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Abstract

This paper considers a dynamic economy where agents are repeatedly matched with one

another and they decide whether to form a profitable partnerships. Each agent has a physical

colour and a social colour. The social colour of an agent is a signal about the physical colour

of agents in his partenrship history. Before an agent makes a decision, he observes the other’s

physical and social colours. Neither the physical colour, nor the the social colour is payoff-

relevant.

We identify environments where, in some equilibria, agents condition their decisions on the

colours of their parners, that is, they discriminate. The main result of the paper is that every

stable equilibria involve discrimination in these environments.

1 Introduction

Consider a white community in the south where some people are members of the Ku Klux Klan.

They dislike and are willing to punish anybody who is not white, and even those who are associated

to non-whites. The rest of the community has no bias against people of other skin colour. People

observe, perhaps imperfectly, each others’ interactions in the community. Suppose now that a

non-white individual seeks employment in this community. Of course, he will not be hired by Klan

members. But even the unbiased people might be reluctant to give him a job because they are afraid

of being punished by the Klan. At the end, the non-white individual could remain unemployed,

that is, the whole community might end up discriminating against non-whites. Crucial in this

story is that individuals observe some information about the interactions of others, for otherwise,

unbiased individuals would not be afraid of hiring. But how large does the Klan have to be in

order to sustain discrimination? This paper shows that even if nobody belongs to the Klan, the

community might end up discriminating against non-whites.

This paper puts forward a new theory of racial discrimination. This theory is based on the

assumption that each individual carries information about the physical colour of those to whom
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he is associated through past interactions. Individuals can condition their decisions on these

information. The main result of this paper is that individuals might prefer to interact with others

of their own colour and with those who are not associated to other colours. In other words, being

associated to one’s own physical colour becomes valuable through the equilibrium play.

To give an intuition for this result, let us revisit the story above and consider an unbiased

member of the community. He might not want to interact with anybody who employed a non-

white worker because he is afraid of being punished in the future for being indirectly associated to

non-whites. In fact, for the same reason, he might not want to interact with those who are only

indirectly associated to non-whites but never employed them. As a result, employing non-whites

and being associated to them is punished not only by the Klan, but by the unbiased community

members who are concerned about their associations. This concern can be self-enforcing and

independent of the Klan. If unbiased individual are reluctant to interact with those who are

associated with non-whites then unbiased individuals are better off not being associated to non-

whites.

In the specific model analysed in this paper, agents are repeatedly matched with each others.

After being matched, agents have to decide whether or not to enter into a profitable relationship.

Each agent maximizes the discounted present value of expected monetary payoffs. Every relation-

ship generates positive payoffs for both parties. Each agent has a physical colour which is either

black or white. Before an agent makes a decision about forming a relationship, he observes the

physical colour of his potential partner and an additional piece of information about his history of

relationships. We model this information as a binary signal, either black or white, and refer to it

as the social colour of the agent. If an agent decides to enter into a partnership with another one,

his social colour becomes the physical or social colours of his partner with positive probability.

In our model, there always exists a colour-blind equilibrium where agents ignore the physical

and social colours of each others. We show that, in general, there are other equilibria where the

decisions of the agents are conditioned on colours, that is, agents discriminate. We then investigate

the stability properties of the equilibria. An equilibrium is called stable if, after perturbing the

equilibrium strategies slightly, a myopic best-response dynamics converges back to the equilibrium.

The main result of the paper is that, under certain conditions, each stable equilibrium involves

discrimination. In particular, the colour-blind equilibrium is unstable.

We emphasize that both the physical and social colours of the agents are payoff-irrelevant. Each

agent cares only about monetary payoffs, and have no intrinsic preferences for the colours of his

partners. Therefore, the equilibrium discrimination in our model is not taste-based. In addition,

agents of different types are identical in terms of payoff-relevant characteristics both from the ex

ante and the ex-post points of view. That is, the colours of the agents reveal no information

regarding the profitability of his partnership. Therefore, the discrimination in our model is not a

statistical one.

There is a large literature on tased-based discrimination, see Becker (1971) and Schelling (1971).
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These theories explain racial discrimination by assuming that individuals derive disutility from

interacting with members of another race. Such preferences may be the result of group selection if

a group does well relative to other groups if its members cooperate only with other group members.

Alternatively, they might be outcomes of group formation processes. Similar people tend to have

similar backgrounds which equips them with similar tastes, values, and attitudes. This facilitates

making collective choices (Baccara and Yariv (2008), see also Alesina and Ferrara (2005)).

A common critique of tased based theories is that employers who do not discriminate make

larger profits than those who discriminate and, hence, they would overtake competitive markets. In

our model, an employer who does not discriminate also has higher instantenous profits. However,

these short-term gains from colour-blind hiring policy is offset by being boycotted by members of

his own race in the future. That is, it is precisely the profit-maximizing behaviour which leads to

equilibrium descrimination.

According to statistical discrimination theories, employers believe that observable physical at-

tributes of the workers are correlated with unobservable but payoff-relevant characteristics. For an

overview of statistical discrimination theories, see Fang and Moro (2010). Phelps (1972) explains

differences in wages of black and white workers by assuming that the unobservable productivity of

a worker is correlated with his colour. Employers use the colour as a signal about the productivity

of a worker.

Arrow (1973) shows that discrimination can be a result of self-fulfilling expectations even if

all agents are identical ex ante. Workers in his model can decide how much to invest in human

capital. These decisions are not observable. Employers expect black workers to invest less than

white workers and, hence, they offer lower wages to black workers. Anticipating this, black workers

rationally invest less in human capital than white workers. As a result, workers of diffent colours

are different ex-post. Coate and Loury (1993) places Arrow’s arguments in an equilibrium model

but treats wages exogenously, like our model does. This assumption is relaxed in Moro and Norman

(2004). Rosén (1997) offers another explanation for self-fullfilling statistical discrimination. In this

model, workers privately observe their idiosyncratic productivity prior to applying for a job. If

black workers apply for jobs with lower productivities, firms rationally expect white applicants to

be more productive. Therefore, firms prefer to hire white workers which results in a lower value

for unemployed black workers. As a consequence, black workers rationally apply for jobs even if

they are less productive. In Mailath, Samuelson, and Shaked (2000), employers perfectly observe

the worker’s productivities. However, the employers may decide not to search for workers among

black workers in anticipation of low skill-investment.

The workers in our model are identical both ex-ante and ex-post. A notable difference between

statistical discrimination and our theories is that white and black individuals might mutually

discriminate each others in our model. Such a phenomenon is inconsistent with statistical discrim-

ination because the signal value of the colour must be the same for an employer regardless of his

own colour.
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Lang, Manove, and Dickens (2005) shows that small taste-based or statistical discriminations

can have large effects. They show that even if employers have only lexicographic preferences

towards hiring white workers, or white workers only slightly more productive then black ones,

white workers might end up with significantly higher wages than black ones.

There are a few models where discrimination arises without any payoff-relevant differences be-

tween agents of different colours. Eeckhout (2006) considers a dynamic marriage market where

individuals are randomly matched. Once a marriage is formed, the parties repeatedly play the

Prisoner’s Dilemma. If either party defects, both individuals return to the market and are re-

matched. In order to induce some cooperation, the equilibrium play must involve defection with

positive probability at the beginning of a marriage. Otherwise, agents would defect and search

for a new partner. The author shows that any colour-blind equilibrium is Pareto dominated by

strategies where the probability of defection depends on the colour of the partner.

A white agent discriminates against back workers in our model because of the threat of not

being hired by other white agents in the future. The punishment by peers against acting differently

from the peers’ is a well-known phenomenon in sociology as well as in economics, see Austen-Smith

and Jr. (2005) and the references therein.

In the model of Mailath and Postlewaite (2006), there is a population of men and women who

are matched and produce offspring in each period. Agents differ in their non-strorable endowments

and care about the consumptions of their descendents. In addition, some agents have a physical

attribute such as blue eye-colour. This attribute is inherited by the offspring. There exist equilibria

where the attribute has a value, that is, agents with the attribute are better off than agents without

it. This is because agents with high endowments and no attribute prefer to match with the agents

with low endowment and attribute rather than with agents with high income and no attribute.

By doing so, they forego present consumption but increase the expected consumption of their

offsprings by equipping them with the attribute. In other words, the biological attribute is used to

transfer wealth to future generations.1 The social colour in our model is payoff-irrelevant but has

a vlaue in some equilibria, much like the biological attribute in Mailath and Postlewaite (2006).

The social colour in our model plays a role which is similar to the labels in Kandori (1992).

Kandori considers a model where members of two communities interact with each others repeatedly.

Each member of a community is randomly matched with a member of the other community and

plays a game in every period. Players only observe the actions played in their past matches.

However, each player carries an observable information, a label, about his past history of actions. A

label of an individual is determined by his previous label, his partner’s label, and the action he takes.

The author proves a Folk Theorem for this setting. In the light of this paper, the fact that agenst

condition their actions on payoff-irrelevant information in some equilibria is perhaps less surprising.

We emphasize that our main result is that every stable equilibrium involves dicrimination in some

environment.

1A similar explanation has been proposed to explain the evolution of peacock tails Ridley (1993)
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2 The Model

There is a unit mass of population of agents. Each agent lives forever and is risk-neutral. Time is

continuous and the common discount rate is r.

Agents randomly receive opportunities to participate in production. These opportunities arrive

independently across agents and time according to a Poison distribution with arrival rate δ. Agents

with opportunities are matched with one another instantaneously. In each match, one of the agents

becomes an employer and the other one becomes a worker with equal probabilities.2 The two agents

observe a match specific shock, s, which is exponentially distributed, that is, G (s) = 1 − e−λs.

Then, the employer decides whether or not to employ the worker. If the employer employs the

worker, he receives a payoff of s and the worker receives a constant wage,M (> 0).3 Otherwise, both

agents receive a payoff of zero. Each agent maximizes the discounted present value of monetary

payoffs.

Each agent has a two-dimensional type. The first coordinate is the physical colour of the agent

and the second one is the social colour. The physical colour is either black (b) or white (w) and

never changes. A fraction of µw of the population is white and fraction of µb is black. The social

colour is also either black or white and evolves as follows. The social colour of a worker does not

change. If an employer employs a worker with type (c1, c2) then the social colour of the employer

remains the same with probability 1− γ, changes to c1 with probability γα and becomes c2 with

probability γ (1− α). If the employer decides not to employ, his social colour remains the same

with probability (1− γ) and becomes his physical colour with probability γ.

Note that the social colour of an agent carries information about his past employees. An agent’s

social colour is more likely to be white if he hired white workers, or workers with white social colour

in the past.

Notice that the types of the agents are payoff irrelevant in the sense that the payoff of an agent

only depends on the history of shock realizations and employment decisions but not on his type

and the types with whom he interacts. If there were no types, there was a unique equilibrium in

this model where employers always employ the workers. In fact, this is true even if agents have

physical colours but no social colours. This is because an employer receives a positive payoff if he

employs the worker and in the absence of social colour, such a decision cannot affect his future

employment.

In this model, only the employers make decisions. A strategy of an employer is a mapping from

his past history, his type, and the type of the worker into an employment decision. In what follows,

we restrict attention to steady state equilibria, that is, we characterize equilibria where the agents’

strategies depend neither on time, nor on history but can depend on his type.

2Following the convention of the literature on racial discrimination, we adopt the employer-employee terminology.

However, we interpret a parnership as any mutually beneficial social or economic interaction.
3That is, the total surplus generated in a relationship is s+M .
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3 Best Responses

If an employer is better off employing a worker given a certain realization of the shock then he is also

better off employing him if the realization of the shock was higher. Therefore, the employment

decision can always be characterized by a cutoff. Of course, these cutoffs can depend on the

type of the employer and the worker. Next, we characterize these cutoffs in terms of the value

functions. To be more specific, we fix a steady-state population strategy and derive the best-

response cutoffs of each agent. To this end, let Vc1,c2 denote the value function of an agent with

type (c1, c2)
(
∈ {b, w}2

)
at a moment when the agent does not have a production opportunity.

That is, Vc1,c2 is the maximum discounted present value of the payoffs what an agent can achieve

with type (c1, c2).

Consider, for example, the decision problem of a white employer with social colour c who faces

a worker with type (b, w) and observes a shock s. If he employs the worker, he receives a payoff

of s. His social colour remains c with probability (1− γ) and changes to b or w with probabilities

γα and γ (1− α), respectively. Hence, if the worker is employed, the discounted present value of

the employer’s payoffs is

s+ (1− γ)Vw,c + γαVw,b + γ (1− α)Vw,w. (1)

If he does not employ the worker, his value would be

(1− γ)Vw,c + γVw,w. (2)

Therefore, the agent employs the worker whenever (1) is larger than (2). The cutoff, above which

the employer hires the worker, is the shock s where (1) and (2) are equal, that is, γα (Vw,w − Vw,b).

Since the shock is always positive, having a negative cutoff is equivalent to having a zero cutoff.

Therefore, one can restrict attention to weakly positive cutoffs, in which case, the best-response

cutoff is uniquely defined by max {0, γα (Vw,w − Vw,b)}.

Notice that this cutoff does not depend on the social colour of the employer, c. In both (1)

and (2), the only term which depends on c is (1− γ)Vw,c, and therefore, c cancels out in the

computation of the cutoff. In fact, the cutoff of an agent never depends on his social colour in

equilibrium. This is because the social colour of an employer only affects his payoff in the event

when his new social colour remains his old one, and this event is independent of his decision.

Therefore, the equilibrium cutoff of an agent can only depend on his physical colour but not on

his social colour.

Let xcc1,c2 denote the cutoff value of an employer with physical colour c if the type of the worker

is (c1, c2). We denote the colour which is not c by −c for c ∈ {w, b}. Above, we have shown

that xwb,w = max {0, γα (Vw,w − Vw,b)}. The other cutoffs can be computed similarly and they are

summarized by the following
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Lemma 1 The following equations establish the relationship between best-response cutoffs and the

value functions:

xc−c,−c = max {0, γ (Vc,c − Vc,−c)} ,

xcc,−c = max {0, γ (1− α) (Vc,c − Vc,−c)} ,

xc−c,c = max {0, γα (Vc,c − Vc,−c)} ,

xcc,c = 0.

If an employer with physical colour c is considering hiring a worker, he is concerned about his

new social colour. Having a social colour c instead of −c provides the agent with an additional

value of Vc,c − Vc,−c. This difference can be interpreted as a bias of the agent towards his own

physical colour.4 The lemma says that the best-response cutoffs are proportional to this bias up

to the requirement that the cutoffs are non-negative. The coefficients of the bias corresponding to

various cutoffs are determined by the probabilities of the social colour becoming c and −c, which

in turn, depends on the type of the worker.

Let xc = xc−c,−c and notice that

xcc,−c = (1− α)x
c, xc−c,c = αx

c, and xcc,c = 0. (3)

Observe that the value functions of two agents with the same type are identical. Therefore, this

lemma implies that any stationary equilibrium is symmetric. That is, employers with the same

physical colour use the same strategies. Also notice that an equilibrium strategy of an employer

with physical colour c can be identified with xc. In what follows, we refer to the cutoff xc as a

strategy (or cutoff) while keeping in mind that the cutoffs against different types of workers are

defined by (3).

Suppose that each employer with physical colour c uses cutoff xc. In order to show that this

strategy profile is an equilibrium, xc must be a best-response against (xc, x−c) for c ∈ {b, w}.

Next, we explicitly characterize the best-response cutoffs. In fact, we characterize best responses

against any stationary distribution of strategies as long as these strategies satisfy the equations in

(3). This turns out to be useful when we examine the stability properties of the equilibria. Let

Xc denote the random variable corresponding to the distribution of cutoffs in the population. We

shall compute Vc,c−Vc,−c for c ∈ {b, w} and, by Lemma 1, these objects identify the best-response

cutoffs.

Let Πlc1,c2 and Π
e
c1,c2 denote the value functions of a worker and employer with type (c1, c2) ∈

{b, w}2, respectively. The heuristic equation describing the relationship between Vc1,c2 , Π
l
c1,c2 and

Πec1,c2 is:

Vc1,c2 = (1− δdt) (1− rdt)Vc1,c2 + δdt

(
1

2
Πsc1,c2 +

1

2
Πec1,c2

)
.

To see this, notice that an agent does not receive an opportunity with probability 1−δdt in the next

dt time, and hence his value remains Vc1,c2 . This is discounted at the rate r. With the remaining

4This bias may well be negative, that is, an agent is better off if his physical colour does not coincide with his

social colour.
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probability, the agent receives an opportunity and becomes an employer or a worker with equal

probabilities. Dividing through by dt and taking the limit as dt goes to zero:

Vc1,c2 =
δ

δ + r

(
1

2
Πlc1,c2 +

1

2
Πec1,c2

)
. (4)

A worker with type (c, c) is employed whenever he is matched with an employer with physical

colour c, which happens with probability µc. He also gets employed whenever he is matched

with an employer with physical colour −c whose cutoff is x−c and s ≥ x−c. This happens with

probability µ−c (1−EG (X
−c)), where the expectation is taken according to the distribution of

the cutoff X−c. Finally, the worker’s value changes to Vc,c and gets M whenever he is employed,

therefore,

Πlc,c =M
(
µc + µ−c

(
1−EG

(
X−c

)))
+ Vc,c. (5)

. Similarly,

Πlc,−c =M
(
µc (1−EG ((1− α)X

c)) + µ−c
(
1−EG

(
αX−c

)))
+ Vc,−c. (6)

Using (4), (5), and (6) we can express Vc,c − Vc,−c as follows:

Vc,c − Vc,−c =
δ

δ + r

[
1

2

(
Πlc,c −Π

l
c,−c

)
+
1

2

(
Πec,c −Π

e
c,−c

)]

=
δ

δ + r

1

2
M
[
µcEG ((1− α)X

c) + µ−c
(
EG

(
αX−c

)
−EG

(
X−c

))]

+
δ

δ + r
[Vc,c − Vc,−c]

That is,

Vc,c − Vc,−c =
Mδ

2r

[
µcEG ((1− α)X

c) + µ−c
(
EG

(
αX−c

)
−EG

(
X−c

))]
.

Recall from Lemma 1 that the best-response cutoff of an employer with physical colour c against

a worker with type (−c,−c) is γ (Vc,c − Vc,−c). Let K = Mδγ/2r. Then substituting in from the

previous displayed equality:

K
[
µcEG ((1− α)X

c) + µ−c
(
EG

(
αX−c

)
−EG

(
X−c

))]
. (7)

As we pointed out earlier, agents with the same physical colour use the same cutoffs in every

equilibrium. Suppose that each employer with physical colour c uses xc, that is, Xc ≡ xc. Then

the best response of an agent can be written as

b̃c
(
xc, x−c

)
= K

[
µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))]
. (8)

Recall that since the shocks are always positive, one can restrict attention to weakly positive

cutoffs, in which case, the best-response correspondence is uniquely identified by

bc
(
xc, x−c

)
= max

{
0, b̃c

(
xc, x−c

)}
. (9)

8



 

bb (xb,0) 

bb(xb,xw) 
 

xb 
 

xb
2(x

w)  xb
1(x

w)  

Figure 1: Best Responses

Then (xc, x−c) defines an equilibrium if and only if

(
xc, x−c

)
=
(
bc
(
xc, x−c

)
, b−c

(
x−c, xc

))
. (10)

A notable feature of the best response function is that it does not depend on the distribution of

social colours. The next two lemmas describe some properties of the best-response curves.

Lemma 2 The function bc satisfies the following properties:

(i) for each x−c, if bc (xc, x−c) > 0 then bc is locally concave in xc,

(ii) bc (0, x−c) = 0 for all x−c,

(iii) for all x−c > 0, bc (xc, 0) = limx−c→∞ b
c (xc, x−c) ≥ bc

(
xc, x−c

)
.

Part (ii) implies that the function bc (xc, 0) intersects with the 45 degree line at xc = 0. Whether

or not there is another intersection has great importance at characterizing the type of equilibria.

Lemma 3 Let λ0 = 1/ (K (1− α)µc). Then,

(i) if λ > λ0, then there exists a unique xc > 0 such that bc (xc, 0) = xc, and

(ii) if λ ≤ λ0, then bc (xc, 0) < xc for all xc > 0.

Figure 1 plots bb
(
xb, 0

)
and bb

(
xb, xw

)
(xw > 0) for the case of a large λ. The function

bc (xc, x−c) is identical to b̃c (xc, x−c) when x−c = 0. For x−c > 0, bc (xc, x−c) is a downwards shift

of bc (xc, 0) except it is zero whenever the shifted curve was negative. Since b̃c is concave in xb,

bb
(
xb, xw

)
is also locally concave in xc whenever it is positive (part (i) of Lemma 2). Part (ii) of

Lemma ( 2) says that if the cutoff of each agent with colour c is zero then the best response cutoff
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of an agent with colour c is also zero. To see this, notice that if xc = 0 then agents with physical

colour c are better off having a social colour −c than c. This is because their social colours have no

impact on their employments if the employer has colour c (xc = 0) but they will be more likely to

be employed by agents with physical colour −c if their social colour is −c. Therefore, an employer

with physical colour c always employs a worker with type (−c,−c), that is, the best-response cutoff

is zero.

Part (iii) of Lemma ( 2) states that the best response cutoff of an agent with physical colour

c is the same when agents with physical colour −c do not discriminate (x−c = 0) or they totally

discriminate (x−c =∞). To see this note that an agent with physical colour c is always employed

by colour −c agents if (x−c = 0) and is never employed by them if (xc = ∞). In both cases, the

social colour of an agent with colour c has no impact on his employment if he meets an employer

with colour −c. Therefore, in either case, the best-response is determined solely by the cutoff

xc. Part (iii) also says that bc decreases if x−c becomes larger than zero. The intuition is as

follows. As x−c becomes positive, a worker with colour c benefits from having a social colour −c

whenever he meets an employer of colour −c. Therefore, holding xc fixed, an agent with colour c

will discriminate less against workers with type (−c,−c), that is, bc goes down.

The slope of bc (., 0) is large if and only if λ is large. In addition, this slope converges to zero as

xc goes to infinity. Therefore, the function bc (., 0) intersects with the 45-degree line at a strictly

positive value if and only if λ is large (Lemma 3).

4 Equilibrium Characterization

An immediate implication of part (ii) of Lemma 2 is that if the cutoff of each agent is zero, then

the best-response is also zero. That is,

Remark 1 The cutoff profile defined by xc = x−c = 0 is an equilibrium.

Next, we show that if λ is large, exists at least one other equilibrium which involves discrim-

ination. Suppose for a moment that agents with physical colour −c are non-strategic and their

cutoff is zero, and consider our model as a game played by only agents with colour c. Part (i) of

Lemma 3 implies that there exists an xc such that bc (xc, 0) = xc, that is, the best response of an

agent is xc whenever every other agent with colour c uses cutoff xc. In other words, the cutoff xc

is an equilibrium in the game where only colour-c agents are strategic. Since this cutoff is positive,

agents discriminate others with physical and social colours −c. What if agents of colour −c become

strategic? Part (ii) of Lemma 2 implies that zero is a best response of an agent with colour −c as

long as other agents with colour −c have cutoffs zero. That is, if the cutoff profile is (xc, 0) then

each agent best responds. We can conclude the following

Remark 2 If λ > 1/ (K (1− α)µc) then for each c ∈ {b, w}, there is a unique xc > 0 such that

the cutoff profile (0, xc) is an equilibrium.
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In general, if (xc∗, x
−c
∗ ) is an equilibrium cutoff profile, then it satisfies (10), and, in particular,

xc∗ = bc (xc∗, x
−c
∗ ) for c ∈ {b, w}. This means that the function b

c (., x−c∗ ) intersects with the 45-

degree line at xc∗. Hence, it is useful to investigate the intersection of the curve b
c (., x−c) and the

45-degree line for each x−c. As we pointed out (see part (ii) of Lemma 2), these curves intersect

at zero. The next lemma investigates the strictly positive points of intersections.

Lemma 4 If λ ≥ 1/ (K (1− α)µc) then either

(i) for all x−c > 0 there exist xc1 (x
−c), xc2 (x

−c) such that xci (x
−c) = bc (xc (x−c) , x−c) and

0 < x1 (x
−c) < x2 (x

−c), or

(ii) there exist x−c,x−c ∈ R++, x−c ≤ x−c, such that for all x−c ∈
(
x−c, x−c

)
: bc (xc, x−c) <

xc, and for all x−c ∈ R++\
[
x−c, x−c

]
there exist xc1 (x

−c), xc2 (x
−c) such that xci (x

−c) = bc (xci (x
−c) , x−c),

0 < x1 (x−c) < x2 (x−c) , and

lim
x−c→x−c

xc1
(
x−c

)
= lim
x−c→x−c

xc1
(
x−c

)
= lim
x−c→x−c

xc2
(
x−c

)
lim

x−c→x−c
xc2
(
x−c

)
.

In addition, xc1 (x
−c) is increasing first, then is decreasing, and xc2 (x

−c) is decreasing first, then

is increasing. Finally, limx−c→0 x
c
1 (x

−c) = 0.

As we explained before, when x−c increases from zero the curve bc (., x−c) is shifted downwards

and it intersects with the 45-degree line at two positive values. For c = b, these intersections,

xb1 (x
w) and xb2 (x

w), are depicted on Figure 1. As x−c increases more, the curve will be shifted

down even more. However, at some point, a further increase in x−c results an upwards shift in

bc (., x−c), and as x−c goes to infinity, bc (., x−c) converges back to bc (., 0) (see part (iv) of Lemma

2). Two things can possibly happen to the positive intersections with the 45-degree line: either

bc (., x−c) intersects with the 45-degree line even when it is shifted down the most (part (i)), or

this curve is pushed below the 45-degree line on an interval (part (ii)).5 In the latter case, the

best-response curve does not intersect with the 45-degree line on this interval. Figure 2 illustrates

the statement of the lemma for the case described in (i). Since, limy→0 xc1 (y) = 0, we can define

xc1 (0) to be zero.

Recall that part (ii) of Lemma 2 states that bc (., y) always intersects with the 45-degree line

at zero. Let xc0 (y) ≡ 0. Now, we can define equilibria in terms of the intersections of the curves{
xbi
}2
i=0

and {xwi }
2
i=0 . Formally, (x

c
∗, x

−c
∗ ) is an equilibrium cutoff profiles if and only if there exist

i, j ∈ {0, 1, 2} such that

xc∗ = x
c
i

(
x−c∗

)
and x−c∗ = x−cj (xc∗) . (11)

Notice that by (8) the best-response cutoff of an agent with colour c is largest if xc = ∞ and

x−c = 0. In this case, the best-response cutoff is Kµc. This implies that the equilibrium cutoff of

an agent with colour c can never exceed Kµc. Let x
c
max = Kµc.

5There is a non-generic third case where the curve bc
(
., x−c

)
is tangent to the 45-degree line when it is shifted

down the most.
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Proposition 1 For all K, µc, α and ε (> 0) there exists a λ0 such that if λ ≥ λ0, then if xc∗ is

an equilibrium cutoff then either:

(i) xc∗ = 0, or

(ii) xc∗ ∈ (0, ε), or

(iii) xc∗ ∈ (x
c
max − ε, x

c
max).

This proposition states if λ is large enough then in every equilibrium an agent either does

not discriminate at all (xc∗ = 0), or weakly discriminates (xc∗ < ε), or strongly discriminates

(xcmax − ε < xc∗). Proposition 1 is illustrated on Figure 3. Intuitively, strong discrimination of

agents with colour c corresponds to the curve xc2, weak discrimination corresponds to x
c
1, and x

c
0

implies no discrimination.

The statement of the proposition allows any combination of these possibilities in equilibrium.

That is, there might be an equilibrium where the white agents strongly discriminate against the

black agents while the black agents do not discriminate against the whites at all. It is easy to

see, however, that the intersection of xc0 and x
−c
2 is unique (for c ∈ {b, w}). In addition, since

xc1 (0) = 0, the intersection of xc1 and x
−c
0 is (0, 0), that is, there is no equilibrium where one

colour weakly discriminates and the other does not discriminate at all. The proposition neither

implies the existence, nor the uniqueness of any of the other types of equilibria. The next section

introduces a stability concept and we shall fully characterize those equilibria which are stable.
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5 Stability

Next, we introduce a fairly standard notion of stability6 . It is based on the requirement that a

simple myopic best-response dynamics converges to the equilibrium if the strategies of the agents

are slightly perturbed around the equilibrium. We model the myopic best-response dynamics by

assuming that initially agents best-responde to some stationary population strategy which might

be different from the actual one. Then each agent stochastically receivesan opportunity to update

his strategy. Whenever an agent has this opportunity, he myopically adjusts his strategy to the

current environment. That is, he best-responds to the current population strategy as if it was

never to change.

Formally, suppose that initially the distribution of cutoffs of black and white agents are de-

scribed by a pair of random variables
(
Xb,Xw

)
and the strategy of each agent satisfies the state-

ment of Lemma 1.7 Agents receive opportunities to update their strategies according to a Poison

process with an arrival rate normalized to be one.8 If an agent has this opportunity at time t,

he best-responds to the cutoff distribution at t as if it was constant over time. Let xct (X
c,X−c)

denote the best-response cutoffs of an agent with colour c at time t if the initial distribution of

cutoffs was (Xc,X−c).

Definition 1 The equilibrium cutoff vector
(
xb∗, x

w
∗

)
is said to be stable if there exists an ε > 0,

such that if |Xc−xc∗| < ε almost surely for c ∈ {b, w} then lim
t→∞

xct (X
c,X−c) = xc∗ for c ∈ {b, w}.

In what follows we describe the equation governing the best-response dynamics. Fix
(
Xb,Xw

)

and let
(
Xb
t ,X

w
t

)
denote the distribution of population cutoffs at time t. We shall denote the

best response of an agent with colour c by xct suppressing its argument
(
Xb,Xw

)
. By (7), the

best-response of an agent with colour c at time t is

xct = K
[
µcEG ((1− α)X

c
t ) + µ−c

(
EG

(
αX−c

t

)
−EG

(
X−c
t

))]
.

Next, we approximate xct+dt by assuming that between t and t+dt each agent changes his strategy

to the time t best-response cutoffs. There is a measure of dt agents who receive an opportunity to

change their strategies between t and t+ dt and they all switch to xct . Therefore,

xct+dt = K
[
µcEG

(
(1− α)Xc

t+dt

)
+ µ−c

(
EG

(
αX−c

t+dt

)
−EG

(
X−c
t+dt

))]

= (1− dt)K
[
µcEG ((1− α)X

c
t ) + µ−c

(
EG

(
αX−c

t

)
−EG

(
X−c
t

))]

+ dtK
[
µcEG ((1− α)x

c
t) + µ−c

(
EG

(
αx−ct

)
−EG

(
x−ct

))]

= (1− dt)xt + dt̃b
c
(
xct , x

−c
t

)
,

6See, for example, Chapter 3 of Fudenberg and Levine.
7This latter assumption is satisfied if each agent best responds to some population strategy.
8This normalization is without the loss of generality because this arrival rate only affects the speed of convergence

but not the limits.
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where the first equality follows because the strategy of 1−dt measure of the population is described

by
(
Xc
t ,X

−c
t

)
, and the rest uses

(
xct , x

−c
t

)
. The second equality follows from (9). Taking dt to zero

leads to the following differential equation describing the evolution of xct :

dxct
dt

= b̃c
(
xct , x

−c
t

)
− xct .

As we mentioned before, we can restrict attention to non-negative cutoffs. Note that if xct = 0

then b̃c
(
xct , x

−c
t

)
= b

(
xct , x

−c
t

)
= 0 by (9) and part (ii) of Lemma 2. Hence, the previous displayed

equation implies that dxct/dt = 0 whenever x
c
t = 0. Therefore,

dxct
dt

=

{
0 if xct = 0

b̃c
(
xct , x

−c
t

)
− xct if xct > 0

. (12)

Figure 3 helps to understand the best-response dynamics derived from (12). Consider xb >

x2 (x
w). At this point, the best response curve is below the 45 degree line, that is bb

(
xb, xw

)
< xb.

In general, if
(
xb, xw

)
is to the right from the xb2 curve, the best response of a black agent is smaller

than xb. Equation (12) implies that the best response of a black agent decreases on this region.

This is represented by a horizontal arrows pointing to the left. A similar argument shows, that

if xb1 (x
w) < xb < xb2 (x

w), then bb
(
xb, xw

)
> xb. Hence, by (12), the best response of a black

agent increases. This is represented by horizontal a arrow pointing to the right between the points

xb1 (x
w) and xb2 (x

w). Finally, if xb < xb1 (x
w), then bb

(
xb, xw

)
< xb which is represented by a

horizontal arrow pointing to the left.

We are ready to state the main theorem of the paper.
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Theorem 1 For all K, µc, α and ε (> 0) there exists a λ0 such that if λ ≥ λ0, then there are

exactly three stable equilibria (xw∗ , 0),
(
0, xb∗

)
, and

(
x′w∗ , x

′b
∗

)
such that xc∗, x

′c
∗ ∈ (x

c
max − ε, x

c
max)

for c ∈ {b, w}.

If λ is large enough there are the following three equilibria in our model. First, the white

population discriminates strongly against the black one, while the blacks do not discriminate at all.

Second, the blacks strongly discriminate against the whites, while the whites do not discriminate

at all. And finally, both population strongly discriminate against the other.

Equation (12) implies that the change in best responses at time t depends only on the time-t

best responses,
(
xbt , x

w
t

)
, but not directly on the distribution of strategies,

(
Xb
t ,X

w
t

)
. In particular,

the initial distribution of strategies affects the best-response dynamics only through the initial best-

response profile
(
xb0, x

w
0

)
. Therefore, using (12), we can represent the best-response dynamics by

constructing a Phase Diagram, plotted on Figure 4. For each
(
xb, xw

)
cutoff vector, the horizontal

and vertical arrows on this figure indicate the directions of the best responses of black and white

agents, respectively.

To explain how the arrows are drawn, recall from Figure 3, that if xb > x2 (x
w) then bb

(
xb, xw

)
<

xb which is presented by an arrow pointing to the left. In general, if
(
xb, xw

)
is to the right from

the xb2 curve, the best response of a black agent is smaller than x
b. This is represented in Figure

4 by horizontal arrows pointing to the left on the area which is right of the curve xb2. Similarly,

Figure 3 shows that if xb1 (x
w) < xb < xb2 (x

w), then the best response of a black agent increases.

This is why the horizontal arrows are pointing to the right between the curves xb1 and x
b
2 on Figure

4. Finally, if xb < xb1 (x
w), then bb

(
xb, xw

)
< xb which is represented by horizontal arrows pointing
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to the left on the area which is left of xb1. The vertical arrows are constructed in a similar manner

representing the best-response dynamics of the white population.

Figure 4 can be used to understand the stability properties of various equilibria. Consider, for

example, the colour-blind equilibrium, (0, 0). There are points below the curve xw1 and right to

the curve xb1 arbitrarily close to (0, 0). At these points, x
b
t increases and x

w
t decreases, and the

vector
(
xbt , x

w
t

)
converges to the intersection of xb2 and x

w
0 . Hence, the colour blind equilibrium is

unstable. Similarly, it is easy to see that the intersections of the curves xc1 and x
−c
1 and the curves

xc1 and x
−c
2 are unstable for c ∈ {b, w}. On the other hand, from any point close to any of the

equilibria described in the statement of Theorem 1, the arrows point towards the equilibrium, and

hence, these equilibria are stable.

6 Discussion

In this section, we derive some comparative static results and discuss some of the assumptions of

our model.

6.1 Comparative Statics

In what follows we focus on the case of a large λ, that is, where the statement of Theorem 1 is

valid. Recall that there are exactly three stable equilibria. Next, we investigate how the cutoffs

in these three equilibria change if the parameters of our model change. We emphasize that these

comparative static results are only valid as long as the change in the parameters are small enough,

so that Theorem 1 holds. The following table summarizes the comparative static results. This

table indicates what happens to the cutoffs if a certain parameter increases. It turns out that

direction of the change in cutoffs is the same in all three equilibria.

xw∗ xb∗

discount rate (r) down down

wage (M) up up

shock distribution (λ) up up

measure of whites (µw) up down

matching frequency (δ) up up

persistence (γ) up up

The proof of these results is straightforward, hence, it is omitted. Below, we provide some intuition

behind these observations.

An agent cares about his social colour because it influences his future employment. Therefore,

the larger is the part of an agent’s payoff due to future wages the more likely it is that employer’s

condition their decisions on the types of the workers. For example, if the discount rate goes up,

agents care more about their current payoffs relative to their future payoffs. Hence, they become
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more eager to employ workers no matter what their types are, and as a result, their cutoffs go

down. Similarly, ifM goes up being an employed worker becomes more important, and the cutoffs

go up. When λ goes up, the expected payoff of an employer decreases. In other words, having the

option of being a worker becomes more important relative to being an employer. This is why an

increase in λ has the same effect as a decrease in M .

When µw increases, agents receive a larger fraction of their payoffs from interacting with white

agents. This makes it more expensive to discriminate against whites, and cheaper to discriminate

against blacks. As a result, xw∗ goes up while x
b
∗ goes down.

An employer’s social colour does remains the same with probability 1 − γ independently of

his decision. The larger is γ the more likely it is that the worker’s type has an impact on the

employer’s future payoff. Hence, it becomes easier to discriminate.

6.2 Assumptions

Our goal in this paper was to present a simple model which demonstrate that discrimination can

arise purely because agents carry information about their past actions. Some of the assumptions

are made in order to be able to provide a a graphical representation of equilibria and stability. We

do not claim that equilibrium discrimination is robust to all the features of our model. In what

follows, we discuss some of our assumptions and extentions of the model.

Distribution of shocks.— We have assumed that the distribution of the match-specific shock

which determines the surplus of a partnership is exponential. To what extent does our main result

depend on this assumption? For general distributions, we have no hope for a full characterization

of equilibria such as in Theorem 1. However, whether or not the colour blind equilibrium is stable

depends only on the slope of the best-response functions at (0, 0). If this slope is less than one,

the colour blind equilibrium is unique and stable. Otherwise, each stable equilibrium involves

discrimination. We formally state this result in the following

Theorem 2 Suppose that s is distributed on R+ according to the CDF G. If G is concave on R+

then either

(i) (0, 0) is the unique equilibrium and is stable, or

(ii) (0, 0) is not stable, and there exists a stable equilibrium.

Notice that the total surplus of a partnership, s+M , is always positive. This assumption makes

the socially optimal employment decisions very easy to characterize. Efficiency requires employers

to hire whenever they can. This simplifies our analysis. Even if shocks could be negative, the

stability of the colour-blind equilibrium only depends on the slope of the best-response curve at

zero. However, in this case, there might be stable equilibria different from those described in

Theorem 1. In particular, it is possible that white employers prefer to hire black workers and vice

versa. That is, a social colour of an agent is more valuable if it is different from his physical colour.9

9These results are available upon request.
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Social colour.— The social colour of an employer who does not hire becomes his physical colour

conditional on the social colour changing. This can be motivated by assuming that if a white agent

refuses to hire a black employee despite the positive surplus he will be considered loyal to other

whites and hostile to blacks. However, the main reason for this assumption is that it enabled us to

give a two-dimensional graphical representation of our problem. Recall that a consequence of this

assumption is that the best response cutoff of an employer does not depend on his social colour

(see Lemma 1 and (3)).

We assume that the social colour is a binary information and its evolution is only determined

by the type of the worker and the physical colour of the employer. This is much in the spirit of

Kandori (1992). One can model the information an employer observes about a worker in more

complicated ways. For example, an employer might randomly draw a sample of the physical colour

of the agents in the history of the worker. Then the type of the worker would be his physical colour

and his full history. Such modelling would lead to a complex type space but does not alter our

main result regarding the instability of the colour-bling equilibrium.

It is easy to construct social colours different from ours which do no lead to discrimination.

For example, if this colour is not informative about past decisions then the colour-blind equilib-

rium is stable and unique. We have not characterized those processes which necessarily lead to

discrimination.

More attributes and social colours.— In reality, there are more than one observable physical

attributes of individuals. It is also possible that there are several labels attached to an individual

conditional on his history. Of course, agents might condition their actions on these other attributes

and labels. However, it is not hard to show that as long as the social colour corresponding to the

skin colour evolves according to our assumptions a version of Theorem 2 is still valid. That is,

provided that λ is large, the colour-blind equilibrium is unstable and there exist stable equilibria.

Constant wage.— Workers receive a constant wage, M , regardless of their types, the types

of their employers and the profitability of the partnership. Therefore, any inefficiency due to

discrimination is in the form of suboptimal unemployment decisions. In particular, an agent

against whom others discriminate is only worse off because he is not employed frequently enough.

It would be interesting to allow wages to be endogenous and analyze wage differentials due to

racial discrimination. Unfortunately, it is not entirely clear how endogenous wages affect our main

results. The problem is that if a black worker is willing to get a paycut in order to be employed by

a white employer then there will be more white employers who employ black workers. This would

increase the number of white agents with black social colour, which in turn, makes it less costly

for a white agent to have black social colour. This would make it less likely that discrimination

arises in equilibrium. A potential solution for this problem is to allow the social colour to change

as a function of the wage offered to a worker. The lower the wage of a black worker is the more

likely it is that the employer’s social colour becomes white.

We are currently working on models where wages are set endogenously. Preliminary results
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suggest that as long as the wage of a worker cannot fall to zero, the main results of our paper

remain valid. There are various theories of wage determination, like efficiency wages and moral

hazard problems, that lead to strictly positive wages even if the outside option of a worker is zero.

6.3 Empirical Implications

Our theory is different from taste-based and statistical discrimination theories because agents have

no intrinsic preferences for interacting with others of the same colour, and their skin-colour provides

no signal about their productivity. Next we discuss empirical predictions of our model which are

different from that of these other two theories.

It is not hard to construct models of both statistical and taste-based theories which generate

the same comparative static results as ours. The key observation is that past history of a worker

affects the likelihood of him being hired. A white employer, for example, has a larger cutoff against

a black worker than against a white one. As a result, the profit of a white employer who hires

black workers is higher than that of those who hire white workers. This would also be true if

discrimination was taste-based, and one can imagine a variation of statistical discrimination which

also generates this result. However, a white employer also uses a larger cutoff against other whites

with black social colour than against whites with white social colour. Therefore, white employers

hiring white workers with black social colours earn more than those who hire whites with white

social colours. Note that the social colour of an agent is more likely to be black if there were more

blacks in his past history. Hence, our model predicts that the profit of a white employer from

hiring a white worker is stochastically increasing in the number of black agents in the history of

the worker.

In addition, agents would never discriminate in our model if they knew that their interactions

were not observed. Our theory predicts that as the interactions become harder to observe it

becomes less likely that discrimination arises. Therefore, people are more likely to discriminate in

smaller communities, like villages, where people better observe the actions of others than in larger

communities, such as large cities, where individuals have less information about each others. This

is in sharp contrast to the predictions of the other two theories.

A notable feature of our model is that there exist stable equilibria where each race discriminates

against the other one. This is inconsistent with the theory of statistical discrimination, according

to which, the hiring decision of an employer should not depend on his own skin-colour.

7 Conclusion

This paper put forward a new theory of racial discrimination. Individuals discriminate against

others because they do not want to be associated to the other race. Although the information about

each others’ association is not payoff-relevant, it plays a major role in determining the behavior of
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economic agents. Indeed, we showed that every stable equilibrium must involve discrimination in

some environments.

Our model does not explain why agents use skin colour as a basis of discrimination as opposed

to other observable physical attributes. People differ in height, weight, eye-colour, and along many

other dimensions. A potential explanation might be that members of a family, or a community are

more likely to have the same skin colour than the same height or weight. For a tall individual it

would be more costly to discriminate against short ones if many of his relatives are short. Recall

that a white agent discriminates against those who are associated to blacks in our model because

he is afraid of those whites who are more associated to whites. Since individuals are necessarily

associated to short and tall individuals, these attributes cannot be used to sustain discrimination.

Another reason for using skin colour is that it easier to observe that other attributes such as the

eye-colour.

We assumed throughout this paper that the surplus generated by a partnership is divided

among the worker and employer exogenously. We have excluded the possibility that discrimination

results in different wages conditional on employment. Perhaps the most important elaboration of

our model would be to allow wages and profits to be determined endogenously.

We have not discussed policy in this paper. Recall that a white employer discriminates against

black workers because he is afraid of not being hired by white employers with white social colour

in the future. Hence, a policy intervention which would increase the fraction of those whose social

colour is different from his physical colour reduces the incentive to discriminate. It is clear that

subsidizing employers who hire workers of different physical colour will increase the fraction of

those whose physical and social colour are different. This, in turn, decreases the fraction of those

who have the same physical and social colours and reduce the incentive to discriminate. Such

subsidies must be paid from taxes which might alter the incentives to produce. In order to discuss

policy in a meaningful way, one must properly model production and the worker’s incentives.
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A Appendix

A.1 Proof of the Lemmas

Proof of Lemma 2. (i) Notice that bc (xc, x−c) = b̃c (xc, x−c) whenever bc (xc, x−c) > 0. Hence,

it is enough to show that b̃c is concave in xc. By (8)

∂b̃c (xc, x−c)

∂xc
= Kµc (1− α) g ((1− α)x

c) ,

where g (x) = λe−λx for all x ≥ 0. Therefore, this partial derivative is positive and decreasing.
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(ii) By (8),

b̃c
(
0, x−c

)
= K

[
µ−c

(
G
(
αx−c

)
−G

(
x−c

))]
≤ 0,

because G
(
αx−c

)
−G

(
x−c

)
≤ 0. Hence, (9) implies that bc (0, x−c) = 0.

(iii) Notice that limx−c→∞G (αx
−c)−G (x−c) = 0. Therefore, by (8) and (9),

bc (xc, 0) = lim
x−c→∞

bc
(
xc, x−c

)
= KµcG ((1− α)x

c) .

Finally, since G
(
αx−c

)
−G

(
x−c

)
≤ 0,

bc (xc, 0) ≥ bc
(
xc, x−c

)
.

Proof of Lemma 3. Notice that if x−c = 0 then b̃c (xc, x−c) ≥ 0, and by (9), b̃c (xc, 0) = bc (xc, 0).

We have showed in the proof of part (i) of Lemma 2 that

∂bc (xc, 0)

∂xc
= Kµc (1− α)λe

−λ(1−α)xc .

This derivative is Kµc (1− α)λ at xc = 0, and converges to zero as xc goes to infinity.

(i) If λ > λ0, Kµc (1− α)λ > 1 and therefore bc (xc, 0) > xc around zero. Since the curve

bc (xc, 0) is concave (part (i) of Lemma 2) and its derivative goes to zero as xc goes to infinity,

there exists a unique xc > 0 such that bc (xc, 0) = xc.

(ii) If λ ≤ λ0, Kµc (1− α)λ ≤ 1. Since the curve bc (xc, 0) is concave (part (i) of Lemma 2)

bc (xc, 0) < xc for all xc > 0.

Proof of Lemma 4. For each x−c consider the following function of xc:

Bx
−c

(xc) = b̃c
(
xc, x−c

)
− xc

= KµcG ((1− α)x
c)− xc +Kµ−c

(
G
(
αx−c

)
−G

(
x−c

))

Observe that, by (9), bc (xc, x−c) = xc if and only if xc is a root of Bx
−c

. First, we establish some

properties of Bx
−c

.

(1) The function Bx
−c

is strictly concave . This follows from the proof of part (i) of Lemma 2.

(2) dBx
−c

/dxc
⌋
xc=0

> 0. It follows from the proof of part (i) of Lemma 3.

(3) limxc→∞B
x−c (xc) = −∞. This is because G is a CDF and hence, b̃c (xc, x−c) ≤ K.

(4) limxc→0B
x−c (xc) < 0. This is because G (αx−c)−G (x−c) is negative.

(5) Generically, Bx
−c

has either zero or two roots. This follows from (1)-(4).10

Notice that the part Bx
−c

(xc) which depends on x−c is additively separable from the rest.

Hence, any change in x−c results in a vertical shift of this curve. Whether there are two or zero

intersections depends on the size of this shift. Let H (x−c) = Kµ−c (G (αx
−c)−G (x−c)). Next

we establish some properties of this function.11

10The non-generic case is when this function is tangent to the constant zero line. There can be at most one such

an x−c.
11These properties are streightforward consequences of the assumption that G (s) = 1− eλs.
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(6) H (x−c) is strictly negative.

(7) limx−c→∞H (x
−c) = limx−c→0H (x

−c) = 0.

(8) argminH (x−c) = (− logα) / [λ (1− α)] = x̂−c.

(9) H is strictly decreasing on (0, x̂−c) and strictly increasing on (x̂−c,∞).

We are ready to prove the two parts of the lemma.

(i) Suppose that maxBx̂
−c

(xc) > 0. This, together with (8), implies that maxBx̂
−c

(xc) > 0

for all x−c > 0. By (3) the value of Bx
−c

is sometimes negative. The intermediate Value Theorem

implies that Bx
−c

has at least one root. Hence, by (5), has exactly two roots.

(ii) Suppose that maxBx
−c

(xc) < 0. This means that there are values of x−c for which Bx
−c

is always negative. (9) implies that the set of such x−cs is an interval. Let us denote this interval

by (x−c, x−c). From (2) and (7) it follows that x−c > 0 and x−c <∞. The argument establishing

that Bx
−c

has two roots whenever x−c ∈ R+\
[
x−c, x−c

]
is analogous to the argument in part (i).

From (1) and (9) it follows that

lim
x−c→x−c

xc1
(
x−c

)
= lim
x−c→x−c

xc1
(
x−c

)
= lim
x−c→x−c

xc2
(
x−c

)
lim

x−c→x−c
xc2
(
x−c

)
.

It remains to show that xc1 (x
−c) is increasing first, then is decreasing, and xc2 (x

−c) is decreasing

first, then is increasing. On the interval (0, x̂−c) an increase in x−c results a downwards shift of

Bx
−c

(see (9)). Hence, by (1), xc1 (x
−c) is increasing and xc2 (x

−c) is decreasing on this interval.

On the interval R+\ (0, x̂
−c) an increase in x−c results an upward shift of Bx

−c

(see (9)). Hence,

by (1), xc1 (x
−c) is decreasing and xc2 (x

−c) is increasing on this interval. Finally, it follows from

(2) and (7) that limx−c→0 x
c
1 (x

−c) = 0.

A.2 Proof of Proposition 1

Before we proceed with the proof of Proposition 1 we prove a few Lemmas about the equilibrium

cutoffs. For convenience we introduce a few new notations. We shall denote min {µb, µw} by µmin.

In addition, we define two constants

ψ0 =
1

1
4Kα (1− α)µmin

, (13)

ψ1 = Kµmin
1

2

(
1− 2−α

) (
1− 2−(1−α)

)
.

In the proofs of the lemmas we often use the inequality stated in the next

Lemma 5 For all ξ ≤ lg 2

1− e−ξ ≥
1

2
ξ. (14)

In what follows (xc, x−c) denotes an equilibrium cutoff profile.

Lemma 6 There exists a λ0 such that for all λ ≥ λ0 eithermax {xc, x−c} ≤ ψ0λ−2 ormax {xc, x−c} ≥

ψ1.
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Proof. First, suppose that both cutoffs are strictly positive, that is, xb, xw > 0. Then, by (7),

xb + xw =
∑

c∈{b.w}
K
[
µcG ((1− α)x

c) + µ−c
(
G
(
αx−c

)
−G

(
x−c

))]

=
∑

c∈{b.w}
Kµc [G ((1− α)x

c) +G (αxc)−G (xc)]

=
∑

c∈{b,w}
Kµc

(
1− e−αλx

c
)(
1− e−(1−α)λx

c
)
, (15)

where the first equality follows from rearranging the terms corresponding to the same colour and

the second one from G (x) = 1− e−x and

[
1− e−αλx

c
]
+
[
1− e−(1−α)λx

c
]
+
[
1− e−λx

c
]
=
(
1− e−αλx

c
)(
1− e−(1−α)λx

c
)
.

We consider two cases. If max
{
xb, xw

}
≥ (lg 2) /λ, then from the previous equality it follows that

xb + xw ≥ Kµmin
(
1− e−α lg 2

) (
1− e−(1−α) lg 2

)

= Kµmin
(
1− 2−α

) (
1− 2−(1−α)

)
= 2ψ1.

Since max
{
xb, xw

}
≥ xb + xw, the previous inequality chain implies max

{
xb, xw

}
≥ ψ1. If

max
{
xb, xw

}
≤ (log 2) /λ, then, by Lemma 5,

1− e−αλx
c

≥
1

2
αλxc and 1− e−(1−α)λx

c

≥
1

2
(1− α)λxc (16)

for each c ∈ {b, w} . Equations (15) and inequalities (16) imply that

max
{
xb, xw

}
≥
∑

c∈{b,w}

1

4
Kα (1− α)µcλ

2 (xc)2

≥
1

4
Kα (1− α)µminλ

2
[
(xc)2 +

(
x−c

)2]
≥
1

ψ0
λ2
(
max

{
xb, xw

})2
.

Hence, max
{
xb, xw

}
≤ ψ0/

(
λ2
)
.

Second, suppose that one of the cutoffs is zero, and without loss of generality assume that

xb = 0 and, hence, max
{
xb, xw

}
= xw. Then, by (7),

xw = Kµw
(
1− e−(1−α)λx

w
)
.

If xw ≥ (log 2) /λ then

xw ≥ Kµw
(
1− e−(1−α) lg 2

)
≥ ψ1.

If xw ≤ (log 2) /λ then, by Lemma 5,

xw ≥ 2Kµw (1− α)λx
w.

If λ > 1/ (2Kµw (1− α)) then the previous inequality implies that x
w ≤ 0 and hence, xw < ψ0λ

−2.

Lemma 7 There exists a λ0 such that if λ ≥ λ0 and xc ≥ ψ1 then either x−c ≤ ψ0/ (λ)
2 or

x−c ≥ ψ1/2.
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Proof. Suppose that xc ≥ ψ1. If x
−c < 0 then x−c ≥ ψ1/2. Suppose now that x

−c > 0. Then

x−c = Kµ−cG
(
(1− α)x−c

)
+Kµc (G (αx

c)−G (xc))

≥ Kµ−c

(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 , (17)

where the equality is just (7) and the inequality follows from xc ≥ ψ1. We consider two cases.

Case 1: x−c ≥ (lg 2) /λ. If λ is large enough so that Kµce−λαψ1 ≤
1
2ψ1,

Kµ−c
(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 ≥ Kµ−c
(
1− e−(1−α) lg 2

)
−
1

2
ψ1

≥ Kµ−c
(
1− 2−(1−α)

)
−
1

2
ψ1 ≥

1

2
ψ1,

where the last equality follows from ψ1 ≤ Kµ−c
(
1− 2−(1−α)

)
. The previous inequality chain and

(17) imply x−c ≥ 1
2ψ1.

Case 2: x−c < (lg 2) /λ. Then, by Lemma 5,

1− e−λ(1−α)x
−c

≥
1

2
(1− α)λx−c. (18)

If λ is large enough so that Kµmaxe
−λαψ1 ≤ ψ0/ (λ)

2, the previous inequality implies that

Kµ−c

(
1− e−(1−α)λx

−c
)
−Kµce

−λαψ1 ≥ Kµmin
1

2
(1− α)λx−c − ψ0λ

−2.

This inequality and the inequality chain (17) yields

(
Kµmin

1

2
(1− α)λ− 1

)
x−c ≤

ψ0
λ2
.

If λ is large enough so that Kµmin
1
2 (1− α)λ− 1 > 1 then x

−c ≤ ψ0λ
−2.

Recall that xmax is the largest possible cutoff which can be a best response to a cutoff profile

and xmax = Kµc.

Lemma 8 For all ε > 0, there exists a λ0, such that if λ > λ0 and xc ≥ ψ1/2 then either

x−c ∈
(
ψ0/ (λ)

2 , ψ1/2
)

or xc ∈ (xcmax − ε, x
c
max) .

Proof. Suppose that xc ≥ ψ1/2 and that x
−c ∈

(
ψ0/ (λ)

2
, ψ1/2

)
. It is enough to show that for

all ε > 0 there is a λ0 such that if λ > λ0 then whenever xc ≥ ψ1/2 and x−c ∈
(
ψ0/ (λ)

2 , ψ1/2
)

the cutoff xc must be in the set (xcmax − ε, x
c
max).

Notice that from (7) and xmax = Kµc it follows that

xcmax − x
c = Kµc −

[
Kµc

(
1− e−λ(1−α)x

c
)
+Kµ−c

(
1− e−λx

−c

− 1 + e−λαx
−c
)]

(19)

= Kµce
−λ(1−α)xc −Kµ−c

(
e−λx

−c

− e−λαx
−c
)

= Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)
.
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Case 1: x−c ≥ ψ1/2. Then

Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)
≤ Kµce

−λ(1−α)xc +Kµ−ce
−λαx−c

≤ Kµce
− 1
2λ(1−α)ψ1 +Kµ−ce

−1
2λαψ1 ,

where the first inequality follows from 1−e−(1−α)λx
−c

≤ 1 and the second one from x−c, xc ≥ ψ1/2.

This inequality chain and (19) imply that

xcmax − x
c ≤ Kµce

− 1
2λ(1−α)ψ1 +Kµ−ce

− 1
2λαψ1 .

Notice that for each ε there is a λ0 such that if λ > λ0 the right-hand-side of this inequality is

smaller than ε and, hence, xc ∈ (xcmax − ε, x
c
max).

Case 2: If x−c ≤ ψ0/ (λ)
2
, then,

Kµce
−λ(1−α)xc +Kµ−ce

−λαx−c
(
1− e−(1−α)λx

−c
)
≤ Kµce

−λ(1−α)xc +Kµ−c

(
1− e−(1−α)λx

−c
)

≤ Kµce
−1
2λ(1−α)ψ1 +Kµ−c

(
1− e

−ψ0(1−α)
λ

)
,

where the first inequality follows from e−λαx
−c

≤ 1 and the second one from xc ≥ ψ1/2 and

x−c ≤ ψ0/ (λ)
2. This inequality chain and (19) imply that

xcmax − x
c ≤ Kµce

− 1
2λ(1−α)ψ1 +Kµ−c

(
1− e

−ψ0(1−α)
λ

)
.

Observe that as λ goes to infinity both Kµce
−(1/2)λ(1−α)ψ1 and 1− e−ψ0(1−α)/λ converge to zero.

Therefore, for each ε there is a λ0 such that if λ > λ0 the right-hand-side of this inequality is

smaller than ε and xc ∈ (xcmax − ε, x
c
max).

We are ready to prove Proposition 1. By Lemma 6, we have to consider two cases: either

max {xc, x−c} ≤ ψ0λ
−2 or max {xc, x−c} ≥ ψ1.

Case 1: max {xc, x−c} ≤ ψ0λ−2. Note that for each ε there is a λ0 such that for all λ > λ0 the

term ψ0λ
−2 is strictly smaller than ε, and hence, xb, xw < ε. Therefore, either (i) or (ii) holds in

the statement of Proposition 1.

Case 2: max {xc, x−c} ≥ ψ1. Without loss of generality assume that max {x
c, x−c} = xc.

By Lemma 7, we have to consider only the following two subcases: either x−c ≤ ψ0/ (λ)
2 , or

x−c ≥ (1/2)ψ1.

Case 2.a: x−c ≤ ψ0/ (λ)
2. Then for each ε there is a λ0 such that if λ ≥ λ0 then x

−c ≤ ε,

and by Lemma 8, xc ∈ (xcmax − ε, x
c
max) . In this case (i) holds for x

−c and (iii) holds for xc.

Case 2.b: x−c ≥ (1/2)ψ1. Since xc ≥ ψ1 > (1/2)ψ1, Lemma 8 implies that xc ∈

(xcmax − ε, x
c
max) for c ∈ {b, w} . Therefore, (iii) of the statement of Proposition 1 holds for

c ∈ {b, w}.
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A.3 Proof of Theorem 1

By Proposition 1, for all ε there exists a λ0 such that any equilibria can be classifies into one of

the cases described by the following table.

xc x−c

Case 1 0 0

Case 2 0 ∈ (0, ε)

Case 3 0 ∈ (x−cmax − ε, x
−c
max)

Case 4 ∈ (0, ε) ∈ (0, ε)

Case 5 ∈ (0, ε) ∈ (x−cmax − ε, x
−c
max)

Case 6 ∈ (x−cmax − ε, x
−c
max) ∈ (x−cmax − ε, x

−c
max)

We shall consider each case separately. We show that equilibria described by Case 2 do not exist

and equilibria corresponding to Cases 1, 4, and 5 are unstable. Finally, we prove that equilibria

corresponding to Cases 3 and 6 are unique and stable. Note that this accomplishes the proof of

Theorem 1. In what follows, we use the notations introduces in the last subsection, see (13).

Case 2.

In order to show that there does not exists an equilibrium described by Case 2, it is enough to

prove that if λ is large enough and xc = 0 then x−c = 0 or x−c ≥ ψ1. By Lemma 6, x
−c ≥ ψ1 or

x−c ≤ ψ0/ (λ)
2 . If x−c ≥ ψ1, we are done. It remains to be shown that x−c ≤ ψ0/ (λ)

2 implies

x−c = 0. We prove it by contradiction, and assume that x−c ∈ (0, ψ0/ (λ)
2]. Then,

x−c = Kµ−cG
(
(1− α)x−c

)
= Kµ−c

(
1− e−λ(1−α)x

−c
)
≥
1

2
Kµ−cλ (1− α)x

−c > x−c,

where the first equality is just (7) with xc = 0, the first inequality follows from Lemma 5, and

the second one from λ being large. Note that the previous inequality chain cannot hold, hence,

x−c = 0.

Case 1.

We show that the equilibrium cutoff profile (0, 0) is unstable. By Definition 1, it is enough

to show that there exists a distribution of cutoff profiles nearby (0, 0) such that the best-response

dynamics does not converge to (0, 0). To this end, choose Xc and X−c to be deterministic variables

such that X−c = 0 and Xc = δ, where δ ∈ (0, lg 2/ [λ ( 1− α)]) . Let the best response of an agent

with colour c at time t denoted by xct if the initial distribution of cutoffs is (X
c,X−c). Equations

(7) and (12) imply that x−ct = 0 for all t. However, we show that xct does not converge to 0 for

sufficiently large λ. Since xc0 > 0, it is enough to prove that dx
c
t/dt > 0 whenever x

c
t is small but

positive. Suppose that xct ∈ (0, lg 2/ [λ ( 1− α)]). Then

dxct
dt

= Kµc
(
1− e−λ(1−α)x

c
t

)
− xct

≥ λ
1

2
Kµc (1− α)x

c
t − x

c
t =

(
λ
1

2
Kµc (1− α)− 1

)
xct ,
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where the first equality is just (12) with x−ct = 0 and the inequality follows from xct ∈ (0, lg 2/ [λ ( 1− α)])

and Lemma 5. If λ is large enough then λKµc (1− α) /2 > 1, and hence, dx
c
t/dt > 0.

Cases 4 and 5.

Using the equation describing the best-response dynamics, (12), we construct the Jacobian

matrix corresponding to the dynamic system
(
xct , x

−c
t

)
:

J
(
xct , x

−c
t

)
=




db̃c(xct ,x
−c
t )

dxct
− 1, db̃

c(xct ,x−ct )
dx−ct

,

db̃−c(xct ,x
−c
t )

dxct
,

db̃−c(xct ,x
−c
t )

dx−ct
− 1


 . (20)

where all the derivatives are taken at
(
xc0, x

−c
0

)
. Since in Cases 4 and 5 xc0, x

−c
0 > 0, the Hartman-

Grobman Theorem implies that
(
xc0, x

−c
0

)
is not a stable equilibrium if an eigenvalue of J

(
xc0, x

−c
0

)

has a positive real part. It is well-known that if trJ
(
xc0, x

−c
0

)
> 0 or detD

(
xc0, x

−c
0

)
< 0, then the

real part of at least of the eigenvalues is positive. Therefore, in order to establish that
(
xc0, x

−c
0

)
is

unstable it is enough to show that tr J
(
xc0, x

−c
0

)
> 0.

In Case 4, Proposition 1 and Lemma 6 imply that xc ∈
(
0, ψ0/ (λ)

2
)
if λ is large enough. In

Case 5, Proposition 1 and Lemma 7 imply that xc ∈
(
0, ψ0/ (λ)

2
)
if λ is large enough. Also notice

that
db̃−c (x−c, xc)

dx−c
= Kµ−cλ (1− α) e

−λ(1−α)x−c ≥ 0,

and for sufficiently large λ,

db̃c (xc, x−c)

dxc
= Kµcλ (1− α) e

−λ(1−α)xc ≥ Kµcλ (1− α)
(
1− e−(1−α)ψ0/λ

)

≥
1

2
Kµcλ (1− α) ,

where the first inequality follows from xc < ψ0/ (λ)
2 and the second one from e−(1−α)ψ0/λ < 1/2

if λ is large. Therefore, if λ is large enough,

trJ
(
xc0, x

−c
0

)
=
db̃c

(
xc0, x

−c
0

)

dxc0
− 1 +

db̃−c
(
xc0, x

−c
0

)

dx−c0
− 1

≥
1

2
λKµmin (1− α)− 2 > 0.

Case 3.

Remark 2 established that, if λ is large, the equilibrium exists and is unique in this case. It

remains to show that this equilibrium is stable. Notice that this equilibrium corresponds to the

intersection of the x−c2 and xc0 curves, that is,
(
0, x−c2 (0)

)
. Since the curve x−c2 is continuous, there

exist δ1 and δ2 such that if x
c < δ1 then |x

−c − x−c2 (xc) | < δ2. In addition, we established in

Section 5 that if δ1 and δ2 is small enough, xc < δ1 and |x−c − x
−c
2 (0) | < δ2 then

b̃c
(
xc, x−c

)
− xc < 0 and b̃−c

(
x−c, xc

)
− x−c

> 0 if x−c < x2−c (xc) ,

< 0 if x−c > x2
−c (xc) ,

= 0 if x−c = x2
−c (xc) .

(21)
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Let δ be so small that for any cutoff distribution (Xc,X−c) , if |Xc| < δ and |X−c − x−c2 (0) | < δ

almost surely then the initial best-response cutoff profile,
(
xc0, x

−c
0

)
, satisfy xc < δ1 and |x

−c −

x−c2 (0) | < δ2. Then (21) implies that
(
xct , x

−c
t

)
is in the rectangle

{(
xc, x−c

)
: xc ∈ (0, δ1) , |x

−c − x−c2 (0) | < δ2
}

for all t.12 Therefore, limt→∞ x
c
t = 0 by (21). This, together with (21), implies limx

−c
t = x−c2 (0).

Case 6.

First, we show that if this equilibrium exists it is stable. Recall the matrix introduced in Cases 4

and 5, J
(
xc0, x

−c
0

)
. Since xc0, x

−c
0 > 0, we can apply the Hartman-Grobman Theorem which implies

that
(
xc0, x

−c
0

)
is a stable equilibrium if all eigenvalues of J

(
xc0, x

−c
0

)
have negative real parts. It

is well-known that if trD
(
xb0, x

w
0

)
< 0 and detD

(
xb0, x

w
0

)
> 0 then the eigenvalues indeed have

negative real parts. In this case, if λ is large enough then xb, xw > xmax − ε > ψ1/2. In addition,

for all δ > 0 there is a λ0 such that if λ > λ0,

db̃c (xc, x−c)

dxc
− 1 = λKµc (1− α) e

−λ(1−α)xc − 1 ∈

(
−1,−1 +

δ

2

)
, (22)

and

db̃c (xc, x−c)

dx−c
= λKµ−c

(
αe−λαx

−c

− e−λx
−c
)

= λKµ−ce
−λαx−c

(
α− e−λ(1−α)x

−c
)
∈

(
0,
δ

2

)
.

Thus,

trD
(
xc0, x

−c
0

)
< −2 + δ < 0 and detD

(
xc0, x

−c
0

)
> 1− δ2 > 0.

In order to show the existence of an equilibrium in this case, we show that the curves xc2 and

x−c2 are defined on [ψ1/2,∞) and they intersect. By (22), b̃c (xc, x−c)− xc is strictly decreasing in

xc on this interval. Since b̃ is bounded from above by xmax, limxc→∞

[
b̃c (xc, x−c)− xc

]
= −∞. In

addition, Lemma 8 implies that, b̃c (xc, x−c) ≥ xcmax − ε = Kµc − ε > ψ1/2 if x
c, x−c ∈ [ψ1/2,∞).

Therefore, b̃c (xc, x−c)−xc is strictly decreasing, positive at xc = ψ1/2, and becomes negative as x
c

gets large whenever x−c ∈ [ψ1/2,∞). Therefore, for each x
−c ∈ [ψ1/2,∞) there exists exactly one

xc such that b̃c (xc, x−c) = xc. We denotes this xc by xc2 (x
−c) (see Lemma 4). Lemma 8 implies

that xc2 (x
−c) ∈ [xcmax − ε, x

c
max] for all x

−c ≥ ψ1/2. Since this argument holds for both c, the

mapping xc2 ◦ x
−c
2 :

[
1
2ψ1,∞

)
→ [xcmax − ε, x

c
max] is well-defined and clearly continuous. Therefore,

there exists an xc∗ ∈ [x
c
max − ε, x

c
max] such that

xc2
(
x−c2 (xc∗)

)
= xc∗.

Define x−c∗ = x−c2 (xc∗). Then, by (11), (x
c
∗, x

−c
∗ ) is an equilibrium cutoff profile.

12This is because dxc
t
dt < 0 whenever xc

t
= δ1, dx

−c
t
/dt < 0 if x−c

t
= x−c

2
(0) + δ2 and dx

−c
t
/dt > 0 if x−c

t
=

x−c
2
(0)− δ2.
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In order to show the uniqueness, consider the mapping B : [ψ1/2,∞)
2 → R

2 defined by

B
(
xc, x−c

)
=
(
b̃c
(
xc, x−c

)
− xc, b̃−c

(
x−c, xc

)
− x−c

)
.

Note that (xc, x−c) is an equilibrium if and only if B (xc, x−c) = (0, 0). Note that the Jacobian

matrix of B is just J (xc, x−c). We have concluded above that the determinant of this matrix is

strictly positive on xc, x−c ∈ [ψ1/2,∞). Therefore, B is an injection and there can only be at most

one (xc, x−c) satisfying B (xc, x−c) = (0, 0).
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