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Abstract

We extend the two-sided matching model with search frictions by allowing agents to continue

searching for an upgrade while already matched. Numerous previous studies have shown that

when matches are permanent and matched agents exit the market, the steady-state equilibrium

exhibits a counterintuitive and inefficient phenomenon known as “block segregation.” This

pathological equilibrium is not sustained when at least one side of the market can choose to

dissolve the match. In particular, when both sides are allowed to upgrade, quite weak conditions

on payoffs and search technology ensure that the steady state converges to perfect positively

assortative matching, which is globally optimal with supermodular payoffs. When one side of

the market has the ability to upgrade, higher quality agents match to sets of agents of strictly

increasing quality. Allowing agents to separate increases the efficiency of matching.

∗Thanks to seminar participants at the Carnegie Mellon accounting theory conference, and Georgetown University

for helpful comments. Georgetown University provided generous financial support.
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1 Introduction

As every newlywed couple is keenly aware, divorce is a real possibility in marriages today. In

2006, the divorce rate was 3.6 percent, only slightly less than one-half of the marriage rate of 7.5

percent.1 But is divorce really all that bad? We use an economic model to show that divorce

can, in fact, increase aggregate welfare. We start with the standard two-sided search and matching

model, where agents on both sides of the market are heterogeneous in their quality and each agent

must search for a partner from the other side of the market in order to obtain positive utility.

Search is costly in that agents are impatient and prefer an immediate match to one that occurs

later in life. Each agent’s payoff is increasing in the partner’s quality. Furthermore, the payoffs

are supermodular: the increase in agent x’s payoff that results from matching to a higher-quality

partner is higher when agent x’s own quality is higher. Utility is non-transferable: no payments can

be made between agents. We add to this standard model that agents can continue to search while

matched, divorce, and rematch if they find a better partner. Our main result is that the ability to

separate results in a steady-state matching pattern that is more efficient than that observed in a

model without divorce.

The logic is simple. Without divorce, agents are locked into a marriage forever. Because of

this, they are naturally reluctant to match early because they are waiting for Mr. or Mrs. Right.

But searching is costly, so agents trade off the desire to be with the right person against the

deadweight loss of search. This results in an equilibrium where agents match in blocks, as each

agent within an interval will match to any other agent within that interval. This is inefficient;

under complementarity, the efficient outcome occurs when a man of quality x marries a woman

of quality x. Matching within intervals of non-zero length, however, results in most agents being

matched to partners whose quality differs from their own.

Allowing divorce eliminates this. Now there is no need to match in blocks, because each party

has the ability to upgrade later. So, agents match early, and if they find someone better, they

divorce and rematch. Over time, the resulting equilibrium converges to the efficient equilibrium

of each agent matching to someone of identical quality (positive assortative matching). Allowing

separation gives each party an exit option, and that option has value because it can dissolve

1These figures are according to U.S. Census Bureau [2009]. The estimates for 2008 are 7.1 percent for the marriage

rate and 3.5 percent for the divorce rate [Tejada-Vera and Sutton, 2009].
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inefficient matches and replace them with more efficient ones. While there may be winners and

losers in the dissolution of individual matches, society as a whole is better off because agents are

eventually matched with their equal partner.

To see concretely how divorce improves matching and increases efficiency, first consider the

world without divorce. Because matches are permanent and waiting is costly, even the highest-

quality agents accept an entire range of partners, not just ones of the highest-quality. In the

resulting equilibrium, agents of a given quality will therefore be matched to a set of partners of

varying qualities. Consequently, there will be unequal matches. But if all parties can search while

matched, such matches will not survive in equilibrium. Because the quality distribution and the

total mass of agents is the same on both sides of the market, for each woman WH of quality higher

than x who is matched to a man of quality less than x, there must be a man MH of quality higher

than x who is matched to a woman of quality less than x. Eventually, our high-quality friends WH

and MH will meet each other, and, since both prefer each other to their current partners, they

will divorce and marry each other instead. Divorces and remarriages will continue until everyone

is matched to their own type. At this point, no further divorces will occur: if a man of quality x

(an x-man) is married to a y-woman, he would be willing to divorce her only for women of quality

y > x, but all of these women are already happily married to spouses worthier than our x-man!

Comparing the resulting matching pattern to the no-divorce equilibrium, we see that some people

(the higher-quality ones previously married to lower-quality partners) are now better off, while

others (the lower-quality ones who were previously lucky to have higher-quality spouses) are worse

off. However, because of supermodularity in payoffs, the total utility gain of the higher-quality

agents marrying up exceeds the utility loss of the lower-quality agents marrying down.

Our paper proceeds as follows. We begin by relating our work to the economic study of matching

(Section 1.1). In Section 2, we proceed to outline the common framework for our analysis and define

various matching patterns that we will be identifying in the various submodels. Section 3 specializes

the framework for the baseline case with no on-the-match search and summarizes the results for

this case. Section 4, which forms the heart of the paper, analyzes the case when both sides can

search for upgrades while matched and either side can divorce the current partner when a better

match is found. We will label this symmetric divorce.2 Section 5 discusses asymmetric divorce

2Note that the key feature here is really the ability to search while matched—the ability to divorce without on-the-
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Figure 1b. Divorce by Cohort.

(only one side of the market can search to upgrade).3

1.1 Facts and Prior Theory on Marriage and Divorce

There is little disagreement that divorce is an important feature of marriage. Figure 1a plots the

marriage and divorce rates from 1860-2005 (sources: 1860–1919:Jacobson [1959]; 1920–1998:Carter

et al. [2006]; 1999–2005:U.S. Census Bureau [2009]). The Census Bureau defines the marriage rate

as the number of new marriages per thousand people, and the divorce rate as the number of new

divorces per thousand people. The graph shows that the marriage and divorce rates generally move

together, both peaking after World War II and slightly declining since 1980.

A better way of examining the facts is to look at cohorts. Figure 1b portrays the proportion

of marriages ending in divorce for all marriages within each decade since 1960; the figure shows

the probability of still being married n years after wedding, conditional on both spouses being

alive (source: Stevenson and Wolfers [2007]). The most recent vintage from the 1990s has low

divorce rates, partly because those couples have not had histories as long as the other cohorts. In

particular, almost half of the marriages from the 1970s have ended in divorce 25 years out, which

match search would make no difference in a steady-state model, since a match that was once acceptable in a static

environment remains acceptable forever. Nonetheless, we use the word “divorce” instead of “on-the-match search

and divorce” for brevity.
3The asymmetric model is also equivalent to one where agents on one side of the market can divorce only after

obtaining their spouses’ consent. This follows because in equilibrium such consent will never be given.
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confirms the conventional wisdom. Whichever cohort you examine, however, there is no question

that a nontrivial percentage of marriages end in divorce. This suggests that divorce is an important

feature of marriage markets.

The economic literature on divorce has been mostly empirical; there have been few attempts

at an economic model of the phenomenon. A notable exception is the recent work by Chiappori

and Weiss [2000]. However, these authors operate with transferable utility, as opposed to our

nontransferable-utility setting (more on this in the next section) and are more concerned with the

determination of divorce rates than with equilibrium matching patterns. Nonetheless, an important

parallel between their work and ours is the conclusion that the possibility of divorce can be welfare-

improving.

The matching literature began with a seminal paper by Gale and Shapley [1962], in which they

demonstrated that certain marriage markets always allow “stable” matchings, in which no woman

and man both prefer each other to their current spouses; this equilibrium concept is equivalent to

the core in this situation (as noted by Shapley and Shubik [1972]).4 One of the key insights in

this class of matching models is due to Becker [1973]: when the payoff function is supermodular

(i.e., there are complementarities in production), the only efficient allocation, and hence the unique

core allocation, is the one where each agent matches only to her own type. We call this matching

pattern perfect positively assortative matching (perfect PAM).

Dynamic matching with search has been explored in a large number of papers in the 1990s,

starting with the seminal paper of McNamara and Collins [1990] and culminating with the insightful

papers by Shimer and Smith [2000, with transferable utility] and Smith [2006, with nontransferable

utility]. Like our paper, these papers explore the steady state of the system, similar to the standard

approach in evolutionary game theory, where the pivotal concept is that of an evolutionarily stable

strategy (ESS), as introduced by Smith and Price [1973].5

4Marriage is a standard interpretation of the matching model. It considerably simplifies the terminology, without

loss of generality. An alternative (but equivalent) interpretation is a labor market, in which firms and workers seek to

match with one another. Such markets have been studied by Crawford and Knoer [1981]; Demange and Gale [1985];

Kelso and Crawford [1982]; Shapley and Shubik [1972], often with the additional element of a monetary transfer

between firms and workers (namely, a salary). Roth and Sotomayor [1990] constructed a thorough discussion of two-

sided matching theory, with particular attention to the empirical case of the National Resident Matching Program

(NRMP).
5A full dynamic analysis of the system is unfortunately exceedingly complex. For an idea of what happens out of
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When utility is nontransferable, papers in this literature commonly find the phenomenon of block

segregation: agents on each side of the market separate themselves into fixed bands or intervals of

quality, such that an agent in a given band can be matched with any agent from the corresponding

band on the other side, but to no agent from any other band. This peculiar discontinuity in the

otherwise continuous matching model was first discovered by McNamara and Collins [1990] and was

subsequently revisited by authors such as Bloch and Ryder [2000]; Burdett and Coles [1997]; Chade

[2001]; Eeckhout [1999]; Morgan [1998]. These papers show that the phenomenon is robust under

continuous and discrete time, proportional discounting of the future and constant search costs, and

various forms of the payoff function. Smith [2006] was the first to use a general payoff function to

show that block segregation arises with any payoff function that is multiplicatively separable in the

two partners’ payoffs, and to show why this phenomenon occurs.

Block segregation has always raised criticism because it simply does not seem to fit with our

sense of reality; Smith [2006, page 1134] writes that “there are no documented cases of block

segregation.” In addition, a discontinuous equilibrium in an entirely continuous model is in and

of itself suspicious. It should also be noted that when payoffs are supermodular, block segregation

is clearly inefficient. Both the implausibility and the inefficiency of the phenomenon prompt us to

look for conditions that would eliminate this outcome.

Smith [2006] provides one set of conditions under which block segregation disappears and a more

efficient matching pattern emerges. Because the set of potential partners for each agent in a model

with costly search is a non-singleton set, the concept of perfect assortativeness is of no direct use

as a measure of the degree of sorting in such a model. To extend the idea of “like matches to like”

to this setting, Shimer and Smith [2000] introduce the concept of setwise positively assortative

matching (setwise PAM): in setwise PAM, higher agents match to higher sets of agents. Smith

[2006] shows that a sufficient condition for matching to be strictly assortative setwise is that the

payoff function be strictly log-supermodular (note that strict supermodularity is not sufficient).

When payoffs are multiplicatively separable (the borderline case between log-supermodularity and

log-submodularity), block segregation obtains (which is only weakly positively assortative setwise).

steady state, see the biology paper by Alpern and Reyniers [2005] and the ongoing project by Smith [2002].
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2 Model Setup

The market has two distinguishable sides, or supertypes, of agents: men (M) and women (W).

Both supertypes have equal mass, which we normalize to one.6 Agents are heterogeneous in terms

of their quality; each agent’s type (quality) is distributed on the interval [0, 1]. We will use the terms

“quality” and “type” interchangeably. Both supertypes of agents have the same type distribution,

which is atomless and given by the p.d.f. l. This p.d.f. is everywhere positive and boundedly finite:

0 < l < l(x) < l̄ <∞ for any x ∈ [0, 1]. For brevity, we will use the term “x-man” to refer to a man

of quality x, and similarly for women. Like Smith [2006], we operate in a world of nontransferable

utility (NTU), where wages are not available to equilibrate matches (see Shimer and Smith [2000]

for the current state of the art in the transferable utility framework). Even though some intramatch

transfers do exist, the extent of these transfers in many contexts is limited in practice. Second, a

key objective for our paper is to examine the robustness of block segregation to the possibility of

on-the-match search, and block segregation is exclusively an NTU phenomenon.7

Time is continuous and infinite. We will focus on the steady state of the model, where strategies,

type distributions, and value functions are time-invariant. Agents meet potential partners randomly

according to a Poisson process. The Poisson rate of the meeting process is determined according

to quadratic search technology [Smith, 2002]; that is, the rate of meeting an individual in a given

subset is proportional to the measure of individuals in that subset. The coefficient of proportionality,

dubbed the “rendezvous rate” by Smith [2002], is determined by the search intensities of agents,

which are determined exogenously. We will assume that the search intensity of all agents who are

allowed to search is the same; we call the resulting rendezvous rate ρ.8

6The distinction between the two sides of the market (the supertypes) matters ultimately under asymmetric

divorce. Men and women behave the same in equilibrium in the symmetric case. But we write the model with

supertypes for full generality here, to ease exposition later.
7Chiappori and Weiss [2000] is the closest paper that conducts an equilibrium analysis of matching and divorce.

That paper, however, focuses on the transferable utility case, i.e. examining the division of the surplus between

partners. Because we operate in an NTU world, such intramatch welfare comparisons are not relevant. The NTU

and TU matching models operate in parallel literatures; we proceed exclusively in the NTU world.
8It can be shown (details available upon request) that the results continue to hold when married agents’ search

intensities are lower than single agents’, provided that the difference is sufficiently small.
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A single agent receives the flow payoff of zero. An agent of quality x who is married to a

partner of quality y receives flow payoff f(x, y) > 0, with f a continuous function, such that partial

derivatives with respect to both arguments and the cross-partial derivative exist everywhere.9 (Note

that this also implies that f is bounded above by f̄ <∞ on [0, 1]2.) The payoff is strictly increasing

in the partner’s quality (i.e., f2(x, y) > 0 everywhere). Payoffs are discounted at interest rate r > 0.

The present value to x of being married to y forever is thus
∫ ∞

0 e−rtf(x, y) dt = f(x, y)/r.

We will be particularly interested in payoff functions that exhibit complementarities between the

two agents’ qualities (though we will not be assuming the existence of complementarities from the

outset). The simplest way to capture the idea of complementarity is that of simple supermodularity.

Definition 1. Let S ⊂ R
2 and let the cross-partial derivative of φ : S → R exist. Then φ(x, y) is

supermodular if φ12(x, y) > 0 for all x and y. φ is strictly supermodular if the inequality is strict

everywhere.

While the above definition neatly captures the everyday understanding of complementarity, in

some cases a stronger form of the concept, log-supermodularity, will be necessary:

Definition 2. Let S ⊂ R
2 and let the first partial derivative of φ : S → R+ with respect to the

first argument exist. Then φ(x, y) is log-supermodular if φ1(x, y2)/φ(x, y2) ≥ φ1(x, y1)/φ(x, y1) for

all x and y2 > y1, φ is strictly log-supermodular if the inequality is strict everywhere.

Observe that the weak inequality holds with equality everywhere if and only if φ is multiplica-

tively separable. This is the standard special case of log-supermodularity.

In addition to the possibility of voluntary divorce, a small fraction of matches is randomly

dissolved by Nature. Dissolution of any given match follows a Poisson process with rate δ. The

random dissolution of matches is necessary to ensure a steady supply of single agents. Random

dissolution of matches was introduced as an instrument for this purpose by Shimer and Smith [2000]

and Smith [2006]. Other approaches include a steady inflow of new agents [Burdett and Coles,

9Note that this setup imposes symmetry: an x-man who is matched to a y-woman gets the same payoff as an

x-woman who is matched to a y-man. An x-man who marries a y-woman receives, therefore, receives a payoff f(x, y),

while a y-woman who marries and x-man receives a payoff of f(y, x). The total surplus is the sum of these two

payoffs: f(x, y)+f(y, x). Because utility is nontransferable, we focus on individual flow payoffs rather than a division

of the joint surplus.
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1997] and replacement of newly matched agents by clones [for example, Bloch and Ryder, 2000;

McNamara and Collins, 1990; Morgan, 1998]. Both the cloning and inflow approaches, although

fine for the no-divorce case, are awkward in our divorce setup, because matched agents in our model

do not exit the market. The population would not remain constant unless inflows were balanced

by outflows (deaths), whose rates would have to be matched to inflow, marriage, and divorce rates.

Strategies and Value Functions

An agent’s strategy consists of:

1. A single agent’s acceptance set, i.e., the set of partners to which this agent is willing to match

when single. Let Ai(x) be the acceptance set of a single agent of supertype i ∈ {M,W} and

type x. Let αi(x, y) be the indicator function for y ∈ Ai(x). Thus, for example, αM (x, y) = 1

if and only if an x-man is willing to marry a y-woman, and αW (x, y) = 0 otherwise.

2. A married agent’s acceptance set, i.e., the set of partners to which this agent is willing to

upgrade when already married. Let Ai(x | y) be the acceptance set of an agent of supertype

i ∈ {M,W} and type x when married to an agent of type y. Let αi(x, z | y) be the indicator

function for z ∈ Ai(x | y). For example, αM (x, z | y) = 1 if and only if an x-man who is

currently married to a y-woman is willing to divorce her and marry a z-woman instead, and

αM (x, z | y) = 0 otherwise.

The expected average present value to an x-agent of supertype i who is single is V i(x). The

expected average present value to an x-agent who is married to y is V i(x | y). Note that these

are average values.10 The actual expected present values are therefore V i(x)/r and V i(x | y)/r.

However, for brevity, we will use the term “value function” throughout the paper to refer to the

expected average present value.

The density of men of type x who are married to women of type y is given by µ(x, y). It will

also be convenient to denote µM (x, y) ≡ µ(x, y) and µW (x, y) ≡ µ(y, x). Note that the mass of

married agents of a given type cannot exceed the total mass of agents of that type, so that a given

10Suppose agent x has expected present value νi(x). Then the average present value V i(x) is the constant flow

payoff that this agent would have to receive from now to infinity in order to get the same average present value νi(x):

νi(x) =
∫

∞

0
e−rtV i(x) dt = V i(x)/r.
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function µ : [0, 1]2 → R+ is an admissible match density function if and only if
∫ 1
0 µ(x, y) dy ≤ l(x)

for all x and
∫ 1
0 µ(x, y) dx ≤ l(y) for all y.

The match density function defines also the densities of unmatched agents of supertype i and

type x, which we denote ui(x). Note that ui(x) = l(x) −
∫ 1
0 µ

i(x, y) dy and that
∫ 1
0 u

M (x) dx =
∫ 1
0 u

W (x) dx = 1 −
∫ 1
0

∫ 1
0 µ(x, y) dxdy. Finally, given a supertype i and a type x, the matching set

of an x-agent of supertype i will be defined as the set of agents of supertype −i that this agent can

be matched to in equilibrium:

Mi(x) = {y |µi(x, y) > 0}.

Steady state

A steady state is defined as a situation where all relevant elements of the model are time-invariant.

In fact, this is equivalent to saying that match densities are time invariant, since stationary strategies

and stationary value functions arise naturally in a stationary environment. Thus, a steady state

is given by the condition that the relevant match creation rate is everywhere equal to the match

separation rate.

More precisely, in models with divorce the steady state will be defined by the condition that

the rate at which men of type x get married to women of type y is equal to the total dissolution

rate of (x, y) matches (for each x and y). In the model without divorce, the steady state will be

defined by the condition that the rate at which agents of type x get married equals the rate at

which single agents of type x enter the model (through random match dissolution). Note that the

definition of steady state in the no-divorce model refers only to unmatched densities, instead of

match densities. This is because the exact match density is irrelevant for agents’ strategies in this

case, since an agent’s opportunity set does not depend on who is married to whom: a married

person is an unavailable person, no matter whom she is married to.

Search equilibrium

A search equilibrium of the model is given by an admissible match density function µ, acceptance

sets Ai, and value functions V i satisfying the following conditions:

1. Steady state;
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2. Value functions consistent with the expected payoffs actually obtained, as given by value

function equations;

3. Rational strategies, i.e., αi(x, y) = 1 if and only if V i(x | y) ≥ V i(x) and αi(x, z | y) = 1 if and

only if V i(x | z) > V i(x | y).

2.1 Types of Matching Patterns

The key question in any steady-state matching model is who matches with whom. In particular,

when do higher quality agents match to higher quality partners? The most straightforward version

of like-to-like matching is perfect positively assortative matching, whereby each agent matches to

his or her own type:

Definition 3. There is perfect positively assortative matching (perfect PAM) if and only if Mi(x) =

{x} for all x ∈ [0, 1] and i ∈M,W .

This concept is appealing not only because of its simplicity, but also because perfect PAM is the

unique matching pattern that maximizes total surplus (see Becker [1973]) when payoffs are strictly

supermodular.

However, perfect PAM generally cannot be achieved in our model, because the search cost

imposed by time discounting results in non-singleton acceptance and matching sets.11 This forces

us to look for weaker definitions of assortative matching: i.e., ones where higher quality agents

match to higher sets of agents. The appropriate standard concept, due to Shimer and Smith [2000]

and Smith [2006], is setwise PAM:

Definition 4. There is setwise positively assortative matching (setwise PAM) if, for each i ∈

{M,W}, x1 < x2, and y1 < y2 such that y1 ∈ Mi(x2) and y2 ∈ Mi(x1), it is also true that

y1 ∈ Mi(x1) and y2 ∈ Mi(x2). There is strict setwise PAM if, for each x1 < x2 and y1 < y2 such

that y1 ∈ Mi(x2) and y2 ∈ Mi(x1), it is also true that y1 ∈ intMi(x1) and y2 ∈ intMi(x2).

As Shimer and Smith [2000] show, when men’s matching sets are nonempty, setwise PAM obtains

if and only if matching sets are intervals with weakly increasing upper and lower bounds. Strict

11In addition, note that a perfect PAM distribution is degenerate, and hence the density µ does not exist (the

“density” of the distribution is a Dirac delta function). Thus perfect PAM is not consistent with search equilibrium

as defined above.
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setwise PAM obtains if and only if the bounds are strictly increasing, except possibly when they

are equal to zero or one. Finally, note that, since men’s and women’s matching correspondences

are inverses of each other, it is sufficient to check the conditions of the definition for just one of

i ∈ {M,W}. This clearly shows how setwise PAM corresponds to the idea of higher-quality agents

matching with higher-quality sets of partners.

Block segregation is a particular form of weak setwise PAM, whereby agents separate themselves

into disjoint matching classes, such that no matching occurs across classes:

Definition 5. There is block segregation (banding) if the type space partitions into at least two

(and possibly infinitely many) disjoint classes [θ1, θ0] ∪ [θ2, θ1) ∪ . . . with 1 = θ0 > θ1 > θ2 > . . .

such that, for each i ∈ {M,W}, x ∈ Mi(y) if and only if x and y are in the same class.

Note that the upper and lower bounds of matching sets are constant almost everywhere and

discontinuously increasing at a finite or countably infinite set of points. In particular, this matching

pattern is not strict setwise PAM.

The definitions of the matching patterns described above are now standard in the matching

literature. Initially defined in the context of the no-divorce model, they are based on matching

sets alone. In the context of a model with search and upgrade, however, the matching sets do not

come close to telling the full story: because of the possibility of divorce, different matches within

the matching set have different expected durations and different equilibrium densities. In addition

to asking which matches are possible in principle, we now must also ask which matches are likely

to last. We therefore need a new characterization of assortative matching in the context of our

modified models. Notice also that when the exogenous match dissolution rate is very high, few

agents are able to upgrade from one match to another before they find themselves single again. In

this situation, matching patterns are determined mostly by initial matching decisions, and there

are only small efficiency gains from the possibility of on-the-match search. Since we are interested

in the matching patterns arising from agents’ ability to upgrade matches, which creates a dynamic

sorting mechanism, we want to focus on situations when the exogenous dissolution rate is negligible.

This leads us to the following definition:

Definition 6. The matching pattern converges in δ to perfect PAM if for all R > 0

lim
δ→0+

sup
x∈[0,1]

∣

∣

∣

∣

l(x) −

∫ x+R

x−R

µ(x, y) dy

∣

∣

∣

∣

= 0.

12



The definition says that the model converges in δ to perfect PAM if the mass of matches

becomes increasingly concentrated around the diagonal ({(x, x) |x ∈ [0, 1]}) as the external match

dissolution rate goes to zero. In other words, the matching pattern converges in δ to perfect PAM

if the equilibrium matching measure weakly converges to the perfect PAM measure.

3 Baseline Case: No Divorce

We begin with the baseline case of no divorce. This is the model that has been widely studied in

the literature. This brief section includes no new results: all the findings in this section are due

to Smith [2006]. We state the results for this case as a benchmark for evaluating the effects of

adding the possibility of divorce.

3.1 Model Specification

In this case, only single agents can search, and married agents’ acceptance sets Ai(x | y) are con-

strained to be empty. Furthermore, the exact matching density is strategy-irrelevant, and therefore,

in the definition of equilibrium, we replace the match density function µ with the unmatched den-

sities ui. Smith [2006] proves that there is a unique equilibrium distribution of unmatched agents.

(A continuum of matching densities is compatible with this equilibrium, but they all have the same

matching sets, because µ(x, y) > 0 if and only if αM (x, y) = αW (y, x) = 1.) The value functions

are given by

V i(x) =
ρ

r

∫ 1

0
αi(x, y)

(

V i(x | y) − V i(x)
)

u−i(y)α−i(y, x) dy

=
ρ

r

∫ 1

0
max

(

V i(x | y) − V i(x), 0
)

u−i(y)α−i(y, x) dy. (1)

and

V i(x | y) = f(x, y) +
δ

r

(

V i(x) − V i(x | y)
)

. (2)

The steady state equation is

δ

(

l(x) −

∫ 1

0
ui(x) dx

)

= ui(x)ρ

∫ 1

0
u−i(y)αi(x, y)α−i(y, x) dy. (3)

When symmetry of the strategies of the two supertypes is imposed, this no-divorce model

reduces to that of Smith [2006], and thus the results in that paper hold. Furthermore, Smith also

13



notes that the results extend to the non-symmetric case. We therefore turn to the description of

the matching patterns.

3.2 Matching Patterns

The first key observation in Smith’s model is that block segregation (see Definition 5) obtains

whenever payoffs are multiplicatively separable in the two partners’ qualities. This is a common

observation in the literature, though Smith [2006] was the first to show it with general multi-

plicatively separable payoffs (other papers used particular functional forms, such as f(x, y) = y or

f(x, y) = xy). The logic of Smith’s proof consists of two steps. First, he observes that multiplica-

tive payoffs yield identical von Neumann-Morgenstern preferences over matches. Second, search

frictions create a highest band of agents, who are accepted by everybody, because their quality ex-

ceeds the time cost of waiting for another meeting, even for an agent who can be sure that nobody

will reject her. Thus agents in the highest band have not only the same preferences, but also the

same opportunities. Consequently, they must make the same choices. Proceeding recursively to

ever lower bands yields the overall block segregation result.

Proposition 1. Assume f(x, y) = ϕ1(x)ϕ2(y) for functions ϕ1 ϕ2, with ϕ1 > 0. Then there is

block segregation in the no-divorce model. If ϕ2(0) = 0, there are infinitely many segregation classes.

Proof. See Proposition 2 and Lemma 7 in Smith [2006].

Note that block segregation relies heavily on the presence of search frictions and the permanence

of matches. Waiting is costly, so even the highest-type agent will accept some non-top-quality

agents. In addition, since a match is permanent, initial matching decisions fully determine lifetime

utility, so all agents who are accepted by the highest-type agent (including the highest type agent

herself) must have the same opportunity set. Since multiplicative payoffs imply identical cardinal

preferences over matches, these agents, who face the same opportunities, make the same decisions.

Intuitively, this outcome can be avoided if the marginal payoffs from a better partner increase

sharply with an agent’s type, so that higher-quality agents become relatively more patient in waiting

for better partners. In this case, the cardinal preferences over matches are no longer the same for

all agents (they increase faster for higher-quality agents), which causes the banding result to break

14



down. Instead, strict setwise PAM obtains: agents of strictly higher quality match to sets of

partners of strictly higher quality (see Definition 4). This is the central result of Smith’s paper:

Proposition 2. If the payoff function is strictly log-supermodular, there is strict setwise positively

assortative matching.

Proof. See Smith [2006], Proposition 3.

4 Symmetric Divorce

The previous section shows that matching patterns in a world with no on-the-match search can

be quite unsatisfying. First, with multiplicatively separable functions, we obtain an unintuitively

discontinuous matching correspondence (banding). Second, even when no banding occurs, the

steady-state equilibrium pattern does not typically achieve efficiency. In particular, inefficient

matching is observed when payoffs are supermodular, so that the unique total-surplus maximizing

matching pattern is perfect PAM, which is never reached in equilibrium.

4.1 Model Specification

Now, all agents are allowed to search while matched and to divorce their current partners when a

more desirable match is found. For each i ∈ {M,W}, let Ωi(x, y) be the rate at which an x-agent

of supertype i meets y-agents that are willing to marry him or her (the opportunity rate):

Ωi(x, y) = ρ

(

u−i(y)α−i(y, x) +

∫ 1

0
α−i(y, x |x′)µ−i(y, x′) dx′

)

. (4)

The first summand corresponds to x meeting a single y, whereas the second stands for x meeting

an already-married y who is willing to divorce and marry x instead. Similarly, let Di(x, y) be the

rate at which an x-agent of supertype i divorces his or her current partner, given that the current

partner’s quality is y (the divorce rate):

Di(x, y) = ρ

∫ 1

0
αi(x, y′ | y)

[

u−i(y′)α−i(y′, x)+

∫ 1

0
α−i(y′, x |x′)µ−i(y′, x′) dx′

]

dy′. (5)

The first term in the brackets represents x meeting a single y′, whereas the second corresponds to

x meeting a y′ who is already married and willing to divorce and marry x instead.
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We can now write down the value functions and the steady-state equation. The value function

of a single agent of supertype i ∈ {M,W} is

V i(x) =
1

r

∫ 1

0
αi(x, y)

(

V i(x | y) − V i(x)
)

Ωi(x, y) dy

=
1

r

∫ 1

0
max

(

V i(x | y) − V i(x), 0
)

Ωi(x, y) dy. (6)

Since the flow payoff from not being married is zero, the value comes only from expected future

marriages. In particular, the expected value is the integral over all possible partner quality levels

y of the product of three terms: an indicator whether an agent of type x is willing to marry a

y-partner at all, the value gain from being married to a y-partner, and the rate at which x will

meet available partners of this type. The second line of the equation above follows from the fact

that x-agents choose αi(x, y) rationally.

Similarly, the value of a married agent is

V i(x | y) = f(x, y) +
1

r
(V i(x) − V i(x | y))(δ +D−i(y, x))

+
1

r

∫ 1

0
max

(

V i(x | y′) − V i(x | y), 0
)

Ωi(x, y′) dy′. (7)

The first term represents the payoff from being married to the current partner; the second term

represents the value loss when the marriage is dissolved by Nature or due to divorce by the current

partner; the final term stands for the possibility of upgrade to a more desirable partner.

The steady-state equation is

µ(x, y)
[

δ +DM(x, y) +DW (y, x)
]

=

uM (x)αM (x, y)ΩM (x, y) +

∫ 1

0
µ(x, y′)αM (x, y | y′)ΩM (x, y) dy′. (8)

The left-hand side is the match dissolution rate at (x, y), while the right-hand side is the match

formation rate at (x, y). The first term on the right represents new (x, y)-marriages involving a

single x-man, while the second term stands for new marriages involving an x-man who was married

to someone else when he met his y-woman (note that this side of the equation could equivalently

be expressed by integrating over women rather than men).

Finally, we also require that

αi(x, y) = 0 ⇒ µi(x, y) = 0. (9)
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This is because αi(x, y) = 0 implies V i(x | y) < V i(x) (by rationality of strategies), and, since all

agents are free to divorce, all such matches would instantly dissolve.

4.2 Equilibrium and Convergence

We will use a constructive approach to equilibrium analysis: we will explicitly construct an equilib-

rium, which will simultaneously prove that an equilibrium exists and characterize that equilibrium.

We begin by assuming that a search equilibrium exists and establish some basic facts that must

be true in any equilibrium. We then conjecture that a particular strategy profile gives rise to a

search equilibrium. We prove that this is indeed the case by explicitly constructing the unique

match densities and value functions that arise from the conjectured equilibrium strategies and then

showing that the constructed value functions do in fact imply that these strategies are optimal.

Finally, we use the construction from the existence proof to show that the resulting equilibrium

matching pattern converges in δ to perfect PAM.

Suppose a search equilibrium exists. The first observation we make is that every single agent

initially accepts any partner he or she meets. This should not be surprising; because matched

agents can continue searching for upgrades, single agents do not give anything up by accepting a

match, and they gain some immediate payoff from being matched. Thus, being married to anyone

is strictly preferable to remaining single.

Lemma 1. Everyone always accepts everyone when single: αi(x, y) = 1 for all x, y ∈ [0, 1] and

i ∈ {M,W}. Furthermore, the preference for marrying over remaining single is strict for all agents.

Proof. See Appendix.

Another useful observation is that V i(x | y)−V i(x) is everywhere less than f(x, y). The intuition

for this result is clear: f(x, y) is the value to an x-agent of being in a perpetual match with a y-

agent. Thus, f(x, y) would be the difference between the value of having the right to stay married

to a y-agent forever and the value of being single. Since an actual match with a y-agent is less

valuable than the right to stay married with that agent forever (because the spouse can initiate a

divorce), the difference of the value of an actual match with a y-agent and the value of being single

is less than f(x, y).

Lemma 2. V i(x | y) − V i(x) < f(x, y) for all x, y ∈ [0, 1] and i ∈ {M,W}.
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Proof. See Appendix.

Next, observe that the direction of change in V i(x | y) in response to changes in y is determined

entirely by changes in the terms corresponding to current payoff and the possibility of divorce, i.e.,

by changes in the expression f(x, y)+ 1
r
(V i(x)−V i(x | y))(δ+D−i(y, x)) in (7). This is because the

upgrade possibilities do not depend on the quality of the current partner; since V i(x)−V i(x | y) < 0,

the expression above represents a trade-off between higher current payoffs and higher possibility

of divorce initiated by the partner. It also follows that where the partial derivatives V i
2 (x | y) and

D−i
1 (y, x) exist, the sign of V i

2 (x | y) is determined by f2(x, y) and D−i
1 (y, x). More precisely,

Lemma 3. Wherever V i(x | y) and D−i(y, x) are differentiable with respect to y, the sign of V i
2 (x | y)

is determined by the following identity:

sgn
(

V i
2 (x | y)

)

= sgn

(

f2(x, y) +
1

r
(V i(x) − V i(x | y))D−i

1 (y, x)

)

.

Proof. See Appendix.

The result of Lemma 3 does not immediately imply monotonicity of V i(x | y) and is thus in

principle compatible with many strategies. However, we consider it natural to look for an equilib-

rium in simple, symmetric, and intuitive strategies. In particular, we conjecture that there is an

equilibrium in which all married agents upgrade when possible. Consider the following conjecture:

Conjecture 1. There is a search equilibrium in which αM (x, y) = αW (x, y) = 1 for all x and y,

and, for any i ∈ {M,W}, αi(x, z | y) = 1 if and only if z > y.

This conjectured strategy (“accept when single, upgrade when possible”) gives rise to a well-

defined, symmetric match density µ and continuous value functions V (x) and V (x | y), which are

the same for men and for women. In addition, V (x | y) is differentiable with respect to y for any x

(these results are proven in the Appendix). To establish an equilibrium, the only remaining step is

to show that it is optimal for every agent to follow this strategy, given these match densities and

value functions and given that all other agents are following this strategy. Lemma 1 already showed

that it is optimal for every agent to accept any other agent when single. Thus, we only need to

find sufficient conditions under which it is strictly optimal for every agent to always upgrade when

possible. That is, we need to find conditions under which the V (x | y) derived above is strictly

increasing in y.
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If everybody uses the conjectured strategy, the divorce rate is given by

D(x, y) = ρ

∫ 1

y

[

u(y′) +

∫ x

0
µ(y′, x′) dx′

]

dy′,

which is increasing in the first argument and differentiable with respect to that argument, with

D1(x, y) = ρ

∫ 1

y

µ(y′, x) dy′. (10)

To interpret this, suppose that the agent of quality x in the expression is a man (who is married to

a y-woman). Call him Mr. X. Then the expression equals the rate at which Mr. X meets women

who are better than his current wife and are currently married to x-men. Suppose Mr. X’s quality

increases slightly. Then the expression for D1(x, y) is precisely the additional pool of desirable

partners to whom the x-man can now upgrade. Before the quality increase, the y-women who were

married to other x-men would not have divorced their partners for Mr. X, but they are happy to

do so after the slight increase in his quality.

Since V (x | y) is differentiable with respect to its second argument and D(x, y) is differentiable

with respect to its first argument, Lemma 3 applies. That is, V (x | y) is everywhere increasing in y

if and only if

f2(x, y) +
1

r
(V (x) − V (x | y))D1(y, x) > 0. (11)

This condition holds if and only if the payoffs f(x, y) are increasing in y sufficiently quickly,

relative to the increase in the divorce rate due to y. When everybody else is using the conjec-

tured strategy, D1(y, x) is proportional to the density of y-agents whose spouses are better than x

(by (10)), which is in turn bounded above by the total density of y-agents, l(y). Noting that the

difference V (x | y)−V (x) is less than f(x, y) (by Lemma 2), we can now replace the condition (11)

by a simple condition on the primitives of the model: the relative increase in the payoffs at (x, y)

due to an increase in y must be at least as large as the density of agents at y times ρ/r, for any x

and y.

Lemma 4. Let
f2(x, y)

f(x, y)
≥
ρ

r
l(y) for all x and y.

Then the strategy in Conjecture 1 is the unique best response to itself.
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Proof. Let the conditions in the statement of the lemma hold, and let everybody (except a given

x-agent) use the conjectured strategy. If the agent is single, the conjectured strategy is uniquely

optimal by Lemma 1. If the agent is married to some y-agent, Lemma 3 implies, as explained above,

that the conjectured strategy is the unique optimal response if and only if the condition (11) holds.

By (10) and the admissibility of µ, D1(y, x) ≤ ρl(y). By Lemmas 2 and 1, 0 < V (x | y) − V (x) <

f(x, y). Consequently, the second summand in condition (11) is greater than −(ρ/r)f(x, y)l(y),

which by the assumption of Lemma 4 is no less than −f2(x, y). But then (11) holds.

We now arrive at our first main result.

Theorem 1. If
f2(x, y)

f(x, y)
≥
ρ

r
l(y) for all x and y,

then there exists a search equilibrium in which all agents follow the strategy given by α(x, y) = 1

for all x and y; αi(x, z | y) = 1 if and only if z > x. Furthermore, the corresponding equilibrium

match density is symmetric, µ(x, y) = µ(y, x) for all x and y.

Proof. See Appendix.

Note that the condition in the hypothesis always holds for a payoff function with sufficiently

high relative marginal benefit from being married to a better partner (f2(x, y)/f(x, y)): when there

are large gains from upgrades, these upgrades will take place. Second, for any payoff function, the

condition holds for sufficiently high interest rate r. As individuals become more impatient, the

immediate gain from an upgrade outweighs the possible future loss from an increased risk of being

divorced. In fact, this theorem is stronger than the claim that “accept everyone initially and

upgrade whenever possible” is part of a search equilibrium. We prove that this strategy is the

unique best response to itself in the stationary environment that it generates. That is, it is an

evolutionarily stable strategy (ESS), as defined by Smith and Price [1973].12

The proof of Theorem 1 takes place in several steps. The first task is to show that the conjectured

strategy “accept when single, upgrade when possible” induces a well defined steady state match

distribution. This involves defining a best response function that has a unique fixed point. While

12The idea here is that this strategy maximizes one’s payoff or, using the original biological term, evolutionary

fitness in a population where everyone plays this strategy, and that no alternative strategies can do equally well.

Thus if subpopulations using an alternative strategy were to arise, they would lose out in the survival of the fittest.
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ordinarily this approach is straightforward, the operator defining the steady-state matching density

is not a contraction, which requires a more complicated solution technique. In particular, we

discretize the problem and solve recursively, and then show that the unique solutions of a sequence

of discretized problems converge to the unique solution of the original continuous problem. This

establishes that the conjectured equilibrium strategy gives rise to a well defined, symmetric match

density function. The final step involves solving for the value functions. It follows that the search

equilibrium exists and the corresponding equilibrium match densities are symmetric.

Now that we have established the existence of an equilibrium and derived an algorithm for

deriving its match density, we can turn to investigating the properties of the emerging matching

pattern. We will use the discretized model developed in the proof of the main theorem above to

help us establish the equilibrium matching pattern under the equilibrium found in the previous

section.

Consider the highest-type agents in the discrete model with δ = 0. Because there is no external

dissolution and nobody divorces a highest-type agent, we know that no highest-highest matches

are ever dissolved, once they are formed. Thus, there is no outflow from this type of match. By

the definition of steady state, there must therefore be no inflow to such matches either. But this

implies that there cannot be any highest-type agents that are single or matched to a lower-type

agent, because whenever two such agents meet, they will marry each other and create inflow into

highest-highest matches. Thus, all highest-type agents are matched to highest-type agents. We

can repeat this argument recursively, proceeding to ever lower types, to conclude that all agents

are matched to agents of their own type.

Note that δ = 0 does not yield any search equilibrium (as defined above) in the original, contin-

uous model. The existence proof in the previous section breaks down. The matching “density” is a

Dirac δ function. Nonetheless, the case with δ = 0 in the discrete case suggests that the matching

pattern in the continuous model should converge in δ to perfect positively assortative matching

(recall Definition 6). This intuition turns out to be correct:

Theorem 2. When the equilibrium established above exists, the corresponding matching pattern

converges in δ to perfect PAM.

Proof. See Appendix.
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The key criterion in this theorem is that δ/ρ converges to zero (therefore δ converging to zero

is sufficient). In words, the external dissolution rate relative to the rendezvous rate must vanish, so

the rate at which matches dissolve shrinks relative to the rate of agents are meeting other agents.

Recalling that the role of δ is to provide a steady supply of new agents, we can somewhat loosely

interpret the result of the theorem as saying that divorce leads to assortative matching when agent

turnover is low, so that matching patterns are determined by the long-term interactions of agents,

rather than by the behavior of newly arriving market participants.

The proof of Theorem 2 proceeds by first constructing a discrete equilibrium and then applying

convergence results to show that the equilibrium of the continuous model is close to that of the dis-

crete model. When formation of entirely new matches by single agents (either new arrivals or agents

left single as the result of match dissolution) is dominated by long-term upgrade dynamics among

already-matched individuals (i.e., the dissolution rate δ is low), the matching pattern corresponding

to the equilibrium we have identified approaches perfect positively assortative matching.

This is reassuring for many reasons. First, it suggests that divorce, an important feature of

real-life marriage markets, has “good” results for the model. The matching literature has identified

positively assortative matching as the gold standard, and for years block segregation has plagued the

equilibrium of two sided search and matching models. While Smith [2006] varied the payoff functions

to show under what conditions setwise PAM obtains, we keep the payoff functions fixed, but rather

add a new institutional feature to the model, namely separation. Allowing agents to search while

matched and separate if desired both captures an important feature of reality, and eliminates this

pathological equilibrium of block segregation. Thus we see our result as complementary to that of

Smith [2006]; both papers give conditions under which the two-sided matching model with search

can arrive at positive assortative matching.

Figure 2 shows the match density on the path to convergence. The figure plots the contours

of the match density function, which is a joint density over the two type spaces, integrating to

the total mass of married agents. The lighter-colored regions denote higher density. From left

to right, the three pictures represent the steady states for decreasing values of the ratio of the

external dissolution rate δ to the rendezvous rate ρ. As δ/ρ shrinks toward zero, the matching

density becomes more concentrated along the major diagonal, which represents perfect assortative

matching. Also note that the higher types converge faster, as the density is higher-peaked in the
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Figure 2. Contour maps of steady-state equilibrium matching densities µ for uniform type

densities and three different values of ψ = δ/ρ: ψH = 0.5 (left), ψM = 0.1 (middle), and

ψL = 0.025 (right)

upper-right corner of each picture.

Figure 3 provides some summary measures of the speed of the convergence to perfect PAM as

δ approaches zero. We see that as the external dissolution rate decreases, both the total mass of

matched agents and the percentage of agents matched to partners close to their type increases as

δ/ρ decreases. As a result, the total surplus increases.
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Figure 3. Convergence to PAM as δ/ρ→ 0
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5 Asymmetric Divorce

In this final extension of the model, we’ll investigate whether allowing just one side of the market

to search while matched is sufficient to induce stricter assortative matching than in the absence of

on-the-match search.

5.1 Model Specification

Let us assume that women (without loss of generality) can continue searching while matched. If

they find a better match, the previous one is dissolved and a new one is formed instead. Men, on

the other side, cannot search while matched and cannot initiate a divorce. The value function for

a single woman is

V W (x) =
1

r

∫ 1

0
αW (x, y)

(

V W (x | y) − V W (x)
)

ρuM (y)αM (y, x) dy

=
ρ

r

∫ 1

0
max

(

V W (x | y) − V W (x), 0
)

uM (y)αM (y, x) dy. (12)

For each acceptable type y of men, the contribution to the expected payoff is the value to the

x-woman of being married to a y-man times the rate at which the x-woman can expect to meet

available y-men. The value function for a married woman is

V W (x | y) = f(x, y) +
δ

r
(V W (x) − V W (x | y))

+
ρ

r

∫ 1

0
max

(

V W (x | y′) − V W (x | y), 0
)

uM (y′)αM (y′, x) dy′. (13)

The first term represents the payoff from being married to the current partner; the second term

represents the payoff when the marriage is dissolved by Nature; the third stands for the possibility

of upgrade to a more desirable partner.

Before we write down the value functions for men and the steady-state equations, it will be

useful to introduce two more pieces of notation. First, let us denote the rate at which an x-man

meets y-women who are willing to marry him by Ω(x, y) (where Ω stands for “opportunity rate”):

Ω(x, y) = ρ

(

uW (y)αW (y, x) +

∫ 1

0
αW (y, x |x′)µW (y, x′) dx′

)

. (14)

The first term in parentheses represents our x-man meeting a single y-woman who would accept him,

while the second represents him meeting an already-married y-woman who is willing to divorce her
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current partner for him. Note that when no y-women are willing to accept x, Ω(y, x) = 0. Second,

let us denote the dissolution rate of a marriage between an x-man and a y-woman by D(x, y):

D(x, y) = δ + ρ

∫ 1

0
αW (y, x′ |x)uM (x′)αM (x′, y) dx′. (15)

The first term stands for dissolution by Nature, while the second stands for dissolution due to the

woman meeting a better match and divorcing her partner.

Now, we can concisely write down the value functions of men and the steady-state equations.

The value function for a single man is

V M (x) =
1

r

∫ 1

0
αM (x, y)

(

VM (x | y) − VM (x)
)

Ω(x, y) dy

=
1

r

∫ 1

0
max

(

V M (x | y) − VM (x), 0
)

Ω(x, y) dy. (16)

The value function for a married man is

VM (x | y) = f(x, y) +
1

r
(V M (x) − V M (x | y))D(x, y). (17)

The steady state equation is (for each x and y)

µ(x, y)D(x, y) = αM (x, y)uM (x)Ω(x, y). (18)

The left-hand side is the match dissolution rate at (x, y), while the right-hand side is the rate at

which new (x, y)-couples are formed. Note that the right-hand side is zero when an x-man does

not accept a y-woman. If the man accepts, the formation rate is proportional to the mass of single

men (since only single men are allowed to form new matches) and the rate at which a given single

man meets y-women who accept him.

In addition to the steady-state equation above, we also require that

αW (y, x) = 0 ⇒ µ(x, y) = 0. (19)

This is because αW (y, x) = 0 implies V W (x | y) < V W (x) (by rationality of strategies), and, since

women are free to divorce, all such matches would instantly dissolve.

5.2 Strategies

The first observation is that men act as if divorce were not a possibility. That is, in deciding

whether to accept a match with a woman, they simply compare the flow value of being married
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to that woman forever to the value of being single. This is immediate from the value-function

equation for married men: reordering the terms in (17), we get

VM (x | y) − V M (x) =
r

r +D(x, y)
(f(x, y) − V M (x)). (20)

Since r and D(x, y) are positive, it follows that the sign of VM (x | y) − VM (x) equals the sign of

f(x, y) − VM (x). Since f(x, y) is strictly increasing in y, we know that if f(x, y0) − VM (x) > 0,

then f(x, y) − VM (x) > 0 for all y > y0. Therefore, if VM (x | y0) − V M (x) is positive, then

VM (x | y) − V M (x) is positive for all y > y0. But then the rationality of strategies requires that

if an x-man accepts a y-woman, he must also accept all women of quality higher than y. We have

thus proven the following results.

Lemma 5. Men’s value functions and strategies satisfy the following monotonicity conditions:

1. Men make marriage decisions by comparing the value of being matched to someone forever to

the value of remaining single:

sgn(V M (x | y) − VM (x)) = sgn(f(x, y) − VM (x));

2. Men’s acceptance strategies are monotonically increasing in partners’ quality:

αM (x, y) = 1 ⇒ for all y′ > y,αM (x, y′) = 1.

The result above already shows that men will employ cutoff strategies; that is, their acceptance

sets will be intervals with an upper bound of 1. Combined with the continuity of f and the fact

that f(x, y) > 0, we can strengthen this result by showing that these intervals are nonempty,

nondegenerate and closed, and that the lower limits of the intervals are defined by an indifference

condition:

Lemma 6. Men’s acceptance sets are closed, nonempty, and nondegenerate intervals: for all x,

there exists an aM (x) ∈ [0, 1] such that (AM (x)) = [aM (x), 1]). Men who do not accept all women

are indifferent between marrying their marginal partner and remaining single:

aM (x) 6= 0 ⇒ V M (x) = V M (x | aM (x)).

Proof. See Appendix.
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We now turn to the women’s side. The first observation here is that a married woman’s value

function is strictly increasing in the partner’s quality. This is straightforward, since a higher-quality

partner increases the immediate payoff from being married without affecting the opportunities for

future upgrade. Since men cannot divorce women, this means that marrying a higher-quality man

is an unambiguous improvement for a woman. Stating this formally:

Lemma 7. The married women’s value function V W (x | y) is strictly increasing in the partner’s

quality y.

Proof. Suppose V W (x | y1) ≥ V W (x | y2) for y1 < y2. Then f(x, y1) < f(x, y2). Together with

V W (x | y1) ≥ V W (x | y2) this implies that the right-hand side of (13) is greater for y2 than for y1,

so that the left-hand side must be too, i.e., V W (x | y2) > V W (x | y1). Contradiction.

An immediate corollary from this lemma is that any woman will divorce her current partner

whenever she meets one with higher quality:

Lemma 8. Married women always upgrade when possible: AW (x | y) = (y, 1] for each x and y.

Proof. Follows immediately from Lemma 7 and the rationality of strategies (condition 3 in the

definition of equilibrium).

Next, note that single women do not lose anything by accepting a match with anyone: they

obtain the immediate rewards of being married to someone, and their options for future matches

are in no way affected. It therefore follows that single women will always accept a match with

anyone they meet:

Lemma 9. Single women always accept everybody: AW (x) = [0, 1] for all x.

Proof. See Appendix.

We now have a complete characterization of all agents’ strategies: men use cutoff acceptance

strategies, with the lower limit determined by an indifference condition, whereas women accept

everyone when single and upgrade whenever possible.
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5.3 Matching Patterns

Who matches with whom in the asymmetric-divorce model? To do so, we first make the simple

observation that, just as in the baseline model, the matching sets are fully determined by single

agents’ acceptance sets. The matching density for the pair (x, y) is positive if and only if x and y

are acceptable to each other when single. The intuition is straightforward: there is positive inflow

to (x, y) matches if and only if x and y accept each other, and there is positive outflow if and only

if µ(x, y) > 0. The two must be equal in steady state.

Lemma 10. The matching set for each agent x equals the set of agents y such that x and y are

mutually acceptable to each other when single: µ(x, y) > 0 if and only if αM (x, y) = αW (y, x) = 1.

Proof. Let µ(x, y) > 0. Equation (19) immediately implies that αW (y, x) = 1. Furthermore, since

D(x, y) ≥ δ > 0 for all x and y, the left-hand side of equation (18) is positive. For the right-hand

side to be positive, we require αM (x, y) = 1.

Now let αM (x, y) = αW (y, x) = 1. Notice that since the type density is everywhere positive

(l > 0) and all matches are dissolved at a positive rate δ > 0, uM and uL are also everywhere

positive. Thus W (x, y) ≥ ρuW (y)αW (y, x) > 0, and the right-hand side of (18) is positive. For the

left-hand side to be positive, we need µ(x, y) > 0.

The problem of describing the matching sets therefore reduces to describing the acceptance sets

of single agents. Recalling the results from the strategy section above, we see that the only missing

piece in the puzzle is a characterization of the acceptance thresholds of men, aM (x). We begin

by rewriting the value functions using the findings in the previous section. In particular, plugging

the surplus equation (20) into the single men’s value function (16), applying Lemma 6, integrating,

collecting terms, and noting that aM (x) must be chosen optimally, yields

VM (x) = max
aM (x)

∫ 1
aM (x)H(x, y)f(x, y) dy

1 +
∫ 1
aM (x)H(x, y) dy

, where H(x, y) =
Ω(x, y)

r +D(x, y)
. (21)

Applying Lemmas 8 and 9 to (14) and (15), the match dissolution and opportunity rates simplify

to

Ω(x, y) = ρ

(

uW (y) +

∫ x

0
µW (y, x′) dx′

)

; (22)

D(x, y) = δ + ρ

∫ 1

x

uM (x′)αM (x′, y) dx′. (23)
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It is easy to see that the opportunity rate Ω increases in x, while the dissolution rate D decreases.

Consequently, the ratio H is monotonically increasing, and hence almost everywhere differentiable

as a function of x. It then follows that the value function V is also almost everywhere differentiable.

More precisely, these observations give us the following result:

Lemma 11. The single men’s value function VM (x) is almost everywhere differentiable. Further-

more, H1(x, y) is defined almost everywhere, with H1(x, y) > 0 whenever y > aM (x).

Proof. Because the integrands in (22) and (23) are non-negative, Ω(x, y) is weakly increasing in x

and D(x, y) is weakly decreasing in x. Therefore, for each y, these functions are almost everywhere

differentiable as functions of x, with Ω1(x, y) ≥ 0 and D1(x, y) ≤ 0. Consequently, H(x, y) is

weakly increasing in x, and H1(x, y) exists almost everywhere, with H1 ≥ 0. This, in turn, implies

that V (x) is also differentiable almost everywhere (by the Envelope Theorem).

For the final statement, note that D1(x, y) = −ρuM(x)αM (x, y) < 0 whenever y > aM (x).

Thus it is also true that H1(x, y) > 0 for all y > aM (x).

The men’s acceptance threshold function aM is strictly increasing whenever payoffs are weakly

log-supermodular. The proof proceeds along the same lines as the proof of Proposition 3 in Smith

[2006]. The key difference from Smith’s case is that asymmetric divorce adds an additional benefit

to higher-quality men: they have a lower probability of being divorced. This additional benefit

(as captured by H1(x, y) > 0) is sufficient to make higher-quality men strictly more selective then

lower-quality men, even when payoffs are only weakly log-supermodular. The following lemma is

proved in the Appendix.

Lemma 12. When the payoff function f(x, y) is weakly log-supermodular, the men’s acceptance

threshold function aM (x) is strictly increasing at all x such that aM (x) > 0.

We now have a complete characterization of all acceptance sets, and thus also of matching sets.

In particular, we have obtained a sufficient condition for strict setwise PAM (recall Definition 4) in

this model. That is, matching is strictly positively assortative setwise whenever payoffs are weakly

log-supermodular. This result follows from the fact that matching sets are completely determined

by men, whose thresholds are increasing by Lemma 12.

Proposition 3. The asymmetric divorce model exhibits strict setwise PAM whenever payoffs are

weakly log-supermodular.
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Proof. Let payoffs be weakly log-supermodular. By Lemma 9, αW (y, x) = 1 everywhere. By

Lemma 6, αM (x, y) = 1 if and only if y ≥ aM (x). Then, by Lemma 10, MM (x) = [aM (x), 1] for

all x. Since aM (x) is strictly increasing whenever it is not zero (by Lemma 12), it follows that

matching is strictly positively assortative (see the note after Definition 4).

In particular, this result implies that the block segregation pattern from the baseline model is

not robust to asymmetric divorce. With asymmetric divorce, weak supermodularity (and thus also

multiplicative separability) of payoffs is sufficient for strict setwise PAM (which rules out block

segregation). Note, however, that the asymmetric divorce result is considerably weaker than the

symmetric divorce result. With symmetric divorce, the matching pattern converges to perfect PAM,

whereas asymmetric divorce gives us only strict setwise PAM.

6 Conclusion

A key question that has not been studied extensively is how the option to divorce might influence

who ends up being married to whom. This paper contributes to filling this gap. We show that

the option to continue looking for a better match while already matched does in fact influence the

long-term steady state pattern of matches. Furthermore, this influence can be welfare-improving

in the aggregate, because the possibility of continued upgrades induces a strong form of sorting,

unless there is a high turnover of agents (formally, a high external dissolution rate of matches).

By exhibiting the sorting potential of the option to divorce, we also contribute to the general

literature of matching with nontransferable utility. A nagging problem in that body of research

has been the prevalence in theory, but absence in practice, of the phenomenon of block-segregation,

whereby agents freely intermarry within fixed bands of quality, but never across the boundaries

of their bands. Smith [2006] showed that this peculiar artifact of the model can be ruled out by

restricting payoff functions to be strictly log-supermodular. We show that the same result (and

often one that is much stronger) can be achieved without strict log-supermodularity of payoffs if

the agents are allowed to search for upgrades while matched.
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Appendix

Proof of Lemma 1. If some single x-agent of supertype i does not strictly prefer accepting a poten-

tial partner y to remaining single, it must be the case that V i(x) ≥ V i(x | y). Equation (7) then

implies

V i(x) ≥ V i(x | y) ≥ f(x, y) +
1

r

∫ 1

0
max

(

V i(x | y′) − V i(x), 0
)

Ωi(x, y′) dy′.

The last term in the expression above is just V i(x) (by (6)). We thus obtain

V i(x) ≥ f(x, y) + V i(x),

which is impossible, since f(x, y) > 0 everywhere. Contradiction.

Proof of Lemma 2. By Lemma 1, V i(x | y) > V i(x) for all x and y. This implies that the second

summand in the right-hand-side of the definition of V i(x | y) (eq. (7)) is negative. Furthermore,

the integrand in the third summand is no more than max(V i(x | y)− V i(x), 0), so that the integral

is no more than V i(x) as defined in equation (6). Thus the entire right hand side is less than

f(x, y) + V i(x). Thus (7)) implies V i(x | y) − V i(x) < f(x, y).

Proof of Lemma 3. Let g(x, y) ≡ f(x, y) + 1
r
(V i(x) − V i(x | y))(δ +D−i(y, x)).

First notice that V i(x | y) is increasing in y if and only if g(x, y) is. For suppose V i(x | y1) ≥

V i(x | y2), while g(x, y1) < g(x, y2). Then, using equation (7) for y1, we obtain

V i(x | y1) = g(x, y1) +
1

r

∫ 1

0
max

(

V i(x | y′) − V i(x | y1), 0
)

Ωi(x, y′) dy′

< g(x, y2) +
1

r

∫ 1

0
max

(

V i(x | y′) − V i(x | y2), 0
)

Ωi(x, y′) dy′

= V i(x | y2),

RAA. It follows that sgn(V i
2 (x | y)) = sgn(g2(x, y)).

Taking the derivative of g with respect to y, we obtain

g2(x, y) = f2(x, y) +
1

r
(V i(x) − V i(x | y))D−i

1 (y, x) −
1

r
V i

2 (x | y)(δ +D−i(y, x)).

Since sgn(V i
2 (x | y)) = sgn(g2(x, y)) and δ +D−i(y, x) > 0, it follows that

sgn(V i
2 (x | y)) = sgn(g2(x, y)) = sgn

(

f2(x, y) +
1

r
(V i(x) − V i(x | y))D−i

1 (y, x)

)

.
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Proof of Theorem 1. Suppose everyone plays the conjectured “accept when single, upgrade when

possible” strategy. Our first, and most difficult, task is to show that this strategy profile induces

a well-defined steady-state match distribution. We begin by noting that the conjectured strategies

transform the opportunity and divorce rate equations (4) and (5) into

Ωi(x, y) = ρ

(

u−i(y) +

∫ x

0
µ−i(y, x′) dx′

)

= ρ

(

l(y) −

∫ 1

x

µ−i(y, x′) dx′
)

;

Di(x, y) = ρ

∫ 1

y

(

u−i(y′) +

∫ x

0
µ−i(y′, x′) dx′

)

dy′

= ρ

∫ 1

y

(

l(y′) −

∫ 1

x

µ−i(y′, x′) dx′
)

dy′.

Inserting these values in the steady-state equation (8) and simplifying, we obtain

µ(x, y)

{

δ + ρ

[∫ 1

y

(

l(y′) −

∫ 1

x

µ(x′, y′) dx′
)

dy′ +

∫ 1

x

(

l(x′) −

∫ 1

y

µ(x′, y′) dy′
)

dx′
]}

= ρ

(

l(y) −

∫ 1

x

µ(x′, y) dx′
)(

l(x) −

∫ 1

y

µ(x, y′) dy′
)

.

Let A be the space of admissible match densities. That is, A consists of all integrable functions

µ : [0, 1]2 → R+ that satisfy, for each x ∈ [0, 1],
∫ 1
0 µ(x, y) dy ≤ l(x) and

∫ 1
0 µ(y, x) dy ≤ l(x). Let

φ ≡ δ/ρ. Define the operator T on A as mapping µ to the function Tµ : [0, 1]2 → R+ such that,

for any x and y

Tµ(x, y) =

(

l(y) −
∫ 1
x
µ(x′, y) dx′

)(

l(x) −
∫ 1
y
µ(x, y′) dy′

)

φ+
∫ 1
y

(

l(y′) −
∫ 1
x
µ(x′, y′) dx′

)

dy′ +
∫ 1
x

(

l(x′) −
∫ 1
y
µ(x′, y′) dy′

)

dx′
. (24)

Note that Tµ is defined everywhere, since φ > 0 and all other terms are non-negative by admissi-

bility of µ.

The match densities consistent with the conjectured strategies are precisely the fixed points of

T . The standard approach would be to endow A with an appropriate topology and show that T

is a contraction with respect to that topology, which would prove that T has a unique fixed point.

Unfortunately, however, T does not even map A to itself (consider, for example, the case when

l(x) = l(y) = 1 everywhere, µ(x, y) = 0 everywhere, and φ = 0.1). We therefore need to employ a

more complicated solution technique.

Discretized problem and equilibrium match densities
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We will find a fixed point of T by discretizing the problem, explicitly solving the discretized

problem recursively, and then showing that the unique solutions of a sequence of discretized prob-

lems converge to the unique solution of the original, continuous, problem.

For a given K ∈ N, consider 2K discrete types, indexed by 0 through 2K − 1. Let hK = 1/2K .

Consider an equally spaced grid of radius hK on [0, 1], and let the ith type correspond to the grid

point 1 − ihK ∈ [0, 1]. For any x ∈ [0, 1], let ιK(x) be the grid point closest to x:

ιK(x) = arg min
i

|1 − ihK − x| .

For any 0 ≤ i < 2K , define lKi = l(1 − ihK). Finally, for a given function µ and any 0 ≤ i, j < 2K ,

define

mK
ij,µ ≡ µ (1 − ihK , 1 − jhK) .

We can now define an operator T̂K on A by letting T̂Kµ be the function that is defined as follows.

Let

T̂Kµ (1 − ihK , 1 − jhK) =
(

lKj −
∑

i′≤im
K
i′j,µhK

) (

lKi −
∑

j′≤j m
K
ij′,µhK

)

φ+
∑

j′<j

(

lKj′ hK −
∑

i′≤im
K
i′j′,µh

2
K

)

+
∑

i′<i

(

lKi′ hK −
∑

j′≤j m
K
i′j′,µh

2
K

)

for all 0 ≤ i, j < 2K , and let T̂Kµ(x, y) for all other (x, y) be determined by linear spline interpo-

lation from the values of T̂Kµ on the grid points (1 − ihK , 1 − jhK).

Note that µ is a fixed point of T̂K if and only if the values of µ off the grid are obtained by linear

spline interpolation from the values of µ on the grid, and the values on all grid points, 0 ≤ i, j < 2K ,

satisfy

mK
ij,µ =

(

lKj −
∑

i′≤im
K
i′j,µhK

) (

lKi −
∑

j′≤j m
K
ij′,µhK

)

φ+
∑

j′<j

(

lKj′ hK −
∑

i′≤im
K
i′j′,µh

2
K

)

+
∑

i′<i

(

lKi′ hK −
∑

j′≤j m
K
i′j′,µh

2
K

) . (25)

Note that this equation represents the steady state in a model with 2K discrete types, when all

types follow the conjectured “accept anyone, upgrade when possible” strategy, the mass of the the

ith type is LK
i = lKi hK , and the mass of (i, j)-matches is MK

ij = mK
ij,µh

2
K .

The discrete steady-state equation (25) can be easily solved for mK
i,j,µ recursively, starting with

i = j = 0. It is trivial to check that there is exactly one admissible solution m̂K
ij (satisfying
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lKi ≥
∑

j′≤j m̂
K
ij′hK and lKj ≥

∑

j′≤j m̂
K
ijhK for all i and j) and that this solution is symmetric,

satisfying m̂K
ij = m̂K

ji for all i and j.

Since the values of T̂Kµ on the grid fully determine the values of T̂Kµ everywhere, we have

proven that T̂K has a unique fixed point on A, namely, the function µ̂k obtained from the unique

solution to (25), {m̂K
ij }, by linear spline interpolation. Note that µ̂k is continuous by definition and

symmetric due to the symmetry of the solution to (25). We thus have the following result:

Lemma 13. For each K, T̂K has a unique fixed point µ̂K on A. The solution is symmetric

(µ̂K(x, y) = µ̂K(y, x) for all x and y) and everywhere continuous on [0, 1]2. For each 0 ≤ i, j < 2K ,

µ̂K(1 − ihK , 1 − jhK) = m̂K
ij , where {m̂K

ij } is the unique admissible solution to (25).

Our next step is to observe that the sequence of fixed points µ̂K converges to a limit µ ∈ A as

K goes to infinity. Let ‖•‖∞ denote the L∞ norm on A. Then we require the following Lemma.

Lemma 14. There exists µ ∈ A such that

lim
K→∞

‖µ̂K − µ‖∞ = 0.

µ is symmetric and everywhere continuous on [0, 1].

Proof of Lemma 14. We first show that the values of µ̂K and µ̂K+1 evaluated on the grid corre-

sponding to K get closer and closer to each other as K grows large. To see this, take any K and

consider the grids K and K + 1. Note that K is a subgrid of K + 1, with the (i, j) node of K

corresponding to the (2i, 2j) node of K + 1. Also observe that, as K → ∞,

ǫK ≡ max
i,j<2K

∣

∣m̂K
i+1,j − m̂K

i,j

∣

∣ → 0

and

ǫ̂K ≡ max
i<2K

|l(1 − ihK) − l(1 − (i+ 1)hK)| → 0.

Rewriting the discrete steady state equation (25) for K and K+1 and grouping neighboring terms

in K + 1 together, we can show by induction on i and j that

∣

∣

∣
m̂K

ij − m̂K+1
2i,2j

∣

∣

∣
= O

(

max{ǫK , ǫ̂K , hK}
)

(details available on request). Since ǫK , ǫ̂K , and hK all vanish as K → ∞, this shows that

lim
K→∞

max
i,j≤2K

∣

∣

∣m̂K
ij − m̂K+1

2i,2j

∣

∣

∣ = 0.
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Next, since µ̂K is obtained by a linear spline from its values on the grid, we know that as K

becomes infinite and the grid points get close to each other, the difference between µ̂K on any point

and on its closest grid point becomes negligible:

lim
K→∞

max
(x,y)∈[0,1]2

|µ̂K(x, y) − µ̂K(ιK(x), ιK(y))| = 0.

Since the values of µ̂K and µ̂K+1 are close to each other on the grid, and values of these two

functions elsewhere are close to their grid values, the triangle inequality implies that the values of

the two functions are close to each other everywhere, i.e.,

lim
K→∞

max
(x,y)∈[0,1]2

|µ̂K(x, y) − µ̂K+1(x, y)| = 0.

That is, the sequence of µ̂K is Cauchy in the norm L∞. A is clearly complete with this norm, and

the result of Lemma 14 follows.

The key observation in the proof of Lemma 14 is that the solutions to (25) for successive values

of K become increasingly close to each other, so that {µ̂K} is a Cauchy sequence and therefore

converges in the complete space (A, L∞).

All that remains to be proven is that µ is a fixed point of T . The proof of this fact hinges on the

observation that T̂K is a quadrature approximation of T on the K-grid and thus converges to T on

A. Continuity properties of the functions involved, together with the facts that limK→∞ µ̂K = µ

and µ̂K is a fixed point of T̂K , yield the desired result:

Lemma 15. Tµ = µ.

Proof of Lemma 15. We begin by observing that both T and T̂K for any K are Lipschitz with

respect to the L∞ norm on A.

Next, consider any bounded and uniformly continuous function φ : [0, 1]2 → R+. For any fixed

(x, y), standard results on the convergence of quadrature estimates to the true values of integrals

yield
∣

∣

∣
Tφ(x, y) − T̂Kφ(x, y)

∣

∣

∣
→ 0 as K → ∞. Since φ is uniformly continuous and T and T̂K are

Lipschitz, hence also uniformly continuous, this also implies that
∥

∥

∥
Tφ− T̂Kφ

∥

∥

∥

∞
→ 0 as K → ∞.

Next, observe that µ is bounded (by 0 below and l̄2ρ/δ above) and continuous, hence also

uniformly continuous on [0, 1]. Thus
∥

∥

∥
Tµ− T̂Kµ

∥

∥

∥

∞
→ 0 as K → ∞.
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Furthermore,
∥

∥

∥T̂Kµ− µ̂K

∥

∥

∥

∞
=

∥

∥

∥T̂Kµ− T̂K µ̂K

∥

∥

∥

∞
, since µ̂K is a fixed point of T̂K . Since T̂K is

Lipschitz, there exists z such that the left hand side is no more than z ‖µ− µ̂K‖∞, which goes to

zero as K → ∞ by Lemma 14. Thus
∥

∥

∥
T̂Kµ− µ̂K

∥

∥

∥

∞
→ 0 as K → ∞.

Finally, ‖µ̂K − µ‖∞ → 0 as K → ∞ by Lemma 14.

By the triangle inequality, ‖Tµ− µ‖∞ ≤
∥

∥

∥
Tµ− T̂Kµ

∥

∥

∥

∞
+

∥

∥

∥
T̂Kµ− µ̂K

∥

∥

∥

∞
+ ‖µ̂K − µ‖∞ . Since

each of the terms on the right goes to zero as K goes to infinity, we conclude that the left-hand

side must be zero, i.e., Tµ = µ.

Value functions in conjectured equilibrium

The result above shows that the conjectured equilibrium strategies give rise to a well-defined,

symmetric match density function. Since there is symmetry in both strategies and match dis-

tributions, the value function equations (6) and (7) are the same for men and women. Thus, if

value functions are well defined, they are symmetric, and we can drop the M and W superscripts.

Rewriting and merging the value equations, we see that values are fully defined by solutions V (x | y)

to the following equation:

V (x | y) = ϕ1(x, y) +

∫ 1

0
V (x | y′)ϕ2(x, y, y

′) dy′ +

∫ 1

y

V (x | y′)ϕ3(x, y, y
′)) dy′,

where the ϕi are bounded and continuous functions that are differentiable in y and are derived

from the conjectured strategies via the steady state matching densities. Thus, for each x, V (x | y)

is given by a linear Volterra-Fredholm integral equation on a compact domain, where all kernels are

bounded, continuous, and differentiable in y. Standard results in the theory of integral equations

imply that a unique solution V (x | y) exists, and that it is bounded, continuous, and differentiable

with respect to y.

Proof of Theorem 2. We begin by looking at the discretized model for some K.

First, let us show that LK
i − M̂K

ii = O(δ2
−(K+1)

) for all i ≤ K. We do this by using induction

on n to prove the statement that LK
i − M̂K

ii = O(δ2
−(n+1)

) for all i ≤ n.

The basis is straightforward: M̂K
00 × δ = ρ(LK

0 − M̂K
00)

2. Since M̂K
00 is bounded above by LK

0 , we

see immediately that the LHS is O(δ). It follows that LK
0 − M̂K

00 = O(δ
1
2 ).
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Now suppose LK
i − M̂K

ii = O(δ2
−n

) for all i ≤ n − 1. Then, in particular, M̂K
ij = O(δ2

−n

) for

all i ≤ n− 1 and j 6= i. By symmetry of M̂ , M̂K
ji = O(δ2

−n

) for all i ≤ n− 1 and j 6= i. Then also
∑

i′<n M̂
K
i′n = O(δ2

−n

) and
∑

i′<n M̂
K
ni′ = O(δ2

−n

). Finally,

∑

j′<n



LK
j′ −

∑

i′≤n

M̂K
i′j′



 =
∑

j′<n

(

LK
j′ − M̂K

j′j′

)

+ O(δ2
−n

) = O(δ2
−n

)

by the induction assumption, and

LK
n −

∑

i′<n

M̂K
i′n − M̂K

nn = LK
n − M̂K

nn + O(δ2
−n

).

The SS equation thus implies that

ρ(LK
n − M̂K

nn + O(δ2
−n

))2 = O(δ2
−n

),

which in turn shows that LK
n − M̂K

nn = O(δ2
−(n+1)

), or lKn − m̂K
nnhK = O(δ2

−(n+1)
), which completes

the induction.

Now, pick any R, ǫ > 0. By the triangle inequality,

∥

∥

∥

∥

l(x) −

∫ x+R

x−R

µ(x, y) dy

∥

∥

∥

∥

∞

≤
∥

∥

∥
l(x) − lKιK(x)

∥

∥

∥

∞
+

∥

∥

∥

∥

∥

∥

lKιK(x) −
∑

1−ihK∈(x−R,x+R)

m̂K
ιK(x),ihK

∥

∥

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

∥

∥

∑

1−ihK∈(x−R,x+R)

m̂K
ιK(x),ihK −

∫ x+R

x−R

µ(x, y)

∥

∥

∥

∥

∥

∥

∞

. (26)

By our previous results on the convergence of the discrete to the continuous model, there exists

K0 > 0 such that the first and last terms on the right-hand side of (26) are less than ǫ/4 for

each K ≥ K0. Note also that 1 − ιK(x)hK → x as K → ∞, so that there exists K1 such that

1 − ιK(x)hK ∈ (x−R,x+R) for all K ≥ K1. Let K̄ = max{K0,K1}.

By the result we just proved inductively, lK̄
ι
K̄

(x) − mK̄
ι
K̄

(x),ι
K̄

(x)hK = O(δ2
−(K̄+1)

). Since 1 −

ιK̄(x)hK̄ ∈ (x − R,x + R), this implies that the second term on the right-hand side of (26) is

O(δ2
−(K̄+1)

). Since the first and the lest terms are each less than ǫ/4, this implies that there exists

δ0 > 0 such that the entire expression is less than ǫ for all δ < δ0. That is,

lim
δ→0+

∥

∥

∥

∥

l(x) −

∫ x+R

x−R

µ(x, y) dy

∥

∥

∥

∥

∞

= 0.
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Proof of Lemma 6. First observe that if f(x, 0) ≥ VM (x), then, by Lemma 5, AM (x) = [0, 1]. Now,

let f(x, 0) < V M (x).

Suppose f(x, y) < VM (x) for all y ∈ [0, 1). Then, by Lemma 5, AM (x) ⊂ {1}, so that, by

equation (16), an x-man’s value of being single would be zero. But then, since f is everywhere

positive, f(x, y) > 0 = VM (x) for all y ∈ [0, 1]. Then Lemma 5 implies that AM (x) = [0, 1], which

contradicts AM (x) ⊂ {1}. RAA.

Hence (∃y ∈ [0, 1))(f(x, y) ≥ VM (x)). Since f is continuous and f(x, 0) < VM (x), the Inter-

mediate Value Theorem implies that

(∃aM (x) ∈ (0, 1))(f(x, aM (x)) = VM (x)).

By Lemma 5, VM (x | aM (x)) = VM (x) and AM (x) = [aM (x), 1].

Proof of Lemma 9. Since V W (x | y) is increasing in y by Lemma 7, we only need to show that

V W (x | 0) ≥ V W (x). Suppose not, i.e., V W (x | 0) < V W (x). Then we have
∫ 1

0

(

V W (x | y′) − V W (x | 0), 0
)

uM (y′)αM (y′, x) dy′ ≥

∫ 1

0

(

V W (x | y′) − V W (x), 0
)

uM (y′)αM (y′, x) dy′ = V W (x),

where the equality follows by the definition of V W (x) (equation (12)).

Now, look at the right-hand side of the definition of V W (x | 0) (equation (13)). We have just

shown that the last term there is no less than V W (x). Furthermore, the first term, f(x, 0) is positive

by definition, and the second term, (δ/r)(V W (x)− V W (x | y)) is positive by assumption. But then

the entire right-hand side of (13) is greater than V W (x). Therefore, the same must be true of the

left-hand side: V W (x | 0) > V W (x). RAA.

Proof of Lemma 12. Take any x such that aM (x) > 0. By the Envelope Theorem and (21),

V M ′
(x) =

(∫

H1f +
∫

Hf1

) (

1 +
∫

H
)

−
(∫

Hf
) (∫

H1

)

(

1 +
∫

H
)2 ,

where all integrals are taken with respect to dy over the interval [aM (x), 1]; we have omitted the

arguments (x, y) of all functions for brevity.

By Lemmas 5 and 6, f(x, y) > VM (x) for all y > aM (x). Furthermore, by Lemma 11, H1(x, y) >

0 for y > aM (x) where the derivative exists. Therefore,
∫

H1f > VM (x)

∫

H1 =

∫

Hf

1 +
∫

H

∫

H1,
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so that VM ′
(x) > (

∫

Hf1)/(1 +
∫

H) and

VM ′
(x)

VM (x)
>

∫ 1
aM (x)H(x, y)f1(x, y) dy
∫ 1
aM (x)H(x, y)f(x, y) dy

≥
f1(x, a

M (x)

f(x, aM (x))
, (27)

where the weak inequality follows by weak log-supermodularity of f .

Finally, note that, by Lemmas 6 and 5, f(x, aM (x)) = VM (x) for all x where aM (x) > 0.

Differentiating this identity yields

f1(x, a
M (x)) + f2(x, a

M (x))aM ′
(x) = VM ′

(x),

so that
VM ′

(x)

VM (x)
=
f1(x, a

M (x)) + f2(x, a
M (x))aM ′

(x)

f(x, aM (x))
.

Substituting this identity into (27) yields (f2(x, a
M (x))/f(x, aM (x)))aM ′

(x) > 0. Since f2, f > 0

everywhere, we must conclude that aM ′
(x) > 0.
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