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Abstract

This paper proposes a Bayesian regression model with time-varying coe¢ -

cients (TVC) that allows to jointly estimate the degree of instability and the

time-path of regression coe¢ cients. Thanks to its computational tractability,

the model proves suitable to perform the �rst (to our knowledge) Monte Carlo

study of the �nite-sample properties of a TVC model. Under several speci�ca-

tions of the data generating process, the estimation precision and the forecast-

ing accuracy of the proposed TVC model compare favourably to those of other

methods commonly employed to deal with parameter instability. Furthermore,

the TVC model leads to small losses of e¢ ciency under the null of stability and

it is robust to mis-speci�cation, providing a satisfactory performance also when

regression coe¢ cients experience discrete structural breaks.
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There is widespread agreement that instability in regression coe¢ cients represents

a major challenge in empirical economics. In fact, many equilibrium relationships

between economic variables are found to be unstable through time (e.g.: Stock and

Watson - 1996).

There are two main approaches to address instability in regression coe¢ cients:

1. formulating and estimating regression models under the hypothesis of constant

coe¢ cients, testing for the presence of structural breaks (e.g.: Chow - 1960,

Brown, Durbin and Evans - 1975, Nyblom - 1989) and identifying the break-

points (e.g.: Andrews, Lee, and Ploberger - 1996, Bai and Perron - 1998);

2. formulating regression models with time-varying coe¢ cients (TVC) and esti-

mating the path of their variation (e.g.: Doan, Litterman and Sims - 1984,

Stock and Watson - 1996, Cogley and Sargent - 2001).

Approach (1) allows to search for time spans over which the hypothesis of con-

stant coe¢ cients is not rejected by the data. However, it can happen that regression

coe¢ cients change so frequently that the hypothesis of constant coe¢ cients does not

�t any time span (or only time spans that are too short to be of any interest to the

econometrician). In these cases, approach (2) can be utilized, as it is suitable to deal

also with frequently changing coe¢ cients. On the other side of the coin, approach

(2) often relies on dynamic speci�cations that are (at least in theory) not suitable to

detect infrequent and abrupt changes in regression coe¢ cients.

In the absence of strong priors about the ways in which relationships between

variables change, the two approaches can arguably be considered complementary and

it seems reasonable to use them in conjunction. However, approach (1) is apparently

much more frequently utilized than approach (2) in empirical work (e.g.: Kapetanios

- 2008).

One possible reason why TVC models are less popular is that tests for structural

breaks are often quite easy to implement, while specifying and estimating TVC mod-

els is usually a di¢ cult task that relies on complex and computationally intensive

numerical techniques and requires careful speci�cation of the dynamics of the coe¢ -

cients. Even if the development of Markov chain Monte Carlo (MCMC) methods has

somewhat facilitated the estimation of TVC models (e.g.: Carter and Kohn - 1994

and Chib and Greenberg - 1995), the technical skills and the computing time required
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by these techniques are still far superior to those required to estimate regressions with

constant coe¢ cients1.

In this paper, we propose a Bayesian TVC model that aims to �ll this gap. The

model has low computational requirements and allows to compute analytically the

posterior probability that the regression is stable, the estimates of the regression

coe¢ cients and several other quantities of interest. Furthermore, it requires minimal

input from the econometrician, in the sense that priors are speci�ed automatically:

in particular, the only inputs required from the econometrician are regressors and

regressands, as in plain-vanilla OLS regressions with constant coe¢ cients.

Another possible reason why TVC models are less popular than OLS-based al-

ternatives is that the properties of the former are thus far largely unknown, while

the latter have been extensively studied both theoretically (e.g.: Bai and Perron -

1998) and by means of Monte Carlo simulations (e.g.: Hansen - 2000 and Bai and

Perron - 2006). Thanks to the computational tractability of our TVC model, we are

able to perform the �rst (to our knowledge) Monte Carlo study of the �nite sample

properties of a TVC model.

The main goal of our Monte Carlo study is to address the concerns of an applied

econometrician who suspects that the coe¢ cients of a regression might be unstable,

does not know what form of instability to expect and needs to decide what estimation

strategy to adopt.

The �rst concern we address is loss of e¢ ciency under the null of stability. Suppose

my data has indeed been generated by a regression with constant coe¢ cients; how much

do I lose, in terms of estimation precision and forecasting accuracy, when I estimate

the regression using the TVC model in place of OLS? Our results suggest that the

losses from using the TVC model are generally quite small and they are comparable

to the losses from using frequentist breakpoint detection procedures, such as Bai

and Perron�s (1998 and 2003) sequential procedure and its model-averaging variant

(Pesaran and Timmermann - 2007). Under most simulation scenarios, the mean

squared estimation error increases by about 5 per cent when one of the proposed TVC

estimators is used in place of OLS to estimate the coe¢ cients of a stable regression.

Another concern is robustness to mis-speci�cation. Suppose my data has been

1In recent years, several empirical papers have successfully applied MCMC methods to the esti-
mation of regression models with time varying parameters (e.g. Sargent, Williams and Zha - 2006,
Canova and Ciccarelli - 2009, Canova and Gambetti - 2009, Koop, Leon-Gonzalez and Strachan -
2009, Cogley, Primiceri and Sargent - 2010). See also the survey by Koop and Korobilis (2009).
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generated by a regression with few discrete structural breaks; how much do I loose

from using the TVC model instead of standard frequentist procedures for breakpoint

detection? Our Monte Carlo evidence indicates that also in this case the estimation

precision and the forecasting accuracy of the TVC model are comparable to those of

standard frequentist procedures.

Finally, a third concern is e¢ ciency under the null of instability. Even in the pres-

ence of frequently changing coe¢ cients, does the TVC model provide better estimation

precision and forecasting performance than other, possibly mis-speci�ed, models? We

�nd that it generally does and that in some cases this gain in e¢ ciency can be quite

large (TVC can reduce the mean squared estimation error by up to 60 per cent with

respect to the best performing OLS-based method).

All in all, the TVC model seems to be a valid complement to frequentist pro-

cedures for breakpoint detection, as the performances of the two approaches are, in

general, comparable, but the TVC model fares better in the presence of frequently

changing coe¢ cients. There is, however, an important exception to this general result:

when the regression includes a lag of the dependent variable and the autoregressive

coe¢ cient is near unity. In this case, the performance of the TVC model degrades

steeply, and so, but to a lesser extent, does the performance of frequentist methods

for breakpoint detection. We argue that this phenomenon is due to an identi�cation

problem (already pointed out in similar contexts by Hatanaka and Yamada - 1999

and Perron and Zhu - 2005) which can be alleviated by adding more regressors or

increasing the sample size.

The Monte Carlo study is also complemented by a brief demonstration of how

the TVC model can be applied to a real-world empirical problem. We consider a

regression commonly employed to estimate how stock returns are related to market-

wide risk factors. We �nd that the coe¢ cients of this regression are unstable with

high probability for a vast majority of the stocks included in the S&P 500 index. We

also �nd that the TVC model helps to better predict the exposures of these stocks to

the risk factors.

Our model belongs to the family of Class I multi-process dynamic linear models

de�ned by West and Harrison (1997). In our speci�cation there is a single mixing

parameter that takes on �nitely many values between 0 and 1. The parameter mea-

sures the stability of regression coe¢ cients: if it equals 0, then the regression is stable

(coe¢ cients are constant); the closer it is to 1, the more unstable coe¢ cients are.
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We propose two measures of stability that can be derived analytically from the

posterior distribution of the mixing parameter, one based on credible intervals and one

based on posterior odds ratios. We analyze the performance of a simple decision rule

based on these measures of stability: "use OLS if they do not provide enough evidence

of instability, otherwise use TVC". We �nd that such a decision rule performs well

across di¤erent scenarios, leading to the smallest losses under the null of stability and

still being able to produce satisfactory results when coe¢ cients are indeed unstable.

Some features of our model are borrowed from existing TVC models (in particular

Doan, Littermann and Sims - 1984, Stock and Watson - 1996, Cogley and Sargent -

2001), whereas other features are completely novel. First of all, we propose an exten-

sion of Zellner�s (1986) g-prior to dynamic linear models. Thanks to this extension,

posterior probabilities and coe¢ cient estimates are invariant to re-scalings of the re-

gressors2: this property is essential to obtain a completely automatic speci�cation of

priors. Another original feature of the model is the use of an invariant geometrically-

spaced support for the prior distribution of the mixing parameter. We argue that

this characteristic of the prior allows the model to capture both very low and very

high degrees of coe¢ cient instability, while retaining a considerable parsimony. Our

modelling choices have two main practical consequences: 1) the priors are speci�ed

in a completely automatic way so that regressors and regressands are the only input

required from the �nal user3; 2) the computational burden of the model is minimized,

because analytical estimators are available both for the regression coe¢ cients and for

their degree of instability. To our knowledge, none of the existing models has these

two characteristics, that allow to use the model in large-scale applications such as

Monte Carlo simulations.

The paper is organized as follows: Section 1 presents the model; Section 2 describes

the speci�cation of priors; Section 3 introduces the two measures of (in)stability;

Section 4 reports the results of the Monte Carlo experiments; Section 5 contains the

2Before arriving to the speci�cation of priors proposed in this paper we tried several other spec-
i�cations and we found that results can indeed be quite sensitive to rescalings if one chooses other
priors.

3A MATLAB function is made available on the internet at
www.statlect.com/time_varying_regression.htm. The function can be called with the instruction:

tvc(y,X)

where y is a T � 1 vector of observations on the dependent variable and X is a T � K matrix of
regressors.
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empirical application; Section 6 concludes. Proofs and other technical details are

relegated to the Appendix.

1 The Bayesian model

We consider a dynamic linear model (according to the de�nition given by West and

Harrison - 1997) with time-varying regression coe¢ cients:

yt = xt�t + vt (1)

where xt is a 1 � k vector of observable explanatory variables, �t is a k � 1 vector
of unobservable regression coe¢ cients and vt is an i.i.d. disturbance with normal

distribution having zero mean and variance V . Time is indexed by t and goes from 1

to T (T is the last observation in the sample).

The vector of coe¢ cients �t is assumed to evolve according to the following equa-

tion:

�t = �t�1 + wt (2)

where wt is an i.i.d. k � 1 vector of disturbances having a multivariate normal dis-
tribution with zero mean and covariance matrix W . wt is also contemporaneously

and serially independent of vt. The random walk hypothesis in (2), also adopted by

Cogley and Sargent (2001) and Stock and Watson (1996), implies that changes in

regression coe¢ cients happen in an unpredictable fashion.

1.1 Notation

Let information available at time t be denoted by Dt. Dt is de�ned recursively by:

Dt = Dt�1 [ fyt; xtg

and D0 contains prior information on the parameters of the model (to be speci�ed

below).

We denote by (z jDt ) the distribution of a random vector z, given information at

time t and by p (z jDt ) its probability density (or mass) function.

If a random vector z has a multivariate normal distribution with mean m and
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covariance matrix S, given Dt, we write:

(z jDt ) � N (m;S)

If a k � 1 random vector z has a multivariate Student�s t distribution with mean

m, scale matrix S and n degrees of freedom, we write:

(z jDt ) � T (m;S; n)

and its density is parametrized as follows:

p (z jDt ) _
�
n+ (z �m)| S�1 (z �m)

� k+n
2

If z has a Gamma distribution with parameters V and n, we write

(z jDt ) � G (V; n)

and its density is parametrized as follows:

p (z jDt ) =
(V n=2)n=2 zn=2�1 exp (�V nz=2)

� (n=2)

Finally, de�ne W � = V �1W and denote by X the design matrix

X =
h
x>1 : : : x>T

i>
1.2 Structure of prior information and updating

In this subsection we state the main assumptions on the structure of prior information

and we derive the formulae for updating the priors analytically.

The �rst set of assumptions regards �1, the vector of regression coe¢ cients at

time t = 1, and V , the variance of the regression disturbances. We impose on �1 and

V a conjugate normal/inverse-gamma prior4, i.e.:

� �1 has a multivariate normal distribution conditional on V , with known meanb�1;0 and covariance equal to V � F�;1;0 where F�;1;0 is a known matrix;
4This prior is frequently utilized in Bayesian regressions with constant coe¢ cients (e.g. Hamilton

- 1994)
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� the reciprocal of V has a Gamma distribution, with known parameters bV0 and
n0.

The second set of assumptions regards W , which is assumed to be proportional

to the prior variance of �1:

W = �V F�;1;0 (3)

where � is a coe¢ cient of proportionality5.

When � = 0, the covariance matrix of wt is zero and regression coe¢ cients are

stable. On the contrary, when � > 0, wt has non-zero covariance matrix and the

regression coe¢ cients are unstable (i.e. they change through time). The higher � is,

the greater the variance of wt is and the more unstable regression coe¢ cients are.

The constant of proportionality � is parametrized as:

� = � (�) (4)

where � (�) is a strictly increasing function and � is a random variable with �nite

support R�:

R� = f�1; : : : ; �qg � [0; 1]

The prior probabilities of the q possible values of � are denoted by p0;1, . . . , p0;q.

The discussion of how �1, . . . , �q and p0;1, . . . , p0;q are chosen is postponed to the

next section.

It is also assumed that �1 = 0 and � (�1) = 0. Therefore, regression coe¢ cients

are stable when � = �1 = 0 and unstable when � 6= �1 (the closer � is to 1, the more
unstable regression coe¢ cients are).

The assumptions on the priors and the initial information are summarized as

follows:

5The assumption that W � / F�;1;0 is made also by Doan, Littermann and Sims (1984) in their
seminal paper on TVC models. However, in their model the coe¢ cients �t do not follow a random
walk (they are mean reverting). They also use di¤erent priors: while we impose Zellner�s g-prior on
�1 (see section 2), they impose the Minnesota prior.
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Assumption 1 The priors on the unknown parameters are:

(�1 jD0; V; � ) � N
�b�1;0; V F�;1;0�

(1=V jD0; � ) � G
�bV0; n0�

p (�i jD0 ) = p0;i ; i = 1; : : : ; q

and the initial information set is:

D0 =
nb�1;0; F�;1;0; bV0; n0; p0;1; : : : ; p0;qo

Given the above assumptions, the posterior distributions of the parameters of the

regression can be calculated as follows:

Proposition 2 Let priors and initial information be as in Assumption 1. Let pt;i =
p (� = �i jDt ). Then:

p (�t jDt�1 ) =

qX
i=1

p (�t j� = �i; Dt�1 ) pt�1;i (5)

p (yt jDt�1; xt ) =

qX
i=1

p (yt j� = �i; Dt�1; xt ) pt�1;i

p (1=V jDt�1 ) =

qX
i=1

p (1=V j� = �i; Dt�1 ) pt�1;i

p (�t jDt ) =

qX
i=1

p (�t j� = �i; Dt ) pt;i

where

(�t j� = �i; Dt�1 ) � T
�b�t;t�1;i; bVt�1;iF�;t;t�1;i; nt�1;i� (6)

(yt j� = �i; Dt�1; xt ) � T
�byt;t�1;i; bVt�1;iFy;t;t�1;i; nt�1;i�

(1=V j� = �i; Dt�1 ) � G
�bVt�1;i; nt�1;i�

(�t j� = �i; Dt ) � T
�b�t;t;i; bVt;iF�;t;t;i; nt;i�
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and the parameters of the above distributions are obtained recursively as:

b�t;t�1;i = b�t�1;t�1;i F�;t;t�1;i = F�;t�1;t�1;i + � (�i)F�;1;0byt;t�1;i = xtb�t;t�1;i Fy;t;t�1;i = 1 + xtF�;t;t�1;ix
>
t

et;i = yt � byt;t�1;i Pt;i = F�;t;t�1;ix
>
t =Fy;t;t�1;ib�t;t;i = b�t;t�1;i + Pt;iet;i F�;t;t;i = F�;t;t�1;i � Pt;iP>t;iFy;t;t�1;i

nt;i = nt�1;i + 1 bVt;i = 1
nt;i

�
nt�1;ibVt�1;i + e2t;i

Fy;t;t�1;i

�
(7)

starting from the initial conditions b�1;0;i = b�1;0, F�;1;0;i = F�;1;0, bV0;i = bV0 and
n0;i = n0, while the mixing probabilities are obtained recursively as:

pt;i =
pt�1;ip (yt j� = �i; Dt�1; xt )Pq
j=1 pt�1;jp (yt j� = �j; Dt�1; xt )

(8)

starting from the prior probabilities p0;1; : : : ; p0;q.

The updated mixing probabilities in the above proposition can be interpreted

as posterior model probabilities, where a model is a TVC regression with �xed �.

Hence, for example, pT;1 is the posterior probability of the regression model with

stable coe¢ cients (� = 0). A crucial property of the framework we propose is that

posterior model probabilities are known analytically: they can be computed exactly,

without resorting to simulations.

In the above proposition, the priors on the regression coe¢ cients �t in a generic

time period t are updated using only information received up to that same time t.

However, after observing the whole sample (up to time T ), one might want to revise

her priors on the regression coe¢ cients �t in previous time periods (t < T ), using the

information subsequently received. This revision (usually referred to as smoothing)

can be accomplished using the results of the following proposition:

Proposition 3 Let priors and initial information be as in Assumption 1. Then, for
0 � � � T � 1:

p
�
�T�� jDT

�
=

qX
i=1

p
�
�T�� j� = �i; DT

�
pT;i

where �
�T�� j� = �i; DT

�
� T

�b�T��;T;i; bVT;iF�;T��;T;i; nT;i�
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The mixing probabilities pT;i and the parameters bVT;i, nT;i are obtained from the re-

cursions in Proposition 2 while the parameters b�T��;T;i and F�;T��;T;i are obtained
from the following backward recursions:

b�T��;T;i = b�T��;T��;i +QT��;i �b�T��+1;T;i � b�T��+1;T��;i�
F�;T��;T;i = F�;T��;T��;i +QT��;i (F�;T��+1;T;i � F�;T��+1;T��;i)Q>T��;i
QT��;i = F�;T��;T��;i (F�;T��+1;T��;i)

�1

starting from � = 1 and taking as �nal conditions the values b�T�1;T�1;i, b�T;T;i, b�T;T�1;i,
F�;T�1;T�1;i, F�;T;T;i and F�;T;T�1;i obtained from the recursions in Proposition 2.

Other important quantities of interest are known analytically, as shown by the

following:

Lemma 4 For 1 � t � T and s 2 ft� 1; t; Tg, the following equalities hold6:

E [�t jDs ] =

qX
i=1

ps;iE [�t j� = �i; Ds ]

E [yt jxt; Ds ] =

qX
i=1

ps;iE [yt jxt; � = �i; Ds ]

Var [�t jDs ] =

qX
i=1

ps;iVar [�t j� = �i; Ds ] +

qX
i=1

ps;iE [�t j� = �i; Ds ] E [�
|
t j� = �i; Ds ]

�
 

qX
i=1

ps;iE [�t j� = �i; Ds ]

! 
qX
i=1

ps;iE [�t j� = �i; Ds ]

!|

Var [yt jxt; Ds ] =

qX
i=1

ps;iVar [yt jxt; � = �i; Ds ] +

qX
i=1

ps;iE [yt jxt; � = �i; Ds ]
2

�
 

qX
i=1

ps;iE [yt jxt; � = �i; Ds ]

!2

where E [�t j� = �i; Ds ], E [yt jxt; Ds ], Var [�t jDs ] and Var [yt jxt; Ds ] can be calculated

analytically for each �i as in Propositions 2 and 3.

Thus, parameter estimates (E [�t jDs ]) and predictions (E [yt jDs ]) in any time

period can be computed analytically and their variances are known in closed form.
6These are trivial consequences of the linearity of the integral (for the expected values) and of

the law of total variance (for the variances).
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The probability distributions of �t and yt in a certain time period given information

Ds are mixtures of Student�s t distributions. Their quantiles are not known analyt-

ically, but they are easy to simulate by Monte Carlo methods. For example, if the

distribution of �T conditional on DT is the object of interest, one can set up a Monte

Carlo experiment where each simulation is conducted in two steps: 1) extract z from

a uniform distribution on [0; 1]; �nd k� such that k� = argmin
n
k :
Pk

i=1 pT;i � z
o
;

2) given k�, extract �T from the Student�s t distribution (�T j� = �k� ; DT ), which is

given by Proposition 2. The empirical distribution of the Monte Carlo simulations of

�T thus obtained is an estimate of the distribution of �T conditional on DT .

2 The speci�cation of priors

Our speci�cation of priors aims to be:

1. objective, in the sense that it does not require elicitation of subjective priors;

2. fully automatic, in the sense that the model necessitates no inputs from the

econometrician other than regressors and regressands, as in plain-vanilla OLS

regressions with constant coe¢ cients.

The above goals are pursued by extending Zellner�s (1986) g-prior to TVC models

and by parametrizing � (�) in such a way that the support of � is invariant (it needs

not be speci�ed on a case-by-case basis).

2.1 The prior mean and variance of the coe¢ cients

We use a version of Zellner�s (1986) g-prior for the prior distribution of the regression

coe¢ cients at time t = 1:

Assumption 5 The prior mean is zero, corresponding to a prior belief of no pre-
dictability: b�1;0 = 0 (9)

while the prior covariance matrix is proportional to
�
X>X

��1
:

F�;1;0 = g
�
X>X

��1
(10)

where g is a coe¢ cient of proportionality.
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Zellner�s (1986) g-prior is widely used in model selection and model averaging

problems similar to ours (we have a range of regression models featuring di¤erent

degrees of instability), because it greatly reduces the sensitivity of posterior model

probabilities to the speci�cation of prior distributions (Fernandez, Ley and Steel

- 2001), thus helping to keep the analysis as objective as possible. Furthermore,

Zellner�s (1986) g-prior has a straightforward interpretation: it can be interpreted as

information provided by a conceptual sample having the same design matrix X as the

current sample (Zellner 1986; George and McCulloch 1997; Smith and Kohn 1996).

To keep the prior relatively uninformative, we follow Kass and Wasserman (1995)

and choose g = T (see also Shively, Kohn and Wood - 1999):

Assumption 6 The coe¢ cient of proportionality is g = T .

Thus, the amount of prior information (in the Fisher sense) about the coe¢ cients

is equal to the amount of average information contained in one observation from the

sample.

Remark 7 Given that W � = � (�)F�;1;0 (equations 3 and 4), Zellner�s prior (10)

implies that also the covariance matrix of wt is proportional to
�
X>X

��1
:

W � /
�
X>X

��1
This proportionality condition has been imposed in a TVC model also by Stock

and Watson7 (1996), who borrow it from Nyblom (1989). A similar hypothesis is

adopted also by Cogley and Sargent8 (2001).

Remark 8 Given (10) and (9), all the coe¢ cients �t have zero prior mean and
covariance proportional to

�
X>X

��1
conditional on D0:

E [�t jD0; V; � ] = 0 , t = 1 : : : ; T , 8�
Var [�t jD0; V; � ] = [T + (t� 1)� (�)]V

�
X>X

��1
, t = 1; : : : ; T , 8�

7However, they assume that F�;1;0 is proportional to the identity matrix, while we assume that
also F�;1;0 is proportional to (X|X)�1. Furthermore, they do not estimate V . Their analysis is
focused on the one-step-ahead predictions of yt, which can be computed without knowing V . They
approach the estimation of � in a number of di¤erent ways, but none of them allows to derive
analytically a posterior distribution for �.

8In their model the prior covariance of wt is proportional to (X|X)�1, but X is the design matrix
of a pre-sample not used for the estimation of the model.
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This property will be used later, together with other properties of the priors, to

prove that posterior model probabilities are scale invariant in the covariates.

2.2 The variance parameters bV0 and n0
In objective Bayesian analyses, the prior usually assigned to V in conjunction with

Zellner�s (1986) g-prior (e.g.: Liang et al. - 2008) is the improper prior:

p (V jD0; � ) / V �1

With this choice, the updating equations in Proposition 2 would have to be re-

placed with a di¤erent set of updating equations until reaching the �rst non-zero

observation of yt (see e.g. West and Harrison - 1997). Furthermore, the updating of

posterior probabilities would be slightly more complicated. To avoid the subtleties in-

volved in using an improper prior, we adopt a simpler procedure, which yields almost

identical results in reasonably sized samples:

Assumption 9 The �rst observation in the sample (denote it by y0) is used to form
the prior on V :

bV0 = y20

n0 = 1

After using it to form the prior, we discard the �rst observation and start updating

the equations (5)-(8) from the following observation. If the �rst observation is zero

(y0 = 0) we discard it and use the next to form the prior (or repeat until we �nd the

next non-zero observation).

2.3 The mixing parameter �

We have assumed that W � = � (�)F�;1;0 where � is a random variable having �nite

support R� = f�1; : : : ; �qg � [0; 1], �1 = 0 and � (�) is strictly increasing in � and such
that � (�1) = 0. We now propose a speci�cation of the function � (�) that satis�es

the above requirements and allows for an intuitive interpretation of the parameter �,

while also facilitating the speci�cation of a prior distribution for �.
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First, note that:

yt = xt�t�1 + xtwt + vt

Hence, given �, xt and the initial information D0, the variance generated by

innovations at time t is:

Var [xtwt + vt jxt; D0; � ] = �bV0xtF�;1;0x>t + bV0
Assumption 10 � is the fraction of Var [xtwt + vt jxt; D0; � ] generated on average

by innovations to the regression coe¢ cients:

� =
1
T

PT
t=1Var [xtwt jxt; D0; � ]

1
T

PT
t=1Var [xtwt + vt jxt; D0 ; �]

Given this assumption on �, it is immediate to prove that

� (�) =
�

! � �!

where

! =
1

T

TX
t=1

xtF�;1;0x
>
t

� (�) is strictly increasing in � and such that � (0) = 0, as required. Hence, when

� = 0 the regression has stable coe¢ cients. Furthermore, by an appropriate choice

of �, any degree of coe¢ cient instability can be reproduced (when � tends to 1, �

approaches in�nity).

As far as the support of � is concerned, we make the following assumption:

Assumption 11 The support of � is a geometrically spaced grid, consisting of q
points:

R� =
�
0; �maxc

q�2; �maxc
q�1; : : : ; �maxc

1; �max
	

where 0 � �max < 1 and 0 < c < 1.

Notice that �max cannot be chosen to be exactly equal to 1 (because � (1) =1),
but it can be set equal to any number arbitrarily close to 1.

Using a geometrically spaced grid is the natural choice when the order of mag-

nitude of a parameter is unknown (e.g.: Guerre and Lavergne - 2005, Horowitz and
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Spokoiny - 2001, Lepski, Mammen and Spokoiny - 1997 and Spokoiny - 2001): in our

model, it allows to simultaneously consider both regressions that are very close to

being stable and regressions that are far from being stable, without requiring too �ne

a grid9.

If the geometric grid is considered as an approximation of a �ner set of points

(possibly a continuum), the geometric spacing ensures that the maximum relative

round-o¤ error is constant on all subintervals [�i; �i+1] such that 1 < i < q. The

maximum relative round-o¤ error is approximately 1�c
2
on these subintervals and it

can be controlled by an appropriate choice of c. On the contrary, the maximum

relative round-o¤ error cannot be controlled (it always equals 1) on the subinterval

[�0; �1], because the latter contains the point �0 = 0. Only the absolute round-o¤

error (equal to �max
2
cq�2) can be controlled on [�0; �1], by an appropriate choice of

q. Therefore, setting the two parameters c and q can be assimilated to setting the

absolute and relative error tolerance in a numerical approximation problem.

Assuming prior ignorance on the order of magnitude of �, we assign equal proba-

bility to each point in the grid:

Assumption 12 The prior mixing probabilities are assumed to be:

p (�i jD0 ) = q
�1 ; i = 1; : : : ; q

Note that, given the above choices, the prior on � and its support are invariant,

in the sense that they do not depend on any speci�c characteristic of the data to be

analyzed, but they depend only on the maximum percentage round-o¤ error 1�c
2
. As

a consequence, they allow the speci�cation of priors to remain fully automatic.

2.4 Scale invariance

A crucial property of the automatic speci�cation of priors proposed in the previous

sections is that it guarantees scale invariance. The scale invariance property is satis�ed

if multiplying the regressors by an invertible matrixR, the posterior distribution of the

coe¢ cients is re-scaled accordingly10 (it is multiplied by R�1). Virtually all the TVC

9For example, in the empirical part of the paper, setting q = 100 and c = 0:9; we are able to
simultaneously consider 5 di¤erent orders of magnitude of instability. With the same number of
points q and an arithmetic grid, we would have been able to consider only 2 orders.
10For example, when a regressor is multiplied by 100, the posterior mean of the coe¢ cient multi-

plying that regressor is divided by 100.
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models we have found in the literature do not satisfy the scale invariance property,

in the sense that they do not contemplate a mechanism to guarantee scale invariance

by automatically re-scaling priors when the scale of regressors is changed. Although

scale invariance might seem a trivial property, it is indispensable to achieve one of

the main goals of this paper: having a completely automatic model that requires

only regressors and regressands as inputs from the econometrician. Furthermore,

it guarantees replicability of results: two researchers using the same data, but on

di¤erent scales, will obtain the same results.

Scale invariance is formally de�ned as follows:

De�nition 13 Given the initial information set D0, the information sets

Dt = Dt�1 [ fyt; xtg t = 1; : : : ; T

and a full-rank k � k matrix R, an initial information set D�
0 is said to be R-scale

invariant with respect to D0 if and only if:

(�t jD�
s ) =

�
R�1�t jDs

�
8s; t � T

where

D�
t = D

�
t�1 [ fyt; xtRg t = 1; : : : ; T

Note that the initial information setD0, which contains the priors, is automatically

speci�ed as a function of y0 and
�
X>X

��1
. We can write:

D0 = D
�
y0;
�
X>X

��1�
(11)

The following proposition, proved in the Appendix, shows in what sense our TVC

model is scale-invariant:

Proposition 14 For any full-rank k � k matrix R, the initial information set D�
0

de�ned by:

D�
0 = D

�
y0;
�
R>X>XR

��1�
is R-scale invariant with respect to the initial information set D0, as de�ned in (11).
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3 Measures of (in)stability

After computing the posterior distribution of �, a researcher might naturally ask:

how much evidence did the data provide against the hypothesis of stability? Here, we

discuss some possible ways to answer this question.

The crudest way to evaluate instability is to look at the posterior probability

that � = 0. The closer to 1 this probability is, the more evidence of stability we

have. However, a low posterior probability that � = 0 does not necessarily constitute

overwhelming evidence of instability. It might simply be the case that the sample

is not large enough to satisfactorily discriminate, a posteriori, between stable and

unstable regressions: in such cases, even if the true regression is stable, unstable

regressions might be assigned posterior probabilities that are only marginally lower

than the probability of the stable one. Furthermore, if R� contains a great number

of points, it can happen that the posterior probability that � = 0 is close to zero, but

still much higher than the posterior probability of all the other points.

We propose two measures of stability to help circumvent the above shortcomings.

The �rst measure of stability, denoted by �, is based on credible intervals (e.g.:

Robert - 2007):

De�nition 15 (�-stability) Let H� be a higher posterior probability set de�ned as
follows:11

H� = f�i 2 R� : p (� = �i jDT ) > p (� = 0 jDT )g

The stability measure � is de�ned by:

� = 1�
P

�i2H� p (� = �i jDT )P
�i 6=0 p (� = �i jDT )

;

where we adopt the convention 0=0 = 0:

When � = 1, � = 0 is a mode of the posterior distribution of �: we attach to the

hypothesis of stability a posterior probability that is at least as high as the posterior

probability of any alternative hypothesis of instability. On the contrary, when � = 0,

the posterior probability assigned to the hypothesis of stability is so low that all

unstable models are more likely than the stable one, a posteriori. In the intermediate

11H� contains all points of R� having higher posterior probability than � = 0 (recall that � = 0
means that regression coe¢ cients are stable).
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cases (0 < � < 1), � provides a measure of how far the hypothesis of stability is from

being the most likely hypothesis (the lower �, the less likely stability is).

The second measure of stability, denoted by �, is constructed as a posterior odds

ratio and it is based on the probability of the posterior mode of �.

De�nition 16 (�-stability) Let p� be the probability of (one of) the mode(s) of the
posterior distribution of �:

p� = max (fp (� = �i jDT ) : �i 2 R�g)

The stability measure � is de�ned by:

� =
p (� = 0 jDT )

p�

As with the previously proposed measure, when � = 1, � = 0 is a mode of the

posterior distribution of � and stability is the most likely hypothesis, a posteriori.

On the contrary, the closer � is to zero, the less likely stability is, when compared

with the most likely hypothesis. For example, when � = 1=10, there is an unstable

regression that is 10 times more likely than the stable one.

Both measures of stability (� and �) can be used to make decisions. For example,

one can �x a threshold  and decide to reject the hypothesis of stability if the measure

of stability is below the threshold (� <  or � < ). In case � is used, the procedure

can be assimilated to a frequentist test of hypothesis, where 1 �  represents the
level of con�dence. � can be interpreted as a sort of Bayesian p-value (e.g.: Robert

- 2007): the lower � is, the higher is the con�dence with which we can reject the

hypothesis of stability12. In case � is used, one can resort to Je¤rey�s (1961) scale

to qualitatively assess the strength of the evidence against the hypothesis of stability

(e.g.: substantial evidence if 1
3
� � < 1

10
, strong evidence if 1

10
� � < 1

30
, very strong

evidence if 1
30
� � < 1

100
).

In the next section we explore the consequences of using these decision rules to

decide whether to estimate a regression by OLS or by TVC.

12Note, however, that the parallelism can be misleading, as Bayesian p-values have frequentist
validity only in special cases. Ghosh and Mukerjee (1993), Mukerjee and Dey (1993), Datta and
Ghosh (1995) and Datta (1996) provide conditions that priors have to satisfy in order for Bayesian
p-values to have also frequentist validity.
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4 Monte Carlo evidence

4.1 Performance when the DGP is a stable regression

In this subsection we present the results of a set of Monte Carlo simulations aimed at

evaluating how much e¢ ciency is lost when a stable regression is estimated with our

TVC model. We compare the forecasting performance and the estimation precision

of the TVC model with those of plain vanilla OLS and of a standard frequentist

procedure used to identify breakpoints and estimate regression coe¢ cients in the

presence of structural breaks. In particular, we consider the performance of Bai

and Perron�s (1998 and 2003) sequential procedure, as implemented by Pesaran and

Timmermann (2002 and 2007).

For our Monte Carlo experiments, we adapt a design that has already been em-

ployed in the literature on parameter instability (Hansen - 2000).

The design is as follows:

� Data generating process: yt is generated according to:

yt = �yt�1 + ut�1 + vt

where y0 = 0, ut � T (0; 1; 5) i.i.d., vt � N (0; 1) i.i.d. and ut and zt are serially
and cross-sectionally independent.

� Estimated equations: two equations are estimated. In the �rst case, a constant
and the �rst lags of yt and ut are included in the set of regressors; hence, the

estimated model is (1), where

xt =
h
1 yt�1 ut�1

i
In the second case, a constant and the �rst three lags of yt and ut are included

in the set of regressors; hence, the estimated model is (1), where

xt =
h
1 yt�1 yt�2 yt�3 ut�1 ut�2 ut�3

i
� Parameters of the design: simulations are conducted for three di¤erent sample
sizes (T = 100; 200; 500), four di¤erent values of the autoregressive coe¢ cient
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(� = 0; 0:50; 0:80; 0:99) and the two estimated equations detailed above, for a

total of 24 experiments.

Each Monte Carlo experiment consists of 10,000 simulations.

The loss in estimation precision is evaluated comparing the estimate of the co-

e¢ cient vector at time T (denote it by e�T ) with its true value. We consider seven
di¤erent estimates:

� model averaging (TVC-MA) estimates, where:

e�T = E [�T jDT ] =

qX
i=1

pT;iE [�T jDT ; � = �i ]

� model selection (TVC-MS) estimates, where:

e�T = E [�T jDT ; � = �j� ]

and

j� = argmax
j
pT;j

i.e. only the model with the highest posterior probability is used to make

predictions;

� estimates obtained from the regression model with stable coe¢ cients when � �
0:1 and from model averaging when � < 0:1 (denoted by TVC-�):

e�T =
(
E [�T jDT ; � = 0] if � � 0:1
E [�T jDT ] if � < 0:1

i.e. coe¢ cients are estimated with the TVC model only if there is enough

evidence of instability (� < 0:1); otherwise, the standard OLS regression is

used. This is intended to reproduce the outcomes of a decision rule whereby

the econometrician uses the TVC model only if the TVC model itself provides

enough evidence that OLS is inadequate;

� estimates obtained from the regression model with stable coe¢ cients when � �
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0:1 and from model averaging when � < 0:1 (denoted by TVC-�):

e�T =
(
E [�T jDT ; � = 0] if � � 0:1
E [�T jDT ] if � < 0:1

This estimator is similar to the previous one, but � is used in place of � to

decide whether there is enough evidence of instability;

� estimates obtained from the regression model with stable coe¢ cients (OLS):

e�T = E [�T jDT ; � = 0]

� OLS estimates obtained from Bai and Perron�s (1998 and 2003) sequential13

procedure (denoted by BP), using the SIC criterion to choose the number of

breakpoints (Pesaran and Timmermann - 2002 and 2007). If e� is the last es-
timated breakpoint date in the sample, then e�T is the OLS estimate of �T
obtained using all the sample points from e� to T ;

� estimates obtained from Pesaran and Timmermann�s (2007) model-averaging

procedure (denoted by BP-MA): the location of the last breakpoint is estimated

with Bai and Perron�s procedure (as in the point above); if e� is the last estimated
breakpoint date in the sample, then:

e�T = e�X
�=1

w�e�T;�
where e�T;� is the OLS estimate of �T obtained using all the sample points from
� to T ; w� is a weight proportional to the inverse of the mean squared prediction

error committed when using only the sample points from � onwards to estimate

the regression and predict yt (� + k + 1 � t � T ).
13We estimate the breakpoint dates sequentially rather than simultaneously to achieve a reason-

able computational speed in our Monte Carlo simulations. Denote by �S the number of breakpoints
estimated by the sequential procedure and by �� the number estimated by the simultaneous pro-
cedure. Given that we are using the SIC criterion to choose the number of points, if �� � 1, then
�S = ��; otherwise, if �� > 1, then �S � ��. Therefore, in our Montecarlo simulations (where the
true number of breakpoints is either 0 or 1), the sequential procedure provides a better estimate of
the number of breakpoints than the simultaneous procedure.
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The Monte Carlo replications are used to estimate the mean squared error of the

coe¢ cient estimates:

MSE�j = E

��T � e�T2�
where kk is the Euclidean norm and j =TVC-MA, TVC-MS, TVC-�, TVC-�, OLS,

BP, BP-MA depending on which of the above methods has been used to estimate �T .

The two parameters regulating the granularity of the grid for � are chosen as

follows: q = 100 and c = 0:9. To avoid degeneracies, rather than setting �max = 1

(the theoretical upper bound on �), we choose a value that is numerically close to 1

(�max = 0:999). Thus, the relative round-o¤ error is bounded at 5 per cent and the

model is able to detect degrees of instability as low as � ' 3 � 10�5 (for concreteness,
this means that coe¢ cient instability can be detected by the model also in cases in

which less than 0:01 per cent of total innovation variance is generated by coe¢ cient

instability).

Panel A of Table 1 reports the Monte Carlo estimates of MSE�j for the case in

which xt includes only the �rst lags of yt and ut. Not surprisingly, the smallest MSE is

in all cases achieved by the OLS estimates. As anticipated in the introduction, there

are signi�cant di¤erences between the case in which the autoregressive component is

very persistent (� = 0:99) and the other cases (� = 0, 0:50, 0:80). In the latter cases,

the TVC-� coe¢ cient estimates are those that yield the smallest increase in MSE

with respect to OLS (in most cases under 5 per cent). The performance of BP-MA is

the second best, being only slightly inferior to that of TVC-�, but slightly superior to

that of TVC-�. MSE�TV C�MA and MSE
�
TV C�MS are roughly between 20 and 60 per

cent higher than MSE�TV C�OLS, while MSE
�
TV C�BP is on average equal to several

multiples of MSE�TV C�OLS. Qualitatively speaking, the loss in precision from using

TVC-�, TVC-� and BP-MA is almost negligible, while there is a severe loss using

BP and a moderate loss using TVC-MA and TVC-MS. In the case in which � = 0:99,

results are very di¤erent: on average, MSE�TV C (all four kinds of TVC) and MSE
�
BP

become almost two orders of magnitude greater than MSE�OLS, while MSE
�
BP�MA

remains comparable to MSE�OLS (although there is a worsening with respect to the

case of low persistence).

The unsatisfactory performance of the TVC and BP estimates in the case of high

persistence can arguably be explained by an identi�cation problem. In the unit root
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case, the regression generating the data is:

yt = yt�1 + ut�1 + vt

For any � < 1, it can be rewritten as:

yt = �t + �yt�1 + ut�1 + vt

where �t = (1� �) yt�1 is an intercept following a random walk. Furthermore, its in-
novations (�t��t�1) are contemporaneously independent of the innovations vt. There-
fore, if the estimated equation includes a constant and time-varying coe¢ cients are

not ruled out, it is not possible to identify whether the regression has a unit root and

stable coe¢ cients or has a stationary autoregressive component and a time-varying

intercept14. When � is near unity, identi�cation is possible, but it will presumably

be weak, giving rise to very imprecise estimates of the coe¢ cients and of their degree

of stability. Note that the two equivalent (and unidenti�ed) representations above

obviously yield the same one-step-ahead forecasts of yt. Therefore, if our conjecture

that this weak identi�cation problem is a¤ecting our results is correct, we should

�nd that the out-of-sample forecasts of yt produced by the TVC model are not as

unsatisfactory as its coe¢ cient estimates. This is exactly what we �nd and document

in the last part of this subsection.

Panel B of Table 1 reports the Monte Carlo estimates of MSE�j for the case in

which xt includes three lags of yt and ut. In the case of low persistence, the BP-MA

estimates are those that achieve the smallest increase in MSE with respect to the OLS

estimates (on average below 2 per cent). The performance of the TVC-� estimates is

only slightly inferior (around 3 percent increase in MSE with respect to OLS). All the

other estimates (TVC-MA, TVC-MS, TVC-� and BP) are somewhat less e¢ cient,

but their MSEs seldom exceed those of the OLS estimates by more than 30%. As far

as the highly persistent case (� = 0:99) is concerned, we again observe a degradation

in the performance of the TVC and (to a lesser extent) of the BP estimates. However,

the degradation is less severe than the one observed in the case of fewer regressors.

Intuitively, adding more regressors (even if their coe¢ cients are 0) helps to alleviate

the identi�cation problem discussed before, because the added regressors have stable

14This identi�cation problem is discussed in a very similar context by Hatanaka and Yamada
(1999) and Perron and Zhu (2005).
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coe¢ cients and hence help to pin down the stable representation of the regression.

The loss in forecasting performance is evaluated using a single out-of-sample pre-

diction for each replication. In each replication, T +1 observations are generated, the

�rst T are used to update the priors, the vector of regressors xT+1 is used to predict

yT+1 and the prediction (denote it by eyT+1) is compared to the actual value yT+1. As
for coe¢ cient estimates, we consider seven di¤erent predictions:

� model averaging (TVC-MA) predictions, where:

eyT+1 = E [yT+1 jDT ; xT+1 ] =

qX
i=1

pT;iE [yT+1 jDT ; xT+1; � = �i ]

� model selection (TVC-MS) predictions, where:

eyT+1 = E [yT+1 jDT ; xT+1; � = �j� ]

� predictions generated by the regression model with stable coe¢ cients when � �
0:1 and by model averaging when � < 0:1 (denoted by TVC-�):

eyT+1 = ( E [yT+1 jDT ; xT+1; � = 0] if � � 0:1
E [yT+1 jDT ; xT+1 ] if � < 0:1

� predictions generated by the regression model with stable coe¢ cients when � �
0:1 and by model averaging when � < 0:1 (denoted by TVC-�):

eyT+1 = ( E [yT+1 jDT ; xT+1; � = 0] if � � 0:1
E [yT+1 jDT ; xT+1 ] if � < 0:1

� predictions generated by the regression model with stable coe¢ cients (OLS):

eyT+1 = E [yT+1 jDT ; xT+1; � = 0]

� predictions obtained from Bai and Perron�s sequential procedure (BP); if e�T is
the BP estimate of �T (see above), then:

eyT+1 = xT+1e�T
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� predictions obtained from Pesaran and Timmermann�s (2007) model-averaging

procedure (BP-MA); if e�T is the BP-MA estimate of �T (see above), then:
eyT+1 = xT+1e�T

The Monte Carlo replications are used to estimate the mean squared error of the

predictions:

MSEyj = E
�
(yT+1 � eyT+1)2�

where j =TVC-MA, TVC-MS, TVC-�, TVC-�, OLS, BP, BP-MA depending on

which of the above methods has been used to forecast yT+1.

To increase the accuracy of our Monte Carlo estimates of MSEyj ; we use the fact

that:

E
�
(yT+1 � eyT+1)2� = E �v2T+1�+ E ���T+1 � e�T+1�> x>T+1xT+1 ��T+1 � e�T+1��

Since E
�
v2T+1

�
is known, we use the Monte Carlo simulations to estimate only the

second summand on the right hand side of the above equation.

Table 2 reports the Monte Carlo estimates of MSEyj . The variation in MSE
y
j

across models and design parameters broadly re�ects the variation inMSE�j we have

discussed above. To avoid repetitions, we point out the only signi�cant di¤erence,

which concerns the highly persistent design (� = 0:99): while the TVC and BP

estimates give rise to an MSE�j that is around two orders of magnitude higher than

MSE�OLS, the part of their MSE
y
j attributable to estimation error (MSE

y
j � 1)

compares much more favorably to its OLS counterpart, especially in the designs

where xt includes three lags of yt and ut. This might be considered evidence of the

identi�cation problem mentioned above.

4.2 Performance when the DGP is a regression with a dis-

crete structural break

In this subsection we present the results of a set of Monte Carlo simulations aimed at

understanding how our TVC model performs when regression coe¢ cients experience

a single discrete structural break. As in the previous subsection, we analyze both

losses in forecasting performance and losses in estimation precision.
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The Monte Carlo design is the same employed in the previous subsection, except

for the fact that the data generating process is now subject to a discrete structural

break at an unknown date:

� Data generating process: yt is generated according to:

yt = �yt�1 + ut�1 + vt if t < �

yt = �yt�1 + (1 + b)ut�1 + vt if t � �

where y0 = 0, ut � T (0; 1; 5) i.i.d., vt � N (0; 1) i.i.d. and ut and vt are serially
and cross-sectionally independent; � is the stochastic breakpoint date, extracted

from a discrete uniform distribution on the set of sample dates (from 1 to T );

b � N (0; 1) is the stochastic break in regression coe¢ cients.

The estimation precision and the forecasting performance are evaluated comparing

the estimates of the coe¢ cient vector at time T and the predictions of yT+1 with their

true values.

Panel A of Table 3 reports the Monte Carlo estimates of MSE�j for the case in

which xt includes only the �rst lags of yt and ut. As before, we �rst discuss the

cases in which � 6= 0:99. The OLS estimates, which have the smallest MSEs in the
stable case (see previous subsections) are now those with the highest MSEs. Both

the frequentist methods (BP and BP-MS) and the TVC methods (all four kinds)

achieve a signi�cant reduction of the MSE with respect to OLS. Although TVC-MA

and TVC-MS perform slightly better than TVC-� and TVC-�, there is not a clear

ranking between the former two and the two frequentist methods: their MSEs are on

average comparable, but TVC-MA and TVC-MS tend to perform better when the

sample size is small (T = 100), while BP and BP-MA tend to perform better when

the sample size is large (T = 200; 500). This might be explained by the fact that BP

and BP-MA require the estimation of a considerable number of parameters when one

or more break-dates are found and these parameters are inevitably estimated with

low precision when the sample size is small. In the case in which � = 0:99, results are

again substantially di¤erent: the MSEs of the TVC estimates (all four kinds) and of

the BP estimates become much larger than the MSEs of the OLS estimates (and the

BP estimates fare better than the TVC estimates), while the MSEs of the BP-MA

estimates remain below those of the OLS estimates. The remarks about potential

identi�cation problems made in the previous subsections apply also to these results.
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Panel B of Table 3 reports the Monte Carlo estimates of MSE�j for the case in

which xt includes three lags of yt and ut. The patterns are roughly the same found

in Panel A (see the previous paragraph), with the relative performance of the TVC

methods and the frequentist methods depending on the sample size T . The only

di¤erence worth mentioning is that when � = 0:99 the increase in the MSEs is milder

and the TVC-MA estimates are more precise than the BP estimates.

As far as out-of-sample forecasting performance is concerned (Table 4, Panels A

and B), the patterns in the MSEyj broadly re�ect the patterns in the MSE
�
j . Again,

there is an exception to this: when � = 0:99, high values of MSE�j do not translate

into high values ofMSEyj ; as a consequence, despite the aforementioned identi�cation

problem, the BP and the four TVC forecasts are much more accurate than the OLS

forecasts (and in some cases also more accurate than the BP-MA forecasts).

4.3 Performance when the DGP is a regression with fre-

quently changing coe¢ cients

In this subsection we present the results of a set of Monte Carlo simulations aimed at

understanding how our TVC model performs when regression coe¢ cients experience

frequent changes.

We analyze both losses in forecasting performance and losses in estimation preci-

sion, using the same Monte Carlo design employed in the previous two subsections.

The only di¤erence is that the data is now generated by a regression whose coe¢ cients

change at every time period:

� Data generating process: yt is generated according to:

yt = �yt�1 + btut�1 + vt

bt = bt�1 + wt

where y0 = 0, b0 = 1, ut � T (0; 1; 5) i.i.d., vt � N (0; 1) i.i.d., wt � N (0;W )

i.i.d. and ut, vt and wt are serially and cross-sectionally independent. To ease

comparisons with the previous subsection, W is chosen in such a way that

bT � N (1; 1), irrespective of the sample size T :

W =
1

T
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Note that, although one coe¢ cient of the regression is frequently changing (bt),

the other coe¢ cient (�) is stable. As a consequence, the true DGP does not �t

exactly any of the possible DGPs contemplated by the TVC model. We prefer to

adopt this speci�cation over a speci�cation in which the TVC model is correctly

speci�ed, because the results obtained with the latter speci�cation are trivial (the

TVC estimates are the best possible estimates). Furthermore, controlling � (keeping

it �xed) allows to better understand its e¤ects on model performance.

Panel A of Table 5 reports the Monte Carlo estimates of MSE�j for the case in

which xt includes only the �rst lags of yt and ut. We �rst summarize the results

obtained when � 6= 0:99. The lowest MSEs are achieved by the TVC-MA estimates.
The TVC-MS estimates are the second best (in some cases MSE�TV C�MS is almost

identical toMSE�TV C�MA). TVC-� and TVC-� also have a performance comparable

to that of TVC-MA (the increase in the MSEs is on average less than 5 per cent).

The BP estimates are signi�cantly less precise than the TVC estimates (their MSEs

are roughly between 30 and 70 per cent higher than MSE�TV C�MA). Finally, BP and

BP-MA have a comparable performance when T = 100, but BP-MA is much less

precise when the sample size increases (T = 200; 500).

When � = 0:99, we again observe a sharp increase in the MSEs of the TVC

estimates (all four kinds) and of the BP estimates: their MSEs become several times

those of the OLS estimates. BP-MA achieves a signi�cant reduction in MSE over

OLS with larger sample sizes (T = 200; 500). Thus, also with frequently changing

coe¢ cients, BP-MA seems to be the only method capable of dealing simultaneously

with coe¢ cient instability and a highly persistent lagged dependent variable.

Panel B of Table 5 reports the Monte Carlo estimates of MSE�j for the case in

which xt includes three lags of yt and ut. Similarly to what we found in the previous

subsections, the only noticeable di¤erence with respect to the one-lag case is that

when � = 0:99 the increase in the MSEs is milder.

As far as out-of-sample forecasting performance is concerned (Table 6, Panels A

and B), the patterns in the MSEyj broadly re�ect the patterns in the MSE
�
j . Again,

the case � = 0:99 constitutes an exception: despite their high MSE�j , the BP and

the four TVC forecasts are more accurate than the OLS forecasts (and the TVC-MA

and TVC-� forecasts are also more accurate than the BP-MA forecasts).
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5 Empirical application: estimating common stocks�

exposures to risk factors

In this section we brie�y illustrate an empirical application of our TVC model. We

use the model to estimate the exposures of S&P 500 constituents to market-wide risk

factors. We track the weekly returns of the S&P 500 constituents for 10 years (from

January 2000 to December 2009). An uninterrupted time series of returns is available

for 432 of the 500 constituents (as of December 2009). The list of constituents and

their returns are downloaded from Datastream. The risk factors we consider are the

Fama and French�s (1993, 1995 and 1996) risk factors (excess return on the market

portfolio, return on the Small Minus Big portfolio, return on the High Minus Low

portfolio), downloaded from Kenneth French�s website.

The exposures to the risk factors are the coe¢ cients �t in the regression

yt = xt�t + vt

where yt is the excess return on a stock at time t,

xt =
h
1 rM;t � rf;t SMBt HMLt

i
rM;t is the return on the market portfolio at time t, rf;t is the risk-free rate of return

and SMBt and HMLt are the returns at time t on the SMB and HML portfolios

respectively.

The procedures illustrated in the previous section are employed to understand

whether the risk exposures �t are time-varying and whether the TVC model provides

good estimates of these risk exposures.

For a vast majority of the stocks included in our sample, we �nd evidence that

�t is indeed time-varying. � = 0 is the posterior mode of the mixing parameter

only for 11 stocks out of 432. Furthermore, � < 0:1 and � < 0:1 for 92% and

81% of the stocks respectively. On average, � is 0.046 and � is 0.010. Also the

frequentist method provides evidence that most stocks experience instability in their

risk exposures: according to the BP sequential estimates, more than 78% of stocks

experience at least one break in �t.

To evaluate the forecasting performance, we use the out-of-sample forecasts of yt
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obtained after the �rst 400th week. The methods used to make predictions are those

described in the previous section ( j =TVC-MA, TVC-MS, TVC-�, TVC-�, OLS,

BP, BP-MA ). For each stock i and for each prediction method j, the mean squared

error is computed as:

MSEi;j =
1

T � T0

TX
t=T0+1

(yt;i � eyt;i;j)2
where T0 is the number of periods elapsed before the �rst out-of-sample forecast is

produced, eyt;i;j denotes the prediction of the excess return of the i-th stock at time t,
conditional on xt, produced by method j, and yt;i is the corresponding realization.

To be able to compare the performance of the various methods across stocks, we

use the performance of OLS forecasts as a benchmark. Thus, the gain from using

model j with stock i is de�ned as:

GAINi;j = 1�
MSEi;j

MSEi;OLS

i.e. GAINi;j is the average reduction in MSE achieved by using model j instead of

OLS. A positive value indicates an improvement in forecasting performance.

Table 7 reports some summary statistics of the sample distribution of GAINi;j
(each stock i represents a sample point). All the TVC methods achieve a reduction

in MSE and, among the TVC methods, TVC-MA achieves the maximum average

reduction (approximately 3 per cent). BP performs very poorly (it actually causes a

strong increase in MSE), while the average reduction achieved by BP-MA is similar

to that of TVC-MA (again, approximately 3 per cent). The four TVC models have

similar sample distributions of gains, characterized by a pronounced skew to the right

(several small gains and few very large gains); furthermore, all four have a more

dispersed distribution than the BP-MA model.

6 Conclusions

We have proposed a Bayesian regression model with time-varying coe¢ cients (TVC).

With respect to existing TVC models, we have introduced some technical innovations

aimed at making TVC models less computationally expensive and completely auto-
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matic (by completely automatic we mean that regressors and regressands are the only

input required from the econometrician, so that he/she does not need to engage in

technically demanding speci�cations of priors and model parametrizations).

We have conducted several Monte Carlo experiments to understand the pros and

cons that might be encountered when using the TVC model in applied econometric

analyses. We have found that the cons are generally limited, in the sense that the

TVC model has satisfactory estimation precision and forecasting performance also

when regression coe¢ cients are indeed stable or when coe¢ cient instability is present

but the TVC model is mis-speci�ed. In the presence of coe¢ cient instability, there are

potential rewards from using the TVC model: in some cases, its estimation precision

and forecasting accuracy are signi�cantly better than those of competing models.

To demonstrate a real-world application of our TVC model, we have used it to

estimate the exposures of S&P 500 stocks to market-wide risk factors. We have found

that a vast majority of stocks have time-varying risk exposures and that the TVC

model helps to better forecast these exposures.

Before concluding, two remarks on the applicability of our TVC model are in

order. First, we have con�ned attention to single equation regression models, but

the results presented in the paper can be extended in a straightforward manner to

multiple equation models (for example VARs), by imposing the usual normal / inverse

Wishart priors on the initial parameters. Second, we have not discussed the use of

the model for the analysis of cross-sectional data: however, it is possible to use TVC

models like ours to analyze cross-sectional data in the presence of non-linearities that

are not explicitly captured by the regressors (see West and Harrison - 1997); this

is usually accomplished by replacing the time index t with the rank statistic of the

regressor that is presumably responsible for the non-linearity.
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7 Appendix

7.1 Proofs of propositions 2 and 3

In this section we derive the formulae presented in Propositions 2 and 3. To facilitate

the exposition, we start from simpler information structures and then we tackle the

more complex information structure assumed in Propositions 2 and 3 and summarized

in Assumption 1.

7.1.1 V and � known, �1 unknown

We start from the simple case in which V and � are both known. The assumptions

on the priors and the initial information are summarized as follows:

Case 17 (Priors and initial information) The priors on the unknown parame-
ters are:

(�1 jD��
0 ) � N

�b�1;0; V F�;1;0�
and the initial information set is:

D��
0 =

nb�1;0; F�;1;0; V; �o
Note that also W � = � (�)F�;1;0 and W = V � (�)F�;1;0 are known, because �

and V are known. The information sets D��
t satisfy the recursion D��

t = D��
t�1 [

fyt; xtg, starting from the set D��
0 . Given the above assumptions, as new information

becomes available, the posterior distribution of the parameters of the regression can

be calculated using the following results:

Proposition 18 (Forward updating) Let priors and initial information be as in
Case 17. Then:

�
�t
��D��

t�1
�
� N

�b�t;t�1; V F�;t;t�1��
yt
��D��

t�1; xt
�
� N (byt;t�1; V Fy;t;t�1)

(�t jD��
t ) � N

�b�t;t; V F�;t;t�
where the means and variances of the above distributions are calculated recursively as
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follows: b�t;t�1 = b�t�1;t�1 F�;t;t�1 = F�;t�1;t�1 +W
�byt;t�1 = xtb�t;t�1 Fy;t;t�1 = 1 + xtF�;t;t�1x
>
t

et = yt � byt;t�1 Pt = F�;t;t�1x
>
t =Fy;t;t�1b�t;t = b�t;t�1 + Ptet F�;t;t = F�;t;t�1 � PtP>t Fy;t;t�1

(12)

starting from the initial values b�1;0 and F�;1;0.
Proof. Note that, given the above assumptions, the system:(

yt = xt�t + vt

�t = �t�1 + wt

is a Gaussian linear state-space system, where yt = xt�t+ vt is the observation equa-

tion and �t = �t�1 + wt is the transition equation. Hence, the posterior distribution

of the states can be updated using the Kalman �lter. The recursive equations (12)

are just the usual updating equations of the Kalman �lter (e.g.: Hamilton - 1994).

The smoothing equations are provided by the following proposition:

Proposition 19 (Backward updating) Let priors and initial information be as in
Case 17. Then: �

�T�� jD��
T

�
� N

�b�T��;T ; V F�;T��;T�
where the means and the variances of the above distributions are calculated recursively

(backwards) as follows:

QT�� = F�;T��;T�� (F�;T��+1;T�� )
�1

b�T��;T = b�T��;T�� +QT�� �b�T��+1;T � b�T��+1;T���
F�;T��;T = FT��;T�� +QT�� (FT��+1;T � FT��+1;T�� )Q>T��

and the backward recursions start from the terminal values of the forward recursions

(12).

Proof. These are the usual backward Kalman recursions (e.g.: Hamilton - 1994).

7.1.2 � known, �1 and V unknown

In this subsection we relax the assumption that V (the variance of vt) is known and

we impose a Gamma prior on the reciprocal of V . The assumptions on the priors and
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the initial information are summarized as follows:

Case 20 (Priors and initial information) The priors on the unknown parame-
ters are:

(�1 jD�
0 ) � N

�b�1;0; V F�;1;0�
(1=V jD�

0 ) � G
�bV0; n0�

and the initial information set is:

D�
0 =

nb�1;0; F�;1;0; bV0; n0; �o
Note that also W � = � (�)F�;1;0 is known, because � is known. The information

sets D�
t satisfy the recursion D

�
t = D

�
t�1 [ fyt; xtg, starting from the set D�

0. Given

the above assumptions, the posterior distributions of the parameters of the regression

can be calculated as follows:

Proposition 21 (Forward updating) Let priors and initial information be as in
Case 20. Then:

�
�t
��D�

t�1
�
� T

�b�t;t�1; bVt�1F�;t;t�1; nt�1��
yt
��D�

t�1; xt
�
� T

�byt;t�1; bVt�1Fy;t;t�1; nt�1�
(�t jD�

t ) � T
�b�t;t; bVtF�;t;t; nt�

(1=V jD�
t ) � G

�bVt; nt�
where the parameters of the above distributions are calculated recursively as in (12)

and as follows:

nt = nt�1 + 1bVt =
1

nt

�
nt�1bVt�1 + e2t

Fy;t;t�1

�

starting from the initial values b�1;0, F�;1;0, bV0 and n0.
Proof. The proof is by induction. At time t = 1, p (�1 jD�

0; V ) and p (1=V jD�
0 ) are

the conjugate normal / inverse gamma priors of a standard Bayesian regression model
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with constant coe¢ cients (e.g. Hamilton - 1994). Therefore, the usual results on the

updating of these conjugate priors hold:

(�1 jD�
1; V ) � N

�b�1;1; V F�;1;1� (13)

(1=V jD�
1 ) � G

�bV1; n1� (14)

Since �2 = �1 + w2 and

(w2 jD�
1; V ) � N (0; V W �)

then, by the additivity of normal distributions:

(�2 jD�
1; V ) � N

�b�1;1; V F�;1;1 + VW �
�
= N

�b�2;1; V F�;2;1�
Therefore, at time t = 2, p (�2 jD�

1; V ) and p (1=V jD�
1 ) are again the conjugate

normal / inverse gamma priors of a standard Bayesian regression model with constant

coe¢ cients. Proceeding in the same way as for t = 1, one obtains the desired result

for t = 2 and, inductively, for all the other periods.

Posterior distributions of the coe¢ cients that take into account all information

received up to time T are calculated as follows:

Proposition 22 (Backward updating) Let priors and initial information be as in
Case 20. Then: �

�T�� jD�
T

�
� T

�b�T��;T ; bVTF�;T��;T ; nT�
where bVT and nT are calculated as in Proposition 18 and the other parameters of the
above distributions are calculated recursively (backwards) as in Proposition 19.

Proof. From Proposition 19, we know that:

�
�T�� jD�

T ; V
�
=
�
�T�� jD��

T

�
� N

�b�T��;T ; V F�;T��;T�
Furthermore, (1=V jD�

T ) � G
�bVT ; nT�. By the conjugacy of

�
�T�� jD�

T ; V
�
and

(1=V jD�
T ), it follows that:�

�T�� jD�
T

�
� T

�b�T��;T ; bVTF�;T��;T ; nT�
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7.1.3 �, �1 and V unknown

In this subsection we relax the assumption that � is known, using the same priors and

initial information of the propositions in the main text of the article (Propositions 2

and 3):

Case 23 The priors on the unknown parameters are:

(�1 jD0; V; � ) � N
�b�1;0; V F�;1;0�

(1=V jD0; � ) � G
�bV0; n0�

p (�i jD0 ) = p0;i ; i = 1; : : : ; q

and the initial information set is:

D0 =
nb�1;0; F�;1;0; bV0; n0; p0;1; : : : ; p0qo

The information sets Dt satisfy the recursion Dt = Dt�1 [ fyt; xtg, starting from
the set D0. Note that the assumptions introduced in Cases 17 and 20 in the previous

subsections had the only purpose of introducing the more complex Case 23. Given

the above assumptions, the posterior distributions of the parameters of the regression

can be calculated as follows:

Proposition 24 Let priors and initial information be as in Case 23. Let pt;i =

p (� = �i jDt ). Then:

p (�t jDt�1 ) =

qX
i=1

p (�t j� = �i; Dt�1 ) pt�1;i

p (yt jDt�1; xt ) =

qX
i=1

p (yt j� = �i; Dt�1; xt ) pt�1;i

p (1=V jDt�1 ) =

qX
i=1

p (1=V j� = �i; Dt�1 ) pt�1;i

p (�t jDt ) =

qX
i=1

p (�t j� = �i; Dt ) pt;i
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The mixing probabilities are obtained recursively as:

pt;i =
pt�1;ip (yt j� = �i; Dt�1; xt )Pq
j=1 pt�1;jp (yt j� = �j; Dt�1; xt )

starting from the prior probabilities p0;1; : : : ; p0;q. The conditional densities

p (�t jDt�1; � = �i ) = p
�
�t
��D�

t�1
�

p (yt jDt�1; xt; � = �i ) = p
�
yt
��D�

t�1; xt
�

p (1=V jDt�1; � = �i ) = p
�
1=V

��D�
t�1
�

p (�t jDt; � = �i ) = p (�t jD�
t )

are calculated for each �i as in Propositions 18 and 21.

Proof. Conditioning on � = �i, the distributions of the parameters �t and V and of
the observations yt are obtained from Propositions 18 and 21 (it su¢ ces to note that

Dt [ � = D�
t ). Not conditioning on � = �i, the distributions of the parameters �t and

V and of the observations yt are obtained marginalizing their joint distribution with

�. For example:

p (�t jDt�1 ) =

qX
i=1

p (�t; �i jDt�1 )

=

qX
i=1

p (�t j� = �i; Dt�1 ) p (� = �i jDt�1 )

=

qX
i=1

p (�t j� = �i; Dt�1 ) pt�1;i

43



The mixing probabilities are obtained using Bayes�rule:

pt;i = p (� = �i jDt )

= p (� = �i jyt; Dt�1; xt )

=
p (yt j� = �i; Dt�1; xt ) p (� = �i jDt�1; xt )

p (yt jDt�1; xt )

=
p (yt j� = �i; Dt�1; xt ) p (� = �i jDt�1 )Pq

j=1 p (yt; �j jDt�1; xt )

=
p (yt j� = �i; Dt�1; xt ) p (� = �i jDt�1 )Pq

j=1 p (yt j� = �j; Dt�1; xt ) p (� = �j jDt�1; xt )

=
p (yt j� = �i; Dt�1; xt ) pt�1;iPq
j=1 p (yt j� = �j; Dt�1; xt ) pt�1;j

Proposition 2 in the main text is obtained by combining propositions 18, 21 and

24 above. Proposition 3 results from propositions 19, 22 and 24 above.

7.2 Proof of proposition 14 (scale invariance)

When xtR is the vector of regressors, the prior covariance is:

F�;1;0 = T
�
R>X>XR

��1
= TR�1

�
X>X

��1 �
R�1

�>
The constant ! is una¤ected by the rotation:

! =
1

T

TX
t=1

xtRF�;1;0R
>x>t

=
1

T

TX
t=1

xtR
�
TR�1

�
X>X

��1 �
R�1

�>�
R>x>t

=
1

T

TX
t=1

xt

�
T
�
X>X

��1�
x>t

Since R� does not depend on the data and

� (�) =
�

! � �!
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the fact that ! does not change implies that also R� (the support of �) remains

unchanged. The prior probabilities assigned to the elements of R� also do not depend

on the data. So, the prior distribution of � is una¤ected by the rotation.

As far as the recursive equations in Proposition 2 are concerned, note that the

initial conditions

b�1;0;i = b�1;0 = 0bV0;i = bV0 = y20
n0;i = n0 = 1

are not a¤ected by the rotation, while the initial condition

F�;1;0;i = F�;1;0 = TR
�1 �X>X

��1 �
R�1

�>
changes (it is pre-multiplied by R�1 and post-multiplied by (R�1)>).

For t > 0, it can be easily checked that byt;t�1;i, Fy;t;t�1;i, et;i, nt;i, bVt;i remain
unchanged, while F�;t;t�1;i and F�;t;t;i are pre-multiplied by R�1 and post-multiplied

by (R�1)> and b�t;t�1;i, b�t;t;i and Pt;i are pre-multiplied by R�1. Therefore:�
�t
��D�

t�1; � = � (�i)
�
=
�
R�1�t jDt�1; � = � (�i)

�
8t � T , i = 1; : : : ; q

and

(�t jD�
t ; � = � (�i)) =

�
R�1�t jDt; � = � (�i)

�
8t � T , i = 1; : : : ; q

The model probabilities pt;1, . . . , pt;q depend only on byt;t�1;i, Fy;t;t�1;i, nt�1;i and bVt�1;i,
which remain unchanged, so they remain unchanged as well. As a consequence, also

unconditionally:

(�t jD�
s ) =

�
R�1�t jDs

�
8t � T

for s = t � 1 or s = t. Using similar arguments on the backward recursions of

proposition 3, it is possible to prove that the above equality holds for any s � T .
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Table 1 – Estimation precision when coefficients are stable - Monte Carlo evidence - MSE of coefficient estimates 
 

Panel A - One lag in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 0.0257 (0.0003) 0.0286 (0.0003) 0.0239 (0.0003) 0.0215 (0.0002) 0.0205 (0.0002) 0.0540 (0.0031) 0.0221 (0.0002) 
T=200 0.0138 (0.0001) 0.0142 (0.0002) 0.0121 (0.0001) 0.0106 (0.0001) 0.0102 (0.0001) 0.0479 (0.0150) 0.0108 (0.0001) 
T=500 0.0066 (0.0001) 0.0056 (0.0001) 0.0049 (0.0001) 0.0043 (0.0000) 0.0040 (0.0000) 0.0070 (0.0006) 0.0043 (0.0002) 
 ρ=0.50       
T=100 0.0271 (0.0003) 0.0303 (0.0004) 0.0249 (0.0003) 0.0219 (0.0003) 0.0207 (0.0002) 0.0730 (0.0050) 0.0227 (0.0003) 
T=200 0.0136 (0.0001) 0.0141 (0.0002) 0.0119 (0.0001) 0.0104 (0.0001) 0.0099 (0.0001) 0.0329 (0.0029) 0.0106 (0.0002) 
T=500 0.0064 (0.0001) 0.0055 (0.0001) 0.0048 (0.0001) 0.0041 (0.0000) 0.0038 (0.0000) 0.0132 (0.0034) 0.0039 (0.0000) 
 ρ=0.80       
T=100 0.0308 (0.0004) 0.0352 (0.0006) 0.0278 (0.0004) 0.0234 (0.0003) 0.0219 (0.0003) 0.1537 (0.0241) 0.0272 (0.0020) 
T=200 0.0141 (0.0002) 0.0145 (0.0002) 0.0121 (0.0002) 0.0103 (0.0001) 0.0097 (0.0001) 0.0853 (0.0163) 0.0105 (0.0002) 
T=500 0.0062 (0.0001) 0.0053 (0.0001) 0.0046 (0.0001) 0.0039 (0.0000) 0.0037 (0.0000) 0.0179 (0.0035) 0.0038 (0.0000) 
 ρ=0.99       
T=100 4.7933 (0.1551) 5.3498 (0.1669) 4.7233 (0.1550) 4.7344 (0.1553) 0.0666 (0.0013) 1.9222 (0.3944) 0.1145 (0.0115) 
T=200 2.5390 (0.0970) 2.7297 (0.1010) 2.5072 (0.0970) 2.5057 (0.0970) 0.0244 (0.0005) 0.7189 (0.1093) 0.0367 (0.0032) 
T=500 0.4448 (0.0249) 0.4792 (0.0259) 0.4301 (0.0249) 0.4287 (0.0249) 0.0062 (0.0001) 0.1338 (0.0195) 0.0072 (0.0002) 
 

Panel B – Three lags in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 0.0885 (0.0007) 0.0964 (0.0009) 0.0860 (0.0007) 0.0804 (0.0006) 0.0785 (0.0006) 0.0827 (0.0013) 0.0795 (0.0006) 
T=200 0.0433 (0.0003) 0.0453 (0.0004) 0.0414 (0.0003) 0.0385 (0.0003) 0.0376 (0.0003) 0.0379 (0.0003) 0.0378 (0.0003) 
T=500 0.0186 (0.0001) 0.0175 (0.0001) 0.0162 (0.0001) 0.0150 (0.0001) 0.0146 (0.0001) 0.0146 (0.0001) 0.0146 (0.0001) 
 ρ=0.50       
T=100 0.0953 (0.0008) 0.1033 (0.0009) 0.0920 (0.0007) 0.0863 (0.0007) 0.0842 (0.0006) 0.0905 (0.0021) 0.0850 (0.0006) 
T=200 0.0457 (0.0004) 0.0478 (0.0004) 0.0434 (0.0003) 0.0406 (0.0003) 0.0398 (0.0003) 0.0399 (0.0003) 0.0398 (0.0003) 
T=500 0.0194 (0.0002) 0.0184 (0.0002) 0.0170 (0.0001) 0.0159 (0.0001) 0.0155 (0.0001) 0.0157 (0.0002) 0.0156 (0.0001) 
 ρ=0.80       
T=100 0.1049 (0.0009) 0.1134 (0.0010) 0.1017 (0.0008) 0.0959 (0.0008) 0.0940 (0.0007) 0.1024 (0.0041) 0.0947 (0.0007) 
T=200 0.0511 (0.0004) 0.0532 (0.0005) 0.0484 (0.0004) 0.0454 (0.0004) 0.0442 (0.0003) 0.0447 (0.0004) 0.0443 (0.0003) 
T=500 0.0215 (0.0002) 0.0203 (0.0002) 0.0188 (0.0002) 0.0174 (0.0001) 0.0169 (0.0001) 0.0169 (0.0001) 0.0169 (0.0001) 
 ρ=0.99       
T=100 0.7213 (0.0409) 0.9599 (0.0498) 0.6244 (0.0402) 0.6713 (0.0408) 0.1505 (0.0016) 0.1830 (0.0072) 0.1531 (0.0019) 
T=200 0.2619 (0.0203) 0.3052 (0.0226) 0.2317 (0.0199) 0.2425 (0.0202) 0.0632 (0.0006) 0.0867 (0.0142) 0.0636 (0.0007) 
T=500 0.0327 (0.0017) 0.0310 (0.0018) 0.0279 (0.0017) 0.0264 (0.0017) 0.0213 (0.0002) 0.0213 (0.0002) 0.0213 (0.0002) 

 



Table 2 – Prediction accuracy when coefficients are stable - Monte Carlo evidence - MSE of one-step-ahead predictions 
 

Panel A - One lag in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 1.0384 (0.0010) 1.0438 (0.0013) 1.0358 (0.0009) 1.0319 (0.0008) 1.0301 (0.0006) 1.0942 (0.0098) 1.0332 (0.0008) 
T=200 1.0208 (0.0005) 1.0214 (0.0005) 1.0181 (0.0004) 1.0161 (0.0004) 1.0155 (0.0004) 1.2914 (0.2190) 1.0165 (0.0004) 
T=500 1.0101 (0.0002) 1.0084 (0.0002) 1.0073 (0.0002) 1.0064 (0.0002) 1.0060 (0.0001) 1.0121 (0.0026) 1.0073 (0.0012) 
 ρ=0.50       
T=100 1.0393 (0.0009) 1.0443 (0.0011) 1.0366 (0.0009) 1.0325 (0.0008) 1.0311 (0.0007) 1.0978 (0.0126) 1.0351 (0.0013) 
T=200 1.0217 (0.0006) 1.0229 (0.0007) 1.0193 (0.0006) 1.0170 (0.0005) 1.0159 (0.0004) 1.0443 (0.0047) 1.0168 (0.0004) 
T=500 1.0101 (0.0003) 1.0086 (0.0002) 1.0075 (0.0002) 1.0065 (0.0002) 1.0060 (0.0001) 1.0144 (0.0027) 1.0061 (0.0001) 
 ρ=0.80       
T=100 1.0453 (0.0011) 1.0526 (0.0014) 1.0423 (0.0011) 1.0371 (0.0010) 1.0348 (0.0009) 1.1301 (0.0212) 1.0420 (0.0021) 
T=200 1.0218 (0.0006) 1.0230 (0.0008) 1.0191 (0.0006) 1.0162 (0.0003) 1.0155 (0.0003) 1.0757 (0.0212) 1.0166 (0.0005) 
T=500 1.0103 (0.0003) 1.0089 (0.0003) 1.0078 (0.0002) 1.0065 (0.0002) 1.0062 (0.0001) 1.0229 (0.0084) 1.0063 (0.0001) 
 ρ=0.99       
T=100 1.2256 (0.0089) 1.2710 (0.0102) 1.2238 (0.0089) 1.2206 (0.0089) 1.0489 (0.0010) 1.2199 (0.0630) 1.0484 (0.0015) 
T=200 1.1349 (0.0046) 1.1548 (0.0051) 1.1317 (0.0046) 1.1306 (0.0046) 1.0224 (0.0005) 1.0496 (0.0030) 1.0225 (0.0008) 
T=500 1.0419 (0.0018) 1.0462 (0.0019) 1.0392 (0.0018) 1.0377 (0.0018) 1.0078 (0.0002) 1.0198 (0.0032) 1.0078 (0.0002) 
 

Panel B – Three lags in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 1.0841 (0.0016) 1.0914 (0.0018) 1.0813 (0.0015) 1.0762 (0.0014) 1.0746 (0.0014) 1.0808 (0.0032) 1.0759 (0.0014) 
T=200 1.0433 (0.0010) 1.0454 (0.0011) 1.0412 (0.0009) 1.0386 (0.0008) 1.0375 (0.0008) 1.0379 (0.0008) 1.0379 (0.0008) 
T=500 1.0183 (0.0003) 1.0171 (0.0003) 1.0158 (0.0003) 1.0146 (0.0003) 1.0142 (0.0003) 1.0143 (0.0003) 1.0143 (0.0003) 
 ρ=0.50       
T=100 1.0845 (0.0016) 1.0923 (0.0019) 1.0817 (0.0016) 1.0769 (0.0014) 1.0752 (0.0014) 1.0928 (0.0119) 1.0772 (0.0015) 
T=200 1.0435 (0.0008) 1.0454 (0.0009) 1.0412 (0.0008) 1.0380 (0.0007) 1.0372 (0.0007) 1.0375 (0.0007) 1.0375 (0.0007) 
T=500 1.0179 (0.0003) 1.0167 (0.0003) 1.0154 (0.0003) 1.0144 (0.0003) 1.0141 (0.0003) 1.0141 (0.0003) 1.0141 (0.0003) 
 ρ=0.80       
T=100 1.0889 (0.0017) 1.0967 (0.0019) 1.0864 (0.0016) 1.0816 (0.0015) 1.0802 (0.0014) 1.0855 (0.0024) 1.0815 (0.0015) 
T=200 1.0418 (0.0008) 1.0435 (0.0009) 1.0397 (0.0008) 1.0373 (0.0007) 1.0363 (0.0007) 1.0369 (0.0007) 1.0367 (0.0007) 
T=500 1.0177 (0.0003) 1.0168 (0.0003) 1.0155 (0.0003) 1.0143 (0.0003) 1.0139 (0.0002) 1.0140 (0.0002) 1.0140 (0.0002) 
 ρ=0.99       
T=100 1.1381 (0.0065) 1.1705 (0.0080) 1.1298 (0.0062) 1.1353 (0.0064) 1.0943 (0.0017) 1.1128 (0.0145) 1.0886 (0.0016) 
T=200 1.0647 (0.0031) 1.0727 (0.0038) 1.0609 (0.0030) 1.0617 (0.0030) 1.0439 (0.0008) 1.0504 (0.0075) 1.0425 (0.0008) 
T=500 1.0196 (0.0004) 1.0192 (0.0005) 1.0178 (0.0004) 1.0171 (0.0004) 1.0163 (0.0003) 1.0160 (0.0003) 1.0160 (0.0003) 

 



Table 3 – Estimation precision when coefficients experience one discrete break - Monte Carlo evidence - MSE of coefficient estimates 
 

Panel A - One lag in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 0.1772 (0.0051) 0.1767 (0.0050) 0.1807 (0.0051) 0.1943 (0.0054) 0.3769 (0.0078) 0.1737 (0.0060) 0.2252 (0.0055) 
T=200 0.1148 (0.0033) 0.1145 (0.0033) 0.1183 (0.0034) 0.1250 (0.0036) 0.3434 (0.0068) 0.1088 (0.0068) 0.1863 (0.0043) 
T=500 0.0689 (0.0026) 0.0692 (0.0026) 0.0711 (0.0026) 0.0741 (0.0027) 0.3453 (0.0072) 0.0452 (0.0049) 0.1738 (0.0043) 
 ρ=0.50       
T=100 0.1790 (0.0046) 0.1792 (0.0046) 0.1831 (0.0047) 0.1951 (0.0049) 0.3655 (0.0073) 0.2140 (0.0134) 0.2248 (0.0052) 
T=200 0.1237 (0.0040) 0.1228 (0.0040) 0.1265 (0.0041) 0.1346 (0.0043) 0.3545 (0.0076) 0.1053 (0.0047) 0.1930 (0.0049) 
T=500 0.0692 (0.0026) 0.0694 (0.0026) 0.0713 (0.0026) 0.0744 (0.0027) 0.3452 (0.0072) 0.0533 (0.0079) 0.1733 (0.0043) 
 ρ=0.80       
T=100 0.1887 (0.0044) 0.1906 (0.0044) 0.1924 (0.0045) 0.2038 (0.0047) 0.3705 (0.0071) 0.3016 (0.0206) 0.2226 (0.0050) 
T=200 0.1261 (0.0037) 0.1255 (0.0037) 0.1290 (0.0038) 0.1360 (0.0040) 0.3463 (0.0070) 0.1309 (0.0065) 0.1894 (0.0046) 
T=500 0.0707 (0.0025) 0.0708 (0.0026) 0.0729 (0.0026) 0.0760 (0.0027) 0.3449 (0.0072) 0.0803 (0.0192) 0.1733 (0.0043) 
 ρ=0.99       
T=100 5.1868 (0.1677) 5.7741 (0.1828) 5.1508 (0.1677) 5.1618 (0.1677) 0.4283 (0.0075) 2.5268 (0.2692) 0.4261 (0.0130) 
T=200 3.3069 (0.1269) 3.5054 (0.1341) 3.2908 (0.1268) 3.2956 (0.1269) 0.3626 (0.0070) 1.4681 (0.1731) 0.2585 (0.0063) 
T=500 0.7054 (0.0257) 0.7362 (0.0268) 0.7032 (0.0257) 0.7053 (0.0257) 0.3542 (0.0073) 0.6431 (0.1556) 0.1946 (0.0074) 
 

Panel B – Three lags in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 0.3299 (0.0057) 0.3368 (0.0057) 0.3322 (0.0058) 0.3424 (0.0060) 0.4389 (0.0074) 0.3628 (0.0110) 0.3320 (0.0058) 
T=200 0.2127 (0.0042) 0.2144 (0.0042) 0.2145 (0.0042) 0.2202 (0.0044) 0.3761 (0.0069) 0.2186 (0.0121) 0.2421 (0.0047) 
T=500 0.1357 (0.0035) 0.1361 (0.0035) 0.1372 (0.0035) 0.1400 (0.0036) 0.3540 (0.0070) 0.1053 (0.0042) 0.1974 (0.0044) 
 ρ=0.50       
T=100 0.3272 (0.0054) 0.3347 (0.0054) 0.3291 (0.0055) 0.3377 (0.0057) 0.4368 (0.0074) 0.3948 (0.0194) 0.3292 (0.0057) 
T=200 0.2201 (0.0043) 0.2218 (0.0043) 0.2215 (0.0044) 0.2270 (0.0045) 0.3826 (0.0069) 0.2194 (0.0097) 0.2460 (0.0048) 
T=500 0.1401 (0.0036) 0.1405 (0.0036) 0.1413 (0.0037) 0.1435 (0.0037) 0.3507 (0.0073) 0.1078 (0.0039) 0.1956 (0.0046) 
 ρ=0.80       
T=100 0.3529 (0.0058) 0.3627 (0.0059) 0.3547 (0.0059) 0.3628 (0.0060) 0.4585 (0.0076) 0.4161 (0.0110) 0.3476 (0.0058) 
T=200 0.2420 (0.0049) 0.2441 (0.0048) 0.2436 (0.0049) 0.2499 (0.0051) 0.3913 (0.0074) 0.2501 (0.0117) 0.2591 (0.0052) 
T=500 0.1475 (0.0036) 0.1478 (0.0036) 0.1485 (0.0036) 0.1513 (0.0037) 0.3638 (0.0072) 0.1155 (0.0044) 0.2040 (0.0045) 
 ρ=0.99       
T=100 1.3642 (0.0514) 1.6216 (0.0605) 1.3155 (0.0508) 1.3468 (0.0515) 0.5319 (0.0076) 1.3814 (0.1203) 0.5141 (0.0129) 
T=200 0.7399 (0.0253) 0.8044 (0.0277) 0.7279 (0.0251) 0.7389 (0.0253) 0.4296 (0.0078) 0.7678 (0.1073) 0.3266 (0.0077) 
T=500 0.2532 (0.0069) 0.2569 (0.0070) 0.2541 (0.0069) 0.2565 (0.0069) 0.3651 (0.0076) 0.3168 (0.0654) 0.2147 (0.0049) 

 



Table 4 – Prediction accuracy when coefficients experience one discrete break - Monte Carlo evidence - MSE of one-step-ahead predictions 
 

Panel A - One lag in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 1.2975 (0.0272) 1.2989 (0.0275) 1.3030 (0.0277) 1.3243 (0.0286) 1.6029 (0.0349) 1.3322 (0.0566) 1.3784 (0.0278) 
T=200 1.1810 (0.0124) 1.1794 (0.0120) 1.1867 (0.0127) 1.1987 (0.0136) 1.5315 (0.0287) 1.1777 (0.0248) 1.2937 (0.0181) 
T=500 1.1101 (0.0075) 1.1105 (0.0075) 1.1138 (0.0077) 1.1208 (0.0084) 1.6174 (0.0424) 1.0930 (0.0171) 1.3093 (0.0212) 
 ρ=0.50       
T=100 1.2645 (0.0144) 1.2643 (0.0147) 1.2753 (0.0157) 1.2991 (0.0168) 1.5421 (0.0247) 1.2941 (0.0240) 1.3343 (0.0161) 
T=200 1.2031 (0.0140) 1.2039 (0.0142) 1.2095 (0.0144) 1.2192 (0.0148) 1.6492 (0.0450) 1.1700 (0.0147) 1.3604 (0.0252) 
T=500 1.1099 (0.0078) 1.1106 (0.0079) 1.1141 (0.0083) 1.1213 (0.0088) 1.6162 (0.0425) 1.0908 (0.0157) 1.3064 (0.0213) 
 ρ=0.80       
T=100 1.2814 (0.0143) 1.2815 (0.0141) 1.2882 (0.0146) 1.3202 (0.0168) 1.5781 (0.0242) 1.3859 (0.0367) 1.3552 (0.0167) 
T=200 1.1693 (0.0101) 1.1684 (0.0099) 1.1742 (0.0104) 1.1876 (0.0117) 1.5674 (0.0360) 1.1481 (0.0109) 1.2955 (0.0154) 
T=500 1.1082 (0.0076) 1.1085 (0.0076) 1.1126 (0.0082) 1.1187 (0.0086) 1.6158 (0.0426) 1.0867 (0.0122) 1.3069 (0.0215) 
 ρ=0.99       
T=100 1.4014 (0.0235) 1.4357 (0.0241) 1.4051 (0.0236) 1.4245 (0.0241) 1.6442 (0.0416) 1.3933 (0.0480) 1.3764 (0.0277) 
T=200 1.2821 (0.0154) 1.2951 (0.0156) 1.2841 (0.0153) 1.2929 (0.0156) 1.5419 (0.0256) 1.2005 (0.0196) 1.3027 (0.0175) 
T=500 1.1807 (0.0236) 1.1857 (0.0242) 1.1846 (0.0244) 1.1887 (0.0245) 1.6844 (0.0481) 1.1552 (0.0371) 1.3481 (0.0309) 
 

Panel B – Three lags in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 1.4007 (0.0171) 1.4022 (0.0161) 1.4042 (0.0172) 1.4272 (0.0215) 1.6117 (0.0263) 1.5408 (0.1302) 1.4496 (0.0217) 
T=200 1.2689 (0.0155) 1.2692 (0.0158) 1.2738 (0.0157) 1.2855 (0.0162) 1.5737 (0.0243) 1.3308 (0.0842) 1.3612 (0.0172) 
T=500 1.1770 (0.0131) 1.1773 (0.0131) 1.1803 (0.0132) 1.1877 (0.0143) 1.5753 (0.0283) 1.1150 (0.0088) 1.3172 (0.0168) 
 ρ=0.50       
T=100 1.4022 (0.0184) 1.4059 (0.0183) 1.4070 (0.0186) 1.4255 (0.0196) 1.6490 (0.0282) 1.6550 (0.0968) 1.4823 (0.0231) 
T=200 1.2832 (0.0139) 1.2835 (0.0140) 1.2872 (0.0141) 1.2969 (0.0144) 1.6013 (0.0246) 1.3515 (0.0764) 1.3825 (0.0185) 
T=500 1.1576 (0.0088) 1.1582 (0.0089) 1.1600 (0.0089) 1.1634 (0.0090) 1.5436 (0.0270) 1.1125 (0.0076) 1.2884 (0.0145) 
 ρ=0.80       
T=100 1.4206 (0.0222) 1.4245 (0.0224) 1.4242 (0.0223) 1.4426 (0.0227) 1.6930 (0.0325) 1.5160 (0.0584) 1.4954 (0.0231) 
T=200 1.2864 (0.0269) 1.2831 (0.0254) 1.2891 (0.0269) 1.3045 (0.0303) 1.6034 (0.0384) 1.2747 (0.0302) 1.3675 (0.0237) 
T=500 1.1733 (0.0107) 1.1727 (0.0105) 1.1758 (0.0108) 1.1820 (0.0114) 1.6348 (0.0435) 1.1153 (0.0075) 1.3417 (0.0228) 
 ρ=0.99       
T=100 1.4718 (0.0199) 1.5054 (0.0206) 1.4852 (0.0204) 1.5134 (0.0212) 1.6644 (0.0332) 1.4521 (0.0274) 1.4802 (0.0234) 
T=200 1.3123 (0.0138) 1.3224 (0.0143) 1.3183 (0.0140) 1.3365 (0.0145) 1.6158 (0.0407) 1.3670 (0.1117) 1.3750 (0.0193) 
T=500 1.1916 (0.0130) 1.1934 (0.0131) 1.1967 (0.0132) 1.2029 (0.0136) 1.5966 (0.0295) 1.1138 (0.0070) 1.3327 (0.0168) 

 



Table 5 – Estimation precision when coefficients change every period - Monte Carlo evidence - MSE of coefficient estimates 
 

Panel A - One lag in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 0.1768 (0.0020) 0.1778 (0.0020) 0.1803 (0.0021) 0.1939 (0.0023) 0.3653 (0.0051) 0.2333 (0.0061) 0.2331 (0.0029) 
T=200 0.1207 (0.0014) 0.1210 (0.0014) 0.1224 (0.0014) 0.1280 (0.0015) 0.3535 (0.0049) 0.1914 (0.0391) 0.2048 (0.0026) 
T=500 0.0718 (0.0008) 0.0718 (0.0008) 0.0722 (0.0008) 0.0735 (0.0008) 0.3409 (0.0048) 0.0925 (0.0015) 0.1766 (0.0022) 
 ρ=0.50       
T=100 0.1856 (0.0022) 0.1865 (0.0021) 0.1891 (0.0022) 0.2031 (0.0025) 0.3775 (0.0054) 0.2689 (0.0097) 0.2413 (0.0032) 
T=200 0.1216 (0.0014) 0.1219 (0.0014) 0.1234 (0.0014) 0.1287 (0.0015) 0.3531 (0.0050) 0.1635 (0.0039) 0.2055 (0.0027) 
T=500 0.0719 (0.0008) 0.0720 (0.0008) 0.0724 (0.0008) 0.0735 (0.0008) 0.3490 (0.0050) 0.0982 (0.0020) 0.1770 (0.0023) 
 ρ=0.80       
T=100 0.2003 (0.0023) 0.2042 (0.0024) 0.2029 (0.0024) 0.2146 (0.0025) 0.3738 (0.0051) 0.3252 (0.0102) 0.2403 (0.0030) 
T=200 0.1268 (0.0014) 0.1275 (0.0014) 0.1285 (0.0014) 0.1333 (0.0015) 0.3353 (0.0048) 0.1982 (0.0069) 0.1971 (0.0026) 
T=500 0.0733 (0.0008) 0.0733 (0.0008) 0.0737 (0.0008) 0.0747 (0.0008) 0.3413 (0.0048) 0.1108 (0.0034) 0.1759 (0.0023) 
 ρ=0.99       
T=100 5.8872 (0.1915) 6.5930 (0.2162) 5.8655 (0.1915) 5.8674 (0.1915) 0.4481 (0.0057) 3.8089 (0.3557) 0.4898 (0.0186) 
T=200 3.2478 (0.1078) 3.4124 (0.1123) 3.2435 (0.1078) 3.2428 (0.1078) 0.3766 (0.0050) 1.6324 (0.1588) 0.2718 (0.0038) 
T=500 0.8609 (0.0329) 0.8916 (0.0340) 0.8608 (0.0329) 0.8609 (0.0329) 0.3395 (0.0047) 0.5805 (0.0686) 0.1835 (0.0023) 
 

Panel B – Three lags in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 0.3279 (0.0034) 0.3378 (0.0034) 0.3304 (0.0034) 0.3407 (0.0036) 0.4386 (0.0051) 0.3903 (0.0054) 0.3544 (0.0037) 
T=200 0.2187 (0.0021) 0.2221 (0.0021) 0.2202 (0.0022) 0.2247 (0.0022) 0.3810 (0.0049) 0.2514 (0.0032) 0.2723 (0.0030) 
T=500 0.1349 (0.0013) 0.1358 (0.0013) 0.1354 (0.0013) 0.1364 (0.0013) 0.3526 (0.0048) 0.1559 (0.0018) 0.2151 (0.0026) 
 ρ=0.50       
T=100 0.3369 (0.0033) 0.3483 (0.0033) 0.3391 (0.0033) 0.3478 (0.0035) 0.4395 (0.0052) 0.3954 (0.0054) 0.3553 (0.0037) 
T=200 0.2279 (0.0022) 0.2313 (0.0022) 0.2292 (0.0022) 0.2339 (0.0023) 0.3834 (0.0049) 0.2607 (0.0034) 0.2753 (0.0031) 
T=500 0.1389 (0.0013) 0.1397 (0.0013) 0.1393 (0.0013) 0.1404 (0.0013) 0.3553 (0.0048) 0.1608 (0.0023) 0.2176 (0.0026) 
 ρ=0.80       
T=100 0.3608 (0.0036) 0.3735 (0.0036) 0.3632 (0.0036) 0.3728 (0.0038) 0.4500 (0.0053) 0.4528 (0.0162) 0.3665 (0.0038) 
T=200 0.2397 (0.0023) 0.2442 (0.0023) 0.2410 (0.0023) 0.2456 (0.0024) 0.3901 (0.0050) 0.2756 (0.0040) 0.2806 (0.0031) 
T=500 0.1489 (0.0014) 0.1498 (0.0014) 0.1493 (0.0014) 0.1504 (0.0014) 0.3655 (0.0049) 0.1686 (0.0026) 0.2241 (0.0027) 
 ρ=0.99       
T=100 1.3679 (0.0571) 1.6564 (0.0657) 1.3119 (0.0565) 1.3457 (0.0570) 0.5345 (0.0059) 1.2136 (0.1291) 0.5107 (0.0075) 
T=200 0.7702 (0.0284) 0.8373 (0.0307) 0.7648 (0.0284) 0.7690 (0.0284) 0.4231 (0.0051) 0.5511 (0.0441) 0.3365 (0.0052) 
T=500 0.2467 (0.0063) 0.2511 (0.0065) 0.2472 (0.0063) 0.2480 (0.0063) 0.3633 (0.0048) 0.2323 (0.0080) 0.2291 (0.0026) 

 



Table 6 – Prediction accuracy when coefficients change every period - Monte Carlo evidence - MSE of one-step-ahead predictions 
 

Panel A - One lag in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 1.2637 (0.0082) 1.2660 (0.0081) 1.2696 (0.0084) 1.2887 (0.0089) 1.5793 (0.0246) 1.3656 (0.0249) 1.3679 (0.0129) 
T=200 1.1825 (0.0053) 1.1833 (0.0053) 1.1858 (0.0055) 1.1942 (0.0057) 1.5627 (0.0235) 1.2622 (0.0224) 1.3261 (0.0125) 
T=500 1.1094 (0.0032) 1.1096 (0.0032) 1.1101 (0.0032) 1.1119 (0.0033) 1.5546 (0.0240) 1.1515 (0.0085) 1.2784 (0.0114) 
 ρ=0.50       
T=100 1.2760 (0.0086) 1.2751 (0.0084) 1.2830 (0.0090) 1.3093 (0.0100) 1.5948 (0.0212) 1.4155 (0.0228) 1.3831 (0.0127) 
T=200 1.1867 (0.0063) 1.1868 (0.0063) 1.1894 (0.0064) 1.2000 (0.0071) 1.5554 (0.0212) 1.2433 (0.0098) 1.3298 (0.0124) 
T=500 1.1161 (0.0032) 1.1159 (0.0032) 1.1170 (0.0033) 1.1192 (0.0034) 1.5943 (0.0245) 1.1564 (0.0056) 1.3054 (0.0125) 
 ρ=0.80       
T=100 1.3009 (0.0135) 1.3026 (0.0130) 1.3070 (0.0137) 1.3339 (0.0149) 1.6125 (0.0344) 1.4257 (0.0170) 1.4093 (0.0215) 
T=200 1.1894 (0.0128) 1.1903 (0.0131) 1.1926 (0.0130) 1.2047 (0.0141) 1.5493 (0.0251) 1.2723 (0.0180) 1.3286 (0.0161) 
T=500 1.1116 (0.0035) 1.1115 (0.0034) 1.1123 (0.0035) 1.1139 (0.0036) 1.5399 (0.0186) 1.1672 (0.0114) 1.2843 (0.0098) 
 ρ=0.99       
T=100 1.4028 (0.0115) 1.4363 (0.0124) 1.4067 (0.0118) 1.4220 (0.0120) 1.6146 (0.0208) 1.4992 (0.0517) 1.3924 (0.0123) 
T=200 1.2848 (0.0091) 1.2972 (0.0093) 1.2867 (0.0091) 1.2917 (0.0092) 1.5963 (0.0224) 1.2675 (0.0117) 1.3379 (0.0122) 
T=500 1.1564 (0.0044) 1.1596 (0.0045) 1.1574 (0.0045) 1.1588 (0.0045) 1.5581 (0.0231) 1.1752 (0.0151) 1.2882 (0.0115) 
 

Panel B – Three lags in the estimated equation 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
 ρ=0       
T=100 1.4312 (0.0188) 1.4333 (0.0168) 1.4359 (0.0191) 1.4636 (0.0230) 1.6667 (0.0306) 1.5028 (0.0241) 1.5340 (0.0256) 
T=200 1.2653 (0.0071) 1.2653 (0.0068) 1.2681 (0.0072) 1.2800 (0.0082) 1.5577 (0.0173) 1.3186 (0.0107) 1.3912 (0.0116) 
T=500 1.1713 (0.0051) 1.1715 (0.0051) 1.1723 (0.0052) 1.1737 (0.0052) 1.5745 (0.0226) 1.2156 (0.0077) 1.3453 (0.0135) 
 ρ=0.50       
T=100 1.4214 (0.0137) 1.4247 (0.0131) 1.4252 (0.0138) 1.4476 (0.0152) 1.6373 (0.0229) 1.4982 (0.0197) 1.5109 (0.0189) 
T=200 1.2954 (0.0128) 1.2961 (0.0127) 1.2993 (0.0136) 1.3114 (0.0141) 1.6280 (0.0247) 1.3697 (0.0214) 1.4369 (0.0175) 
T=500 1.1687 (0.0048) 1.1689 (0.0048) 1.1695 (0.0048) 1.1711 (0.0049) 1.5631 (0.0197) 1.2145 (0.0071) 1.3402 (0.0115) 
 ρ=0.80       
T=100 1.4303 (0.0129) 1.4342 (0.0125) 1.4353 (0.0131) 1.4614 (0.0146) 1.6616 (0.0246) 1.5534 (0.0261) 1.5281 (0.0187) 
T=200 1.2803 (0.0079) 1.2816 (0.0078) 1.2829 (0.0079) 1.2941 (0.0083) 1.5949 (0.0208) 1.3301 (0.0099) 1.4126 (0.0131) 
T=500 1.1652 (0.0044) 1.1648 (0.0043) 1.1659 (0.0044) 1.1681 (0.0044) 1.5584 (0.0233) 1.2240 (0.0120) 1.3402 (0.0134) 
 ρ=0.99       
T=100 1.5138 (0.0153) 1.5417 (0.0162) 1.5246 (0.0156) 1.5664 (0.0167) 1.6848 (0.0276) 1.5574 (0.0300) 1.5380 (0.0200) 
T=200 1.3405 (0.0110) 1.3533 (0.0113) 1.3469 (0.0112) 1.3624 (0.0116) 1.6228 (0.0267) 1.3507 (0.0122) 1.4279 (0.0152) 
T=500 1.1838 (0.0071) 1.1851 (0.0071) 1.1853 (0.0071) 1.1889 (0.0072) 1.5842 (0.0276) 1.2445 (0.0173) 1.3475 (0.0109) 

 



Table 7 – Prediction accuracy – Risk exposures – Reduction in the MSE of one-step-ahead predictions (benchmark=OLS) 
 

 TVC-MA TVC-MS TVC-Π TVC-π OLS BP BP-MA 
Mean 2.94% 2.48% 2.70% 2.15% 0% -121.72% 3.13% 
Standard dev.  11.02% 11.68% 10.82% 10.63%   0% -557.07% 6.00% 
First quartile -2.14% -2.67% -2.14% -2.23% 0% -46.94% -0.14% 
Median 1.85% 1.30% 1.17% 0.11% 0% -5.76% 1.53% 
Third quartile 7.83% 7.75% 7.47% 6.84%   0% 0.20% 6.37% 
 


