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Abstract

In a model with matching frictions, we provide conditions under which repurchase
agreements (or repos) co-exist with asset sales. In a repo, the seller agrees to repurchase
the asset at a later date at the agreed price. Absent bilateral trading frictions, repos
have no role despite uncertainty about future valuations. Introducing pairwise meetings,
we show that agents prefer to sell (or buy) assets whenever they face little uncertainty
regarding the future use of the asset. As agents become more uncertain of the value
of holding the asset, repos become more prevalent. We show that while the total
volume of repos is always increasing with the uncertainty, the total sales volume is
hump-shaped. In other words, pairwise matching alone is sufficient to explain why
repo markets exist and there is no need to introduce random matching, search frictions,
information asymmetries or other market frictions.

1. Introduction

Many financial securities, including sovereign and corporate bonds, are traded via repur-
chase agreements (a.k.a. repos) or on securities lending markets where the seller agrees to
repurchase the asset at a later date at a given price.1 Financial repos are usually associated
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1This is also true of many non-financial assets such as cars, houses or airplanes, in which case we talk of
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with collateralized cash loans driven by the financing needs of the borrower. Therefore they
appear at first sight only very remotely related – if at all – to the lending (or renting) of a
security. However, as we explain below, repos are a key instrument for market participants in
search of a specific security. But why do these markets exist? In other words, while repo and
securities lending markets coexist with the market for assets, why do market participants
engage in repos, i.e. rent the asset, rather than just buying the asset to resale it later if they
have the means? Also, what is the impact of the repo market on asset sales? Are asset sale
and repo transactions two substitute activities, and hence should we expect the repo and
sales volumes to co-move negatively for a given set of traders,?

In this paper, we show that utility maximizing agents do better by combining the repo
and asset markets, rather than using the asset market alone. The essential elements are
1) pairwise meeting and trading2 and 2) uncertain valuation of the asset. We assume that
agents receive some preference shocks on the current utility from holding the asset, which
may be more or less persistent. Once the shock hits, agents meet and trade in pairs. Then
they have to wait until the next trading session (say the next day) to change their position.
This is the extent to which trading frictions prevent the emergence of a Walrasian market
outcome. Absent these frictions, we show that agents trading in a Walrasian market would
consider repos and asset sales as one same instrument.

The explanation for this result is rather intuitive. Pairwise meeting implies that agents
have different valuations for the asset today or in the future. An efficient allocation will
equate both the current and the future marginal valuations of the asset across agents, which
is only possible if there are two instruments: The outright purchase of assets and repo. But
why is there a wedge between the present and the future valuations of the asset with pairwise
trade, while there is none in a Walrasian market? Suppose you can only trade in pair. Your
future valuation depends directly on your asset holdings because it will possibly affect who
you meet in the future, your reservation value for the trade, and so the outcome of your
match. In a Walrasian environment, the value of your asset is set by its price, and this price
is the same independently of who you are and who you meet, of your asset holdings, or the
asset holdings of others. Therefore, in pairwise meetings, your current and future valuations
will typically differ from the ones of your trading partner, and this is where combining repos
and outright purchase is useful. Repos allow agent to attain a level of consumption which
depends on their current valuation of the asset, independent of the uncertainty about their

2More generally, we assume that agents are unable to trade within a group with a aggregate valuation

identical to the Walrasian market valuation.
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future valuation.
Our results are not due to random matching. Indeed, with pairwise matching, the analysis

is complicated by the fact that agents’ asset holdings depend on their history of match. So
in an environment where agents can have two valuations for the asset, we consider random
as well as directed matching, in the sense of Corbae, Temzelides and Wright (2003). With
directed matching, we impose a matching rule that, in equilibrium, maximizes the possible
surplus from trade. Although agents have a good idea of whom they will meet in the future,
they still find repo useful above and beyond the mere acquisition of assets. Also under this
matching rule we show that an invariant distribution of assets has a two point support: There
is one asset holding for each valuation. The difference in these two points is increasing in
the persistence of valuation shocks: As the probability to switch valuation decreases, agents’
asset holdings diverge. Inversely, as switching becomes more likely, agents tend to hold the
same amount of the asset.

Our results are not due to search frictions either. Contrary to other papers in the related
literature, we do not introduce search frictions: Agents always meet somebody they can trade
with. Rather, the friction in this paper is the fact that matching and trading is bilateral.
To convince the reader of this, we compute the equilibrium with increased matching speed,
as matching speed may be seen as similar to a search friction. We show that agents repo
less and less as the time to the next match decreases. However, as we drive the time to
the next match to zero, we find that agents still use repos. The reason is that the outcome
of the match is still depending on the asset holdings of the agents in the match, hence the
wedge between present and future valuation is still there, which gives rise to the simultaneous
usefulness of asset sale and repo.

Interestingly, the total volume of asset sales is directly linked with the range of the
support: As the difference in asset holdings increases, the sale of asset in a match is also in-
creasing. This is intuitive: With directed matching, agents who just switched their valuation
from high to low are matched with those agents who switched valuation from low to high.
Therefore, as the difference in their asset holdings grows, also does the gains from trade, so
that they trade a larger amount of the asset. However, since types are more persistent, fewer
agents switch types so that the total volume of sales can either increase or decrease. We show
that the effect of type persistence on sales volume is hump-shaped. Similarly, as the future
valuation becomes uncertain, i.e. types are not persistent, agents are unwilling to change
their position through asset sales, but they are willing to engage in repos. Therefore, the
total volume of repo is decreasing with persistence and it is higher than total sales volume
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when the uncertainty is high (or persistence is low).
Related Literature
We first describe the market for securities lending. There are two ways traders can acquire

a security for a short term use: They can either engage in securities lending or conduct
“specials” repo. “Specials” are described in detail in Duffie (1996). Securities lending and
“specials” have different legal and fiscal charaterisctics, so that a trader may prefer one over
the other, but their economic function is the same: They allow a trader to acquire a specific
security temporarily.3 The reasons why a trader needs to borrow a particular security vary,
but generally the securities lent are needed to support a trading strategy or a settlement
obligation. These motivations are further analyzed in CACEIS (2010), Duffie (1996) or
Vayanos and Weill (2008), but for our purpose, it suffices to say that the security provides
a service to the borrower that he values above and beyond its mere cash flows.4

To induce the lender of a security to trade, he usually obtains a lower repo rate than
the prevailing money market rates, and invests the funds in money markets for a profit.
The rights of the holder of a security acquired through a repo or securities lending are
very similar: In a repo transaction, the buyer owns the collateral asset, he can re-use them
during the term of the repo by selling the asset outright, “repoing” them or pledging them
to a third party.5 In a securities-lending transaction, the borrower gains the ownership
title to the securities lent while the lender gains full ownership of the title to the securities
(or cash) pledged as collateral.6 Finally, both the repo and the securities lending markets
involve trades negotiated bilaterally out of electronic trading platforms and their clearing
is executed without the help of a central counterparty.7 Therefore, repo markets for the
purpose of getting access to a securities and the securities lending markets are very similar,
and they look a lot like a market where borrowers are just renting the asset for a short period
of time. From now on, we will refer to the securities lending market or the repo market as

3See CACEIS (2010) for a description of the different characteristics of repos and securities lending.
4Borrower may need to cover a failed transaction in the course of their trading activity, or a short position,

or they may need to deliver securities they have not yet purchased against the exercize of a derivatives

contract, or they want to raise specific collateral, perhaps for another securities lending transaction.
5See Monnet (2011) for the economics of rehypothecation.
6As explained in CACEIS (2010), the borrower can re-sell the securities borrowed, voting rights are

transferred along with the title. Althought the borrower, as owner of the securities, is entitled to the possible

economic benefits associated with ownership such as dividends and coupons, he is under the contractual

oboigations to make equivalent payments in all distributions paid during the terms of the trade to the

lender.
7See Koeppl and Monnet (2010), Carapella and Monnet (2011), Carapella and Mills (2011) or Acharya

and Bisin (2010) for some economic analysis of the role of central counterparties.
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simply the repo markets.
The importance of the securities lending market is highlighted in the empirical work of

Fleming and Garbade (2007), who study the behavior of dealers at the Fed’s securities lending
facility. This facility was initiated by the Fed to solve settlement fails (when dealers fail to
deliver promised securities). As described in the paper, the Fed auctions securities at noon,
after the period of greatest liquidity in the over-the-counter securities lending market, to
give dealers access to an additional source of securities. Dealers can bid to borrow particular
Treasury securities, while providing other Treasuries as collateral. Also, Fleming, Hrung
and Keane (2010) study the effects of the Term Securities Lending Facility. This facility
was instituted by the Fed in March 2008 to alleviate the financing strains of some securities
dealers. By enabling dealers to swap less liquid assets for Treasury securities, the Fed allowed
dealers to conduct their business at a time when some securities lost their liquidity.

There are few papers explaining the usefulness of repo markets. As Koeppl and Chiu
(2011) show, private information on the quality of assets can be a factor. The very fact that
the seller is willing to repurchase the asset is a guarantee that the asset is of good quality.
However, this is hard to apply to Treasury securities or in a dynamic setting where agents
learn the quality of the asset. In an envionment with no commitment, Mills and Reed (2008)
have argued that repos are useful in order to cover counterparty risk. However the difference
between repos and collateralized loans is then tenuous and it is not clear why agents do
not sell the collateral to obtain fundings.8 Finally, Duffie (1996) argue that selling an asset
involves different costs than the one when conducting repos. In some sense, we would like
to have a deeper understanding of the origin of these transaction costs, without necessarily
resorting to different fiscal treatments or the inability of some agents to own some class
of assets (such as market mutual funds), although we acknolewdge the importance of such
frictions. In this paper, we show that agents do better by using repos and outright purchase,
rather than one of the two alone, even when there is full commitment, the quality of the
asset is known, there is no risk exposure, and no differential fiscal treatments across types
of trade.

Our paper also builds on several strands of the literature. First and foremost, it is related
to the recent literature on over the counter market initiated by Duffie et. al. (2005) and gen-
eralized by Lagos and Rocheteau (2009). In this literature, traders face search frictions that
they circumvent by contacting intermediaries (dealers). Dealers have access to a centralized
interdealers market where they can trade their asset holdings at the market price. In our

8See Lacker (2001) and Kehoe and Levine (2006) for models of collateralized debt.
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paper, we abscond from dealers and we only consider the problem of traders facing search
frictions, but as in Lagos and Rocheteau, we allow for arbitrary asset holdings.9 Another
important difference is that we do not introduce matching frictions: Our agents will meet for
sure, but they will meet in pairs. This allows us to characterize an equilibrium distribution
of asset holdings, although holdings can be arbitrary. As in Lagos and Rocheteau (2009),
we obtain results on the distribution of assets. They find that more severe search frictions
are associated with less dispersion in the equilibrium asset distribution. We find that, as it
becomes more likely that traders will have to readjust their portfolios (i.e. increased uncer-
tainty about future valuation) the distribution of asset holdings also becomes less dispersed.
Duffie, et. al. (2002) extends Duffie (1996) to study securities lending rates in a dynamic
context, where traders have different opinions regarding the underlying value of the secu-
rity. In their model, borrowing takes place as traders can take short position, i.e. traders
who believe that the security’s price will decline in the future will borrow and sell it today
with the plan of purchasing it cheaper later to reimburse the loan. The option to short a
security will naturally bring the price of this security higher, but more surprisingly, higher
than the value of the most optimistic trader. This effect however, as well as lending rates
are decreasing through time. In our paper, we do not study the dynamics of the lending
rate, but rather focus on the reasons why lending could be optimal when short selling is not
allowed. In our model, it is the current and future divergence in benefits from holding the
security that explains the usefulness of securities lending. In equilibrium, securities lending
would be redundant if only one of these margins was different.

Our paper is also related to the literature on the liquidity of capital markets in general.
Lagos and Rocheteau (2008) study an economy where agents can pay with money (an intrin-
sically useless object) or capital that can be used in production. To give a role for cash, they
assume that agents are anonymous. But this prevents lending (or renting) from taking place,
as agents do not know who they would lend capital to. Independently, Ferraris and Watan-
abe (2008) consider a very similar framework, but assume that agents can pledge capital as
collateral instead of paying with it. Both sets of authors find a very related result: When
there is a lack of liquidity or when agents are credit constraint, capital carries a liquidity
premium and agents tend to accumulate too much capital relative to its first best level. This
effect is absent from our framework because agents can always pay and there is no liquidity
problem.

9We suspect that if traders have to trade through dealers with access to an interdealer market, then

traders will use lending to extract some of the dealer’s surplus.
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Our paper also relates to the literature on leasing capital goods and more precisely to
the recent paper by Gavazza (2011). There the author studies the leasing and secondary
markets for aircrafts. He shows (and empirically confirms) that operators that face more
volatile productivity shocks are more likely to lease aircrafts than those with less volatile
shocks. Similarly, we find that the repo volume is a decreasing function of the degree of shock
persistence. However, our two models differ substantially: Gavazza (2011) uses a model that
is closely linked to the airline industry, where frictions are monitoring and transaction costs.
In contrast, our only friction is that agents meet in pair. Our model is also related to the
literature on leasing by financially constrained firms (for instance Eisfeldt and Rampini,
2009). However, we want to stress that in our context, agents are not financially constraint
and in some cases they still prefer to rent than to buy.

The paper proceeds as follows. In Section 2 we describe the environment. In Section 3 we
characterize Walrasian allocations as the benchmark. In section 4, we provide two examples
to illustrate the importance of pairwise matching and uncertainty about future valuation for
the coexistence of asset sale and repo. In section 5, we describe general allocations attainable
under pairwise meeting and bargaining. In section 6, we solve for the equilibrium when there
is random matching, in the extreme cases when there is full persistence of the preference
shocks and no persistence at all. Section 7 analyzes the case with directed matching and
solve for the equilibrium distribution and volumes in general. Section 8 concludes.

2. The Model

The model is based on Koeppl, Monnet, and Temzelides (2012) and Lagos and Rocheteau
(2009). Time is discrete and the horizon is infinite. Each period has two sub-periods: A
trading stage, followed by a settlement stage.10 There is a continuum of agents. In each
period, there is a measure 1/2 of two types of agents, type h and type �. The type of an
agent switches randomly and with probability 1−π ∈ [1/2, 1] at the start of the transaction
stage. The law of large numbers then guarantees that there is the same measure of each
type in each period. Agents are anonymous in the trading stage and their type is private
information.

There is a long-lived asset in fixed supply A. As in Lagos and Rocheteau (2009), we
associate this asset to a Lucas-tree: One unit of the asset yields one unit of some fruit in the
settlement stage. Agents of type i ∈ {h, �} derive utility ui(a) from holding a units of the

10This two stages could be merged in one, but it helps the exposition to consider two separate stages.
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asset.11 For simplicity, we impose the following condition,

Assumption 1. u
�
h(a) ≥ u

�
�(a) for all a.

Therefore, for a given level of asset holding, the agent with the high type has a higher
marginal utility than the agent with the low type. To be concise, we will refer to agents of
type h as agents h and to agents of type � as agents �.

In the trading stage, agents can agree to trade the asset, in which case the seller transfers
the assets and the fruits in the settlement stage. Or agents can only agree to trade the
fruit of the asset: Then the seller only transfers the fruits that it yields, while he maintains
ownership over the asset. We interpret this second trade as a repo trade, as the buyer
surrenders the asset back to the seller once he enjoyed the benefits of holding it this period
(that is consuming the fruits).

While the trading stage can be seen as a market, there is no market in the settlement
stage. There, agents are endowed with a production technology for the numeraire good. It
costs them one unit of disutility to produce one unit of this good so that the numeraire good
is akin to transferable utility. Agents also consume the numeraire good and derive one unit
of utility for each unit they consume. If utility is transferable, the settlement stage does
not generate any net utility gains. The numeraire good will be the settlement asset. In the
settlement stage, agents settle the terms of the trade that were agreed upon in the previous
trading stage.

3. Benchmark Walrasian Market

We first consider the case where the trading stage is a Walrasian market. A repo trades at
price p

r while the asset sales at price p. We consider only stationary equilibrium so that
these prices are the same in each period. An agent i = h, � with asset holdings a has a value

11 There are several interpretations for this formulation: Lagos and Rocheteau argue that this is the utility

derived from the tree’s fruit. Duffie, Garleanu and Pedersen (2009) explain that these are preferences from

liquidity, hedging or other benefits that holding the assets may yield.
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Wi(a) of holding the asset, where Wi(a) is defined recursively as

Wi(a) = max
ai,qri

ui(ci)− d+ βEk|iWk(ai)

s.t. ci = ai + q
r
i

d+ pa = pai + p
r
q
r
i

where the agent repos q
r
i and purchases an amount ai of the asset and ci is current con-

sumption of the security’s service. Naturally the quantity of repos q
r
i does not enter in the

continuation valuation but only in the momentary utility ui(.). The first order and envelope
conditions yield

u
�
i(ci) + βEk|iW

�
k(ai) = p

u
�
i(ci) = p

r

W
�
i (a) = p

Notice that all agents value an additional unit of the asset in the same way when they
enter the Walrasian market, independent of their type or of their asset holdings. There are
two reasons for this: First, the utility is linear in the numeraire good such that there is no
wealth effect in this model and, second, agents are playing against the whole market. In
the next section, we will modify the latter. For the time being, the equilibrium prices and
quantities satisfy,

(1− β)p = p
r

u
�
h(ch) = u

�
�(c�) = p

r

ch + c� = 2A

The first equation is a no-arbirtrage condition: Agents have to be indifferent between con-
ducting a repo, in which case they have to pay the price p

r in terms of the numeraire good,
and buying the asset at price p and reselling it in the next period at price βp. These two
schemes are payoff equivalent and so should be their cost. As a consequence, anything goes
for repos, and in particular q

r
h = q

r
� = 0. In other words, in a Walrasian market, there is no

difference between conducting a repos or buying and selling the asset: Repos and outright
purchases are perfect substitute. Therefore, absent any additional frictions, the Walrasian
benchmark is not helpful to study the structure of the repo and other rental markets. In
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the following section, we depart from the Walrasian benchmark by assuming that agents can
only meet in pair in which case they bargain over the allocation.

4. An Example

In this example, we want to illustrate how future pairwise matching can explain a mix
repos/sales today, even though 1) agents trade on a Walrasian market today and 2) agents
know who they will meet tomorrow.12 Consider a two period economy, where agents are
endowed with asset holding A in the first period. Also in the first period, agents have access
to a Walrasian market where they can both sell and/or repo the asset. Agent i = h, � derives
utility from consuming fruits in both periods according to the utility

Ui(c1, c2) = ui(c1) +
β

1− β
ui(c2),

where ui(c) satisfies Assumption 1. The utility in period 2 is scaled by 1/(1− β) as we want
to compare this environment with our Walrasian benchmark. Since the world ends at t = 2,
there is no difference between repo and sales then, as only the consumption of the fruits
matters. However, we will show that pairwise matching in the future can explain the mix
repo/sales today.

Let us first consider the problem of a type i agent with asset holding A in the first period
with access to the asset market at price p

s and repo market at price p
r. Moreover, let’s

assume the persistence of type to be π ∈ [1/2, 1]. Then denoting the expected value for
agent i of holding asset a at date 2 by Vi(ai), the problem of an agent i is

maxqs,qr ui (ci)− d+
β

1− β
Vi(ai)

s.t. p
r
q
r + p

s
q
s ≤ d

ci = a+ q
s + q

r

ai = a+ q
s

Note that qs, qr and d can all get positive or negative values. Using the first order conditions
12In the Appendix, we consider another example to illustrate how pairwise matching today (rather than

tomorrow) can explain the usefulness of repos.
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for the two types we obtain:
p
r = u

�
�(c

∗
�) = u

�
h(c

∗
h) (1)

p
r = p

s − β

1− β
V

�
i (ai) (2)

If Vi is concave, there is a unique combination of asset holdings for both types a
∗
h and a

∗
�

that can satisfy (1) and (2), with a
∗
h + a

∗
� = 2A. Equation (2) guarantees that agent i is

indifferent between repo and sales when holding a
∗
i .

In period 2, we assume that an agent h is matched with an agent � who just switched.
Given the distribution of asset holdings has a two-point support at the end of period 1, this
matching rule implies that a type i agent with asset holding a, will be matched with a type
j �= i agent with asset holding 2A− a. Therefore, in equilibrium, agents know exactly who
they will meet.

First, we derive the second period value of asset holding a for agent i, denoted by vi(a),
so that Vi(a) = πvi(a) + (1− π)vj(a), where j �= i. Naturally vi(a) = ui(ci)− d for i = h, �,
where ci ad d are the solutions to the symmetric bargaining problem at t = 2 between an
agent h with asset holdings ah and an agent � with asset holding a�:

max [uh(ch)− d− uh(ah)]
1/2 [u�(c�) + d− u�(a�)]

1/2

subject to ch + c� = ah + a� = 2A. The first order conditions give us u
�
h(c

∗
h) = u

�
�(c

∗
�) where

c
∗
h + c

∗
� = 2A, and d satisfies

d =
1

2
[uh(c

∗
h)− uh(ah)] +

1

2
[u�(c

∗
�)− u�(a�)] .

Using these, we obtain the usual expression for vi(a) for i = h, �, as the value of the current
asset holding plus a share of the trade surplus,

vh(a) = uh(a) +
1

2
S(a, a�) (3)

v�(a) = u�(a) +
1

2
S(ah, a) (4)

where S(ah, a�) = uh(c∗h) + u�(c∗�)− uh(ah)− u�(a�) is the match surplus from trade. Notice
that, contrary to the case with a Walrasian market, the payoff is not linear in asset holdings,
but naturally depends on both agents’ asset holdings. In particular, a quick inspection of
(3) and (4) and the bargaining problem reveals that the marginal payoffs at t = 2 are pinned
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down by how the asset allocation affects the agents’ outside options. Clearly, the marginal
payoffs are sensitive to asset holdings since V

��
i (a) < 0, which confirms our initial guess

that (2) was giving a two-point support distribution for the asset holding at the end of the
Walrasian market.

Now (2) implies that V �
h(a

∗
h) = V

�
� (a

∗
�) so that agents h and � equate the period 2-marginal

value of asset holdings. However, using (4) it is easy to see that V
�
i (a) is a scaled weighted

average of the marginal utility of each agent’s type, or13

V
�
i (a) =

1

2
u
�
i(c

∗
i ) +

1

2

�
πu

�
i(a) + (1− π)u�

j(a)
�

Since u
�
h(c

∗
h) = u

�
�(c

∗
�) ≡ u

�∗, if π < 1 then (1) implies that

1

2
[u�

h(a
∗
h) + u

�∗] > V
�
h(a

∗
h) = V

�
� (a

∗
�) >

1

2
[u�

�(a
∗
�) + u

�∗]

so that at (a∗h, a
∗
�) there is a wedge between the intertemporal marginal utility and the

intratemporal marginal utility. Hence u
�
h(a

∗
h) �= u

�
�(a

∗
�) so that a

∗
i �= c

∗
i for i = h, � and as a

consequence both the repo market and the sales market are active at t = 1. If π = 1, there
is no wedge in the sense that V

�
i (c

∗
i ) = u

�
i(c

∗
i ) and in this case a

∗
i = c

∗
i : the repo market is

inactive.
This example shows the importance for the argument of an agent’s outside option in

bargaining: It is this outside option that determines the marginal value of holding some
asset. Holding too little asset would give a bad outside option and, as V

��
i (a) < 0, holding

too much may cost too much relative to the additional benefits. This explains why agents
do not want to take extreme positions, where they would repo or sell all their assets. Also,
this example illustrates that it is pairwise trade that matters for the result: Indeed, agents

13For example,

V �
h(a) = π

�
1

2
u�
h(a) +

1

2
[u�

h(.)
∂c∗h
∂a

+ u�
�(.)

∂c∗�
∂a

]

�
+ (1− π)v��(a)

and since ∂c∗h/∂a+∂c∗�/∂a = 1 we can use the first order condition of the bargaining problem u�
h(c

∗
h) = u�

�(c
∗
� )

to obtain

V �
h(a) = π

�
1

2
u�
h(a) +

1

2
u�
�(c

∗
� )

�
+ (1− π)

�
1

2
u�
�(a) +

1

2
u�
h(c

∗
h)

�

=
1

2
u�(c∗h) +

1

2

�
πu�

i(a) + (1− π)u�
j(a)

�
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are not randomly matched in this example. Below, we will show that this result holds true
in the more general set-up.

5. Pairwise Meeting and Bargaining

We now assume that each agent h is matched with exactly one agent � in the trading
stage. We describe several matching technologies later. We consider allocations that are
the solution to a bargaining game between both agents. We will consider a generic meeting
between an agent h holding a generic amount of the asset ah and an agent � holding a
generic amount of the asset a�. An allocation is a triple {qs(ah, a�), qr(ah, a�), d(ah, a�)}
where q

s denotes the quantity of the asset that the agent h buys from the agent � (sells if
negative), qr is the quantity of the asset that the agent h buys or repo from the agent �

(sells or reverse repo if negative) and d is the numeraire transfer that the agent h makes in
the settlement stage to the agent � (receives if negative). We only focus on stationary and
symmetric allocations. An allocation is feasible if

q
s(ah, a�) ∈ [−ah, a�]

q
r(ah, a�) + q

s(ah, a�) ∈ [−ah, a�]

Notice that we do not allow short-selling. We will denote by (qs
,qr

,d) the feasible allocations
for all possible matches such that (qs

,qr
,d) defines invariant distributions of asset holdings

for agents h and �. We denote these distributions by µi(a) for i ∈ {h, �}, where we have
dropped the reference to the allocation for convenience. If they exist, a property of any
invariant distribution is that

1

2

ˆ
adµh(a) +

1

2

ˆ
adµ�(a) = A

Then we can define recursively the expected value for agent i ∈ {h, �} of holding asset a,
before entering the trading stage, Vi(a), as

Vh(a) = π

ˆ
[uh(ch(a, a�))− d(a, a�) + βVh(a+ q

s(a, a�))]dµ�(a�) (5)

+ (1− π)

ˆ
[u�(c�(ah, a)) + d(ah, a) + βV�(a− q

s(ah, a))]dµh(ah)

13



where ch(a, a�) = a + q
s(a, a�) + q

r(a, a�) is the consumption of the security’s service of a
type h with a units of the security matched with a type � holding a� units of the security.
Similarly, c�(ah, a) = a− q

s(ah, a)− q
r(ah, a) is the consumption of the security’s service of

a type � with a units of the security matched with a type h holding ah units of the security.
With probability π, an agent h remains an agent h. Then he meets an agent � with asset a�
according to the distribution µ�. Since he remains an agent h, he enjoys instant utility uh(.)

from his asset holdings a+ q
s(a, a�) + q

r(a, a�) at the end of the settlement stage. However,
he only carries a+ q

s(a, a�) over to the next period since repos do not involve the transfer of
the asset but only of fruits. The agent values this portfolio according to βVh(a + q

s(a, a�)).
With probability 1 − π the agent h becomes an agent �. In this case, he meets an agent h

according to the distribution µh and he enjoys instant utility u�(.) from his asset holdings
a − q

s(ah, a) − q
r(ah, a). He values his remaining portfolio according to βV�(a − q

s(ah, a)).
Similarly for agents �,

V�(a) = π

ˆ
[u�(c�(ah, a)) + d(ah, a) + βV�(a− q

s(ah, a))]dµh(ah) (6)

+ (1− π)

ˆ
[uh(ch(a, a�)− d(a, a�) + βVh(a+ q

s(a, a�))]dµ�(a�)

We assume that agents cannot commit to participate ex-ante and an allocation (qs
,qr

,d) is
individually rational if all agents prefer the allocation to being in autarky this period. That
is, for any porfolio a, an agent h matched with an agent � with a portfolio a� prefers the
allocation than not trading today, i.e.

uh(ch(a, a�))− d(a, a�) + βVh(a+ q
s(a, a�)) ≥ uh(a) + βVh(a),

and similarly for an agent � matched with an agent h with portfolio ah,

u�(c�(ah, a)) + d(ah, a) + βV�(a− q
s(ah, a)) ≥ u�(a) + βV�(a).

From now on, for concision and whenever there is no risk of confusion, we will drop references
to the agents’ portfolios in an allocation.

With general Nash bargaining where the agent h has bargaining power θ ∈ [0, 1], the
allocation of an agent h with portfolio ah matched with an agent � with portfolio a� solves

14



the following problem:

max
qs,qr,d

[uh(ch)− d+ βVh(ah + q
s)− uh(ah)− βVh(ah)]

θ

×[u�(c�) + d+ βV�(a� − q
s)− u�(a�)− βV�(a�)]

1−θ

subject to the allocation being feasible. The first order conditions for an interior solution14

are

V
�
h(ah + q

s) = V
�
� (a� − q

s) (7)

u
�
h(ch) = u

�
�(c�) (8)

d(ah, a�) = (1− θ)[uh(ch)− uh(ah) + βVh(ah + q
s)− βVh(ah)] (9)

−θ[u�(c�)− u�(a�) + βV�(a� − q
s)− βV�(a�)]

Equations (7) and (8) characterize the allocations q
s(ah, a�) and q

r(ah, a�) = c� − [a� +

q
s(ah, a�)]. Inspecting (7) and (8) agents use repos whenever ch �= ah + q

s and c� �= a� − q
s.

Also notice that (8) together with ch + c� = ah + a� uniquely defines ch and c�. The transfer
d(ah, a�) redistributes the surplus from the trade according to the bargaining weights. Finally,
notice that the allocation depends on the distributions of asset holdings µi for i = h, � as
they affect the value functions Vi. Therefore, to fully characterize the equilibrium with an
invariant distribution, we need to specify how agents are matched. In the next section, we
assume that agents are randomly matched. Then we assume that agents are matched in a
more sophisticated way.

6. Random Matching: Special Cases

Here, we study two extreme cases with either π = 1/2 or π = 1 and an agent h is
randomly matched with an agent �. In the case with π = 1/2, preference shocks have no
persistence and current preferences do not give any information on future preferences. In
the case with π = 1 preference shocks are fully persistent as they are fixed forever.

With no persistence and random matching, we obtain the following result.

Proposition 2. With random matching and π = 1/2, there is a unique invariant equilibrium
characterized by a distribution of asset holdings for each type that are degenerate at some
level ā = A with q

s(ā, ā) = 0, and q
r(ā, ā) > 0.

14In the case where qs = a�, (7) becomes V �
h(ah + qs) > V �

� (a� − qs), while in the case where qs + qr = a�,
(8) becomes u�

h(ah + a�) ≥ u�
�(0).
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In the case without persistence, (5) and (6) imply that Vh(a) = V�(a) for all a, such
that agents h and � enjoy the same value of holding the asset. In this case, (7) implies that
ah + q

s(ah, a�) = a� − q
s(ah, a�) with q

s(ah, a�) > 0 if and only if a� > ah and q
s(ah, a�) < 0

otherwise. That is, agents leave the match holding the same quantity of asset. Hence, the
unique invariant equilibrium is one where the distribution of asset holding is degenerate at
ā = A and q

s(ā, ā) = 0. This is very intuitive: Since all agents give the same value to
future returns, they extinguish all surplus from trading the asset by averaging their asset
holding (i.e. once an agent holding ah trade with an agent hoding a�, they both end up with
(ah + a�)/2) and in equilibrium they hold the same amount of the asset. Then (8) together
with Assumption 1 imply that qr(ā, ā) > 0: While agents value future asset returns the same
way, they differ in their valuation of current return. Therefore, there is a benefit from repos,
where only the current return is traded.

With full persistence however, there is an equilibrium with neither asset sales nor repo
in equilibrium.

Proposition 3. With random matching and π = 1, there is an equilibrium with a degenerate
distribution of asset holdings for each type at some level āh and ā� with āh > ā� where
q
s(āh, ā�) = 0 and q

r(āh, ā�) = 0.

We will first verify that the proposed allocation is an equilibrium. Since q
s(āh, ā�) = 0

and q
r(āh, ā�) = 0, equation (9) implies that d(āh, ā�) = 0. Using (5) and (6), we then have

for i = h, �,

Vi(āi) =
ui(āi)

1− β
(10)

and (7) and (8) imply that āh and ā� are uniquely given by

u
�
h(āh) = u

�
�(ā�)

with āh = 2A − ā�. This verifies that there is no asset sales or repos in equilibrium. Also,
combining the last equation with Assumption 1, we can verify that āh > ā�. This equilibrium
is unique whenever endowments are symmetric across all agents (and no constraint binds –
which may happen if some agents � are endowed with too many securities in the first place) so
that all agents � hold the same amount a� and all agents h holds ah. To see this notice that if
an agent h endowed with ah meets an agent � endowed with a�, then the bargaining solution
imposes that they trade so that (8) holds. But the unique solution is ah + q

s(ah, a�) = āh
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and a� − q
s(ah, a�) = ā�. Since ah + a� = 2A, such a q

s exists and takes the agents directly
to the equilibrium distribution of asset holdings.

For general levels of persistence π ∈ (0, 1) and random matching, we are unable to
determine analytically the total volume of sales and repos as we cannot solve analytically
for the invariant equilibrium distribution of asset holdings.15 We suspect that as an agent �
is better endowed, he will sell more to agent h, and as agent h is less endowed, he will buy
more from agent �. This would hint to more trade as agents valuations differ and we would
expect that the distributions of asset holdings become more spiked around their respective
mean āh and ā� as π increases, where the means are diverging as π increases. However, since
agents can switch randomly from one type to the other, it is difficult to fully characterize
the equilibrium without resorting to numerical simulations. In the next section we impose
directed search and we basically confirm this intuition.

7. Directed search

We now describe a more sophisticated matching technology than just matching traders h

and � at random (notice that our matching technology was already fairly sophisticated as
we could match agents h with agents �). Following Corbae, Temzelides and Wright (2003),
we use directed search: The matching function now specifies that agents who switched types
are matched together. Therefore a “new” agents h will be matched with a “new” agent �.16

Below we verify that this matching function is an equilibrium matching rule (where such a
term is precisely defined). We devote the rest of this section to the following result.

Proposition 4. With directed search, there is an equilibrium characterized by a degenerate
distribution of asset holdings for each type at some level āi with i = h, � with q

s(āh, ā�) = 0,
q
s(ā�, āh) = āh − ā� and q

r(āh, ā�) = q
r(ā�, āh) = q

r where q
r solves u

�
h(āh + q

r) ≥ u
�
�(ā� − q

r)

(with equality if qr < ā�).

In words, each type of agents is holding a specific portfolio, either āh or ā� for type h and
� respectively. Agents who just switched type adjust their asset holdings so that they hold

15This is a usual problem in models with pairwise trade and arbitrary asset holdings. Agents in Kiyotaki

and Wright (1989) or Duffie et. al. (2005) trade an indivisible asset with a unit upper bound. Lagos and

Wright (2005) introduces a Walrasian market with quasi-linear preferences so that agents can level their

asset holdings, thus giving a degenerate distribution of assets. In a Lagos-Wright environment, there is no

role for repos.
16It turns out that in equilibrium this matching function will maximize the gains from trade in each match,

so that if agents could choose, they would actually want to be matched in this way, as we show below.
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their type’s portfolio. Then they conduct repo as if they never switched. Agents who did
not switch type just engage in repo. Loosely speaking, there is a sense in which agents first
access the asset market and then engage in repo. To verify that this is an equilibrium we
need to verify that an agent would not prefer to be matched with a different agent than the
one he is assigned to, or that no agent would prefer to interact with him to trading with his
assigned agent. In the terminology of Corbae, Temzelides and Wright (2003), the proposed
matching rule is an equilibrium matching if no coalition consisting of 1 or 2 agents can do
better (in the sense that the discounted lifetime utility of all agents in the coalition increases)
by deviating in the following sense: An individual can deviate by matching with himself (i.e.
being in autarky this period) rather than as prescribed by the matching rule; and a pair can
deviate by matching with each other rather than as prescribed by the matching rule.

It should be clear that the bargaining solution is always better than autarky (although
not in a strict sense). Therefore we only need to check deviations by a coalition of 2 agents.
An agent � with āh could decide to form a coalition with an agent � with ā� or an agent
h with āh. It is a property of the bargaining solution that an agent � will obtain a lower
payoff being matched with an agent h with a higher amount of asset (he can extract less
since the marginal utility of obtaining more of the asset is lower for this agent). Hence, an
agent � with āh prefers to be matched with an agent h with ā�. Also, it is a property of the
bargaining solution that, given he has to meet an agent holding a, an � agents prefer to be
matched with the agent with the highest marginal utility (so agent h).17 We now turn to
agents h. An agent h with ā� could decide to form a coalition with an agent h with āh or an
agent � with ā�. As above, however, it is a property of the bargaining solution that an agent
h payoff matched with an agent � will get a higher utility whenever the agent � is holding
more asset. Hence, the agent h will not want to be matched with an agent � holding ā�.
Also, an agent h with āh prefers to be matched with the agent holding ā� with the lowest
marginal utility, i.e. with an � agent. Therefore there is no 2-agents coalition where both
agents would do better than under the prescribed matching technology, which shows that,
combined with the distribution over {āh, ā�}, it is an equilibrium.

We now derive the properties of this equilibrium. We first consider the terms of trade for
a repo and the sale of the asset. The “price” of the repo trade between an agent h holding āh

and an agent � holding ā� is d(āh, ā�) since in this trade agents h and � keep the same asset
holding. Now, the “price” of the repo combined with the asset sale transaction is d(ā�, āh) as

17It is easy to show this with uh(a) = αu�(a) with α > 1: Compute the bargaining solution and show that

∂[u�(a� − qr − qs) + βV (a− qs) + d]/∂α > 0.
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the agent h and � now change their asset position, but also trade fruits. In the Appendix,
we show that

d(āh, ā�) = (1− θ)[uh(c̄h)− uh(āh)] + θ[u�(ā�)− u�(c̄�)]

d(ā�, āh) = d(āh, ā�) + ū+ β(1− θ)[Vh(āh)− Vh(ā�)] + βθ[V�(āh)− V�(ā�)]

where
ū = (1− θ)[uh(āh)− uh(ā�)] + θ[u�(āh)− u�(ā�)],

so that, as expected, d(ā�, āh) > d(āh, ā�), and the price of the repo combined with the asset
sale is composed of the repo price, plus the weighted present and discounted lifetime gains
of switching position for agents h and �.

The directed matching technology specifies that an agent h with ā� meets an agent � with
āh and an agent h with āh meets an agent � with ā�. Given q

s(āh, ā�) = 0, qs(ā�, āh) = āh− ā�

and q
r(āh, ā�) = q

r(ā�, āh) = q
r, we obtain the following value functions,

Vh(āh) = π[uh(c̄h)− d(āh, ā�) + βVh(āh)] + (1− π)[u�(c̄�) + d(ā�, āh) + βV�(ā�)]

V�(ā�) = π[u�(c̄�) + d(āh, ā�) + βV�(ā�)] + (1− π)[uh(c̄h)− d(ā�, āh) + βVh(āh)]

Notice that we need to specify the value of the outside option in order to solve for the
bargaining solution in equilibrium, i.e. Vh(ā�) and V�(āh). To simplify the analysis we assume
that the matching technology then specifies that an agent h holding ā� (respectively āh) who
did not trade in the previous period is matched with an agent � holding āh (respectively ā�),
and reversely.18 Therefore we obtain,

Vh(ā�) = π[uh(c̄h)− d(ā�, āh) + βVh(āh)] + (1− π)[u�(c̄�) + d(āh, ā�) + βV�(ā�)]

V�(āh) = π[u�(c̄�) + d(ā�, āh) + βV�(ā�)] + (1− π)[uh(c̄h)− d(āh, ā�) + βVh(āh)]

Using these value functions we find that

d(ā�, āh) = d(āh, ā�) +
ū

1− β

so that the value of selling the asset is just ū/(1 − β), the lifetime discounted surplus from
18Notice that in equilibrium, there is always trade unless π = 1 in which case agents never switch type so

that this ad-hoc rule is never used.
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ū
1−β

Aa� ah

Vh(a�)

V�(ah)

d = 0

Figure 1: Intertemporal gains from trade

adjusting portfolios. Notice that as π → 1/2 we have āh → ā� so that ū → 0 and there is no
value of selling the asset. Figures 1 and 2 illustrate this equilibrium.

Figure 1 shows the indifference curves for Vi(a)+ d for two agents: One agent h endowed
with a� and one agent � endowed with ah. Indifference curves are tangent at the stationary
distribution points (āh, ā�) (the axis for d is reversed). We can also scale the continuation
utility by 1 − β to compare it with present utility. Then assumption 1 and the likelihood
that an agent h reverts to an agent � in the future imply that (1− β)V �

h(a) ≤ u
�
h(a). By the

same argument, notice that (1− β)V �
� (a) ≥ u

�
�(a). Therefore, as illustrated in Figure 2, the

indifference curves for ui(a) + d for both agents will be tangent at a point south-east of the
(āh, ā�). This explains why repos are useful: They exploit intratemporal gains from trade.

In the Appendix, we characterize the bargaining solution with directed matching q
r, āh

and ā�.

Proposition 5. The degenerate supports āh and ā� of the two distributions with bargaining
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(1− β)Vh(a�)

(1− β)V�(ah)

d = 0

uh(a�)

u�(ah)

d(a�, ah)

ah + qr

d(ah, a�)

Figure 2: Intratemporal gains from trade

are fully characterized by the following equations,

u
�
h(c̄h) = u

�
�(c̄�)

u
�
h(c̄h) =

[π − (2π − 1)β][θu�
�(ā�)− (1− θ)u�

h(āh)]− (1− π)[θu�
�(āh)− (1− θ)u�

h(ā�)]

(2π − 1)(1− β)(2θ − 1)
c̄h + c̄� = āh + ā� = 2A

Not surprisingly, the solution with directed matching is similar to the solution with
random matching in the case of no persistence, π = 1/2, or full persistence, π = 1. Indeed,
notice from the second equation that when π = 1/2, we must have

θ[u�
�(ā�)− u

�
�(āh)] = (1− θ)[u�

h(āh)− u
�
h(ā�)]

and the unique solution is ā� = āh = A. In this case, qs = 0 and q
r
> 0. Also, if π = 1 we

have
u
�
h(c̄h) =

θu
�
�(ā�)− (1− θ)u�

h(āh)

(2θ − 1)

with solution q
r = 0 and u

�
�(ā�) = u

�
h(āh). In this case q

s = 0. We also obtain the result on
markets volumes as a function of persistence.
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Corollary 6. āh − ā� ≥ 0 is increasing in π. Sales volume is hump-shaped in π while repos
volume is strictly decreasing in π.

The intuition for this result is straightforward. When π = 1/2, agents future type is
independent of their current type. Therefore, two agents’ future value of the asset is the
same. Since the bargaining solution equates the marginal benefit of holding the asset, all
agents hold the same quantity of assets. Therefore with π = 1/2 we obtain āh = ā� = A:
There is no outright purchase, but only some repo to allocate the fruits to those agents h

who like it the most. As π increases, it is more likely that an agent h becomes once again
an agent h next period. Therefore his valuation for the asset increases, and starting from
ah = a� = A, there are gains from trade when an agent h meets an agent �. In this case,
āh > A > ā�. In equilibrium only those agents who switch types have gains to trade the
asset and so the volume of asset sales is increasing. Also repos are decreasing as agents hold
more of the asset they like. Finally, when π = 1, agents know their type for sure. Hence in
equilibrium, all gains from trades (be it asset trade or fruit trade) are extinguished, so that
there is neither sales nor repos.

Also, we can find the price for repo and asset sales.

Corollary 7. Let pr be the price of a repo and p
s the price of a sale. Then

p
r =

(1− θ)[uh(c̄h)− uh(c̄h − q
r)] + θ[u�(c̄� + q

r)− u�(c̄�)]

qr

p
s =

(1− θ)[uh(c̄h − q
r)− uh(c̄� + q

r)] + θ[u�(c̄h − q
r)− u�(c̄� + q

r)]

(1− β)(āh − ā�)

From the transfers d(ah, a�) we have d(āh, ā�) = p
r
q
r as the pair of agents who did not

switch types only conduct repos. Therefore,

p
r
q
r = (1− θ)[uh(c̄h)− uh(āh)] + θ[u�(ā�)− u�(c̄�)].

Also, since the pair of agents that switched conducts both an asset sale q
s to adjust their

position, and then a repo. Therefore d(ā�, āh) = p
r
q
r + p

s
q
s. Since

d(ā�, āh) = d(āh, ā�) +
ū

1− β

we obtain that
p
s
q
s =

ū

1− β
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Figure 4: Repo prices (left) and outright purchase price (right)

and using the expression for ū, with q
s = āh − ā�, we get the result.

Figure 3 shows how āh (red curve) and ā� (blue curve) evolve as π varies from 1/2 to 1.
The parameters chosen are θ = 0.5,λ = 0.1, σ = 2, β = 0.9, and A = 50. Interestingly, the
rate of divergence increases as types become more persistent. Hence, as π becomes large, we
should expect some wide movements in prices and quantities.

This intuition is confirmed by Figure 4 that shows prices for repo p
r and asset sales ps.

Similarly total repo volume q
r and total sales volume (1 − π)qs display very different

pattern, as illustrated in Figure 5. At π = 0.9, the total volume of repo is approximately
20% of the outstanding securities, while total sales are only 1% of outstanding securities.
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Figure 5: Repo volumes (left) and outright purchase volumes (right)

Interestingly, the coefficient of risk aversion σ is the one with the most impact on asset
volumes and values. For the sake of illustration and without any intention of being a serious
numerical exercize, with A = 50, we can match the observations on repos and sales of
Treasury securities, with σ = 0.5 (close to risk neutrality) and quite high persistence, π =

0.9.19

Next we will study what happens when agents become more patient. Unlike higher
persistence, which increases the level of reallocation of assets via sale, higher patience results
in more reallocation of assets via repos.

7.1. Patience

It is clear that in general those prices in Corollary 7 are different from their Walrasian
equivalent, and in particular that (1 − β)ps is different from p

r. However, an interesting
case to consider is when agents become very patient. Then it is legitimate to guess that
the allocation will converge to the Walrasian one, as it is in some sense equivalent to agents
trading with each other very frequently. However, it is also as if agents were also changing
type very often and although we have the illusion that they can trade very fast whenβ
converges to one, they are also bargaining a lot to readjust their protfolio and this friction
remains. Indeed, as β tends to one, the solution to the bargaining problem is characterized
by āh, ā� → A, so that asset sales converge to zero. Hence, we obtain

lim
β→1

(1− β)ps = (1− θ)u�
h(A) + θu

�
�(A).

19The average daily volume of Treasury repos is approximately twice the one for Treasury sales in the US

according to ICAP, see http://www.icap.com/investor-relations/monthly-volume-data.aspx.

24



Figure 6: Repo volume in the (β, π)-space.

However in the limit qr satisfies u�
h(A+ q

r) = u
�
�(A− q

r) and Assumption 1 guarantees that
q
r
> 0 is bounded away from zero. Since q

r
> 0 and ui(.) is concave,

q
r
u
�
h(A+ q

r) < uh(A+ q
r)− uh(A) < q

r
u
�
h(A)

q
r
u
�
�(A) < u�(A)− u�(A− q

r) < q
r
u
�
�(A− q

r)

and in general pr �= (1−β)ps. For illustration, we use the following utility function: uh(a) =
a1−σ

1−σ and u�(a) = λuh(a) where λ ∈ (0, 1). Then we obtain

q
r =

λ
− 1

σ ā� − āh

1 + λ
− 1

σ

so that
āh + q

r = λ
− 1

σ
2A

1 + λ
− 1

σ

and ā� − q
r =

2A

1 + λ
− 1

σ

Figure 6 shows how repo volume moves along the (β, π)-dimension.
As we have argued above, a� and ah tends to A whenever β → 1. Therefore in this case,

lim
β→1

(1− β)ps = (1− θ + λθ)A−σ
,
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Figure 7: Ratio of repo and purchase prices
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With λ = 0.1 and σ = 2, we plot the ratio limβ→1(1 − β)ps/ limβ→1 p
r as a function of

θ ∈ [0, 0.4].

As Figure 7 shows, limβ→1(1 − β)ps > limβ→1 p
r for low values of θ and the inequality

is reversed otherwise. In the next section we correct for the frequency with which agents
change type as they can trade more often.

7.2. Frequent Trades

In this subsection we study the consequences of agents meeting more frequently. More
specifically, what are the consequences of reducing the time until the next meeting from one
unit to ∆ < 1 units? And, what happens when ∆ → 0 ? If β denotes discounting over
a period of unit length, and π denotes the probability of maintaining the same type over
a period of unit length, we assume agents discount future at rate β∆ = 1 − ∆(1 − β) and
the probability of maintaining the same type is π∆ = 1 −∆(1 − π) over a period of ∆ < 1

unit length. Clearly the level of consumption by the type h and � agents will remain the
same, however, the share of asset reallocation via repo and sale changes. We denote the repo
level when ∆ < 1 units of time elapses until the next meeting by q

r
∆, and we show in the

Appendix,
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Proposition 8. For any ∆ < 1, we have q
r
∆ < q

r. And as ∆ → 0, qr∆ decreases to q
r
0 > 0.

That is even with very frequent trades agents use repo. Although agents can trade more
often they still face the friction that trading has to be bilateral and this gives a role for repo.

7.3. Outside Option

An intuitive explanation for our results, reminiscent of the intuition from our earlier example,
is that agents may prefer to use repos (to acquiring an asset), because they do not want to
lock in a position that may be difficult to undo later at an agreeable price. When they
engage in repos, agents are not locked into a position. To make this intuition more precise,
we modify the environment slightly and assume that agents’ outside option is to access a
Walrasian market from next period onward. Then the outside option for an agent i holding
a units of the asset is ui(a) + βW̃i(a) where W̃i(a) = πWi(a) + (1− π)W−i(a) and W (a) has
been defined in Section 3. The possibility to trade on a Walrasian market would make the
“lock-in” problem a little less severe, as agents could sell their securities on the walrasian
market next period. Therefore we would expect the repo trade to decrease relative to the
economy where agents do not have the option to unload their asset holdings on a Walrasian
market. Still, agents are locked-in for one period and we would still expect repo to have a
role. Indeed, let q̄r be the equilibrium level of repo taking place in the economy where agents
have the option to trade at Walrasian price in the next period, and let qr be the equilibrium
level of repo when they do not have this option. Then, in the Appendix, we show

Proposition 9. With directed search and bargaining, there is an equilibrium where q
r
>

q̄
r
> 0.

The equilibrium with the option to trade on a Walrasian market displays the same features
as the one in our original set-up. That is, whether agents switched types or not, they always
repo q̄

r. In addition, those agents who switched types trade q̄
s = āh− ā� and zero otherwise,

where āh and ā� are given by some equilibrium conditions. The important result is that,
although agent’s outside option is the Walrasian price (next period), agents will still use
repos, but less so than if they did not have the option to trade at Walrasian price the
following period. Therefore, the repo volume declines as we take the economy “closer” to its
Walrasian benchmark.
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8. Conclusion

This paper presents a simple environment with trading frictions where agents trade both in
repo and asset markets. Repos are useful because agents can enjoy the service from holding
the asset today, without changing their future portfolio. We find this is important for agents
to maintain an appropriate outside option in bilateral trade: Holding too few assets (selling
too much) would weaken the agent’s future position, while holding too many (selling too
few) would diminish the marginal value of the asset, which would then be relinquished “at
a low price.” With directed matching and two valuations, we characterize an equilibrium as
a two-point supports. These two equilibrium asset holdings are converging as the valuation
shock becomes more persistent. We find that the volume for repos is always decreasing in
the persistence of the valuation shock, while the volume of asset sales is hump-shaped. This
hump is explained by two interacting margins: On the one hand, less agents are switching
valuation when it becomes more persistent, but on the other hand they trade a larger quantity
each time they switch valuation in order to hold the equilibrium amount.

This has interesting implications for the organization of the repo market. In particular
our theory predicts that the repos market will be thinner when there is little uncertainty
about one’s future preferences. Although we leave it for future research, we suspect that
monetary policy (which is operated in the repo market) will have a higher impact then, as
a lower quantity of repos can affect the market. Similarly, starting from a situation where
agents know their future preferences, as uncertainty is growing, so is the volume of asset sales.
Therefore, more sales have to be conducted in order to move the market. If we associate
“normal times” with times when agents have a good idea about their future preferences, then
monetary policy should be conducted with repos. However, with uncertainty growing overly
large, monetary policy will be more effective in moving markets price if it is conducted via
asset sales/purchases.

9. Appendix

9.1. Example

This example seeks to illustrate the role of pairwise matching today to explain the usefulness
of repos. It also indicates how linear utilities from holding the asset affects the results. We
suppose that an agent i = h, � derives utility from consuming fruits in both periods according
to the utility Ui(c1, c2) = ui(c1) + βλic2, where ui(c) satisfies Assumption 1 while λh ≥ λ�,
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c1 is the quantity of fruits consumed at t = 1 and c2 is the quantity consumed at t = 2. We
assume π = 1 so that agents do not switch type. An agent h is matched with an agent �

and they bargain over the allocation. There is no further trade in period 2. We assume that
ah + a� = 2A. Given there is no trade at t = 2, the bargaining problem at t = 1 between
agent h with bargaining power θ ∈ [0, 1] and agent � with bargaining power 1− θ is

max
ch,c�,d

[uh(ch)− d+ βλhq
s − uh(ah)]

θ [u�(c�) + d− βλ�q
s − u�(a�)]

1−θ

subject to ch + c� = ah + a� and q
s ∈ [−ah, a�] . The solution to the bargaining problem is

then

u
�
h(c

∗
h) = u

�
�(c

∗
�)

(a� − q
s)(λh − λ�) = 0

d(qs, qr) = (1− θ)[uh(c
∗
h) + βλhq

s − uh(ah)] + θ[u�(c
∗
�)− βλ�q

s − u�(a�)](11)

where c
∗
h = ah + q

r + q
s and c

∗
� = a� − q

r − q
s. Clearly, Assumption 1 implies c

∗
h > c

∗
� . Also

these optimal consumption levels are uniquely pinned down by the first order conditions
together with c

∗
h + c

∗
� = ah + a�. Agents just choose the mix between repo and asset sales to

achieve those levels. If λh > λ� then the solution is q
s = a�, and q

r = −c
∗
� . In words, agent

� sells all his assets to agent h but repo some to achieve the desired level of consumption at
t = 1.

Under which conditions would agent � be indifferent between repo and asset sales? To
be indifferent, agent � should obtain the same payoff by keeping some amount ã� > 0 into
period 2 instead of selling everything at t = 1. If he keeps ã�, he can lower the amount of
security he rents to q̃

r = −c
∗
� + ã�, while he only sells q̃

s = a� − ã�. In turn, his new total
transfer is d(a�− ã�, q̃

r) instead of d(a�,−c
∗
�). Therefore agent � would be indifferent keeping

some assets or selling it all if and only if

u(c∗�) + d(a�,−c
∗
�) = u(c∗�) + d(a� − ã�, q̃

r) + βλ�ã�

where the last term on the right hand side is the payoff from carrying over asset into the
next period. This expression can be simplified to

d(a�,−c
∗
�)− d(a� − ã�, q̃

r) = βλ�ã�.
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However, using (11) we obtain that

d(a�,−c
∗
�)− d(a� − ã�, q̃

r) = θβλ�ã� + (1− θ)βλhã� ≥ βλ�ã�

In words, agent � prefers to sell his entire portfolio to agent h today as he is able to extract
some of agent h’s higher valuation of the asset tomorrow for his own benefit today (which
is a similar effect to Lagos and Rocheteau). Notice that if λh = λ� then both agents would
have the same valuation for the asset at t = 2 and agent � would be indifferent between repo
and asset sales at t = 1, as in the Walrasian benchmark. Also, if θ = 1 then agent � would be
unable to extract some of the future gain from agent h and so agent � would be indifferent
between repo and asset sales. In all other cases, i.e. whenever λh > λ� and θ < 1, repos
are useful to equate the marginal utilities at t = 1 and to achieve efficiency. In the general
model, we endogenize the marginal utility λh and λ�, but the intuition remains the same.

9.2. Proof of Proposition 4

We need to show that no 1 or 2 agent(s) wish(es) to form a coalition and be better off. It
should be clear that no 1 agent wants to form a coalition (this option is already embedded
in the bargaining problem).

Now, an agent � with āh could decide to form a coalition with an agent � with ā� or an
agent h with āh. It is a property of the bargaining solution that an agent � will obtain a
lower payoff being matched with an agent h with a higher amount of asset (he can extract
less since the marginal utility of obtaining more of the asset is lower for this agent). Hence,
an agent � with āh prefers to be matched with an agent h with ā�. Also, it is a property
of the bargaining solution that, given he has to meet an agent with asset holdings a, an �

agents prefer to be matched with the agent with the highest marginal utility (so agent h).20

Also, an agent h with ā� could decide to form a coalition with an agent h with āh or an
agent � with ā�. As above, however, it is a property of the bargaining solution that an agent
h payoff matched with an agent � will get a higher utility whenever the agent � is holding
more asset. Hence, the agent h will not want to be matched with an agent � holding ā�.
Also, an agent h with āh prefers to be matched with the agent holding ā� with the lowest
marginal utility, i..e with an � agent.

Hence there are no 2-agents coalition where both agents would do better than under the
20It is easy to show this with uh(a) = αu�(a) with α > 1: Compute the bargaining solution and show that

∂[u�(a� − qr − qs) + βV (a− qs) + d]/∂α > 0.
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prescribed matching technology, which shows that it, together with the distribution over
{āh, ā�} is an equilibrium.

Proof of Proposition 5

The value functions are

Vh(āh) = π[uh(āh + q
r)− d(āh, ā�) + βVh(āh)] + (1− π)[u�(ā� − q

r) + d(ā�, āh) + βV�(ā�)]

V�(ā�) = π[u�(ā� − q
r) + d(āh, ā�) + βV�(ā�)] + (1− π)[uh(āh + q

r)− d(ā�, āh) + βVh(āh)]

Adding both equations, we obtain

Vh(āh) + V�(ā�) =
uh(āh + q

r) + u�(ā� − q
r)

1− β
(12)

Also

Vh(ā�) = π[uh(āh + q
r)− d(ā�, āh) + βVh(āh)] + (1− π)[u�(ā� − q

r) + d(āh, ā�) + βV�(ā�)]

V�(āh) = π[u�(ā� − q
r) + d(ā�, āh) + βV�(ā�)] + (1− π)[uh(āh + q

r)− d(āh, ā�) + βVh(āh)]

and adding both equations, we obtain also

Vh(ā�) + V�(āh) = Vh(āh) + V�(ā�) (13)

From the first order conditions of the bargaining problem, we then can compute d(āh, ā�) as

d(āh, ā�) = (1− θ)[uh(āh + q
r)− uh(āh)]− θ[u�(ā� − q

r)− u�(ā�)] (14)

where we have used (12)-(13) and the fact that q
s(āh, ā�) = 0. Therefore, using (14) we

obtain

uh(āh + q
r)− d(āh, ā�) + βVh(āh) =

uh(āh) + βVh(āh) + θ[uh(āh + q
r) + u�(ā� − q

r)− uh(āh)− u�(ā�)]
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Also

u�(ā� − q
r) + d(āh, ā�) + βV�(ā�) =

u�(ā�) + βV�(ā�) + (1− θ)[uh(āh + q
r) + u�(ā� − q

r)− uh(āh)− u�(ā�)]

In a similar fashion, using q
s(ā�, āh) = āh − ā� we can rewrite d(ā�, āh) as

d(ā�, āh) = d(āh, ā�) + ū+ β(1− θ)[Vh(āh)− Vh(ā�)] + βθ[V�(āh)− V�(ā�)] (15)

where
ū = (1− θ)[uh(āh)− uh(ā�)] + θ[u�(āh)− u�(ā�)]

Therefore, using (13) and (15) and simplifying we obtain

u�(ā� − q
r) + d(ā�, āh) + βV�(ā�) =

u�(āh) + βV�(āh) + (1− θ)[uh(āh + q
r) + u�(ā� − q

r)− uh(ā�)− u�(āh)]

Similarly

uh(āh + q
r)− d(ā�, āh) + βVh(āh) =

uh(ā�) + βVh(ā�) + θ[uh(āh + q
r) + u�(ā� − q

r)− uh(ā�)− u�(āh)]

Hence, combining all these expressions, we obtain

Vh(āh) = π[uh(āh) + βVh(āh)] + (1− π)[u�(āh) + βV�(āh)] + πθS + (1− π)(1− θ)S̃

V�(ā�) = π[u�(ā�) + βV�(ā�)] + (1− π)[uh(ā�) + βVh(ā�)] + π(1− θ)S + (1− π)θS̃

Vh(ā�) = π[uh(ā�) + βVh(ā�)] + (1− π)[u�(ā�) + βV�(ā�)] + (1− π)(1− θ)S + πθS̃

V�(āh) = π[u�(āh) + βV�(āh)] + (1− π)[uh(āh) + βVh(āh)] + (1− π)θS + π(1− θ)S̃

where

S = uh(āh + q
r) + u�(ā� − q

r)− uh(āh)− u�(ā�)

S̃ = uh(āh + q
r) + u�(ā� − q

r)− uh(ā�)− u�(āh)
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Solving for Vh(āh) we obtain

(1− β)Vh(āh) =
(1− π)[u�(āh) + (1− θ)S̃] + [π − (2π − 1)β][uh(āh) + θS]

1− (2π − 1)β

And taking the derivative, we have

(1−β)V �
h(āh) =

u
�
�(āh)(1− π) + [π − (2π − 1)β]u�

h(āh) + (1− π)(1− θ) ∂S̃
∂āh

+ θ
∂S
∂āh

[π − (2π − 1)β]

1− (2π − 1)β

Using the first order condition for q
r we obtain after some simplifications,

(1− β)(1− (2π − 1)β)V �
h(āh) = u

�
�(āh)θ(1− π) + u

�
h(āh)(1− θ)[π − (2π − 1)β]

+u
�
h(āh + q

r)[1− π + (2π − 1)(1− β)θ]

Since (12) holds, we use the first order condition for q
r and simplify to obtain

(1− β)(1− (2π − 1)β)V �
� (ā�) = u

�
�(ā� − q

r)[π − (2π − 1)(β + (1− β)θ)] + (1− π)(1− θ)u�
h(ā�)

+θ[π − (2π − 1)β]u�
�(ā�)

The first condition for q
s imposes that V

�
h(āh) = V

�
� (ā�). Using the fact that u

�
�(ā� − q

r) =

u
�
h(āh + q

r) and simplifying, we obtain

u
�
h(āh + q

r) =
[π − (2π − 1)β][θu�

�(ā�)− (1− θ)u�
h(āh)]− (1− π)[θu�

�(āh)− (1− θ)u�
h(ā�)]

(2π − 1)(1− β)(2θ − 1)

Together with the first order condition on asset sales and the feasibility constraint, this
completes the proof.

9.3. Proof of Corollary 6

The equilibrium allocation is given by

u
�
h(c̄h) = u

�
�(c̄�)

u
�
h(c̄h) =

[π − (2π − 1)β][θu�
�(ā�)− (1− θ)u�

h(āh)]− (1− π)[θu�
�(āh)− (1− θ)u�

h(ā�)]

(2π − 1)(1− β)(2θ − 1)
(16)

c̄h + c̄� = āh + ā� = 2A
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Let
α1(π) =

π − (2π − 1)β

2π − 1
=

π

2π − 1
− β

and
α2(π) =

1− π

2π − 1

then α
�
1(π) = α

�
2(π) =

−1
(2π−1)2 < 0. And we can rewrite (16) as

u
�
h(c̄h)(1− β)(2θ − 1) = α1(π)[θu

�
�(ā�)− (1− θ)u�

h(āh)]− α2(π)[θu
�
�(āh)− (1− θ)u�

h(ā�)]

Notice that c̄h is not a function of π, so that using āh + ā� = A and the implicit function
theorem, we have

0 = α
�
1(π)[θu

�
�(ā�)− (1− θ)u�

h(āh)]dπ + α1(π)[−θu
��
� (A− āh)− (1− θ)u��

h(āh)]dāh (17)

−α
�
2(π)[θu

�
�(āh)− (1− θ)u�

h(ā�)]dπ − α2(π)[θu
��
� (āh) + (1− θ)u��

h(A− āh)]dā� (18)

which we can simplify as

dāh

dπ
=

α
�
1(π) {θ [u�

�(ā�)− u
�
�(āh)] + (1− θ) [u�

h(ā�)− u
�
h(āh)]}

α1(π)[θu��
� (A− āh) + (1− θ)u��

h(āh)] + α2(π)[θu��
� (āh) + (1− θ)u��

h(A− āh)]
(19)

Since u
�
i(ā�) > u

�
i(āh) for both i and α

�
i(π) < 0, the numerator is negative. Concavity of the

utility function implies that the denominator is also negative. Therefore we have dāh/dπ > 0.
Given π the volume of repo in this economy is given by q

r (since all agents use repo) while
the volume of asset sales is given by (1− π)qs = (1− π)(āh − ā�). Clearly, the sales volume
is hump shaped as when π = 1/2 we have āh = ā� so that q

s = 0 while when π = 1, qs = 0

as well. However, (1 − π)qs > 0 for all other values of π. Since the problem is continuous,
sales volume is hum-shaped. Also, the fact that c̄h = āh + q

r is a constant implies that total
volume of repo (i.e. q

r since all agents engage in repo) is declining in π. Since there are no
repo when π = 1, the volume of repo is declining to zero.

9.4. Proof of Proposition 8

Given the time to the next meeting is ∆ < 1, we denote the asset holdings and repo level by
ā�,∆, āh,∆ and q

r
∆. Using this notation, we have c

∗
� = ā� − q

r = ā�,∆ − q
r
∆ and c

∗
h = āh + q

r =
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āh,∆ + q
r
∆. Using the equilibrium condition of Proposition 5, we get

(2θ − 1)u�
h(c

∗
h)

=
[π − (2π − 1)β][θu�

�(c
∗
� + q

r)− (1− θ)u�
h(c

∗
h − q

r)]− (1− π)[θu�
�(c

∗
h − q

r)− (1− θ)u�
h(c

∗
� + q

r)]

(2π − 1)(1− β)

=
[π∆ − (2π∆ − 1)β∆][θu�

�(c
∗
� + q

r
∆))− (1− θ)u�

h(c
∗
h − q

r
∆)]

(2π∆ − 1)(1− β∆)

−(1− π∆)[θu�
�(c

∗
h − q

r
∆)− (1− θ)u�

h(c
∗
� + q

r
∆))]

(2π∆ − 1)(1− β∆)

which is equivalent to

LH(qr) +

�
(1− π)

(1− 2(1− π))(1− β)

�
(LH(qr)−RH(qr))

= LH(qr∆) +

�
(1− π∆)

(1− 2(1− π∆))(1− β∆)

�
(LH(qr∆)−RH(qr∆)) (20)

where

LH(qr) = θu
�
�(c

∗
� + q

r)− (1− θ)u�
h(c

∗
h − q

r)

and

RH(qr) = θu
�
�(c

∗
h − q

r)− (1− θ)u�
h(c

∗
� + q

r).

For q ≤ (ch∗ − c�
∗) /2, we have

u
�
�(c

∗
h − q) < u

�
�(c

∗
� + q) < u

�
�(c

∗
�) = u

�
h(c

∗
h) < u

�
h(c

∗
h − q) < u

�
h(c

∗
� + q)

therefore we have LH(q) > RH(q). Moreover, concavity of uh and u� implies

d

dq
LH(q) < 0 <

d

dq
RH(q).

Now, notice that for ∆ < 1

(1− π∆)

(1− 2(1− π∆))(1− β∆)
=

(1− π)

(1− 2∆(1− π))(1− β)

<
(1− π)

(1− 2(1− π))(1− β)
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therefore (20) implies q
r
∆ < q

r for ∆ < 1. Notice that as ∆ → 0, the share of reallocation
via repo decreases to q

r
0 > 0 which is determined by

(2θ − 1)u�
h(c

∗
h) = LH(qr0) +

(1− π)

(1− β)
(LH(qr0)−RH(qr0)) .

This completes the proof.

9.5. Proof of Proposition 9

We still assume that agents who did not switch are matched together, while those agents
who just switched are matched with each other. With Nash bargaining, the allocation of
an agent h with portfolio ah matched with an agent � with portfolio a� solves the following
problem:

max
qs,qr,d

[uh(ah + q
s + q

r)− d+ βVh(ah + q
s)− uh(ah)− βW̃h(ah)]

θ

×[u�(a� − q
s − q

r) + d+ βV�(a� − q
s)− u�(a�)− βW̃�(a�)]

1−θ

with first order conditions

V
�
h(ah + q

s) = V
�
� (a� − q

s)

u
�
h(ah + q

s + q
r) = u

�
�(ah − q

s − q
r)

d(ah, a�) = (1− θ)[uh(ah + q
s + q

r) + βVh(ah + q
s)− uh(ah)− βW̃h(ah)]

−θ[u�(a� − q
s − q

r) + βV�(a� − q
s)− u�(a�)− βW̃�(a�)]

We still assume that agents who did not switch types are matched together while those
agents who just switched are matched together. We first solve for W̃i(a). By definition,
W̃i(a) = πWi(a) + (1 − π)Wj(a) with i �= j ∈ {h, �} and where Wi denotes the value
of participating in the Walrasian market as a type i. From the problem of agents in the
Walrasian market, it should be clear that Wi(a) = pa+Wi(0), where Wi(0) is given by

Wi(0) = ui(a
w
i )− pa

w
i + βEk|iWk(a

w
i )

= ui(a
w
i )− p

r
a
w
i + βEk|iWk(0)
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where a
w
i is the solution to u

�
i(a

w
i ) = p

r and u
�
h(a

w
h ) = u

�
�(a

w
� ) with a

w
� + a

w
h = 2A. Solving for

Wi(0) we have

Wh(0) = uh(a
w
h )− p

r
a
w
h + βπWh(0) + β(1− π)W�(0)

W�(0) = u�(a
w
� )− p

r
a
w
� + βπW�(0) + β(1− π)Wh(0)

so that
(1− β)Wh(0) = α[uh(a

w
h )− p

r
a
w
h ] + (1− α)[u�(a

w
� )− p

r
a
w
� ]

where α = 1−βπ
1+β−2βπ ∈ [0, 1]. Similarly,

(1− β)W�(0) = α[u�(a
w
� )− p

r
a
w
� ] + (1− α)[uh(a

w
h )− p

r
a
w
h ]

Therefore,

(1− β)W̃h(0) = π(1− β)Wh(0) + (1− π)(1− β)W�(0)

= u(awh )− p
r
a
w
h + [π + α− 2πα][u�(a

w
� )− p

r
a
w
� − uh(a

w
h ) + p

r
a
w
h ]

and

(1− β)W̃�(0) = (1− π)(1− β)Wh(0) + π(1− β)W�(0)

= u(aw� )− p
r
a
w
� + [π + α− 2πα][uh(a

w
h )− p

r
a
w
h − u�(a

w
� ) + p

r
a
w
� ]

Notice that
W̃h(0) + W̃�(0) =

u(awh )− p
r
a
w
h + u(aw� )− p

r
a
w
�

1− β

In this environment the first order condition of the bargaining problem gives us

u
�
h(āh + q

r) = u
�
�(ā� − q

r)

so that

āh + q
r = a

w
h ,

ā� − q
r = a

w
� .
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The value functions are

Vh(āh) = π[uh(āh + q
r)− d(āh, ā�) + βVh(āh)] + (1− π)[u�(ā� − q

r) + d(ā�, āh) + βV�(ā�)]

V�(ā�) = π[u�(ā� − q
r) + d(āh, ā�) + βV�(ā�)] + (1− π)[uh(āh + q

r)− d(ā�, āh) + βVh(āh)]

Adding both equations, we obtain

Vh(āh) + V�(ā�) =
uh(āh + q

r) + u�(ā� − q
r)

1− β
= W̃h(a

w
h ) + W̃�(a

w
� ) (21)

From the bargaining first order condition, we obtain

d(ah, a�) = (1− θ)[uh(ah + q
s + q

r)− uh(ah) + βVh(ah + q
s)− βW̃h(ah)]

−θ[u�(a� − q
s − q

r)− u�(a�) + βV�(a� − q
s)− βW̃�(a�)]

so that the transfer d(āh, ā�) is (using the fact that qs(āh, ā�) = 0),

d(āh, ā�) = (1− θ)[uh(āh + q
r)− uh(āh) + βVh(āh)− βW̃h(āh)]

−θ[u�(ā� − q
r)− u�(ā�) + βV�(ā�)− βW̃�(ā�)]

Therefore, we obtain (using the relation between āi and a
w
i as well as equation (21)):

uh(āh + q
r)− d(āh, ā�) + βVh(āh) = uh(āh) + βW̃h(āh)

+θ {uh(āh + q
r) + u�(ā� − q

r)− u�(ā�)− uh(āh)}

Also

u�(ā� − q
r) + d(āh, ā�) + βV�(ā�) = u�(ā�) + βW̃�(ā�)

+(1− θ) {uh(āh + q
r) + u�(ā� − q

r)− u�(ā�)− uh(āh)}

In a similar fashion, we obtain (using q
s(ā�, āh) = āh − ā�)

d(ā�, āh) = (1− θ)[uh(āh + q
r)− uh(ā�) + βVh(āh)− βW̃h(ā�)]

−θ[u�(ā� − q
r)− u�(āh) + βV�(ā�)− βW̃�(āh)]
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Therefore,

u�(ā� − q
r) + d(ā�, āh) + βV�(ā�) = u�(āh) + βW̃�(āh)

+(1− θ)[uh(āh + q
r) + u�(ā� − q

r)− uh(ā�)− u�(āh)]

and similarly

uh(āh + q
r)− d(ā�, āh) + βVh(āh) = uh(ā�) + βW̃h(ā�)

+θ[uh(āh + q
r) + u�(ā� − q

r)− uh(ā�)− u�(āh)]

Using the above calculations, we obtain

Vh(āh) = π[uh(āh) + βW̃h(āh)] + (1− π)[u�(āh) + βW̃�(āh)] + θπS + (1− θ)(1− π)S̃

V�(ā�) = π[u�(ā�) + βW̃�(ā�)] + (1− π)[uh(ā�) + βW̃h(ā�)] + π(1− θ)S + (1− π)θS̃

where

S = uh(āh + q
r) + u�(ā� − q

r)− uh(āh)− u�(ā�)

S̃ = uh(āh + q
r) + u�(ā� − q

r)− uh(ā�)− u�(āh)

And taking the derivative, we have

V
�
h(āh) = π[u�

h(āh) + βp] + (1− π)[u�
�(āh) + βp] + (1− π)(1− θ)

∂S̃

∂āh
+ θπ

∂S

∂āh

and using the first order condition for q
r we obtain

V
�
h(āh) = βp+ (1− π)u�

�(āh) + πu
�
h(āh)

+(1− π)(1− θ)[u�
h(āh + q

r)− u
�
�(āh)]

+θπ[u�
h(āh + q

r)− u
�
h(āh)]

Also, using the first order condition for q
r we obtain

V
�
� (ā�) = βp+ πu

�
�(ā�) + (1− π)u�

h(ā�)

+π(1− θ)[u�
�(ā� − q

r)− u
�
�(ā�)] + (1− π)θ[u�

�(ā� − q
r)− u

�
h(ā�)]
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The first condition for q
s imposes that V

�
h(āh) = V

�
� (ā�). Using the fact that u

�
�(ā� − q

r) =

u
�
h(āh + q

r) and simplifying, we obtain

u
�
h(āh + q

r) =
πθu

�
�(ā�) + (1− π)(1− θ)u�

h(ā�)− (1− π)θu�
�(āh)− π(1− θ)u�

h(āh)

(1− 2π)(1− 2θ)

Therefore the equilibrium is given by

u
�
h(āh + q

r) = u
�
�(ā� − q

r)

āh + ā� = 2A

u
�
h(āh + q

r) =
πθu

�
�(ā�) + (1− π)(1− θ)u�

h(ā�)− (1− π)θu�
�(āh)− π(1− θ)u�

h(āh)

(1− 2π)(1− 2θ)

Notice that β does not impact the equilibrium allocation.
Also, suppose that q

r = 0 is an equilibrium. Then u
�
h(āh) = u

�
�(ā�) and

u
�
h(āh)(1− 2θ) = (1− θ)u�

h(ā�)− θu
�
�(āh)

or
θ [u�

�(āh)− u
�
h(āh)] = (1− θ) [u�

h(ā�)− u
�
h(āh)]

However, since ā� ≤ āh the RHS is positive, while the LHS is negative by assumption.
Therefore, qr = 0 cannot be an equilibrium.

Now we show that the amount of repo is actually lower under this arrangement. The equi-
librium allocations under the benchmark and Walrasian outside-option, can be summarized
by

(1− 2π)(1− β)(1− 2θ)u�
h(c

∗
h)

= π(1− β) [θu�
�(c

∗
� + q̄

r)− (1− θ)u�
h(c

∗
h − q̄

r)]

−(1− π)(1− β) [θu�
�(c

∗
h − q̄

r)− (1− θ)u�
h(c

∗
� + q̄

r)]

where u
�
h(c

∗
h) = u

�
�(c

∗
�) with c

∗
h + c

∗
� = 2A and q

r∗ and q̄
∗ are the repo amounts under the

benchmark and Walrasian outside-option respectively. Define

LH(qr) = θu
�
�(c

∗
� + q

r)− (1− θ)u�
h(c

∗
h − q

r)
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and

RH(qr) = θu
�
�(c

∗
h − q

r)− (1− θ)u�
h(c

∗
� + q

r).

Note that for qr ≤ (ch∗ − c�
∗) /2, we have

u
�
�(c

∗
h − q

r) < u
�
�(c

∗
� + q

r) < u
�
�(c

∗
�) = u

�
h(c

∗
h) < u

�
h(c

∗
h − q

r) < u
�
h(c

∗
� + q

r)

therefore we have LH(qr) > RH(qr), which implies for all qr,

[π(1− β) + (1− π)β]LH(qr)− (1− π)RH(qr) > π(1− β)LH(qr)− (1− π)(1− β)RH(qr)

Finally concavity of uh and u� implies

d

dqr
LH(qr) < 0 <

d

dqr
RH(qr),

hence [π(1− β) + (1− π)β]LH(qr) − (1 − π)RH(qr) and π(1 − β)LH(qr) − (1 − π)(1 −
β)RH(qr) are both decreasing in q

r. This means we have

(1− 2π)(1− β)(1− 2θ)u�
h(c

∗
h)

= [π(1− β) + (1− π)β] [θu�
�(c

∗
� + q

r∗)− (1− θ)u�
h(c

∗
h − q

r∗)]

−(1− π) [θu�
�(c

∗
h − q

r∗)− (1− θ)u�
h(c

∗
� + q

r∗)]

> π(1− β) [θu�
�(c

∗
� + q

r∗)− (1− θ)u�
h(c

∗
h − q

r∗)]

−(1− π)(1− β) [θu�
�(c

∗
h − q

r∗)− (1− θ)u�
h(c

∗
� + q

r∗)]

therefore q
r∗

> q̄
r. Note that the change in β does not affect q̄r, but as β approaches to zero,

then q
r∗ → q̄

r .
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