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1. Introduction

∙ Several motivations for this paper.

1. Approaches for handling endogenous explanatory variables (EEVs)

for certain kinds of responses (for example, fractional and count) are

not widely available – especially for discrete EEVs.

2. In linear models, some evidence that (quasi-) limited information

maximum likelihood (LIML) has less bias than two stage least squares

(2SLS). Might the same be true in nonlinear contexts?
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3. Two-step plug-in estimators are generally inconsistent for quantities

of interest, especially with discrete EEVs. (“Forbidden regression.”) So,

for example, if the response y1 is in the unit interval (possibly taking

values at the corners), and y2 is binary, how can we estimate parameters

and average partial (treatment) effects? MLE a possibility, but might

want something simpler and more robust.

4. Estimating nonlinear models with multiple EEVs, with some

discrete, is very difficult using traditional (MLE) approaches. Might

some simple control function methods work well?
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∙ Contributions

1. For relatively simple models – for example, a fractional or count

response, with a single, binary EEV – show that certain joint

quasi-MLEs – “quasi-LIMLs” – are easy to estimate.

2. Derive simple tests of the null of exogeneity. Simple variable

addition tests based on generalized residuals. Only require correct

specification of the conditional mean under the null.

3. Argue that two-step control function QMLEs using generalized

residuals might produce good estimates of average partial effects. The

approach is very flexible but does not follow from “standard”

assumptions.
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2. Example: A Linear Model

∙ Let y1 be the response variable, y2 the endogenous explanatory

variable (EEV), and z the 1  L vector of exogenous variables (with

z1  1:

y1  o1y2  z1o1  u1,     (1)

where z1 is a 1  L1 strict subvector of z. First consider the exogeneity

assumption

Ez′u1  0.     (2)

∙ Give a random sample, 2SLS is consistent under the rank condition.
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∙ LIML approach. The reduced form for y2 is a linear projection:

y2  zo2  v2, Ez′v2  0,     (3)

where o2 is L  1. Write the linear projection of u1 on v2, in error

form, as

u1  o1v2  e1

Ev2e1  0,
    (4)

where o1  Ev2u1/Ev2
2 is the population regression coefficient.

∙ Also know that Ez′e1  0.

6



∙ Plugging (4) into (1):

y1  o1y2  z11  o1v2  e1

Ez′e1  0, Ev2e1  0
    (5)
    (6)

∙ Given a random sample of size N, can use a two-step procedure: (i)

Regress yi2 on zi and obtain the reduced form residuals, v̂i2; (ii) Regress

yi1 on yi2,zi1, and v̂i2.     (7)
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∙ The OLS estimates from (7) are control function (CF) estimates. It is

well known – for example, Hausman (1978) – that the CF estimates ̂1

and ̂1 are identical to the 2SLS estimates.

∙Why use a two-step method, other than computational simplicity?

Can estimate the RF and structural parameters in a single step.

∙ First, write

y1  o1y2  z1o1  o1y2 − zo2  e1

Ez′e1  0, Ey2e1  0.
    (8)
    (9)
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∙ Under Ez′u1  0 only, we can write two linear projections:

Ly1|y2,z  o1y2  z1o1  o1y2 − zo2

Ly2|z  zo2

    (10)
    (11)

∙ Together these identify the parameters o1,o1,o1, and o2 because

these parameters solve the population problem

min
1,1,1,2

Ey1 − 1y2 − z11 − 1y2 − z22  Ey2 − z22     (12)
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∙ Does not quite lead to LIML under normality because it ignores the

variance parameters. So use the quasi-LIML objective function:

min
1,1,1,2,1

2,2
2
∑
i1

n

yi1 − 1yi2 − zi11 − 1yi2 − zi22/1
2

 yi2 − zi22/2
2  log1

2  log2
2

    (13)
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∙ Can easily show that o1,o1,o1, and o2 solve the population

analog, and then we can simply define

o1
2 ≡ Ee1

2

o2
2 ≡ Ev2

2

∙ No normality or homoskedasticity in sight. No linear conditional

expectations, either. Driven entirely by Ez′u1  0 (and the rank

condition). y2 could be continuous, discrete, or some mixture.
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3. Framework for Quasi-LIML for Nonlinear Models

∙ As an example, suppose y1 is a binary response and y2 is continuous:

y1  1o1y2  z1o1  u1 ≥ 0
y2  zo2  v2

    (14)
    (15)

where u1,v2 is bivariate normal with mean zero and independent of z.

∙ Can show that

Py1  1|y2,z   o1y2  z1o1  o1/o2y2 − zo2
1 − o1

2 1/2 ,     (16)

where o2
2  Varv2 and o1  Corrv2,u1.
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∙ If we define v2  y2 − zo2, where o2 is the vector of linear

projection parameters, and o2
2 ≡ Ev2

2, then the Gaussian

quasi-log-likelihood function for Dy2|z identifies these parameters.

∙ If we then assume that Du1|y2,z  Du1|v2, and that the latter has

mean linear in v2 and is homoskedastic normal, the so-called “IV

probit” estimator is still consistent even though the full distributional

assumptions do not hold.

∙We can go further and allow y1 to be a fractional response with

essentially any distribution, provided Ey1|y2,z has the form in (16).
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∙ General Setup: Let o1,o2 be the parameters appearing in the model

for (the feature of) Dy1|y2,z, where only o2 appears in (the feature

of) Dy2|z. If o2 maximizes Eq2y2,z,2 and o1,o2 maximizes

Eq1y1,y2,z,1,2, then o1,o2 maximizes

max
1,2

Eq1y1,y2,z,1,2  Eq2y2,z,2.     (17)

∙ How should we choose the objective functions to ensure some

robustness and, perhaps, efficiency in some cases?

∙ The joint estimators will be generally as robust as two-step estimators

(when the latter are even justified at all).
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Asymptotics

∙With smooth objective functions, asymptotics is standard. It will

often be the case that the scores for the two problems are uncorrelated

because o often solves

max
1,2

Eq1y1,y2,z,1,2|y2,z

Then

Avar N ̂ − o  A1
−1B1A1  A2

−1B2A2.

∙ Further simplifications of the sandwiches are sometimes available.
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4. Example: Fractional Response

∙ Set up endogeneity as an omitted variable problem, and start by

assuming y2 is continuous:

Ey1|z,y2, r1  x11  r1.

y2  z2  v2,

    (19)

    (20)

where x1 is a general nonlinear function of z1,y2, r1 is an omitted

factor thought to be correlated with y2 but independent of the

exogenous variables z.
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∙ The average partial effects in this model are obtained from the

“average structural function” (ASF):

ASFx1  Er1x11  r1  x1r1

where

r1  1/1  r1
2 1/2.

∙ These are the only identified parameters, anyway.

∙ If r1,v2 is jointly normal, a two-step control function method is

valid. Note that the distribution of y1 is not further restricted. under

joint normality:

(i) Regress h2yi2 on zi and obtain the residuals, v̂i2.
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(ii) Use “probit” of yi1 on xi1, v̂i2 to estimate parameters with different

scales, say ̂e1 and ̂e1. (Can implement as a “generalized linear

model.”)

∙ The “average structural function” (ASF) is consistently estimated as

ASFy2,z1  N−1∑
i1

N

x1̂e1  ̂e1v̂i2,     (21)

and this can be used to obtain APEs with respect to y2 or z1.
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∙What about a quasi-LIML approach? Can show that

Ey1|y2,z  
x1r1  1/2y2 − z2

1 − 1
21/2

and so we can plug this mean function into the Bernoulli quasi-log

likelihood. This gives q1y1,y2,z,1,2. Identify 2 and 2 using the

Gaussian QLL, which gives q2y2,z,2.

∙ The coefficients we estimate on x1 are those that index the average

partial effect.
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∙ A similar argument holds when y2 is binary and follows a probit

model:

y2  1z2  v2 ≥ 0

v2|z ~ Normal0, 1

∙ Can show that Ey1|y2,z has the same form as the response

probability in the so-called “bivariate probit” model. For example,

Ey1|y2  1,z  
−z2




x1r1  1v2

1 − 1
21/2 dv2

∙ So for q2y2,z,2 we use the usual probit log-likelihood. For

q1y1,y2,z,1,2 we use the Bernoulli QLL associated with bivariate

probit.
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5. Testing

∙ Suppose y2 is binary and (nomially) follows a probit model. y1 might

be fractional, or a count variable, and so on. We do not want to use a

full (conditional) distributional assumption for y1, but we want to test

the null that y2 is exogenous.

∙ Using the score test is natural. Leads to simple variable-addition tests.

The added variable is the generalized residual for y2.
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∙ For a continuously differentiable function g, assume

Ey1|y2,z, r1  gx11  r1

y2  1z2  v2 ≥ 0, v2|z ~ Normal0, 1
r1  1v2  e1

e1|z,y2~Normal0,1
2 − 1

2
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∙ The null is H0 : 1  0. The gradient of the mean function, evaluated

under the null estimates, is

g1xi1̂1  xi1, r̂i2

where g1 is the first derivative and

r̂i2  yi2zi̂2 − 1 − yi2−zi̂2

  inverse Mills ratio
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∙ VAT is simple. Estimate the probit model for y2 and compute the r̂i2.

Then use a suitable QMLE (Bernoulli, Poisson, gamma, normal) to

estimate the mean function (for yi1)

gxi11  1r̂i2

The robust t statistic for 1 is asymptotically valid under H0.
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∙ Gives a simple specification test of endogeneity in the context of

estimate “treatment effects” for a variety of response variables y1.

∙ If y1 is binary or fractional, use probit or logit or some other

regression function in the second stage. Just add r̂i20.

∙ If yi1 is a count (or generally nonnegative), use an exponential

function and the Poisson QMLE.

∙ Can easily extend the test to a nonlinear “switching regression” setup.

If y2 interacts with r1, variables for VAT are

r̂i2, yi2  r̂i2

so a two degrees-of-freedom test.

∙ For a completely general switching regression, also add zi1  r̂i2.
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6. Some Radical Suggestions

∙ First, not so radical. If y2 is continuous, and r1 are the unobservables

in the “structural” model Ey1|y2,z1, r1, just assume

Dr1|y2,z  Dr1|v2 for v2 a residual or standardized residual. Then,

can model Dy1|y2,z1,v2 or Ey1|y2,z1,v2 in a flexible way, without

trying to make it consistent with an underlying model such as

y1  g1y2,z1,u1 for unobservables u1.
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∙ For example, if y1 is binary or a fractional response, just use a

flexible probit model for h1y2,z1,v2  Ey1|y2,z1,v2, where

y2  z2  v2. So, general functions of v2, including interactions with

elements of z1,y2. In the end, the average partial effects are obtained

by averaging out the v̂i2:

ASFy2,z1  N−1∑
i1

N

h1y2,z1, v̂i2     (31)

Either a control function or quasi-LIML approach can be used to

estimate the parameters. We can use “heteroskedastic probit” to make

the functional form more flexible. This is a “flexible parametric”

approach to Blundell and Powell (2004).
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∙ Similar strategies are available if y1 is a corner solution, or an ordered

response, or a multinomial response. We can model Ey2|z  2z

and Ey2|z  2z in flexible ways, use the Gaussian quasi likelihood

to identify the parameters, and then assume that

e2  y2 − 2z/ 2z is a sufficient statistic for Dr1|y2,z, where

r1 are the unobservables in the structural model for y1.
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∙ How far can we take this approach? A very radical approach to

handle discrete y2 is to assert that one or a few functions of y2,z

characterize Dr1|y2,z. Very little progress has been made estimating

general models with discrete EEVs, unless full parametric assumptions

are made. (And then computation is often quite difficult.) Suppose y2 is

binary. If e2 is a function of y2,z that depends sufficiently on z2, such

that

Dr1|y2,z  Dr1|e2,     (32)

then the ASF (APEs) can be identified and estimated quite generally by

estimating Ey1|y2,z1,e2, and then average out êi2.

∙ Problem: How should we choose e2? A standardized residual? A
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generalized residual? Can get some flexibility here, but, generally, e2

does not appear to exist in traditional formulations.
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6. Remaining Issues

∙When will the one-step QMLEs be more efficient that two-step

QMLEs? [One case, of course, is when the joint estimator is a

(conditional) MLE.]

∙ Are the finite-sample properties of the one-step estimator generally

better than two-step estimators? (Weak instrument problem.)

∙ Asymptotics as the number of instruments grows [Bekker (1994,

Econometrica)].
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