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1 Introduction

As part of the Balanced Budget Act of 1997, the U.S. government passed the Medicare

Rural Hospital Flexibility (Flex) Program, whose overarching goal was to maintain access

to quality hospital care for rural residents. To achieve this objective, the program created

a new class of hospital, the Critical Access Hospital (CAH), to which rural hospitals can

convert. Participating hospitals opt out of the standard Prospective Payment System (PPS)

and instead receive cost-based reimbursements from Medicare that were generally relatively

generous. In return, they must comply with a number of restrictions, principally, limits on

their capacity to 25 beds or less and patient length-of-stay to 96 hours or less. By 2006, 25%

of all general acute care U.S. hospitals had converted to CAH status and Medicare’s payments

to converting hospitals are estimated to have increased by 35%, to $5 billion (MedPAC, 2005).

Although the Flex program was designed for small, rural hospitals, 98% of hospitals

that converted by 2006 had more than 25 beds in 1996, and the mean beds for converters

decreased from 42 in 1996 to 22 in 2006. The fact that some hospitals lowered their size in

order to qualify for the program was an important consequence of the Flex program given

the dimensions of the capacity changes, but one that was very separate from the main policy

intent of “access.” Yet, the types of policy consequences embodied in the Flex program are not

unique. Many other government policies seek to achieve their goals by affecting the returns to

entry, exit and investment and thus may have important consequences on industry structure

and through that consumer welfare and firm profits. Examples abound and span countries

and industries. Education vouchers and the charter school option affect the number and size

distribution of private schools. Greenhouse gas policies affect the installation, expansion and

scrapping decisions for power plants.

The goal of this paper is to understand the impact of the Flex program on hospital care for

the rural U.S. population, incorporating the endogenous response of hospital characteristics

to the program and the resulting consequences on industry structure. By providing generous

and cost-based reimbursements, the program likely forestalled rural hospital exit, thereby

increasing access to rural residents, its main policy goal. However, by limiting beds and
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services, the program also likely caused hospitals to lower their capacity and not offered the

range or quantity of services that they did pre-conversion. The extent to which the program

benefitted consumers depends on the extent to which the option to convert to CAH status

forestalled exit and spurred reductions in bed size.

Given appropriate data, one might use reduced-form regressions of hospital exit and in-

vestment on exposure to the Flex program to estimate the policy impact of the program.

Unfortunately, there is no control group of hospitals that are not exposed to the Flex program.

Thus, we proceed with a structural approach: we specify a model of hospital and consumer

decisions, estimate the fundamental parameters underlying these decisions, use the estimated

parameters to compute industry structure under counterfactual policy environments, and use

the industry structure to compute welfare. Because entry, exit and investment affect future

returns in a strategic environment, the structural approach requires solving and estimating

a dynamic oligopoly model where firms can choose CAH status and capacity through in-

vestment. We develop new methods to compute and estimate models of dynamic oligopoly

capacity games that might also be useful to analyze these types of industries.

In our model, each period hospitals select their investment or disinvestment in beds,

whether to exit, and, for eligible hospitals, whether or not to convert to CAH status.1 We

model sequential random private information cost shocks for beds investment and CAH

status. We allow for non-linear adjustment costs in beds. The private information shock and

stochastic CAH outcome generate randomness in the outcomes of the model, necessary for the

existence of a pure strategy equilibrium and a well-defined likelihood function. Following the

hospital decisions, each period individuals fall ill and make a static discrete choice of hospital.

Patient utility from a hospital includes hospital characteristics, distance to the hospital and

interactions plus an unobservable component that follows a nested-logit structure. We allow

for unobserved heterogeneity in the impact of CAH status on profits, based on the cost

structure of each hospital. We recover hospital cost fixed effects using panel data from 1994-

8, before the implementation of the program.

Hospitals earn profits from the patients that they treat. For-profit (FP) hospitals seek to

1Entry is rare in rural hospital markets and therefore our analysis does not consider it.
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maximize the expected discounted sum of current and future profits. Not-for-profit (NFP)

and government hospitals seek to maximize a weighted average of the expected discounted

sums of profits and the provision of service. The decisions are made in a Markov Perfect

equilibrium, where hospitals take account of the effect of their investment and conversion

decisions on other hospitals in their market. Our model is a function of unknown parameters

that pertain to the determinants of profits, the objective functions for NFP and government

hospitals, the cost function for investing or disinvesting in capacity and exit, the costs of

CAH conversion, the size of random cost shocks and consumer utility parameters.

The structural parameters of our model are identified in a reasonably transparent and

intuitive manner. The heterogeneous treatment impact of CAH policy on hospital profits is

identified by using the pre-treatment period to determine a hospital’s type, as in the labor

literature (see Todd and Wolpin, 2006). The costs of investment in beds or CAH status are

identified by the ratio of the extent to which gross profits change following the change in state

variable to the likelihood of choosing that policy. If CAH status increases profits for certain

hospitals significantly but those hospitals rarely convert, our model infers that conversion is

very costly. Note in particular that our model has few parameters to identify relative to a

reduced-form approach. This is because theory provides guidance as to the structure of the

problem, allowing us to predict counterfactual policies from the limited set of parameters

noted above.

A number of recent papers have developed methods to structurally estimate the parame-

ters of dynamic oligopoly models and our paper builds on this literature. First proposed by

Hotz and Miller (1993) and Hotz et al. (1994) in the context of dynamic single-agent models

with discrete choices, the idea is to use the data in place of optimizing behavior to simu-

late the state forward for a given choice. This avoids the computational burden of solving

for the dynamic decision problem when estimating the structural parameters of the model.

This insight was extended to dynamic oligopoly models by Bajari et al. (2007) (henceforth

BBL), Pakes et al. (2007) (POB), Aguirregabiria and Mira (2007) (AM) and Pesendorfer and

Schmidt-Dengler (2007).

Our estimator is based on insights developed by BBL applied in a quasi-maximum likeli-
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hood framework. AM also develop a quasi-maximum likelihood estimator for discrete choice

models such as entry games where one can forward simulate to solve for values conditional

on choice. A direct application of POB would not be computationally feasible in our context

because the forward simulation is very computationally costly. BBL show that the forward

simulation need only be done once if the value function can be written linearly in the struc-

tural parameters. BBL propose estimating the parameters using an inequality approach,

based on the fact that the value of the observed choices must be bigger than the value of

counterfactual firm policies. The advantage of the BBL approach is that it is computationally

feasible to use for models with many or continuous choices and states, such as ours. However,

the efficiency properties of the inequality approach are unknown and may depend on how

many inequalities are chosen and how the inequalities are sampled.2

We develop a computationally efficient quasi-maximum likelihood estimator. We do this

by writing the choice-specific value function linearly in the structural parameters (essentially

applying the insight of BBL to a slightly different context) and by developing a method for

rapidly computing the probability of each choice given choice-specific value functions. We

also develop methods to solve for the equilibria of our model for counterfactual policies that

are based on our method for computing the probability of each choice. To our knowledge,

no methods exist to compute equilibria of dynamic oligopoly capacity games.3 Simulation

approximation methods, which are the most commonly used, generally result in non-existence

of equilibrium for this type of game.

The estimation of the parameters of dynamic discrete games dates to Gowrisankaran

and Town (1997) where they studied the dynamics of the hospital industry, and Benkard

(2004) modeled the dynamics of the airline manufacturing industry in a learning-by-doing

environment. The introduction of these new methods have allowed researchers to more easily

estimate parameters of dynamic discrete games. Not surprisingly, there has been a recent

increase in the number of papers constructing and estimating the parameters of rich models

2BBL also suggest a GMM approach such as POB as an alternative.
3Most recent computable dynamic oligopoly models are based on the Pakes and McGuire (1994) model

and specify quality ladder games with a stochastic and discrete, typically binary, investment realization.
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of firm dynamics in oligopolistic settings. For example, Ryan (2006) studies the impact of

environmental regulations on cement manufacturing market structure, Collard-Wexler (2006)

studies the role of demand fluctuations in ready-mix concrete, Snider (2008) estimates the

use of capacity choice in a predatory pricing setting and Dunne et al. (2008) uses the methods

of POB to estimate the role of entry and fixed costs in affecting market structure for dentists

and chiropractors.

The remainder of this paper is divided as follows. Section 2 provides the institutional

background of the Flex program. Section 3 describes our data. Our model is presented in

Section 4 and Section 5 describes our estimation method. The results and policy experiments

are presented in Sections 6 and 7 respectively, and Section 8 concludes.

2 The Critical Access Hospital Program

2.1 Background

The Flex program was enacted in the Balanced Budget Act (BBA) of 1997.4 Designated

CAHs receive cost-based Medicare reimbursements for inpatient, outpatient, post-acute (swing

bed) and laboratory services. To qualify for the program, hospitals must be 35 miles from

a primary road and 15 miles by a secondary road to the nearest hospital. However, this

distance requirement can be waived if the hospital is declared a “necessary provider” by the

state, and, until recently, the distance requirement does not appear to be binding.5 Most

CAHs are less than 25 miles from a neighboring hospital. The BBA legislation stated that

CAHs can only treat 15 acute inpatients and 25 total patients including patients in swing

beds. A swing bed is one which can be used to provide either acute or skilled nursing facility

care. In the 1997 legislation the maximum size of a hospital is 15 beds and the length of stay

is limited to 4 days for all patients.

CAH hospitals are required to provide inpatient, laboratory, emergency care and radiology

4Much of the information in the section is culled from MedPAC (2005), which contains much more back-

ground than we provide.
5In 2006, the legislation was passed that prevents states from waiving the distance requirement.
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services. A CAH must develop agreements with an acute care hospital related to patient

referral and transfer, communication, emergency and non-emergency patient transportation.

The CAH may also have an agreement with their referral hospital for quality improvement

or choose to have that agreement with another organization. Last, the CAH legislation

provides resources for hospitals to hire consultants to project revenues and costs under the

Flex program and determine which strategy is best for the hospital given its objectives.

The program’s rules have been modified several times since its inception. Table 1 summa-

rizes the important legislative and regulatory changes in the program. The most important of

these changes are: 1) The Balanced Budget Reconciliation Act (BBRA) of 1999 changed the

length of stay requirement and allowed states to designate hospitals in Metropolitan Statis-

tical Areas ‘rural’ for CAH classification; 2) The Medicare Prescription Drug, Improvement

and Modernization Act (MMA) of 2003 increased the acute inpatient limit from 15 to 25

acute patients and increased the payments from 100 to 101 percent of costs.

Figure 1 shows the rate of CAH conversion among all general acute care hospitals in

the U.S. Conversion rates were very low until 1999. Starting in 1999, there is roughly a

4% conversion rate per year until the end of our sample period. We believe that the delay

between the enactment of BBA in 1997 and the timing of conversion is due to the application

process, which requires large amounts of paperwork, inspection visits and CMS approval.6

By 2005, over 20% of hospitals have adopted CAH status. It is said that conversion rates

should decline after 2006, when the minimum distance requirement will be enforced (MedPAC

(2005)).

The 2005 spatial distribution of CAHs within the 48 continental United States is shown

in Figure 2. By 2005, CAHs are present in most states, but New Jersey, Delaware, Rhode

Island, Connecticut and Maryland do not participate in the program. CAHs concentrate in

the Midwest, and are mostly outside of MSAs. The State of Alabama has unusually few

CAHs, and from our discussions with industry experts, we believe that the responsible state

office did not facilitate CAH conversions.

6For example, in the state of Wisconsin, the application process is an 18-step process, detailed at

http://www.worh.org/pdf etc/AppFlowChart.pdf
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2.2 Previous Research on Hospital Exit

A number of studies examine hospital exit and thus relate to the Flex program . Lillie-

Blanton et al. (1992) and Ciliberto and Lindrooth (2007), find that smaller hospitals are

more likely to close. Wedig et al. (1989) finds that for-profit hospitals are more likely to exit

due to competing uses of capital. Similar conclusions are reached by Ciliberto and Lindrooth

(2007) and Succi et al. (1997). Hansmann et al. (2002) consider four types of ownership

and they also find that for-profit hospitals were the most responsive to reductions in demand

by exiting the market, followed by public nonprofits, religiously affiliated nonprofits, while

secular nonprofits responded the least.

With respect to the effect of closures on surviving hospitals, Lindrooth et al. (2003)

focused on urban hospitals and found that the costs per adjusted admission declined by

2-4% for all patients and by 6-8% for patients who would have been treated at the closed

hospital. They abstract from the issues of access to care that closures generate due to their

focus on urban hospitals within 5 miles from the closing one. In contrast, McNamara (1999)

studies the impact of rural hospital closures on consumer surplus using a discrete choice

travel-cost demand model. He finds that the average compensating variation for the closure

of the nearest rural hospital that makes the average shortest distance increase from 9 miles

to 25 miles is about 19,500 year-1988 dollars per sample hospitalization. These papers all

consider the period before 1998, before hospitals were effectively converting into CAH.

Several more recent studies examine aspects of the Flex program . Stensland et al. (2003)

studies the financial effects of CAH conversion. Comparing hospitals that converted in 1999

to other small rural hospitals, they find a significant association of CAH conversion with

increases in Medicare revenue, increases in hospital profit margins from -4.1% to 1.0%, and

increases in costs per discharge of 17%. They state that local patients and CAH employees

benefit from the improved financial conditions, but do not calculate whether the benefits

are worth their cost. Stensland et al. (2004) redo their analysis for hospitals converting in

1999 and 2000, reaching similar conclusions. Casey and Moscovice (2004) study the quality

improvement initiatives of two CAHs after conversion, and conclude that the cost-based

8



payments help the hospitals to fund activities that would improve quality of care such as

additional staff, staff training and new medical equipment.

Although this literature has greatly enhanced our understanding of hospital exits and

the Flex program, it does not attempt to model the impact of the CAH policy on hospital

investment and exit. Thus, it cannot be used to analyze the impact of different rural hospital

policies on industry structure and welfare. Gowrisankaran and Town (1997) also examined a

dynamic model of the hospital industry. In comparison to that paper, our work incorporates

a richer model of the hospital sector that allows for variation in geography, size and hospital

characteristics. The model is also identified with much richer data than was used in that

paper.

3 Data

We construct our dataset by by pooling and merging information from various sources. Pri-

marily, we use the publicly available Hospitals Cost Reports Information System (HCRIS)

panel data set from CMS for the years 1994-2005. Hospitals are required to file a cost report

at the end of each fiscal year, where they report detailed financial and operational informa-

tion needed to determine Medicare reimbursements, and this dataset contains the resulting

information. For our purposes, these data report the number of beds, inpatient discharges,

inpatient and outpatient revenues, and accounting information such as inpatient and out-

patient costs, depreciation, asset values and profits, as well as a unique provider number

assigned by CMS.7 Our HCRIS sample is the set of non-federal, general acute care hospitals.

The information from the HCRIS was complemented with data on the timing of conversion

to CAH from the Flex Monitoring Team (Flex).8 When hospitals convert to CAH, a new

provider number is issued by CMS, even if ownership does not change, thus tracking hospitals

7The reporting periods for hospitals differs in length, and beginning and end dates. We created a panel
with one observation per calendar year, by disaggregating the data to the day level and then aggregating it
back to the calendar year level.

8The Flex Monitoring Team is a collaborative effort of the Rural Health Centers at the Universities of
Minnesota, North Carolina and Southern Maine, under contract with the Office of Rural Health Policy. The
Flex Monitoring Team monitors the performance of the Medicare Rural Hospital Flexibility Program (Flex
Program), with one of its objectives being the improvement of the financial performance of CAH.
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as they convert is a data challenge. By using the Flex data, we were able to link the new

and old provider numbers, which is necessary to understand the dynamics of the industry.

Using the merged data, we find that only 14 hospitals entered a particular market as a new

facility, and therefore, we do not model entry. In addition, the Flex data contains accurate

information on the number of beds for the hospitals that converted, which was used to verify

the HCRIS information.

We link these two datasets with the American Hospital Association Annual Survey (AHA),

using the CMS provider number to perform the linkage. Our primary use of the AHA data

is to determine hospital latitude and longitude which we use to compute distances between

patients and hospitals and to identify a hospital’s competitors.

We complete our hospital data with information from the Registered Deletions section of

the AHA Survey for years 1994-2005. These reports contain a list of the hospitals that exited

the market during the year.

We rely on two data sources in order to construct measures of hospital inpatient flows by

payer class. From the CMS, we use the Health Services Area File which contains Medicare

hospital level discharge information by Medicare beneficiary ZIP code and year. We also use

data from the 2000 U.S. census under 65 year old population. This data is used to capture

the geographic distribution of the non- Medicare population. We restrict our attention to the

population that is above the poverty line as the margins for treating those patients with low

income is low (if they are on Medicaid) or negative (if they are uninsured). For our purposes,

these data provide information on the number of people by age in each census ZIP code.

Using the hospital data, we designate a set of hospitals that we determine are candidates

for CAH conversion. Because the policy’s stated objective is to maintain access to emergency

and inpatient care for rural residents we let rurality be a necessary condition for conversion.

We characterize rurality using the Rural-Urban Commuting Area Codes (RUCA), version

2.0.9 This measure is based on the size of cities and towns and their functional relationships

as identified by work commuting flows, and have been used by CMS to target other rural

9These measures are developed collaboratively by the Health Resources and Service Administration, the
Office of Rural Health Policy, the Department of Agriculture’s Economic Research Service, and the WWAMI
Rural Health Research Center.
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policies, such as the ambulance payments. CMS considers a census tract to be rural if and

only if it has a RUCA greater or equal than 4, and we adopt the same criterion in this paper.10

Very few medium to large size hospitals convert to CAH status, so we allow only hospitals

with 160 beds or less to be candidates for CAH conversion. Consistent with the timing of the

law, we consider conversions over the period 1999-2005 for NFP and government hospitals

and 2001-05 for FP hospitals. We also eliminate non-participating states and Alabama.

These four criteria determine our sample for ‘at-risk’ hospitals.

4 Model and equilibrium

4.1 Model

We specify a dynamic oligopoly model for a geographic area where the strategic players are

the ‘at-risk’ hospitals defined above. Denote the players in a market 1, . . . , J . Players are

differentiated by their location, CAH status, capacity (measured by beds), ownership type

ownj, fixed demand attractiveness ξ̄j and fixed cost level FEj. Time is discrete with a period

corresponding to a year and hospitals discount the future with the same discount factor β.

Each period, we model a game with three stages. First, nature moves and provides each

hospital with a period-specific investment cost shock. Second, knowing the value of their

individual shocks – but not of other hospitals’ shocks – players in the market simultaneously

choose strategies for capacity investment, exit and CAH status. Finally, a static production

game occurs where each patient makes a discrete choice among available hospitals. While we

allow a hospital to change its capacity and CAH status, we assume that its other characteris-

tics are fixed. Denote the industry characteristics that are fixed within a market Ω and denote

the capacity and CAH status of each hospital in the market Ω. Since Ω is time-invariant,

we suppress it when not necessary to economize on notation, and write the environment for

hospital j as (Ω, j).

Hospitals choose actions in order to maximize the expected discounted values of their net

10Department of Health and Human Services, Medicare Program, Revisions to Payment Policies, etc.; Final
Rule. Dec 2006.
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future returns where returns depend on ownj. We model three ownership types: for-profit

(FP), not-for-profit (NFP) and government. For a FP hospital, returns in any period are

synonymous with profits, while for NFP and government hospitals, returns are a weighted

sum of profits and the provision of service.11 We denote the weight on the provision of

service as αNFPp and αGovp for NFP and government hospitals respectively, where the α values

are parameters to estimate. We normalize the weights on expected net profits to 1 as such

coefficients would not be identified.

We now detail the exit and capacity investment process. In the hospital industry – and

in most industries – firms do not alter their capacity levels in most years, suggesting that

the marginal costs of positive investment may be very different than the marginal costs

of negative investment. We model an investment process with quadratic adjustment costs,

a fixed cost of non-zero investment and different costs of positive and negative investment,

which allows for both asset specificity and fixed costs to explain this phenomenon. A hospital

can exit the industry by disinvesting in beds until it has none left. In addition to the cost of

disinvestment, the exiting hospital obtains a scrap value φ from selling its physical property.

Exits are permanent: hospitals with 0 beds cannot build beds or otherwise earn profits.

Let B(Ω, j) denote the capacity, in terms of beds, for hospital at state (Ω, j). At time

t, hospitals choose their t + 1 capacity, which we denote xj. The choice set depends on the

current CAH status of the hospital as CAH hospitals are restricted to 25 beds or less. We

denote the conditional choice sets XCAH . Both these sets have a finite number of elements:

firms cannot own fractional beds and the maximum number of beds is restricted to 150. We

11There is a long tradition in the health economics literature in which the objective function of not-for-

profit hospitals includes arguments other than net profits. Newhouse (1970) first proposed that NFP hospitals

maximize a combination of quality and quantity subject to a profit constraint. In order to explain hospital

cost-shifting behavior, Dranove (1988) and Gaynor (2006) both construct models in which imperfectly com-

petitive hospitals maximize a combination of profits and output. Gowrisankaran and Town (1997) estimate

parameters from a dynamic model of entry and exit in which not-for-profit hospitals a linear combination of

profits and quality. Lakadawalla and Philiipson (2006) analyze a dynamic model of hospital entry and exit

in which not-for-profit organizations maximize a linear combination of profits and quality.
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let the mean cost of capacity investment (not accounting for the cost shock) be

MeanInvCost(B, x) = −1{x = 0 and B > 0}φ

+ 1{x > B}
(
δ1 + δ2(x−B) + δ3(x−B)2

)
(1)

+ 1{x < B}
(
δ4 + δ5(x−B) + δ6(x−B)2

)
,

where φ is the scrap value and δ1, . . . , δ6 are investment parameters to estimate. The total

investment cost adds the cost shock:

InvCost(B, x, ε) = MeanInvCost(B, x) (2)

+ (1{x > B}σ1 + 1{x < B}σ2) (x−B)ε.

We let εjt be distributed N(0, 1) and restrict σ1, σ2 > 0. The terms σ1 and σ2 are parameters

to estimate, which we allow to differ for flexibility. To ease notation, let

σx,B =

 σ1 if x > B

σ2 if x ≤ B.

Thus, we can write InvCost(B, x, ε) = MeanInvCost(B, x) + σx,B(x−B)ε.

MeanInvCost is similar to the investment cost specified in Ryan (2006) and a long

literature that he cites but is different from earlier quality-ladder dynamic oligopoly models12

in that we assume that firms deterministically choose the level of future capacity and can

change capacity quickly, albeit at a potentially high cost. The form of the uncertainty in (9)

is, to our knowledge, new, but we believe that it is intuitive given MeanInvCost.

After the investment decision, each eligible non-CAH hospital simultaneously decides

whether it wants to convert to CAH status. At this point, each eligible hospital receives

a private, iid cost of conversion draw εcjt ∼ N(µc, σc). If the hospital converts in period t,

it incurs a one-time cost of εcjt. We denote the CAH status of the hospital by cjt ∈ {0, 1}

where cjt = 1 denotes a converted hospital and cjt = 0 denotes a non-CAH. Consistent with

government limitations, we define eligibility for conversion at time t as having beds after

investment xjt ≤ 25. Having already converted, CAH hospitals are not allowed to revert to

12See Ericson and Pakes (1995), Pakes and McGuire (1994) and Gowrisankaran and Town (1997).
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non-CAH status. We make this assumption because our data contain only 2 instances of

hospitals that abandoned CAH status.

We do not model entry since entry is very rare in the rural areas that are in our data.

In particular, among hospitals in our sample, 97 percent existed in 1999. Given this limited

amount of entry, it would be hard to credibly identify the parameters on the entry distri-

bution. In the long run, we would expect entry in the industry due to random firm-specific

shocks and thus our model will not accurately capture the steady state of the industry. How-

ever, for the 20 year time-period that we examine for our counterfactual policy analysis, we

believe our omission of an entry process is reasonable.

We model production as follows. Each period t, there is a set of patients 1, . . . , It who

seek treatment for their illnesses. Patients are geographically dispersed and select a hospital

for their care based on its distance and the characteristics of the hospital. Each patient

makes a discrete choice among all available hospitals in that period that are within 150 KM

of her location or the outside option, which corresponds to choosing a hospital outside of this

radius. More precisely, the patient’s utility function of an inpatient admission is given by

uijt = ξ̄j + wijtβ
c + ξjt + υijt. (3)

Here wijt is a vector of hospital/patient characteristics including an indicator whether the

hospital has converted to CAH status, the straight-line distance from the patient’s ZIP code

to the hospital, distances squared, an indicator for the closest hospital, hospital bed size,

and interactions of these variables. Also included in wijt are indicators for rural residents

interacted with distance and CAH status. Unobserved time-varying hospital desirability is

captured by ξjt. We assume that this factor is i.i.d. across time and that ξjt is known only at

time t. Hence, its realization does not affect dynamic firm decisions but does affect consumer

decisions. The utility shock υijt is a mean zero shock. We assume that it takes on a nested

logit structure; it is composed of two terms, an i.i.d. type 1 extreme value term multiplied by

a parameter ρ and a part that is common across hospitals within a type, distributed C(ρ).

We model three types of hospitals: CAHs, non-CAHs and the outside option.

We do not model the price of the hospital in our patient utility model. There are two
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reasons for this. First, it is very difficult to observe prices. Second, the vast majority of rural

patients are covered by Medicare and do not face any price variation. Among patients who

do not have Medicare, the majority of rural patients have fee-for-service (FFS) insurance

that also does not have price variation.

We observe locations of consumers at the ZIP code level for each year. We assume that

there are enough patients in every ZIP code that hospital shares at the ZIP code level are

observed without error. This allows us to treat ξjt as an econometric residual and estimate

the demand parameter using the instrumental variables method of Berry (1994). A “market”

in this framework corresponds to a ZIP code and year combination. We use the mean number

of beds, mean distance and mean number of firms within group as instruments for log within-

group share.

Using the estimated demand model, we compute expected profits for a hospital as a

function of the state, Π(Ω,Ω, j), which is then used as an input in the dynamic model. The

traditional way to compute profits (see Benkard, 2004, for instance) would be to multiply

demand by price and subtract costs. However, in our case, we observe profits directly in the

data, allowing us to bypass this step and compute expected profits as a regression of the

observed profits on the state variable. This allows us to estimate a profit function that is

consistent with competition, CAH status and location affecting profits in a more flexible way

than if we had specified marginal costs linearly, as is typical.

We assume that profits in the years before the Flex program implementation are a func-

tion of beds, ownership and other measures that are interactions between Ω and (Ω, j);

specifically, the effective number of hospitals in the market, the expected volume of Medicare

and under 65 year old patients and interactions of these variables as well as a hospital cost

fixed effect FEj that enters linearly. In the post-Flex period, profits depend further upon all

the pre-implementation variables interacted with CAH status and the CAH status of com-

petitors. In particular, FE interacts with CAH status even though it enter linearly in the

pre-implementation period. The reason for this is that the Flex program pays on a cost basis

while traditional Medicare pays a fixed rate. Thus, hospitals with low cost (low FE) will

have relatively less gain from CAH status all else equal. Our specification for FE borrows

15



from a long literature in labor economics, which similarly considers models with heterogene-

ity in the impact of the ‘treatment’ (CAH status in our case) based on ‘type’ (FE in our

case), and endogenous selection into treatment. A typical assumption in this literature, that

the pre-treatment period can be used to identify the type (see Todd and Wolpin, 2006), is

identical to our assumption.

4.2 Equilibrium

A Markov Perfect Equilibrium (MPE) is a subgame perfect equilibrium of the game where

the strategies are restricted to be functions of payoff-relevant state variables (Maskin and

Tirole, 1988, see). For firm j, the payoff-relevant state variable is (Ω, j, εj).

In order to define the MPE, we start by expositing the dynamic optimization problem

for the individual firm. This requires several definitions. Denote the expected static gross

returns (gross of investment) for a hospital j with Bj > 0 (i.e., that has not closed down) as:

EGR(Ω, j) = E
[
Π(Ω, j) + 1{ownj = NFP}αNFPp + 1{ownj = Gov}αGovp

]
, (4)

where we are implicitly letting B and own be a function of the state. Denote the value func-

tion for any state as V (Ω, j, εj) and denote the expected value of firm j before its realization of

εj as EV (Ω, j). Let ConCost(xj,Ω) denote the expected cost of conversion given prior to the

realization of Let (x−j, c−j) denote the actions of all firms other than firm j; let p(x−j, c−j|Ω)

denote hospital j’s beliefs regarding its rivals’ strategies at Ω; and let g(Ω′|xj, cj, x−j, c−j,Ω)

be the probability of future beds and capacity levels Ω′ given current values Ω and actions

xj, cj, x−j and c−j. Given beliefs about rivals’ actions, we can write the Bellman equation

for a hospital with B > 0 as:

V (Ω, j, εj) = max
xj
{EGR(Ω, j)− InvCost(B(Ω, j), xj, εj) +

∫
maxcj [−cjεcj (5)

+β1{xj > 0}
∫ ∑

Ω′

EV (Ω′, j)g(Ω′|·)dp(x−j, c−j|·)]dp(εcj)}.

We now further exposit the optimal choices of investment necessary to compute and

estimate the model. Recall that firm j chooses xj and then receives its CAH investment
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cost draw and chooses its CAH status. Let us now consider the decision to convert, cj,

conditioning on a given choice of xj. Many terms in (5) do not have cj in them and can be

dropped – in particular, all the terms with ε. For xj ∈ {1, . . . , 25}, the optimal choice, which

we denote ĉ(Ω, j|xj), satisfies

ĉ(Ω, j, εcj|xj) = argmax
cj∈{0,1}

(6){
−cjεcj + β

∫ ∑
Ω′

EV (Ω′, j)g(Ω′|xj, cj, x−j, c−j,Ω)dp(x−j, c−j|Ω)

}
;

for other values of xj, ĉ = 0.

We now define the optimal choice of xj. We start by defining the “choice-specific value

function” V (Ω, j, xj) to be the value for a given choice of capacity xj gross of the ε term, ex

ante to the realization of εcj. Specifically,

V (Ω, j, xj) = −MeanInvCost(B(Ω, j), xj) +

∫
maxcj [−cjεcj (7)

+β1{xj > 0}
∫ ∑

Ω′

EV (Ω′, j)g(Ω′|·)dp(x−j, c−j|·)]dp(εcj).

Finally, we define the optimal level of investment as

x̂j(Ω, j, εj) = argmax
xj

{
V (Ω, j, xj)− σxj ,B(Ω,j)(xj −B(Ω, j))εj

}
(8)

We can now define a MPE and prove existence. The MPE is a set of investment strategies

for every state, x̂(Ω, j, ε) and ĉ(Ω, j, εcj|xj), for which the following holds: for each state

(Ω, j, εj), x̂(Ω, j, ε) and ĉ(Ω, j, εcj|xj) satisfy the Bellman equation (5) using the equilibrium

strategies p(x̂−j, ĉ−j|Ω) for rivals. This ensures that no unilateral deviation is profitable

at any state, which is the definition of a MPE. We now show existence of pure strategy

equilibrium, which relies on the presence of the unobservable cost shock ε:

Proposition 4.1. For a given vector of parameters (α, δ, σ) and given fixed characteristics

of a market, a pure strategy MPE exists for our model.

Proof The method of proof follows Ericson and Pakes (1995) and Gowrisankaran (1995).13

Let o(x) denote the dimensionality of x and let ∆N denote the N -dimensional simplex. We

13Doraszelski and Satterthwaite (2007) provide general proofs of existence for Pakes and McGuire (1994)

type models, although their assumptions are not applicable to our model.
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define a function f : (<×∆o(X)−1×<o(X))o(Ω)×J −→ (<×∆o(X)−1×<o(X))o(Ω)×J and will show

that a fixed point to f exists and constitutes a MPE. The domain of f is as follows: for each

firm (of which there are J) and each Ω, the first element provides the expected value function;

the second element provides the probability of each given capacity investment decision (and

hence lies in the simplex); and the third element provides a CAH investment cost for each

capacity choice.

The function f is the convolution of two functions. The first function specifies the ex-

pectation of the Bellman equation (5) using the expected value function and perceptions as

specified in the domain of f . The second function applies (6) and (8), specifying the proba-

bilities and actions that are consistent with the new value function. By construction, a fixed

point of this mapping constitutes a MPE.

We now show that f is defined on a compact, convex interval of <N (for some N) and

that it is continuous. We start with the compact, convex part. Even though ε has unbounded

support, note from (9) that the expected value of the gain or loss from ε is bounded above by

some multiple of E|maxx∈Xxε|. Combined with the facts that profits are bounded, implying

that gross returns are also bounded, and that the gain from mean investment is bounded, the

expected value function can be uniformly bounded above. Given the fixed scrap value of exit

φ, the expected value function is bounded below and thus lies in some compact, convex subset

of <o(Ω) for each firm. For each firm, the probabilities lie in the o(X)−1 dimensional simplex

which is a compact, convex interval of <o(X). The CAH investment cost is bounded below

by 0 and can be bounded above using the bounds in the value function (see the discussion

of the bounds on investment in Gowrisankaran (1995)) since the marginal cost of increasing

the probability of CAH acceptance approaches infinity. Thus, f lies in a compact, convex

interval of <N .

Now we discuss continuity. As is commonly true, the expectation of the Bellman equation

is continuous in the probabilities of other firms and in the value function. Showing the

continuity of actions is more subtle. We derive a closed form for the probability of each

capacity investment x below and those probabilities are continuous in the expectation of the

value functions, in other firms’ probability of capacity levels, and in the CAH probabilities
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for other firms at each capacity level. The CAH investment probability is continuous for the

same reasons given for investment in Gowrisankaran (1995). Compactness, convexity and

continuity imply there exists a fixed point by Brouwer’s theorem.

4.3 Computing Equilibria

In order to compute the dynamic equilibrium of the model, we use a variant of the method of

successive approximations, adapted from Pakes and McGuire (1994) and other papers. The

idea is essentially to repeatedly compute f until a fixed point. Specifically, we start with a

value function and a law of motion for each firm. For each firm j and each vector of shocks

ε, we then solve for its optimal policies x̂(Ω, j, ε) and ĉ(Ω, j, εcj|xj). By integrating over ε,

this then implies a new industry law of motion and a new expected value.

The central difficulty with this approach is in calculating the optimal strategies for each

state. In particular, a standard approach, which would be to take a finite number of simu-

lation draws for ε and simulate over these draws, would not work because this approximate

model will generally not have a pure strategy equilibrium even though the limiting model does

have one. To understand the lack existence, consider our proof of existence of equilibrium.

The proof relies on the continuity of f . Yet, for the approximate model, the second part of

the second mapping of f – the probability of being at any capacity – will be discontinuous in

valuations because it is the sum of a finite number of draws each of which has one associated

optimal policy.

Thus, we develop an algorithm that allows us to identify the exact cutoffs in εj between

different levels of capacity. It is easy to verify that the investment cost function is supermod-

ular in x and εj. Hence, the optimal investment x is monotone in εj. Our algorithm relies

heavily on this monotonicity property. We first show that it is simple to solve in closed form

for the εj that makes the firm indifferent between two choices of beds x1 and x2. We then

show how to find the subset of XCAH whose elements will be chosen with positive probabil-

ity, and to assign a probability to each of these elements. The subset will consist of those

choices of x ∈ XCAH , that make V (·) be the discrete equivalent of a concave function. Since
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our algorithm concerns only one firm j at one state for which B(Ωj) does not vary, in what

follows we drop all but the last argument from V , denote beds just by B and refer to X

instead of XCAH .

We start with some definitions. First, we denote the real valued function V (x) where

x ∈ X to be d-concave with respect to σx,B at x if and only if for every x1 < x < x2 ∈ X,

λV (x1) + (1 − λ)V (x2) ≤ V (x) for λ= σx2,B(x2−B)−σx,B(x−B)

σx2,B(x2−B)−σx1,B(x1−B)
. Note that for the special case

of σ1 = σ2, this simplifies to λ = x2−x
x2−x1 and hence the familiar x = λx1 + (1− λ)x2. Second,

define the concave envelope of X, CE(X), to be the set of x ∈ X for which V is d-concave.

Last, for x1 < x2 ∈ X define εx1,x2 to be the εj that will make firm j indifferent between x1

and x2.

Note that εx1,x2 must satisfy

V (x1)− σx1,B(x1 −B)εx1,x2 = V (x2)− σx2,B(x2 −B)εx1,x2 (9)

⇒ εx1,x2 =
V (x2)− V (x1)

σx2,B(x2 −B)− σx1,B(x1 −B)
.

We now show the relation between these concepts:

Lemma 4.2. (a) For x1 < x2 and ε ∈ <, firm j will strictly prefer x1 to x2 ⇐⇒ ε > εx1,x2

(b) Using the above definition of λ, for x1 < x < x2, εx1,x > εx,x2 ⇐⇒ λV (x1) + (1 −

λ)V (x2) ≤ V (x).

Proof (a)

V (x2)− σx2,B(x2 −B)εx1,x2 = V (x1)− σx1,B(x1 −B)εx1,x2

⇒ V (x2)− V (x1) = εx1,x2
(
σx2,B(x2 −B) + σx1,B(B − x1)

)
(10)

⇒ V (x2)− V (x1) > ε
(
σx2,B(x2 −B) + σx1,B(B − x1)

)
⇐⇒ ε < εx1,x2

⇒ V (x1)− σx1,B(x1 −B)ε > V (x2)− σx2,B(x2 −B)ε ⇐⇒ ε < εx1,x2 .

The key step is the transition from the second to third line, which relies on the fact that the

right hand side is positive. For the cases where x1, x2 ≥ B or x1, x2 < B, σx2,B = σx1,B is

positive since x2 > x1 and the two terms involving B cancel. If x1 < B ≤ x2, then both

terms in the sum are positive also implying that the sum is positive.
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(b)

εx1,x > εx,x2

⇐⇒ V (x)− V (x1)

σx,B(x−B) + σx1,B(B − x1)
>

V (x2)− V (x)

σx2,B(x2 −B) + σx,B(B − x)
. (11)

Multiplying (11) by both denominators and dividing by σx2,B(x2 −B)− σx1,B(x1 −B) yields

the desired result. Note that both multiplicands and the divisor are positive using the same

logic as in the proof of part (a).

By Lemma 4.2 part (a), x will be preferred against both x1 and x2 exactly when ε ∈

[εx,x2 , εx1,x]. By part (b), this set will be a positive interval exactly when x is not excluded

from the discrete convex envelope due to x1 and x2. Thus, x must be in the discrete convex

envelope to be chosen with positive probability. It is also easy to show conversely that any

x that is in the concave envelope CE(X) will be chosen with positive probability. To see

this, first let ε(x) = {maxx2>xεx,x2} if maxx2>x is nonempty and −∞ otherwise. Similarly,

let ε(x) = minx1<xεx1,x if minx1<x is nonempty and ∞ otherwise. Then, by Lemma 4.2

part (a), x will be chosen exactly in the interval ε ∈ [ε(x), ε(x)]. By Lemma 4.2 part (b),

[ε(x), ε(x)] must be a positive interval for x ∈ CE(X), as otherwise the convex combination

of the highest element in ε(x) and the lowest element in ε(x) would dominate x. Thus, we

have shown:

Proposition 4.3. (a) A firm facing action set X will choose x ∈ X ⇐⇒ ε ∈[
ε(x), ε(x)

]
(b) ε(x) < ε(x) ⇐⇒ x ∈ CE(X).

Denote the set of x ∈ CE(X) as xCE1 , . . . , xCEL . Then, our above results allow us to further

characterize the optimal solution. The following Corollary states that the cutoffs between

neighboring x ∈ CE(X) are monotonic:

Corollary 4.4. εxCE
`−1,x

CE
`

< εxCE
`−2,x

CE
`−1

for all ` = 3, .., L.

Proof This follows from Lemma 4.2 together with the fact that each of the elements in

CE(X) is chosen with positive probability.
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Thus, xCEL is chosen in the range (−∞, εxCE
L−1,x

CE
L

], xCEL−1 is chosen in the range

[εxCE
L−1,x

CE
L
, εxCE

L−2,x
CE
L−1

), all the way to xCE1 , which is chosen in the range [εxCE
1 ,xCE

2
,∞).14

Note also that Proposition 4.3 provides an algorithmic method for solving for the elements

of CE(X) and associated cutoffs ε(x) and ε(x): for each x, compute ε(x) and ε(x) and keep

x if ε(x) < ε(x). Since the algorithm involves the calculation of cutoffs for each element

against each other, it involves o(X)(o(X)−1) computations of ε values. Our actual algorithm

optimizes the number of computations by using the fact that the binding cutoff is always

against the neighboring element in CE(X). Thus, we start by assuming that all x ∈ CE(X)

and assigning tentative values of ε and ε starting with the highest element of x. We check

each value against its neighboring element in the presumed CE(X) set, in turn. If we find

an element to not be in CE(X), then we discard this element from further consideration and

go back and revise our cutoffs as necessary based on the new presumed neighbors. We then

proceed forward again. The end result is an algorithm that makes o(X) − 1 computations

of ε values if every element x ∈ CE(X) to 2o(X) − 3 computations when CE(X) contains

only two values – always much less than the brute force algorithm above. The reduction

in computation time is important since this step is repeated many times in the dynamic

oligopoly computation.

5 Estimation and identification

5.1 Overview

The structural parameters of our model are the α objective function parameters, the δ and σ

investment cost parameters, the discount factor β, the CAH conversion cost parameter γ, the

βc and FE parameters from the consumer utility function and the parameters from the profit

function. We estimate the consumer utility parameters βc using the 2SLS linear regression

proposed by Berry (1994), as the consumer does not face a dynamic problem. We estimate

profits as a function of the state variables using a linear regression. It is difficult to identify

14Note that the firm is indifferent at the end points, which we assign, arbitrarily to the higher x.
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the discount factor and hence we set it to β = .95. Define the remaining parameters as

θ = (α, δ, σ, γ). We estimate θ using structural methods that impose the dynamic oligopoly

model.

A method for estimating the structural parameters of dynamic models was developed by

Rust (1987) and applied to the dynamic oligopoly setting by Gowrisankaran and Town (1997).

The idea of these methods is to perform a non-linear search for the structural parameters

that best fit the data. For any vector of structural parameters, one solves for the Markov

Perfect equilibrium of the industry and then evaluates “fit” as the closeness of the actions

predicted by the equilibrium of the model to those reported in the data. The problem with

these methods is that they are extremely computationally intensive: they require solving the

Markov Perfect equilibrium repeatedly, which is very time-consuming.

More recently, authors have developed two-step methods to estimate dynamic models

based on the idea that one can use the data themselves to predict the future actions of

the firm and its competitors, rather than solving for the Markov Perfect equilibrium for each

parameter vector, since the data reflect Markov Perfect equilibrium play. To implement these

methods, one generally predicts future decisions with a non-structural first stage. The second

stage then involves a non-linear search over structural parameters where the econometrician

has only to solve for the optimal current decision of the agent taking the future actions as

given.

We develop an estimation algorithm for these remaining parameters based on the ideas

of two of these works, Bajari et al. (2007) and Pakes et al. (2007). BBL show that the

second stage can be evaluated with a very quick computational process, which is similar to

non-linear least squares, provided that one can express the expectation of the total return

for any state, action and unobservable, TR((x, c), (Ωt, j), ε) as a linear combination of the

structural parameters and functions of the data. The structure of our model allows us to do

this, as we show in Section 5.2 below.

BBL also show that one can estimate the structural parameters with an inequality ap-

proach that finds parameters such that the policies are as close to optimal as possible against

a finite set of alternate policies. A ‘policy’ here is defined as a mapping from state variables
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and unobservables to actions. This method is particularly useful for models with continuous

or many actions as otherwise, solving for optimal decisions is computationally difficult. BBL

do not address the efficiency of the inequalities estimator, nor do they discuss a procedure

for choosing the right set of alternate policies.

BBL also suggest a GMM estimation method similar to POB. The idea of this method

is to use forward simulation to compute choice-specific value functions, to use the choice-

specific value functions to solve for the probability of each action, and to create moment

conditions based on the difference between observed action and action probability. With

GMM estimators, one can estimate the optimal weighting matrix to develop asymptotically

efficient estimators conditional on the set of moments.

Our algorithm is GMM. We adapt the POB algorithm in two ways that allow us to vastly

reduce the computational time. First, we perform our forward simulation for all current

choices using the linearity idea developed by BBL. Second, we use our computational method

to solve for the probability of each action given choice-specific value functions. We discretize

the choice of beds and CAH status into 27 possibilities and thus our method requires forward

simulating 27 choices for each state. This is computationally much quicker than an inequality

approach, in part because it takes advantage of the fact that we can compute the probability

of each choice rapidly and without simulation error.15

5.2 Estimation algorithm

We estimate the parameters using a quasi-likelilood approach. For any observation, our

likelihood function is based on the difference between the realized state transition (in terms of

beds and CAH status) and the probability of the realized state transition given the parameter

vector and optimizing behavior, interacted with exogenous state variables. The randomness

is due to εj and εcj.

To understand the computation of our estimator, define first V (Ωt, j, Bj,t+1, CAHj,t+1) to

15The large number of choices, private information and large state space may increase the variance of
the inequality criterion function and hence imply that the number of inequalities necessary for a consistent
estimator will be large.
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be the value for a given realization of beds and CAH status next period, gross of the costs

of CAH conversion and of the ε term. Given V and the parameters µc and γc, we solve for

the probability CAH conversion and the expected associated cost.16 Using the optimal CAH

conversion policy ĉ, we then calculate the choice-specific value function V (Ωt, j, xjt) (defined

by (7)) for each level of beds investment. Using our efficient computational algorithm, we

then evaluate the probability of each capacity choice and through that the probability of each

capacity choice and CAH state transition cell, which are used to form moment conditions as

noted above.

The remaining difficulty is in constructing V such that the time-intensive part of the

computation need not be done for each parameter vector. Similarly to BBL, we would like

to find some function of states and actions, Ψ((Ω, j), (x, c)), such that the dot product of Ψ

and a function of the structural parameters f(θ) will yield the net returns in any period,

ENR ((Ω, j), (xj, cj)) = Ψ((Ω, j), (xj, cj)) · f(θ), (12)

where ENR are expected net total revenues. We can then forward simulate Ψ in order to

express V as a linear combination of the structural parameters and some forward simulation

function:

V (Ωt, j, Bj,t+1, CAHj,t+1) = −MeanInvCost(B(Ωt, j), Bj,t+1) + (13)

Et

[
∞∑

τ=t+1

βτ−tΨ ((Ωτ , j), (xjτ , cjτ ))

∣∣∣∣∣Bj,t+1, CAHj,t+1

]
· f(θ),

where the expectation implicitly assumes that next period’s state for firm j is given by

Bj,t+1, CAHj,t+1 and that future actions for firm j and all actions for other firms follow the

equilibrium as reflected by the data.

Many elements of Ψ and f(θ) are straightforward to design. For instance, gross revenues

enters Ψ and is multiplied by 1, the presence of positive investment enters and is multiplied

by δ1, the level of positive investment enters and is multiplied by δ2, etc. The most difficult

parts to design concern the unobservables. In calculating net revenues using (12), one must

16For firms for which xj > 25 or which already have CAH status, only one realization of CAHj,t+1 is

possible and the CAH investment cost is always zero.
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take into account the correlation between the investment level and ε in order to recover

accurately the cost of investment.17 To see this, recall from Corollary 4.4 that investment is

monotonic in ε. If one instead assumed that the distributions of investment and cost shocks

were uncorrelated, one would overstate the costs of investment.

Fortunately, the monotonicity leads to a method to infer ε from the investment choice:

a firm that chooses a next period capacity level in the ath percentile of the capacity level

distribution must have obtained a draw of ε that is in the 1−ath percentile of the ε distribu-

tion. Let F̂Ω,j(x) denote the c.d.f. of capacity levels at state (Ω, j) estimated from the data

and Φ and φ denote the distribution function and density of ε respectively. Then, a given

capacity choice of xj > 018 will occur if and only if

εj ∈
[
Φ−1(1− F̂Ω,j(xj)),Φ

−1(1− F̂Ω,j(xj − 1))
)

=⇒ E[εj|(Ω, j), xj] = E
[
εj|εj ∈

[
Φ−1(1− F̂Ω,j(xj)),Φ

−1(1− F̂Ω,j(xj − 1))
)]

(14)

=⇒ E[εj|(Ω, j), xj] =
φ
(

Φ−1(F̂Ω,j(xj))
)
− φ

(
Φ−1(F̂Ω,j(xj − 1))

)
F̂Ω,j(xj)− F̂Ω,j(xj − 1)

.

Equation (14) shows that the random costs of investment can be written as a term that does

not depend on θ, E[εj|(Ω, j), xj], multiplied by the σ parameters.

A similar line of logic gives a closed form expression for the CAH investment shock

conditional on converting as E[εcj|(Ω, j), cj = 1] = −Φ(ε̄cj). Then, the expected cost incurred

from conversion is E[εcj|(Ω, j), xj, cj]σc.
17Other recent empirical dynamic oligopoly papers, such as Ryan (2006), typically do not allow for private

information shocks to investment or other choice variables that affect the state.
18We omit the derivation of the xj = 0 case, which is similar.
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Using these formulations, we define:

Ψ((Ω, j), (xj, cj))

= [EGR(Ω, j), 1{ownj = NFP}1{Bj > 0}, 1{ownj = Gov}1{Bj > 0},

− 1{xj > Bj},−1{xj > Bj}(xj −Bj),−1{xj > Bj}(xj −Bj)
2,

− 1{xj < Bj},−1{xj < Bj}(xj −Bj),−1{xj < Bj}(xj −Bj)
2, (15)

− 1{xj = 0 and Bj > 0},−1{xj > Bj}E[εj|(Ω, j), xj],−1{xj < Bj}E[εj|(Ω, j), xj],

− P̂CAH
(Ω,j),xj

, P̂CAH
(Ω,j),xj

E[(εcj|cj = 1)].

Using f(θ) = (1, αNFP , αGov, δ1, . . . , δ6, φ, σ1, σ2, µ
c, σc), it is easy to verify that Ψ((Ω, j), (xj, cj))·

f(θ) satisfies (12).

Knowledge of V (Ωt, j, Bj,t+1, CAHj,t+1) allows for a given θ then allows us to compute

the optimal probability of conversion and the corresponding expected cost of conversion.

This then yields the corresponding choice-specific value function V (Ωt, j, xjt). Our algo-

rithm developed in Section 4.3 allows us to compute the probability of each capacity choice

P(Ω,j),xj(θ) as a function of the model parameters as well as the probability PCAH
(Ω,j),xj

(θ) of

conversion in each state. Let P(θ,Ω, j) = [P(Ω,j),xj(θ);P
CAH
(Ω,j),xj

(θ)] be the vector that contains

the stacked probabilities of capacity level choices and conversion probabilities of hospital j in

state Ω. Similarly P̂(Ω, j) = [ P̂(Ω,j),xj ; P̂
CAH
(Ω,j),xj

] is the vector of capacity choice and conversion

probabilities estimated from the data. Our estimator θ̂ minimizes sets the sample moment

condition of choice probabilities generated by the model computed using our algorithm at a

specific parameter vector θ and the choice probabilities observed in the data

J∑
j=1

∑
Ω∈Ω

Z(Ω, j)⊗
(
P(θ,Ω, j)− P̂(Ω, j)

)
as close as possible to zero, where Z(Ω, j) is a vector of instruments containing state variables.

This GMM estimator is also an asymptotic least squares estimator in the sense of Pesendorfer

and Schmidt-Dengler (2007) with weights determined by the choice of Z(Ω, j). It exploits

BBL’s idea of linearity in the parameters to facilitate forward simulation. The algorithm

developed in this paper enables the computation of choice probabilities so that moment

conditions similar to POB can created to form the asymptotic least squares estimator.
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5.3 Parametrization of first-stage

We now discuss how we estimate the static profit functions, the actions and the low of motion

at each state. Ideally, we would solve non-parametrically for these functions. However, non-

parametric estimation is not possible because of the large dimensionality of the problem. The

state space, (Ω,Ωt, j) includes the characteristics of all hospitals and patients in the market.

Although the dimensionality of Ωt is relatively small, the transition of Ωt depends on Ω. For

instance, if a market is overserved by beds relative to the number of consumers, profits are

likely to be low and firms are likely to disinvest.

Thus, we approximate the state space by summarizing it in relatively few dimensions.

The important attributes that define the state for a hospital include its characteristics, a

weighted sum of the characteristics of its competitors based on how close competitors they

are, the level of competition, and the size of the market surrounding it.

We include CAHjt, Bjt, ownj and ξj as a hospital’s characteristics. In order to capture

unobserved cost differences, we regress profits on state variables and time dummies using

data prior to the start of our sample, from 1994 to 1997. We then use the fixed effect from

this regression, F̂E as an additional time-invariant state variable, to capture differences in

profits that may affect investment, closure and CAH conversion decisions.

We use five state variables to summarize the characteristics of patients and other hospitals

in the surrounding market for any hospital: the expected number of Medicare (EV olmed) and

under 65 year old patients (EV olunder65)treated at any hospital, a measure of competition

for Medicare and under 65 year old patients and the weighted CAH status of other hospitals.

These terms are meant to capture the size and degree of competitiveness of the market.

We use the estimated utility parameters (3) to predict patient choice and from that,

Medicare patient volume. We also calculate the expected hospital volume of the under

65 year old population by using the same choice model but multiplying by probability of

admission by the size of the under 65 year old population above poverty in the ZIP code

times the relative rate of hospitalization.

In order to measure the level of competition in the market, we could potentially use a
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variety of measures related to the number of other hospitals nearby. A Herfindahl index

is a convenient summary statistic from among these. Rather than arbitrarily defining a

market over which to calculate a Herfindahl index, we follow the literature on the hospital

industry (e.g., see Kessler and McClellan (2000)) and define a patient-weighted Herfindahl

index. Specifically, we first define a zip-code/year level Herfindahl index using the estimated

choice probabilities from the patient choice model. We then define the Herfindahl index for

a hospital/year as the weighted sum of Herfindahl indices over zip-codes, weighted by the

probability that a person in that ZIP codes chooses the given hospital. Similarly, we define

CAH comp, the CAH status of a hospitals’ competitors, as the patient-weighted sum of the

CAH status of competitor hospitals.

We estimate profits with a linear regression. The regressors includes the state variables

noted above, and interactions and higher-order terms of the state variables.

To simulate forward, we need to define the policy function and the transition for other

state variables. We model the CAH evolution P ((Ω, j), x) as a logit. We use as regressors

the state variables and interactions noted above, omitting CAH status, and the firm’s own

investment policy xj. We estimate this model via maximum likelihood for non-CAH hospitals

for whom xj ≤ 25.

Estimating the transition for beds, x(Ω, j), is the most challenging. In about 70% of

time periods, hospitals do not change their number of beds. It is important to capture this

feature of the data, because the fixed costs of investment will be identified by the extent to

which firms choose to invest in lumpy amounts. When hospitals do change their number

of beds, they disproportionately change them to 25 beds, likely to be able to obtain CAH

status. It is important to accurately predict the probability of a hospital dropping to 25 beds

or less. Thus, we model a two-step process. The first step is a logit model which predicts

whether the hospital changes its beds. The second step is an ordered probit model which

predicts the number of new beds given that the hospital changes its beds. We estimate these

models separately for CAH and non-CAH hospitals. We discretize the number of beds for

the ordered probit to intervals of 5, and omit the own bed choice. Thus, a hospital with 10

beds has choices 0, 1, 2, 3, etc. corresponding to 0, 5, 15, 20, etc. beds, respectively. We
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estimate the parameters of these four models using maximum likelihood.

Last, we need to estimate the transitions for other state variables, namely the Medicare

and the under 65 year old volumes, the Medicare and under 65 year old HHIs and CAH comp.

We estimate these transitions with linear regressions, where the forward difference is regressed

on current state variables, interactions, and beds investment.

One issue is that these state variables can sometimes diverge far from realistic values for

a few observations. We limit them to reasonable bounds: we limit the HHI measures and

CAH comp to lie between 0 and 1; we also limit volume to be between 0 and some multiple

of beds. If any of these variables is out of bounds during the simulation we restrict it to the

bounding value.

5.4 Identification

Although we have specified a relatively intricate dynamic model of interaction between hos-

pitals, the forces that will identify the parameters of interest are reasonably straightforward.

The βc consumer utility parameters will be identified from the extent to which consumers

choose hospitals based on characteristics such as location, CAH status and hospital size.

Because we allow for hospital fixed-effects, the effects of CAH status and bed size changes

will be identified from the difference-in-difference: we will examine how the attractiveness of

hospitals that convert to CAH status or change their number of beds change following their

transformations.

The parameters in θ are identified by revealed preferences applied to our dynamic oligopoly

model. Specifically, optimal behavior implies balancing the costs of investment, CAH conver-

sion costs and fixed costs against the benefits in the form of profits and other returns. Since

we use the accounting data on profits in our estimation, much of the identification derives

from the shape of the gross profit function in different states.

In particular, the bed investment cost parameters δ are identified by the impact of chang-

ing beds on the profit function. Optimal investment levels will be higher if gross profits are

more steeply sloped in beds, all else being equal. These parameters can all be separately
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identified by the relative extents of strictly positive and negative investments in beds and the

extent of non-zero investment. For instance, the fact that most periods firms rarely invest

suggests a large positive fixed cost of investment. The ψ parameter is similarly identified

by the extent to which firms exit when faced with low current profits. The γ parameter is

similarly identified by the extent to which hospitals obtain CAH status at states where it is

profitable to have achieved that status.

The σ parameters are identified by the distribution of investment for any state. The larger

the variance of investment outcomes for a given state, the larger will be σ. We estimate a

distribution with two parameters, which allows for different relative variance of outcomes for

negative investment and positive investment. Finally, the objective function parameters can

be identified by the relation of the pattern of exit to profits. For instance, if NFPs often do

not exit even when the expected future profit path is negative, this suggests that they value

the provision of service and/or patient volume.

These arguments are all approximate because of the fact that our model is a dynamic

oligopoly, implying that investments result in an option to invest again in the future and

may result in a change in competitors’ actions. For instance, an increase in beds may cause

competitors to reduce their beds, thereby implying a positive strategic effect that was not in

our explanation above.

6 Results

6.1 Evidence on the Impact of the CAH Program

We present some evidence of the impact of the Flex program on the rural hospital performance

and market structure. First, summary statistics of our sample of small rural hospitals at risk

for CAH conversion are presented in Table 2. Our sample is 51% NFP. Local government

hospitals comprise 39% of the sample and 11% of the sample are for-profit hospitals. The

typical hospital faces some measured competition with an HHI is .42. Over the sample

period the rural hospitals on average reduced their beds by 1.78. The closure rate is .008.
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Table 3 compares CAH and non-CAH hospitals in the same sample for 2005. The table

shows that CAHs are substantially smaller than non-CAH hospitals, which is to be expected

given the regulatory framework they face. The average number of beds for CAHs is 22.47,

very close to the upper bound of 25 beds. In Figure 3 we present the histograms of bed size

for rural hospitals for 1996 and 2005. From this picture it is clear that the Flex program

had a large impact on the size distribution of rural hospitals. Figure 4 presents the bed size

histograms for hospitals that ultimately converted to CAH status in 1996 and in 2004. Not

surprisingly, CAH conversion dramatically altered the distribution of the number of beds per

hospital. Furthermore, the large mass point at 25 beds suggests that the 25 bed limit is a

binding constraint, i.e. CAHs would increase their bed size if the regulations allowed it.

With respect to ownership of CAHs, there is very little participation of for-profit orga-

nizations (4%), and large participation of government-owned hospitals (46%). Relative to

the under-65 population, Medicare patients comprise a greater proportion of the patients for

CAH hospitals relative to non-CAH hospitals (shown in Table 3). This suggests that hos-

pitals are responding to the incentives of the program, which is available only for Medicare

reimbursement. In Figure 5 we present the time series of accounting profit (net income)

margins, Profits
Total Revenue

, for hospitals with less than 160 beds in 1995 by rural status. The time

series pattern for profit margins is striking. Prior to the passage of the BBA which initiated

the Flex program , profit margins in rural and non-rural hospitals were very similar. With

the passage of the BBA, hospital in non-rural areas saw a dramatic decline in margins as the

BBA dramatically cut Medicare payments to non-CAH hospitals.19 However, hospitals in

rural areas saw little decline in their profit margins following the passage of the BBA. This

simple graph is consistent with the findings of MedPAC (2005) and Stensland et al. (2003)

where they found that hospitals that coverted to CAH increased their margins significantly

more than a sample of non-converting hospitals. Figure 6 shows that the exit rates of urban

and rural hospitals move together during the period we study, and the difference in exit rates

between rural and urban hospitals is amplified after the passing of the legislation.

19 The rise of HMOs, which did not significantly impact rural areas, peaked around 1997 and may also

explain some of the decline in profit margins for non-rural hospitals in the late 1990s.
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6.2 First Stage Estimates

In the first stage we recover the parameters from patients’ demand, hospitals’ profits, and

the policy functions for CAH conversion, investment and exit. The goal is to accurately

characterize the behavior of the hospitals at every state, which is necessary for the second

stage estimation of the dynamic parameters. Table 4 presents the IV-fixed effects, nested logit

estimates of the parameters of the utility function, equation (3). The probabilities generated

by this model are the ones used to compute the expected volumes and the Herfindahl indices

described above. The parameters all are sensible and precisely estimated. All else equal,

patients prefer hospitals that are closer and larger and the reduction in rural residents utility

from traveling further is less than urban residents. Importantly, CAH conversion reduces

the desirability of the hospital. Hospitals that seek to convert face a trade-off. If they

convert, they receive high revenue per discharge, however CAH conversions also result in

fewer admissions. The estimate indicate that there is significant within CAH class correlation

in the errors – the estimate of ρ is .70 and it is very precisely estimated.

The results from the regression of profits on states are presented in Table 5. Hospital

profits are increasing in ˆFEj and the under-65 year old HHI. An under-65 admission is

significantly more profitable than a Medicare admission. Profits are concave in bed size with

the point at which profits are maximized as a function of beds is increasing in ˆFEj. At mean

values of the variables predicted hospital profits are maximized at approximately 101 beds.

However, hospitals with lower values of ˆFEj maximize predicted profits at lower bed size

levels. A one standard deviation reduction in ˆFEj lowers the predicted optimal bed size to

approximately 80 beds.

An important output from the profit regression that feeds into the second stage is the

expected change in profits from converting to a CAH. As CAH is interacted with a number

of variables it is difficult to get a sense of that predicted value from examining the coefficient

estimates. To give a sense of the variation in the predicted profits from conversion we graph

the predicted profits from conversion as a function of ˆFEj in Figure 7. The predicted benefits

from CAH conversion are positive for low levels of ˆFEj and as ˆFEj increases, converting is
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predicted to lead to a decrease in profits. That is, low profitability hospitals are the ones that

benefit the most from conversion. For a hospital with a ˆFEj (approximately one standard

deviation below the mean) conversion to CAH status implies an increase in profits of about

$884,000 per year. The parameter estimates imply CAH conversion increases profits for

approximately 24% of hospitals in our sample. Conditional on an expected positive profit

from conversion, the mean predicted profit from conversion is $728,000. Importantly, the

estimated expected increase in profits predicts CAH conversion. A simple logit regression of

CAH conversion on predicted profitability of conversion yields a positive and signifiant (z-

statistic = 12.9) coefficient. Using a hit/miss criteria to assess the fit shows that the predicted

profitability is a good predictor of CAH conversion. In 2005, the predicted probability of

CAH conversion of greater than .5 predicts 65% of the actual conversions and predicted

probability less than .5 predicts 72% of the actual non-conversions correctly (approximately

51% of the hospitals in our sample converted by 2005).

Table 6 presents the first-stage policy function estimates of the probability of CAH con-

version in period t + 1 conditional on Bedst+1 ≤ 25. The probability of converting is larger

for not-for-profit and government hospitals relative to for-profit hospitals. Larger hospitals

and hospitals with larger F̂E are less likely to convert, as are the hospitals that show pos-

itive investment in capacity. Table 7 presents the results from the first-stage in our two

stage investment model, the predicted probability of positive investment. We estimate the

parameters separately for CAH and non-CAHs. CAHs are much less likely to change their

bed size. For CAH hospitals, the probability of investment is declining in bed size and ξj (up

to 22 beds). For non-CAHs, for-profit and smaller hospitals and those with lower expected

volumes are less likely to invest. The conditional investment parameter estimates are pre-

sented in Table 8. Again, the parameters are estimated separately for CAHs and non-CAHs.

For CAHs, the conditional investment is increasing in the bed size of the hospital, F̂E and

the expected volume of Medicare and the under-65 population. For non-CAHs, investment

is increasing in for-profit status, bed size, total admissions and ξj.

In addition to the policy regressions, we estimate the laws of motion for the state variables

HHI, EV olMed, EV olunder65, Medicare HHI and CAH compjt, as linear regressions where
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the differences between the value at time t+1 and t are regressed on polynomials of the state

variables. These results are available upon request.

6.3 Dynamic Parameter Estimates

The structural parameter estimates of the dynamic oligopoly model are presented in Table

9. These parameters correspond to the hospitals objective function, investment cost, and

CAH investment and rationalize the first stage policy functions in a Markovian equilibrium.

The first two parameters, αNFPp and αGovp indicate that non-profit and government hospitals

value remaining open and providing service at about $450,000 per year. The investment

cost parameters show large and asymmetric costs of changing capacity. The expected cost

of the first bed added is about $2.6 million and the expected cost of the first bed disposed

is about $150,000. Each additional bed added has an expected cost of about $3.3 million,

and each additional bed disposed has an expected cost of about $1.6 million. As expected,

investing in beds is more costly than disinvesting in beds as adding beds requires additional

staff, equipment and space. The large mean investment and disinvestment costs obtained are

consistent with the patterns observed in the data. These estimates are consistent with the

fact that hospitals do not change capacity often. The lack of investment implies there must

be, on average, large costs to changing capacity. It should be noted that the values shown

above are obtained at the mean levels, however, the realized investment cost will depend on

the realization of the privately observed investment cost shock. In Table 9, the standard

deviations of the cost shock for positive and negative investment, σ1 and σ2 respectively,

indicate that the cost shocks are important in determining a hospital’s investment cost.

We graphically show in Figure 9 that there is substantial variation in the investment and

disinvestment costs, hospitals receiving a shock 2 standard deviations above the mean exhibit

substantially higher costs than those receiving a shock 2 standard deviations below the mean.

Conditional on investment, the investment cost is probably at the low end of the distribution.

The parameter φ indicates that when the hospital exits it receives a scrap value of $2.6 million.

The parameters of the distribution of the CAH conversion cost indicate that this cost is low,
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but shows substantial variance.

In Figure 8 we summarize the fit of our model by comparing the market structure observed

in our data to the predictions of our model. The predictions of our model using the dynamic

parameters in Table 9 closely match the observed market structure.

7 Policy Experiments

In this section we provide the results from counterfactual experiments that seek to understand

the impact of the Flex Program and the impact of alternative programs. In all counterfactuals

we explicitly solve for the Markov Perfect Equilibrium of the game using our algorithm

described in section 4.3. We use the structural parameters estimated above, and obtain a

prediction of the market structure under the baseline situation (with CAH), and under three

alternative scenarios. In the first counterfactual experiment we compute the equilibrium in

the absence of the Flex Program. The difference between this scenario and the baseline

will be informative of the impact of the Flex Program. When CAH is not an option, rural

hospitals in monopoly and duopoly markets would have kept larger capacity levels (about

10 more beds), as shown in Figure 11. In Figure 10 we show the impact of the program

on exits in monopoly and duopoly markets, and we find that in twenty years the program

prevented the exit of 6% of currently operating hospitals. By keeping hospitals open the

minimum distance to a hospital remains fairly constant at about 7.4 kilometers over the 20-

year period of our simulation, this distance would have increased by about 0.2 kilometers had

the Flex Program not been introduced (see Figure 12). Interestingly, with the Flex Program

the average distance traveled to receive care increased by about 0.5 Kilometers as shown

in Figure 13. The evidence presented our first counterfactual reveals an interesting policy

tension: rural residents value access to care, but also value large and complex facilities. Our

results suggest that the Flex Program has promoted the first, but discouraged the second,

with an overall loss for patients in rural areas as shown in Figure 15, where we compare the

consumer surplus of the baseline with the scenario without the Flex Program.

In our second counterfactual, we study the impact of implementing the Flex Program
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but with a larger capacity limit of 35 beds. In Figure 14 we see that more hospitals convert

to Critical Access Hospital status with the larger bed limit. Although this modification of

the program results in slightly larger facilities, consumer surplus decreases compared to the

baseline situation with the 25-bed limit. There is a large utility loss from seeking care at a

CAH as shown in Table 4 above and beyond the reduction in capacity. In a companion paper

using individual-level data, we have found that patients tend to bypass these facilities and seek

care in larger and more complex hospitals. On the other hand, among all the counterfactuals

we study, this modified policy is the most effective in terms of keeping hospitals open and at

short distances as shown in Figures 10 and 12.

Our third counterfactual simulation replaces the Flex Program by a lump-sum transfer

of $250,000, without capacity constraints. We find that this alternative policy would have

induced 3.8% of currently operating hospitals to exit, a smaller effect than having no inter-

vention. The impact of this alternative policy after 20 years is hospitals holding about 11

more beds than under the current situation. Because this policy does not induce hospitals to

decrease capacity, does not require hospitals to adopt CAH status, and prevents some exits,

the average distance traveled to receive care is the lowest of all our counterfactual scenarios.

In Figure 15 we can see that the consumer surplus is the largest among all our counterfactual

scenarios.

8 Conclusions

In this paper we seek to understand the impact of the Flex program on the rural hospital

industry market structure. To evaluate the impact of the program we estimate a dynamic

oligopoly game, where hospitals take into account the effect of their decisions on rivals. The

estimation is inspired in recent two-step methods for the estimation of dynamic games, which

we modify by introducing private information in the investment cost function and by devel-

oping an efficient computational algorithm to find the equilibrium of the game and make

it feasible to be estimated via quasi-maximum likelihood. The Flex program has dramati-

cally transformed the rural hospital landscape. Incentives provided in the program radically

37



reduced the average bed size of rural hospitals. Furthermore, our initial estimates suggest

that the CAH program increased profits for converting hospitals, and disproportionally so for

poor performing rural hospitals. That is, insofar as the program’s intent was to provide extra

assistance to hospitals that were at risk of failing, it achieved that goal. Our initial estimates

are sensible and have several interesting implications. Non-profit and government hospitals

intrinsically value treating patients and remaining open in addition to profits. Hospitals’ cost

of investment is asymmetric for bed investment and disinvestment. Simulations in monopoly

and duopoly markets show that the program prevented 5% of closures had the program not

been implemented. In addition, although the minimum distance to a hospital is reduced by

the program, the actual average distance traveled to receive care increased. We find that

overall consumer surplus has decreased as a result of the Flex Program. We find that an

alternative policy that offers lump-sum transfers to rural hospitals without capacity limits

would have handled the policy tension between access and size of hospitals better, leading

to improved patient welfare. Our work contributes to a recent and fast growing literature

that uses the results from the estimation of dynamic games to perform policy evaluations.

The methods we develop may be more broadly useful in estimating and computing dynamic

oligopoly games with investment in capacity.
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Figure 1: Number of conversions and percent CAH among U.S. rural hospitals

Figure 2: Spatial distribution of CAH. Dots represent CAHs
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Figure 3: Size of rural hospitals, 1996 and 2004
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Figure 8: Fit of the dynamic model
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Figure 10: Impact of the program and alternative programs on number of firms.
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Figure 11: Impact of the program and alternative programs on number of beds

48



7
.1

7
.1

5
7

.2
7

.2
5

M
in

im
u

m
 d

is
ta

n
c
e

2000 2005 2010 2015 2020

Base mindist mindist without CAH policy

mindist with 250K hosp. subsidy mindist with 35 bed CAH limit

Figure 12: Impact of the program and alternative programs on min. distance to a hospital.
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Figure 13: Impact of the program and alternative programs on average distance traveled
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Figure 14: Impact of the program and alternative programs on fraction of CAH per market.
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Figure 15: Impact of the program and alternative programs on consumer surplus
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Table 1: Relevant Policy Changes for CAH

Legislation Key Aspects of CAH Legislation and Regulation

BBA 1997 • Flex program established.
• Hospitals should operate no more than 15 acute beds
and no more than 25 total beds, including swing beds.
• All patients’ LOS limited to 4 days.
• Only government and NFP hospitals qualify.
• Hospitals must be distant from nearest neighboring
hospital, at least 35 miles by primary road and 15 by secondary road.
• States can waive the distance requirement by designating
“necessary providers”.

BBRA 1999 • LOS restriction changes to an average of 4 days.
• States can designate any hospital to be “rural”
allowing CAHs to exist in MSAs.
• FP hospitals allowed to participate.

BIPA 2000 • Payments for MDs “on call” are included in cost-based payments.
• Cost-based payments for post-acute patiente in swing beds.

MMA 2003 • Inpatient limit increased from 15 to 25 patients.
• Psychiatric an rehabilitation units are allowed
and do not count against the 25 bed limit.
• Payments are increased to 101 percent of cost.
• Starting in 2006, states can no longer waive the distance requirement.

LOS: Length of Stay

Source: MedPac(2005)
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Table 2: Summary Statistics – Analysis Sample

Mean Std. Dev.

Profits ($1,000) 951.25 2,712.4
CAH Status .25 .43
Not-For-Profit .53 .50
Government .40 .49
For-Profit .11 .31
Beds 48.6 33.5

F̂E -92.1 2,960.3

ξ̂j -.73 .93
Medicare HHI .20 .10
Under 65 HHI .20 .10
CAH Comp .016 .034
EV olunder65 475.7 597.5
EV olMed 282.7 411.8
Investment (∆ Beds) -1.76 7.73
Closure .0029 .053
N 15,258
Number of Hospitals 2,121
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Table 3: Summary Statistics in 2005 by CAH Status

CAH Non-CAH

Profits ($1,000) 662.9 2,290.6
Not-For-Profit .51 .51
Government .44 .29
For-Profit .044 .19
Beds 22.12 68.49

F̂E -878.7 893.6

ξ̂j -.98 -.41
Medicare HHI .20 .18
Under 65 HHI .21 .18
CAH Comp .0093 .041
EV olunder65 70.2 420.18
EV olMed 286.8 584.56
N 998 972
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Table 4: Estimates from Nested Logit Model of Hospital Choice

Variable Coefficient S.E.

Distance -.023 .000078
Distance2 .00011 4.2× 10−7

Closest .48 .0035
Closest × Dist -.0020 .00022
CAH -3.05 .013
CAH × Closest 1.51 .017
CAH × Dist -.0069 .00016
Beds .00027 .000010
Beds × Dist -2.72 ×10−6 5.93 ×10−8

Rural × Beds .00077 .000012
Rural × Dist .0070 .000067
Rural × Dist2 -.000069 5.74 ×10−7

Rural × Closest .0070 .000066
Rural × CAH 1.36 .015
Rural × CAH × Dist -.0069 .00016
Rural × CAH × Closest -.84 .018
Rural × CAH × Dist × Closest -.010 .00025
Log(sj|CAH)(ρ) .71 .00074
Constant 2.68 .0036
N 2,743,114
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Table 5: First-Stage Regression: Profits ($1,000)

Variable Estimate Robust s.e. t-statistic

CAH status 1,440.7 1,389.8 1.04
For-Profit ,1857.7 452.4 4.11
Not-For-Profit 244.9 136.2 1.80
For-profit × CAH -1,040.1 1,333.9 -.78
Beds -18.3 14.5 -1.27
Beds2 .49 .16 3.10
Beds3 -.0024 .00045 -5.42

F̂E -3,654.4 8,832.0 -.41

F̂E
2

35,839.2 32895.9 1.09

F̂E
3

-76,284.9 47,283.9 -1.61

F̂E
4

49,965.8 23094.7 2.16
Medicare HHI -3,286.6 3,954.9 -0.83
Under 65 HHI 3,171.0 4,015.7 0.79

F̂E× CAH -6,003.3 14,829.9 -0.40

F̂E
2
× CAH -4,424.9 52,224.5 -0.08

F̂E
3
× CAH 6,392.5 72,749.0 0.50

F̂E
4
× CAH -31,394.0 34869.0 -0.90

EV olunder65 .015 .0064 2.30
EV olMed -.18 .63 -0.29
EV olunder65× CAH .59 1.24 0.48
EV olMed× CAH -.11 1.39 -0.08
CAH comp 1,041.5 1,702.9 0.61
Constant -46.3 831.7 -0.06
R2 0.09
N 15,258
Standard errors clustered at the hospital level
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Table 6: First-Stage Regression: Prob[CAH(t+ 1) = 1|CAH(t) = 0, Beds(t+ 1) ≤ 25]

Variable Estimate Robust s.e. z

Bedst+1 -.10 .020 -4.98
For-profit -.88 .51 -1.73
Not-for-profit -.14 .12 -1.18
Beds .18 .041 4.39
Beds2 -.0013 .00044 -2.96

F̂E -0.000035 .000076 -.46

F̂E× Beds 7.14×10−7 3.12 ×10−6 .23

ξ̂j .53 .26 2.01

ξ̂j× Beds .01 .0096 1.04
Medicare HHI 3.18 1.07 2.99
Under 65 HHI -2.34 1.07 -2.18
EV olunder65 .0016 .00076 2.13
EV olMed .000095 0.00027 .36
Total Admits × Beds -5.10 ×10−6 .000012 -.44
CAH comp 21.25 4.12 5.15
Constant -1.09 .86 -1.27
Log Likelihood -951.1
N 2,121
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Table 7: First-Stage Regression: Prob. Non-Zero Investment

Variable CAH Robust s.e. Non-CAH Robust s.e.
For-profit .56 .41 -.45 .11
Not-for-profit -.12 .15 -.033 .047
Beds .29 .17 .011 .0042
Beds2 -.13 .0042 -.000051 .000027

F̂E .00037 .000039 -.000044 .000021

F̂E× Beds -.000020 .000020 4.13×10−7 2.32×10−7

ξ̂j 1.43 .40 .22 .061

ξ̂j× Beds -.067 .020 -.0058 .0011
Medicare HHI 1.55 2.03 2.54 .87
Under 65 HHI -.98 2.09 -.000055 .000059
EV olunder65 -.00017 .0024 -.000055 .000059
EV olMed .00061 0.0012 .00044 .00012
Total Admits × Beds -.000033 .000066 -1.49 ×10−6 5.96 ×10−7

CAH comp -2.37 5.14 -.97 .64
Constant -2.31 1.81 -1.65 .17
Log Likelihood -718.2 -5,950.9
N 2,683 10,366

57



Table 8: First-Stage Regression: Conditional Investment

Variable CAH Robust s.e. Non-CAH Robust s.e.
For-profit -.89 .71 .89 .18
Not-for-profit .38 .32 .067 .072
Beds 1.06 .31 .17 .0086
Beds2 -.019 .0076 -.00029 .000052

F̂E -.0018 .0011 .000074 .000032

F̂E× Beds .00013 .000057 2.79×10−7 3.75×10−7

ξ̂j -.55 .84 .48 .10

ξ̂j× Beds .056 .043 -.0031 .0018
Medicare HHI -2.21 4.66 .37 1.50
Under 65 HHI .35 4.71 -1.58 1.53
EV olunder65 .015 .0048 .000046 .00010
EV olMed .015 0.0032 -.0010 .00018
Total Admits × Beds -.00048 .00015 4.99 ×10−6 9.23 ×10−7

CAH comp -5.29 7.80 -6.45 1.00
Log Likelihood -200.4 -5,759.6
N 229 2,794
Cut coefficients are not reported.
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Table 9: Parameter Estimates Dynamic Oligopoly Equilibrium

Variable Estimate s.e.

αNFPp 441.3 (123) **
αGovp 453.0 (114) **
1{x > B} -681.2 (240) **
1{x > B}(x−B) 3,232 (84.5) **
1{x > B}(x−B)2 50.69 (1.64) **
1{x < B} -1,584 (81.9) **
1{x < B}(x−B) -1,612 (49.8) **
1{x < B}(x−B)2 49.05 (.866) **
φ -2,681 (1954)
σ1 1,844 (48.44) **
σ2 1,772 (26.84) **
µc -1931 (726) **
σc 8,538 (435) **
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