Below we
consider three separate restrictions each of which have the effect of truncating
the relevant past history in a different, and we think reasonable, way. We
then compute an EBE for each one of them, and compare the results.

Social Planner Problem. To facilitate efficiency comparisons we also
present the results generated by the same primitives when maintenance deci-
sions are made by a social planner that knows the cost states of all generators.
The planner maximizes the sum of the discounted value of consumer surplus
and net cash flows to the firms. Since the social planner problem is a single
agent problem, it was computed using a standard contraction mapping23.

4.1 Details and Parameterization of The Model.

Table 1: Primitives Which Differ Among Firms.

Parameter Firm B Firm S
Number of Generators 3 4
Range of ω 0-4 0-4
Marginal Cost Constant (ω = (0, 1, 2, 3))∗ (20,60,80,100) (50,100,150,200)
Maximum Capacity at Constant MC 25 15
Costs of Maintenance 15,000 6,000

∗ At ω = 4 the generator must shut down.

Firm B has three generators at its disposal. Each of them can produce
up to 25 megawatts of electricity at a constant marginal cost which depends
on their cost state (mcB(ω)) and can produce higher levels of electricity at
increasing marginal cost. Firm S has four generators at its disposal each of
which can produce 15 megawatts of electricity at a constant marginal cost
which depends on their cost state (mcS(ω)) and higher levels at increasing

23The equilibrium concept for the full information duopoly is a special case of that
for the game that allows for asymmetric information (it corresponds to the equilibrium
concept used in Pakes and McGuire, 2001). It was computed using the same techniques
as those used for the asymetric information duopoly (see section 3 and the details below).
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marginal cost. Hence, the marginal cost function of a generator of type
k ∈ {B, S} is as follows:

MCk(ω) = mck(ω) q < qk
= mck(ω) + β(q − qk) q ≥ qk

where qB = 25 and qS = 15 and the slope parameter β = 10. For a given
level of production, firm B’s generator’s marginal cost is smaller than those
of firm S at any cost state, but the cost of maintaining and restarting firm
B’s generators is two and a half times that of firm S’s generators (see table
1).

The firms bid just prior to the production period and they know the cost
of their own generators before they bid. If a generator is bid, it bids a supply
curve which is identical to its highest marginal cost at which it can operate.
The market supply curve is obtained by the horizontal summation of the
individual supply curves. For the parameter values indicated in table 1, if
firm B bids in Nb number of generators and firm S bids in Ns number of
generators, the resultant market supply curve is:

QMS(Nb, Ns) =


0 p < 100
25Nb + (p−100

β
)Nb 100 ≤ p < 200

25Nb + (p−100
β

)Nb + 15Ns + (p−200
β

)Nb p ≥ 200

The market maker runs a uniform price auction; it horizontally sums the
generators’ bid functions and intersects the resultant aggregate supply curve
with the demand curve. This determines the price per megawatt hour and
the quantities the two firms are told to produce. The market maker then
allocates production across generators in accordance with the bid functions
and the equilibrium price.

The demand curve is log-linear

log(Q)MD = Dd − αlog(P ),

with a price elasticity of α = .3 and a level which is about a third higher on
weekdays than weekends (i.e. Dd=weekday = 8.5, Dd=weekend = 6.5).

If the generator is not operated in this period it does maintenance and
at the begining of the next period can be operated at the low cost base state
(ω = 0). If the generators is operated the state of the generator stochastically

30



decays. Formally if ωi,j,t ∈ Ω = {0, 1, . . . , 4} is the cost state of firm i’s jth

generator in period t, then

ωi,j,t+1 = ωj,i,,t − ηi,j,t,

where, if the generator is operated in the period

ηi,j,t =


0 with probability .1
1 with probability .4
2 with probability .5.

The information at the firm’s disposal when it makes its maintenance
decision, say Ji,t, always includes the vector of states of its own generators,
say ωi,t = {ωi,j,t; j = 1 . . . ni} ∈ Ωni , and the day of the week (denoted by d ∈
D). In the full information it also includes the cost states of its competitors’
generators. In the asymmetric information case firms’ do not know their
competitors’ cost states and so keep in memory public information sources
which may help them predict their competitors’ actions. The specification for
the public information used differs for the different asymmetric information
models we run, so we come back to it when we introduce those models.

The strategy of firm i ∈ {S.B} is a choice of

mi = [m1,i, . . .mni,i] : Ji →
(

0,mi

)ni

≡Mi,

where mi is the bid function which is the highest marginal cost curve of
each type of generator. We assume that whenever the firm withholds a
generator from the market they do maintenance on that generator, and that
maintenance must be done at least once every six periods.24 The cost of that
maintenance is denoted by cmi.

If p(m1,t,m2,t, dt) is the market clearing price while yi,j,t(mB,t,mS,t, dt) is
the output alocated by the market maker to the jth generator of the ith firm,
the firm’s profits (πi(·)) are

πi

(
mB,t,mS,t, dt, ωi,t

)
= p(mB,t,mS,t, dt)

∑
j

yi,j,t(mB,t,mS,t, dt)

24In none of our runs was this constraint binding more than in .29% of the cases, and
in most cases it never bound at all.
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−
∑
j

[
I{mi,j,t > 0}c(ωi,j,t, yi,j,t(mB,t,mS,t, dt))− I{mi,j,t = 0}cmj,i

]
,

where; I{·} is the indicator function which is one if the condition inside
the brackets is satisfied and zero elsewhere, c(ωi,j,t, yi,j,t(·)) is the cost of
producting output yi,j,t at a generator whose cost state is given by ωi,j,t, and
cmj,i is the cost of maintenance (our “investment”).

Note. We now go on to describe the different public information sets that
we allow the firm to condition on in the three asymmetric information models
we consider. All three, when combined with our functional form and behav-
ioral assumptions, produce quite simple special cases of our general model.
In particular they imply that: (i) the only information accumulated over a
period on the likely actions of the firm’s competitors is m−i, and (ii) the only
response to that information are changes in mi. We want to point out, how-
ever, both that it is straightforward to add realsim to the model, and that
this simple example is unlikely to generate an adequate approximation to
any real electricity market. The current assumption were chosen to keep the
model transparent and to make it easier to isolate the impact of asymmetric
information on equilbrium behavior.

4.2 Alternative Informational Assumptions for the As-
symmetric Information Model.

As noted the public information that is informationally relevant could, in
principal, include all past maintenance decisions of all generators; those
owned by the firm as well as those owned by the firms’ competitors. In
order to apply our framework we have to insure that the state space is finite.
We present results from three different assumptions each of which have the
effect of insuring finiteness, and then compare the results they generate and
their computational properties.

All three asymmetric information (henceforth, AsI) models that we com-
pute are based on exactly the same primitives and assume (ωi,t, dt) ∈ Ji,t.
The only factor that differentiates the three is the public information kept
in memory to help the firm assess the likely outcomes of its actions. One
is the case of periodic full revelation of information; it is assumed that a
regulator inspects all generators during every fifth period and announces the
states of all generators just before the sixth period. In this case we know
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that if one agent uses strategies that depend only on the information it has
accumulated since the states of all generators were revealed, the other agent
can do no better than doing so also. The other two cases restrict the memory
used in the first case; in one a firm partitions the history it uses more finely
than in the other. In these cases it may well be that the agents would have
profitable deviations if we allowed them to condition their strategies on more
information.

The public information kept in memory in the three asymmetric informa-
tion models is as follows.

1. In the model with periodic full revelation of information the public
information is the state of all generators at the last date information
was revealed, and the maintenance decisions of all generators since that
date (since full revelation occurs every sixth period, no more than five
periods of maintenance decisions are ever kept in memory).

2. In finite history ′′m′′ the public information is just the maintenance
decisions made in each of the last five periods on each generator.

3. In finite history ′′τ ′′ the public information is only the time since the
last maintenance decision of each generator (since all generators must
do maintenance at least once every six periods, τ ≤ 5).

The information kept in memory in each period in the third model is
a function of that in the second; so a comparison of the results from these
two models provides an indication on whether the extra information kept in
memory in the second model has any impact on behavior. The first model,
the model with full revelation every six periods, is the only model whose
equilibrium is insured to be an equilibrium to the game where agents can
condition their actions on the indefinite past. I.e. there may be unexploited
profit opportunties when employing the equilibrium strategies of the last two
models. On the other hand the cardinality of the state space in the model
with full revelation of information is an order of magnitude larger than in
either of the other two models.25

25However their is no necessary relationship between the size of the recurrent classes
in the alternative models, and as a result no necessary relationship between either the
computational burdens or the memory requirements of those models. The memory re-
quirements and computational burdens generated by the different assumptions have to be
analyzed numerically.
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4.3 Computational Details.

The EBE equilibrium for each of our four duopolies was computed using the
algorithm provided in section 3. This section describes the model-specific
details needed for the computation. These include; (i) starting values for
the W (·|·)’s and the πE(·|·), (ii) information storage procedures, and (iii) the
testing procedure.

To insure experimentation with alternative strategies we used starting
values which, for profits, were guaranteed to be higher than their true equi-
librium values, and for continuation values, that we were quite sure would
be higher. Our intitial values for expected profits are the actual profits the
agent would receive were its competitor not bidding at all, or

πE,k=0
i (mi, Ji) = πi(mi,m−i = 0, d, ωi).

For the intial condition for the expected discounted values of outcomes given
different strategies we assumed that the profits were the other competitor
not producing at all could be obtained forever with zero maintenance costs
and no depreciation, that is

W k=0(mi|Ji) =
πi(mi,m−i = 0, d, ωi)

1− β
.

The memory was structured first by public information, and then for each
given public information node, by the private information of each agent. We
used a tree structure to order the public information and a hash table to
allocate the private information conditional on the public information. To
keep the memory manageable, every fifty million iterations we performed a
“clean up” operation which dropped all those points which were not visited
at all in the last ten million iterations.

The algorithm was set up to perform the test every one hundred million
iterations. Recall that our test statistic is a weighted average of the squarred
percentage bias in our estimates of the contination values, where the weights
are the number of visits to the point. Had we used the test to determine
the stopping iteration and stopped the algorithm whenever the test statistic
was above .995, we would have always stopped the test at either 100 or 200
million iterations.

Since we wanted more detail on how the test statistic behaved at a higher
number of iterations we ran each of our runs for one billion iterations. There
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was no perceptible change in the test statistic after the 300 millionth itera-
tion. To illustrate how the test behaved we computed one run of the periodic
full revelation model that stopped to do the test every ten million iterations.
Figure 1 graphs the one minus the test statistic. It shows a rapid fall un-
til about 130 million iterations, and a test statistic that remains essentially
unchanged after 150 million (at a value of about .9975).

4.4 Computational Properties of the Results.

The computational properties we focus on are; (i) the compute times (ii)
the sizes of the recurrent class and hence the memory requirements of both
computers and, perhaps more importantly, of agents formulating strategies,
and (iii) comparisons of the outputs from the asymmetric information models
which bounded memory to those that did not.

Table 2: Computational Comparisons.

AsI; Finite AsI; Finite AsI; Full Full
Hist. τ Hist. m Revel. Info.

Compute Times per 100 Million Iterations (Includes Test).
Hours 1.05 2.37 2.42 2.44

Cardinality of Recurrent Class.

Firm B (×106) .349 .808 .990 .963
Firm S (×106) .447 .927 1.01 1.09

The time per one hundred million iterations (including the test time) and
the sizes of the recurrent classes are reported in table 2.26 The differences
in compute times across models roughly reflect the differences in the size of
the recurrent class from the different specifications, as this determines the
search time required to bring up and store information, and none of them
seem prohibitive.

The sizes of the recurrent classes are notable for several reasons. First
the recurrent class in the model with periodic full revelation of information

26All computations were done using a Linux Red-Hat version 3.4.6-2 operating system.
The machine we used had seven AMD Opteron(tm) processors 870; CPU: 1804.35 MHz,
and 32 GB RAM.
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is about the same size as that of the full information model. This is despite
the fact that the size of state space in the model with full information is an
order of magnitude less than that of the model with periodic full revelation
of information (the FI model states are the cost states of the generators,
while the AsI states in the model with periodic full revelation consists of the
cost states in the revelation period and the history of maintenance decisions
since). So if we limit our attention to the recurrent classes the computational
demands of the EBE model are similar to those from the FI model. If similar
results were true for other environments they would imply that we could allow
for asymmetric information and use the EBE equilibrium in environments
where only symmetric information Markov Perfect models have been used to
date. Recall that the EBE equilibrium can be computed in many situations
where FI models are computationally infeasible.

On the other hand the sizes of the recurrent class of points in both the
AsI model with periodic full revelation of information and for the Markov
Perfect symmetric information model are quite large; perhaps not too large
for modern computers to handle, but large enough for us to wonder whether
agents could keep that much information in their memory without a formal
retention and storage process. The size of the recurrent class in the AsI
model that uses a finite history of τ to summarize the state is about forty
per cent of the size of the recurrent class with full revelation, but there
is a question of whether the bounded memory assumption delivers policies
with noticeably different implications than the policies from the model with
periodic full revleation. To investigate this we ran a one million iteration
simulation from the same initial condition for each of our models. Table
3 compares summary statistics from the three AsI models. All summary
statistics are virtually identical across the three models (and this was also
true for the statistics on policies we consider below).

So the finite history τ model seems to provide enough discrimination
between states to approximate the results in the model with full periodic
revelation of information. Though these results may be a function of our par-
ticular parameterization, they do suggest that, at least for some problems,
models with restricted information do quite well in approximating uncon-
strained equilibrium behavior, and they have distinct behavioral advantages.
Of course this leaves open the question of how to efficiently construct infor-
mation sets, a problem whose solution is likely to require institution specific
knowledge, but whose implications are likely to be empirically testable.

Finaly, since the differences between the AsI models are so small, the
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remainder of the paper only presents results from one of them (the model
with periodic full revelation).

Table 3: Three Asymmetric Information Models.

Finite History of Periodic
τ m Revelation

Summary Statistics.
Consumer Surplus 2.05 e+07 2.05 e+07 2.05 e+07
Profit B 2.46 e+06 2.46 e+06 2.45 e+06
Profit S 2.32 e+06 2.32 e+06 2.33 e+06
Maintenance Cost B 2.28 e+05 2.28 e+05 2.28 e+05
Maintenance Cost S 1.66 e+05 1.66 e+05 1.65 e+05
Production Cost B 2.40 e+06 2.40 e+06 2.39 e+06
Production Cost S 2.82 e+06 2.83 e+06 2.83 e+06

4.5 The Economics of the Alternative Environments.

The output of the algorithm includes a recurrent class of states as well as
the associated; strategies, realized costs (both operational and maintenance),
profits, and consumer welfare. We begin with the maintenance decisions and
use the solution to the social planner problem as our reference point.

The Social Planner Problem. The solution to the social planner prob-
lem provides a basis for understanding the logic underlying efficient mainte-
nance decisions for our parameterization. Recall that there is significantly
less demand on weekends than on weekdays. Table 4 presents average shut-
down probabilities by day of week. The social planner shuts down at least
one large and one small generator about 97% of the Sundays, and shuts down
two of each type of generator over 60% of all Sundays. As a result Monday
is the day with the maximum average number of both small and large gen-
erators operating. The number of generators operating falls on Tuesday, and
then again both on Wednesday and on Thursday, as the cost state of the
generators maintained on Sunday stochastically decay and maintenance be-
comes more desirable. By Friday the planner tends to favor delaying further
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maintenance until the weekend, so the number of generators operating rises.
Maintenance goes up slightly on Saturday, but there is an obvious planner
preference for doing weekend maintenance on Sunday, as that enables the
generators to be as prepared as possible for the Monday work week. As Ta-
ble 5 shows these maintenance decisions imply that almost no maintenance
occurs at low cost states (ω = 0 or ω = 1).

Table 4: Average No. of Operating Generators.

Weekend Weekdays
Sat. Sun. Mon. Tues. Wed. Thurs. Fri.

Social Planner
Firm B: 2.38 1.24 2.85 2.44 2.08 2.06 2.43
Firm S: 2.79 2.08 3.11 3.08 2.96 2.96 3.12

Duopoly AsI
Firm B: 2.17 2.16 2.29 2.32 2.24 2.22 2.27
Firm S: 3.32 2.91 2.16 2.41 2.57 2.50 2.50

Duopoly FI
Firm B: 2.02 1.81 1.80 1.84 1.87 1.81 1.84
Firm S: 2.62 2.43 2.35 2.42 2.41 2.40 2.42

The Duopoly with FI. When there is full information the average number
of generators operating is close to constant over the whole week (weekday or
weekend; though on Saturday utilization rates do increase a small amount).
Indeed the full information (Markov Perfect) solution leaves the two firms
with one of two combinations of operating generators over 70% of the time on
each weekday; about 45% of the time there are two of each type of generator
operating, and about 26% of the time three of each type of generator is
operating. This leads to over a third of the shutdown decisions for each type
of generator occuring when the generator is at one of the two lowest costs
states (under 1% of the planner’s shutdowns are at those states). Moreover
the full information duopoly firms do maintenance about 70% more than
does the social planner, and supply a bit more electricity on weekends then
on weekdays. Apparently the incentives facing an unregulated duopoly with
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Table 5: Distribution of ω Prior to Shutdown.

Dist. ω Prior to Shutdown. Maint∗

ω = 0 ω = 1 ω = 2 ω = 3 ω = 4 Freq.

Social Planner
Firm B: 0.00 0.002 0.070 0.152 0.778 2.81
Firm S: 0.00 0.012 0.150 0.250 0.588 2.60

Duopoly AsI
Firm B: 0.021 0.010 0.020 0.026 0.924 2.94
Firm S: 0.201 0.076 0.150 0.122 0.452 1.97

Duopoly FI
Firm B: 0.182 0.158 0.267 0.080 0.313 1.62
Firm S: 0.270 0.120 0.181 0.102 0.327 1.55

∗ Average number of days between maintenance decisions.

full information lead to maintenance decisions which are very different then
those favored by the social planner.

The Duopoly with Asymmetric Information. Perhaps the most strik-
ing finding in Table 5 is that there is so much less maintenance in the AsI
model than in the FI model. Indeed our “maintenance frequency” summary
statistics from the AsI duopoly are much closer to those from the social
planner solution than to those from the FI duopoly. The firm with the big
generators actually does less maintenance in the AsI duopoly then the so-
cial planner does, and though the firm with the small generators does do
more maintenance, it does about 25% less than the small firm does in the FI
duopoly.

There are several possible reasons for the differences between the AsI and
FI withdrawl strategies. Their recurrent classes could differ, or the static
incentive to bid additional generators could be convex in the bids of a firm’s
competitor inducing less mainteance in the AsI model (we have checked and
confirmed this on our recurrent class). Alternatively, the AsI model which
allows strategies to depend on past bids could, at least in principle, enable
co-ordination (though on imperfect information). However the net result
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appears to be that to the extent there is an inefficiency in the maintenance
decisions of the asymmetric information equilibrium, it does not seem to be a
result of firms withdrawing too much capacity; a fact which contrasts sharply
with the behavior of the firms in the FI equilibrium.

The fact that the overall maintenance frequency in the AsI equilibrium is
similar to the social planner’s mainteance frequency, does not, however imply
that the distribution of maintenance dates in the AsI equilibrium is optimal.
In particular the AsI equilibrium generates more shutdowns for the firm
with the small generators on weekends than on weekdays, just the opposite
of the social planner. Moreover the equilibrium with asymmetric information
sometimes incentivizes the firms to shut down the “wrong” generators; i.e. to
shut down generators with lower cost states than those of the other generators
that it operates27. This clearly indicates that the strategies were influenced
by the abilities of firms to coordinate their decisions through the use of
maintenance decisions as signals.

Table 6: Welfare Under Alternative Institutions.

Duopoly AsI Duopoly FI Planner

Cons. Surplus (CS) (×10−6) 20.51 19.70 22.21

Profits.
Firm B (×10−6) 2.45 2.11 1.99
Firm S (×10−6) 2.33 2.83 2.13
Firms B + S (×10−6) 4.78 4.95 4.12

Total Surplus (CS + B + S) 25.29 24.65 26.34

Prices.
Weekend 145.77 170.42 152.51
Weekday 1205.76 1292.83 990.46

Fraction of Output Produce by Firm with Larger Generators.
Weekend .47 .48 .46
Weekday .50 .43 .46

27This was particularly true of the firm with the small generator. In the duopoly with
AsI, when the firm with the small generators shut down one generator it did not shut down
the highest cost generator 30% of the time, and when two generators were shut down it
did not shut down the two highest cost generators over 35% of the time.
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Consumer Surplus and Profits. Given the maintenance patterns it is
not surprising that the full information equilibrium generates less consumer
surplus than the asymmetric information equilibrium. The FI equilibrium
generates only 88-89% of the consumer surplus generated by the planner while
the AsI equilibrium generates 92-93% of the planner’s consumer surplus. The
FI model does do better on profits than the AsI model, so the FI model’s total
surplus is only 6.5% less than that of the social planner, while the asymmetric
information equilibrium generates a surplus which is 4% less than the social
planner. Clearly then this is a case where society would prefer that firms
have less information.

At least two other points are worthy of note. Our excercise only allows
for differential demand on weekdays and weekends (not, for example, by time
of day). Interestingly even in the solution to the social planner problem we
see rather dramatic price effects of this differential demand. Moreover both
the FI and the AsI equilibria magnify this difference. This suggests that
institutions which change the pattern of withholding generators are unlikely
to do away with price volatility; to do away with price volatility we will
have to find ways to smooth out demand. Also note that it is the firm with
the small generators’ who gains the most from moving to full information.
When there is full information the firm with small generators produces a
higher fraction of the output on the lucrative weekdays (58% vs 50%). So
the firm with the low startup cost is better able to adapt to the additional
information available in the FI equilibrium.

5 Concluding Remark

We have presented a simple framework for analyzing finite state dynamic
games with asymmetric information. It consists of a set of equilbrium condi-
tions which, at least in principal, are empirically testable, and an algorithm
capable of computing policies which satisfy those conditions for a given set of
primitives. Its advantages are twofold. First by chosing alternative informa-
tion structures we can approximate behavior by agents in complex institu-
tional settings without requiring those agents to have unrealistically excessive
information retention and computational abilities. Second the algorithm we
use for analyzing the equilibria is relatively efficient in that it does not re-
quire; storage and updating of posterior distributions, explicit integration
over possible future states to determine continuation values, or storage and
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updating of information at all possible points in the state space. The hope
is that this will enable us to approximate behavior and analyze outcomes in
markets which have been difficult to deal with to date. This includes markets
with dynamic consumers as well as dynamic producers, and markets where
accounting for persistent sources of asymmetric information is crucial to the
analysis of ourcomes.
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Appendix 1: Periodic Revelation of Informa-

tion.

Claim 1 Periodic Revelation. If for any initial st ∈ R there is a T ∗ <∞ and
a random τ (whose distribution may depend on st) which is less than or equal to T ∗

with probability one, such that all payoff relevant random variables are revealed at
t+ τ , then if we construct an equilibrium to a game whose strategies are restricted
to not depend on information revealed more than τ periods prior to t, it is an
equilibrium to a game in which strategies are unrestricted functions of the entire
history of the game. Moreover there will be optimal strategies for this game which,
with probability one, only take distinct values on a finite state space, so #|R| is
finite. ♠

Sketch of Proof. Let hi,t denote the entire history of variables observed by agent
i by time t, and Ji,t denote that history truncated at the last point in time when
all information was revealed. Let (W ∗(·|Ji),m∗(Ji), pe(·|Ji)) be EBE valuations,
strategies, and resulting probability distributions when agents condition both their
play and their evaluations on Ji (so they satisfy C1, C2, C3 of section 2). Fix
Ji = Ji,t. what we much show is that

(W ∗(·|Ji,t),m∗(Ji,t))

satisfy C1, C2, C3 if the agents’ condition their expectations on hi,t.
For this it suffices that if the ’∗’ strategies are played then for every possible

(J ′i , J−i),

pe(J ′i |Ji,t) = Pr(J ′i |hi,t), and pe(J−i|Ji,t) = Pr(J−i|hi,t).

If this is the case strategies which satisfy the optimality conditions with respect to
{W ∗(·|Ji,t)} will satisfy the the optimality comditions with respect to {W (·|hi,t)},
where it is understood that the latter equal the expected discounted value of net
cash flows conditional on all history.

We prove the second equality by induction (the proof of the first is similar and
simpler). For the intial condition of the inductive argument use the period in which
all information is revealed. Then pe(J−i|Ji) puts probability one at J−i = J−i,t
as does Pr(J−i|hi). For the inductive step, assume Pr(J−i,t0 |hi,t0) = pe(J−i|Ji,t0).
What we must show is that if agents use the ∗ policies then the distribution of
J−i,t0+1 conditional on hi,t0+1 depends only on Ji,t0+1.

Let a bar over a set of variables indicate its complement in ∪iJi,t for any t, and

µi ≡ Ji,t0+1 ∩ J−i,t0+1 ∩ J i,t0 , while ε ≡ ∩iJi,t+1 ∩i J i,t
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so that µi is the new private, and ε is the new public, information in Ji,t0+1. We
assume that

(A1.) P (µi|hi,t) = P (µi|Ji,t,mi,t) and P (ε| ∪i hi,t) = P (ε| ∪i Ji,t,∪imi,t)

so that the distribution of the new private and public information depend only
on agents’ policies and the information in ∪iJi,t. The fact that (A1) allows the
distribution of ε to depend on policies generates the possiblity of sending signals
or revealing information on events that have occured since all information was
revealed. What (A1) rules out is models where the intepretation of those signals
depends on information that occured prior to the period when all states were
revealed.

Since for any events (A,B,C), P r(A|B,C) = Pr(A,B|C)/Pr(B/C)

Pr(J−i,t0+1|hi,t0+1) = Pr(µ−i, ε, J−i,t0 |µi, ε, h−i,t0) =
Pr(µ−i, µi, ε, J−i,t0 |hi,t0)

Pr(µi, ε|hi,t0)
.

From (A1) and the * policies, the numerator in this expression can be rewrtten as

Pr(µ−i, µi, ε, J−i,t0 |hi,t0) = Pr(µ−i, µi, ε, J−i,t0 |∪iJi,t0 ,∪im∗(Ji,t0))Pr(J−i,t0 |hi,t0),

and from the hypothesis of the inductive arguement Pr(J−i,t0 |hi,t0) = pe(J−i,t0 |Ji,t0).
A similar calculation for the denominator concludes the proof. ♠

Claim 2 There exists a restricted EBE if there is periodic revelation of
information. ♠

Appendix 2: Algorithmic Details.

We begin with a brief review of the properties of the algorithm, and then move to
some notes on how one might usefully amend the algorithm to be more effecient
when different primitives are appropriate.

The advantages of using a stochastic algorithm to compute equilibria in full in-
formation games relative to standard iterative technqiues like those used in Pakes
and McGuire (1994) were explored by Pakes and McGuire (2001). These ad-
vanatages are even larger in asymetric information games that use the EBE equi-
librium conditions. This because those conditions do not require us to form beliefs
about player’s types, and the stochastic algorithm neither computes posterior be-
liefs nor tests for their consistency with the actual distribution of types.

Pakes and McGuire (2001) noted that, at least formally, their stochastic al-
gorithm does away with all aspects of the curse of dimensionality but that in
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computing their test statistic. Accordingly as they increased the dimension of the
state space in their examples the computation of the test statistic quickly became
the dominant computational burden. We circumvent this problem by substituting
simulation for explicit integration in the construction of the test statistic, thereby
eliminating the curse of dimensionality entirely.

However as is typical in algorithms designed to compute equilibria for (nonzero
sum) dynamic games, there is no guarantee that our algorithm will converge to
equilibrium values and policies; that is all we can do is test whether the algorithm
outputs equilibrium values, we can not guarantee convergence to an equilibrium a
priori. Moreover there may be more than one equilibria which is consistent with a
given set of primitives. There are, however, both choices in implementation, and
amendments to the algorithm, that will influence which equilibrium is computed.

One choice is that for the initial evaluations i.e. our W 0. High initial values are
likely to encourage experimentation and lead to an equilbria in which players have
explored many alternatives. An alternative way of insuring experimentation is to
amend the algorithm as follows. Instead of having agents chose the “greedy” policy
at each iteration, that is the policy that maximizes W k, use choice procedure which
has an exogenous probability of chosing each possible action at each early iteration,
but let that probability go to zero for all but the greedy policy as the number of
iterations grows large. Though both these procedures will insure experimentation,
they will also tend to result in longer computational times.

As noted in a particular applied context one may be more interested in direct-
ing the algorithm to compute an equilibrium which is consistent with observed
data, say by introducing a penalty function which penalizes deviations from the
exogenous information available, then in computing an equilibria which insures
experimentation. Relatedly note that since our estimates of the W̃ are sample
averages, and will be more accurate at a given location the more times we visit
that location. If one is particularly interested in policies and values at a given
point, for example at a point that is consistent with the current data on a given
industry, one can increase the accuracy of the relevant estimates by restarting the
algorithm repeatedly from that point.

Both the structure of memory provided and the test given in the text are always
available, but that memory structure need not be computationally efficient, and
the test need not be the most powerful test. A brief discussion of alternative
memory structures and testing procedures follows.

Alternative Memory Structures. It is useful to work with the distribution
of the increment in ω between two periods, i.e. defining ηt+1 ≡ ωt+1−ωt, we work
with

Pη = { Pη(.| mi,m−i, ω); (mi,m−i) ∈Mn, ω ∈ Ω},
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where Pη is derived from the family of distributions in equation (2).
We begin with the case where m is observed by the agent’s competitors. Then

we could hold in memory either estimates of W (m|Ji) or estimates of W (η,m|Ji).
If the latter we would chosem at iteration k to maximize

∑
ηW

k(η,m|Ji)p(η|m,mk−1
−i , ω).

The tradeoff here is clear. By holding estimates of W (η,m) instead of estimates
of W (m) in memory, we increase both memory requirements and the number of
summations we need to do at each iteration. However we are likely to decrease
the number of iterations needed until convergence, as explicit use of the primi-
tive p(η|·) allows us to integrate out the variance induced by η conditional (m,Ji)
rather than relying on averaging the simulation draws to do so. The W (η,m|Ji)
memory structure is particulary easy to use when the probability of η conditional
on mi is independent of m−i (i.e. in capital accumulation games), and we used it
in our electric utility example.

When m is unobservable there is an even simpler memory structure that can
be used in capital accumulation games. We can then hold in memory estimates of
W (η|Ji) and chose m at iteration k to maximize

∑
ηW

k(η|Ji)p(η|m,ω) (we can
not do this when m is observable because then m is a signal and will have an effect
on next period’s state that is independent of η). Then the memory requirements
may be larger when we hold estimates of W (m|Ji) in memory relative to holding
estimates ofW (η|Ji), and will be if the cardinality of the choice set (ofM) is greater
than the cardinality of the the support of the family Pη. Notice that the model that
holds estimates of W (η|Ji) in memory is a natural way of dealing with continuous
controls (continuous m) whose values are unobserved by competitors, and that we
may well have some controls observed and some unobserved in which case hybrids
of the structures introduced above would be possible. As for computational burden,
the model that holds estimates of W (η|Ji) in memory has the advantage that it
explicitly integrates out over the uncertainty in η and hence should require less
iterations until convergence.

Alternative Testing Procedures. Several aspects of the test provided in the
text can be varied. First the test provided in the text insures that the W̃ outputted
by the algorithm is consistent with the distribution of current profits and the
discounted evaluations of the next period’s state. We could have considered a test
based on the distribution of discounted profits over τ periods and the discounted
evaluation of states reached in the τ th period. We chose τ = 1 because it generates
the stochastic analogue of the test traditionally used in iterative procedures to
determine whether we have converged to a fixed point. It may well be that a
different τ provides a more discerning test, and with our testing algorithm it is
not computational burdensome to increase τ .

Second we used an informal stopping rule, stopping the algorithm when the
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norm of the bias in the estimates of {W (·)} was sufficiently small. Instead we
could have used a formal statistical test of the null hypothesis that there was no
bias (i.e. test the null H0 : T = 0). Notice that if we did proceed in this way
we could, by increasing the number of simulation draws, increase the power of
any given alternative to one. This suggests that we would want to formalize the
tradeoff between size, power, and the number of simulation draws, and explicitly
incorporate allowance for imprecision in the computer’s calculations. These are
tasks we leave to future research.

48


