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Abstract

This paper provides first and second-order approximation methods for the solu-

tion of non-linear dynamic stochastic models in which the exogenous state variables

follow conditionally-linear stochastic processes displaying time-varying risk. The

first-order approximation is consistent with a conditionally-linear model in which

risk is still time-varying but has no distinct role – separated from the primitive

stochastic disturbances – in influencing the endogenous variables. The second-order

approximation of the solution, instead, is sufficient to get this role. Moreover, risk

premia, evaluated using only a first-order approximation of the solution, will be also

time varying.

∗Financial support from and ERC Starting Independent Grant is gratefully acknowledged.



1 Introduction

In the last decade, there has been an increasing interest among researchers and policymak-

ers in developing dynamic general equilibrium models to study business cycle properties of

macroeconomic variables and to conduct policy analysis. This research agenda has been

accompanied by parallel developments in solution methods and estimation techniques

aimed at handling different challenges that richer models pose to economists. For exam-

ple, second-order approximation techniques have been proposed by Schmitt-Grohé and

Uribe (2004) and Benigno and Woodford (2008) to address welfare comparisons across

policy regimes while Bayesian analysis has been developed for estimating dynamic general

equilibrium models (An and Schorfeide, 2007).

In this work, we propose a solution method for non-linear dynamic stochastic models

in which the exogenous stochastic processes display time-varying risk. While the use of

models with time-varying risk is quite popular in finance, only recently there has been

considerable attention on the role and the effects that risk or uncertainty and their vari-

ations over time have on macroeconomic variables.1 Our solution method is based on

appropriately-defined first and second-order approximations of the solution which can be

effective in studying how time-variation in the exogenous risk influences the equilibrium al-

location in standard macroeconomic models. This is in contrast with other solution meth-

ods, recently proposed, relying on third-order approximations as in Fernandez-Villaverde

et al. (2009).2

We consider a class of non-linear dynamic stochastic models in which the exogenous

state variables follow conditionally-linear stochastic processes where either variances or

standard deviations of the primitive shocks are modelled through stochastic linear pro-

cesses. We show that a first-order approximation of the solution can be consistent with

a conditionally-linear model in which the process for the exogenous state variables is not

approximated and still displays time-varying volatility. Indeed, whether the exogenous

state process is approximated or not does not affect the other coefficients of the linear

1Bloom (2009) examines the effects of an increase in uncertainty on investment and hiring decisions
by firms, Bloom, Floetotto and Jaimovich (2009) extend a canonical real business cycle model to study
the impact of change in the variance to productivity innovation on economic activity while Fernandez-
Villaverde, Guerron-Quintana, Rubio-Ramirez and Uribe (2009) show how changes in the volatility of the
foreign real interest rate are an important mechanism in explaining the behavior of output, consumption
and investment in emerging market economies.

2Bloom et al. (2009), following Krussell and Smith (1998), use instead a value function iteration ap-
proach which is more computationally demanding and difficult to implement even in small scale dynamic
general equilibrium models.
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approximation nor the dimension of the relevant endogenous state variables.3

There are three clear advantages of following a conditionally-linear approximation in-

stead of a fully-linear approximation. First, the approximated linear solution would still

display a role for time-varying risk in affecting the evolution of the endogenous variables

of the model.4 However, this is not a “distinct and direct” role, as risk and primitive

shocks are not disjoint arguments: if shocks are zero, risk does not influence directly the

endogenous variables. Second, the fact that stochastic volatility enters the first-order ap-

proximation, although not disjointly, has important implications also for higher-order ap-

proximations. In particular, we show that a second-order approximation of the policy rules

is sufficient to imply a “distinct and direct” role for time-varying volatility in affecting the

endogenous variables, whereas with other approaches a more computationally-demanding

third-order approximation is needed. Third, a conditionally-linear approximation, where

volatility is still time-varying, can be sufficient to characterize time variation in covari-

ances and therefore in risk premia, whereas a standard linear approximation would only

deliver constant risk premia.

Our paper is related to Justiniano and Primiceri (2008) since their partially-nonlinear

approximation, as a first-order approximation of the solution, agrees with our proposed

conditionally-linear approximation when the exogenous state variables follow conditionally-

linear processes. We also provide a second-order approximation of the solution to charac-

terize a distinct role for exogenous risk in affecting the endogenous variables. In particular

we consider two models of time-varying volatility, one with a stochastic linear process for

the standard deviation of the primitive shocks, as in Justiniano and Primiceri (2008), and

another with a linear process for the variance.5 The latter model is indeed also more

parsimonious in the second-order approximation.

Our contribution can also be read as a generalization of the second-order approxima-

tion methods of Schmitt-Grohé and Uribe (2004), Kim et al. (2008) and Gomme and

Klein (2008) to the case in which the exogenous state variables follow heteroskedastic

processes. Recent works by Fernandez-Villaverde et al. (2009, 2010) have provided ap-

proximation methods for exactly the same model as ours in which the standard-deviation

3We follow here the insights of Justiniano and Primiceri (2008) which indeed define a partially-
nonlinear approximation.

4This role has been particular relevant for Justiniano and Primiceri (2008) to deliver a model that
can be estimated parsimoniously in order to investigate which sources of risk have contributed the most
to the fall in macroeconomic volatility associated with the US Great Moderation.

5Justiniano and Primiceri (2008), however, model the log of the standard deviation as a stochastic
linear process.
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of the primitive shocks is time-varying. However, they consider a fully-linear approx-

imation in which even the process for the exogenous state variable is linearized.6 By

doing this, time-varying volatility is lost in the first-order approximation and, to get a

distinct role for risk in affecting the endogenous variables, a third-order approximation

is needed. Amisano and Tristani (2009) analyze models where volatility is subject to

discrete switching-regime changes and show that the time-varying volatility can affect the

second-order approximation. Finally, there are other contributions which have been inter-

ested in characterizing how time-varying risk affects endogenous variables. But in these

cases, as in Rudebush and Swanson (2008), exogenous state variables follow homoskedas-

tic processes as in Schmitt-Grohé and Uribe (2004) and time-varying endogenous (not

exogenous) risk affects the endogenous variables only in a third-order approximation.

The structure of this work is the following. Section 2 presents first and second-order

approximations in a model in which the exogenous state variables have time-varying

linear process for the conditional standard deviation. Section 3 considers the case in

which time-varying risk is modelled using a linear process for the conditional variance of

the primitive shocks. Section 4 applies our methods to the benchmark neoclassical growth

model. Section 5 concludes.

2 A model with time-varying standard deviations

We consider the following general model which encompasses a wide variety of dynamic

stochastic models:

Et {f(yt+1, xt+1, yt, xt)} = 0, (1)

where Et{·} denotes the mathematical expectations operator conditional on the informa-

tion available at date t and f(·) is a vector, of size n, of functions. The vector yt, of

non-predetermined variables, is of size ny × 1 while the vector xt of state variables is of

size nx× 1, with ny +nx = n. In particular, the vector xt can be partitioned into a vector

of endogenous state variables kt and a vector of exogenous predetermined variables zt of

size nz × 1, as follows:

xt =

[
kt

zt

]
.

6This is because they do not necessarily assume a conditionally-linear process for the exogenous state
variables.
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The vector zt follows the exogenous stochastic process given by

zt+1 = Λzzt + Zξt+1 (2)

where Z and Λz are matrices of order nz×nz. The vector ξt+1 is also of dimension nz× 1

and is given by

ξt+1 = Utεz,t+1 (3)

where εz,t+1 is a nz × 1 vector of innovations, which are assumed to have a bounded

support and to be independently and identically distributed with mean zero and vari-

ance/covariance matrix Iz, where Iz is an identity matrix of dimension nz × nz; Ut is a

diagonal matrix of dimension nz × nz whose elements on the diagonal are collected into

vector ut, of dimension nz × 1. In particular ut follows the exogenous stochastic linear

process given by

ut+1 = σz(Iz − Λu)ū+ Λuut + σvV εv,t+1 (4)

where V and Λu are matrices of order nz × nz, εv,t+1 is a nz × 1 vector of innovations

which are assumed to have a bounded support and to be independently and identically

distributed with mean zero and variance/covariance matrix Iz; ū is a vector of dimension

nz × 1 while σz and σv are scalars with σz,σv ≥ 0.7 We also assume that the initial

condition on the process for ut is such that ut0−1 = σzū.8

Given equations (3) and (4), the model generalizes the framework of Schmitt-Grohé

and Uribe (2004) to a case in which the volatility is time varying and stochastic. In

particular, the process for the exogenous state variable (2) is conditionally linear where

each element of the vector ut captures the conditional standard deviation of each element

of the stochastic disturbance ξt+1; such standard deviations are allowed to vary over

time in a stochastic way following the autoregressive process described by equation (4).

The model boils down to the framework of Schmitt-Grohé and Uribe (2004) under the

assumptions σv = 0 and ūi = 1 for all i = 1, ..., nz, since in this case

ξt+1 = σzεz,t+1.

7Fernandez-Villaverde et al. (2009, 2010) and Justiniano and Primiceri (2008) model a linear process
for the log of the standard deviations to assure that variances remain always positive. This is not necessary
in our case since we are assuming a bounded support for the shock εv,t which is needed anyway, for the
goodness of the approximation.

8Notice that in (3), there is no need to add another scalar of the type σξ as a perturbation parameter
since the variables on the diagonal matrix Ut are already subject themselves to perturbation. Indeed,
this is why we add the perturbation parameters σz and σv in (4) and assume an initial condition for ut
of the form ut0−1 = σzū.
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We make three important remarks on the above structure which are important to define

the class of models which we are interested in. First, equation (4) is not part of the

equilibrium conditions (1). Second, the vector ut is not a distinct argument of the set

of equilibrium conditions with respect to what is already captured by the state vector

xt. Third, the vector of exogenous state variables zt follows a conditionally-linear process

given by (2). We are not interested in characterizing approximations of more general

models in which the exogenous state variables follow instead non-linear models.

2.1 Solution

Given the above defined model and structure of the stochastic processes, a solution of (1)

takes the form

yt = g(xt, ut, σz, σv) (5)

xt+1 = h(xt, ut, σz, σv) + h̄ξξt+1 (6)

for generic functions g(·) and h(·) where h̄ξ is a known nx × nz matrix of the form

h̄ξ ≡

[
0

Z

]
.

We are interested in a second-order approximation of (5) and (6) around a deterministic

steady state in which σz = σv = 0 and ut = σzū = 0. In this deterministic steady state

xt = x̄ and yt = ȳ satisfy

ȳ = g(x̄,0, 0, 0)

x̄ = h(x̄,0, 0, 0)

or, equivalently

f(ȳ, x̄, ȳ, x̄) = 0.

2.2 First-order approximation

First, we characterize a first-order approximation of (5) and (6). We guess and verify that

this approximation takes the form

ỹt = ḡxx̃t (7)

x̃t+1 = h̄xx̃t + h̄ξξt+1 (8)
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where ỹt ≡ yt− ȳ, x̃t ≡ xt−x̄ and ḡx and h̄x are the Jacobian matrices of the functions g(·)
and h(·) with respect to x, of size ny × nx and nx× nx, respectively, and evaluated at the

steady state. To verify this guess, we take a first-order approximation of (1), obtaining

Df̄ŷ · Etỹt+1 +Df̄x̂ · Etx̃t+1 +Df̄y · ỹt +Df̄x · x̃t = 0 (9)

where Df̄ŷ, Df̄x̂, Df̄y, and Df̄x are matrices containing the respective gradients of the

vector of functions f(·) taken with respect to the arguments of the function and evaluated

at the above-defined steady state. In particular hats denote the gradient with respect to

time t+ 1 vectors, ŷ stands for yt+1 and x̂ for xt+1.

To verify our guess, we plug (7) and (8) into (9) noting that Etξt+1 = 0. It follows

that the matrices ḡx and h̄x have to satisfy the following set of n× nx conditions.

Df̄ŷḡxh̄x +Df̄yḡx +Df̄x̂h̄x +Df̄x = 0. (10)

The above set of conditions can be solved using standard algorithms. Indeed, it corre-

sponds to that of Schmitt-Grohé and Uribe (2004) in the case in which the volatility is

non stochastic: the matrices ḡx and h̄x are the same as in their framework. However,

the overall solution given by (7) and (8) does not correspond to their solution since the

driving stochastic disturbance is still a non-linear process, which is described by (3). In

particular, (7), (8) together with (3) and (4) represent the best conditionally-linear so-

lution of (9) given that the exogenous state variables follow (2)-(4) and given that the

vector ut does not enter the set of equations (1) nor their arguments. Notice first that

(9) just imposes restrictions on the linear approximations of the functions g(·) and h(·)
of (5) and (6). Since Etξt+1 = 0, the approximations (7) and (8) are conditionally linear.

Moreover since h̄ξ is known, the best approximation of the term h̄ξξt+1, in equation (6),

is just the term itself which is what appears in (8).

Fernandez-Villaverde et al. (2009, 2010) assume that

ξt+1 = Ωt+1σzεz,t+1 (11)

where Ωt+1 is a diagonal matrix whose diagonal contains the vector of standard deviations

ωt+1; the log of the standard deviations follow

logωt+1 = log ω̄ + Λω logωt + σωVωεω,t+1 (12)

given appropriately defined matrices Λω and Vω, given the vector log ω̄ and stochastic

disturbances εω,t+1 where σω and σz are scalars with σω , σz ≥ 0. If εω,t+1 and εz,t+1 are
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statistically independent, the process for the exogenous state variables is also conditionally

linear.9 In this framework, Fernandez-Villaverde et al. (2009, 2010) look for a fully

linear approximation in which (11) is also linearized. However, an appropriate linear

approximation of (11) – also with respect to the scalar σz – would be zero and therefore the

overall first-order approximation of the solution would no longer be stochastic. However,

an alternative linear approximation would be to approximate ξt+1 as a linear function of

σzεz,t+1 in a way that also (8) becomes linear in the stochastic disturbances σzεz,t+1. In

their case a linear approximation of the exogenous state variables takes the form

x̃t+1 = h̄xx̃t + h̄ξΩ̄σzεz,t+1, (13)

in which Ω̄ is the diagonal matrix containing the vector ω̄ on its diagonal. Applying this

approximation to our context requires to set σv = 0 in (4) to obtain a linear approximation

of the exogenous state variables of the form

x̃t+1 = h̄xx̃t + h̄ξŪσzεz,t+1, (14)

in which Ū is the diagonal matrix containing the vector ū on its diagonal. Solution (14)

is now in the form of a linear multivariate autoregressive process, but it is not the best

conditionally-linear approximation of (6). In our approximation (7) and (8) together with

(3) and the linear process (4) are all that is needed to characterize the conditionally-linear

approximation. In Fernandez-Villaverde et al. (2009, 2010), it suffices instead to consider

(7), (8) and (14) where time-varying volatility ceases to play a role. However, there is no

restriction in our and their approximation methods that should require to linearize also

ξt+1. This is not even a requirement for analytical tractability since conditionally linear

heteroskedastic models are commonly used and most recently in macro models.10

Indeed, we will show that there are actually several advantages of our conditionally-

linear approximation. A first one is that in our case, first-order approximations will

retain a role for stochastic volatility, as in Justiniano and Primiceri (2008), although not

a distinct role, since risk enters only jointly with the structural shock. In Fernandez-

Villaverde et al. (2009, 2010), on the contrary, first-order approximations will lose any

role for time-varying risk. Such difference between our and their linear approximations

will also be importantly reflected in the second-order approximation and especially in

9Fernandez-Villaverde et al. (2009, 2010) do not assume explicitly conditional linearity and, perhaps,
they are looking at the broader class of non-linear processes for the exogenous state variables.

10See Justiniano and Primiceri (2008) for further arguments to justify what they call a “partially
nonlinear” approximation in the same model of Fernandez-Villaverde et al. (2009, 2010). This would be
a conditionally-linear approximation when εω,t+1 and εz,t+1 are statistically independent.
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the role that time-varying volatility plays in it. A further advantage of our approach,

indeed, is that time-varying volatility will play a “distinct and direct” role already in a

second-order approximation whereas in Fernandez-Villaverde et al. (2009, 2010) at least

a third-order approximation is needed. With “distinct and direct” role, we mean that

the impulse response functions of the variables of interest with respect to the primitive

volatility shock εv,t+1 can be in general different from zero.11 As a consequence, a very

appealing implication of our method is that risk premia evaluated using first-order ap-

proximations will be time-varying, in contrast to the constant risk premia implied by

the framework of Fernandez-Villaverde et al. (2009, 2010). In their context, indeed,

higher-order approximations will be needed to characterize time-varying risk premia.

We conclude this section by noting that a complete linear approximation to (5) and

(6) can be represented as

ỹt = ḡxx̃t + ḡuut + ḡzσz + ḡvσv

x̃t+1 = h̄xx̃t + h̄uut + h̄zσz + h̄vσv + h̄ξξt+1.

However, plugging the above equations into (9) shows that ḡu, ḡz, ḡv, h̄u, h̄z, h̄v are all

zero matrices.

2.3 Second-order approximation

In this section, we characterize a second-order approximation of the solutions (5) and (6).

We guess and verify that it takes the form

ỹt = ḡxx̃t +
1

2
(Iy ⊗ x̃′t)ḡxxx̃t +

1

2
(Iy ⊗ u′t)ḡuuut +

1

2
ḡvvσ

2
v +

1

2
ḡzzσ

2
z + ḡzuσzut (15)

x̃t+1 = h̄xx̃t+
1

2
(Ix⊗ x̃′t)h̄xxx̃t+

1

2
(Ix⊗u′t)h̄uuut+

1

2
h̄vvσ

2
v+

1

2
h̄zzσ

2
z + h̄zuσzut+ h̄ξξt+1 (16)

where Iy and Ix are identity matrices of order ny×ny and nx×nx, respectively, ⊗ denotes

the Kronecker product and ḡxx, ḡuu, ḡzz, ḡvv, ḡzu, h̄xx, h̄uu, h̄zz, h̄vv, h̄zu are conformable

matrices, corresponding to the Magnus-Neudecker Hessian matrices of functions ḡ and h̄

with respect to the arguments in the indexes.12 Specifically, ḡxx is defined as

ḡxx =
∂2g(x, u, σz, σv)

∂x∂x′
= Dxvec

[(
Dxg(x̄,0, 0, 0)

)′]
,

11Accordingly, since in our first-order approximation there is no distinct role for volatility in affecting
the endogenous variables, the impulse response of any variable with respect to a volatility shock is always
zero.

12See Magnus and Neudecker (1999).
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evaluated at the steady state, and consists of ny vertically stacked symmetric nx×nx ma-

trices (ḡxx is therefore of size ny ·nx×nx). All remaining matrices are defined analogously.

To evaluate this guess, we take a second-order approximation of (1), to get

0 = Et

{
Df̄ iŷ · ỹt+1 +Df̄ ix̂ · x̃t+1 +Df̄ iy · ỹt +Df̄ ix · x̃t

+
1

2
ỹ′t+1 ·Df̄ iŷŷ · ỹt+1 + x̃′t+1 ·Df̄ iŷx̂ · ỹt+1 + ỹ′t ·Df̄ iŷy · ỹt+1

+ x̃′t ·Df̄ iŷx · ỹt+1 +
1

2
x̃′t+1 ·Df̄ ix̂x̂ · x̃t+1 + ỹ′t ·Df̄ ix̂y · x̃t+1

+ x̃′t ·Df̄ ix̂x · x̃t+1 +
1

2
ỹ′t ·Df̄ iyy · ỹt + x̃′t ·Df̄ iyx · ỹt +

1

2
x̃′t ·Df̄ ixx · x̃t

}
, (17)

for each i = 1, ..., n and where f i denotes the i-component of the vector f .

The second-order approximation of (1) can be cast in a more compact form as

0 = Et


Df̄


ỹt+1

x̃t+1

ỹt

x̃t

+
1

2


In ⊗ ỹt+1

In ⊗ x̃t+1

In ⊗ ỹt
In ⊗ x̃t


′

Hf̄


ỹt+1

x̃t+1

ỹt

x̃t



, (18)

where Df̄ ≡
[
Df̄ŷ Df̄x̂ Df̄y Df̄x

]
denotes the n× 2n Jacobian matrix of function f ,

and Hf̄ the corresponding 2n2× 2n Magnus–Neudecker Hessian matrix, evaluated at the

steady state:

Hf̄ = Dvec
[
(Df̄)′

]
.

We use equations (7) and (8) into (18) to evaluate the second-order terms and (15)

and (16) to evaluate the first-order terms, taking into account the restrictions (10).

Making use of Etξt+1 = 0, we obtain:

0 =
1

2
Et

{
Df̄ŷ

[
(ḡx ⊗ x̃′t) h̄xxx̃t + (ḡx ⊗ u′t) h̄uuut + ḡxh̄zzσ

2
z + ḡxh̄vvσ

2
v + 2ḡxh̄zuσzut

+
(
Iy ⊗ u′t+1

)
ḡuuut+1 +

[
Iy ⊗ (h̄xx̃t + h̄ξξt+1)

′] ḡxx(h̄xx̃t + h̄ξξt+1) + ḡzzσ
2
z + ḡvvσ

2
v

+ 2ḡzuσzut+1

]
+Df̄x̂

[
(Ix ⊗ x̃′t) h̄xxxt + (Ix ⊗ u′t) h̄uuut + h̄zzσ

2
z + h̄vvσ

2
v + 2h̄zuσzut

]
+Df̄y

[
(Iy ⊗ x̃′t) ḡxxxt + (Iy ⊗ u′t) ḡuuut + ḡzzσ

2
z + ḡvvσ

2
v + 2ḡzuσzut

]
+
[
In ⊗ (ḡxh̄xx̃t + ḡxh̄ξξt+1)

′]Hf̄ŷ · w̃t+1 +
[
In ⊗ (h̄xx̃t + h̄ξξt+1)

′]Hf̄x̂ · w̃t+1

+ (In ⊗ x̃′tḡ′x)Hf̄y · w̃t+1 + (In ⊗ x̃′t)Hf̄x · w̃t+1

}
, (19)
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where w̃t+1 ≡ [ỹ′t+1 x̃′t+1 ỹ′t x̃′t]
′ is a 2n × 1 vector and Hf̄ŷ, Hf̄x̂, Hf̄y, and Hf̄x are

the Magnus-Neudecker Hessian matrices of the vector of functions f(·) taken with respect

to the arguments of the function and evaluated at the above-defined steady state, such

that

Hf̄ =


Hf̄ŷ

Hf̄x̂

Hf̄y

Hf̄x

 .
Specifically, Hf̄ŷ is defined as

Hf̄ŷ = Dvec
[
(Df̄ŷ)

′],
and analogously for the other terms. Moreover, equations (7) and (8) imply

w̃t+1 = M̄xx̃t + M̄ξξt+1, (20)

where Mx and Mξ are matrices of order 2n× nx and 2n× nz, respectively, defined by

M̄x ≡


ḡxh̄x

h̄x

ḡx

Ix

 M̄ξ ≡


ḡxh̄ξ

h̄ξ

0(ny×nz)

0(nx×nz)

 . (21)

From equation (19), and using (20), we can collect the quadratic terms in the vector

x̃t, to obtain

0 =
1

2
Et

{(
Df̄ŷ · ḡx ⊗ x̃′t

)
h̄xxx̃t +

(
Df̄ŷ ⊗ x̃′th̄′x

)
ḡxxh̄xx̃t +

(
Df̄x̂ ⊗ x̃′t

)
h̄xxxt

+
(
Df̄y ⊗ x̃′t

)
ḡxxxt +

(
In ⊗ x̃′th̄′xḡ′x

)
Hf̄ŷ · M̄xx̃t +

(
In ⊗ x̃′th̄′x

)
Hf̄x̂ · M̄xx̃t

+ (In ⊗ x̃′tḡ′x)Hf̄y · M̄xx̃t + (In ⊗ x̃′t)Hf̄x · M̄xx̃t

}
. (22)

Following Gomme and Klein (2008), given a generic n · m × m matrix A consisting of

n square matrices Ai stacked vertically, with i = 1, ..., n, we define trm(A) as the n × 1

vector of traces of the n matrices Ai:

trm(A) = [tr(A1) tr(A2) ... tr(An)]′.

10



We can use the above operator to show that moment condition (22) implies the following

set of n · nx × nx equations:

0 =
(
Df̄ŷ · ḡx ⊗ Ix

)
h̄xx +

(
Df̄ŷ ⊗ h̄′x

)
ḡxxh̄x +

(
Df̄x̂ ⊗ Ix

)
h̄xx

+
(
Df̄y ⊗ Ix

)
ḡxx +

(
In ⊗ h̄′xḡ′x

)
Hf̄ŷ · M̄x +

(
In ⊗ h̄′x

)
Hf̄x̂ · M̄x

+ (In ⊗ ḡ′x)Hf̄y · M̄x +Hf̄x · M̄x, (23)

which can be solved for the unknown matrices ḡxx and h̄xx, given h̄x, ḡx, Df̄ and Hf̄ .

We can then collect the remaining terms and obtain

0 =
1

2
Et

{
Df̄ŷ

[
(ḡx ⊗ u′t) h̄uuut + ḡxh̄zzσ

2
z + ḡxh̄vvσ

2
v + 2ḡxh̄zuσzut +

(
Iy ⊗ u′t+1

)
ḡuuut+1

+
(
Iy ⊗ ξ′t+1h̄

′
ξ

)
ḡxxh̄ξξt+1 + ḡzzσ

2
z + ḡvvσ

2
v + 2ḡzuσzut+1

]
+Df̄x̂

[
(Ix ⊗ u′t) h̄uuut + h̄zzσ

2
z + h̄vvσ

2
v + 2h̄zuσzut

]
+Df̄y

[
(Iy ⊗ u′t) ḡuuut + ḡzzσ

2
z + ḡvvσ

2
v + 2ḡzuσzut

]
+
(
In ⊗ ξ′t+1h̄

′
ξḡ
′
x

)
Hf̄ŷ · M̄ξξt+1 +

(
In ⊗ ξ′t+1h̄

′
ξ

)
Hf̄x̂ · M̄ξξt+1

}
. (24)

Given a generic square matrix A, of order m, we define diagm(A) as the diagonal

matrix whose main diagonal is that of matrix A. Moreover, given a generic n · m × m
matrix B consisting of n square matrices Bi stacked vertically, with i = 1, ..., n, we define

dgm(B) as the n · m × m matrix that stacks vertically the m × m diagonal matrices

diagm(Bi):

dgm(B) = [diagm(B1) diagm(B2) ... diagm(Bn)]′.

We can use the above operator to show, for generic and conformable matrices A and B:

Et
{(
I ⊗ ξ′t+1A

′)BAξt+1

}
= Et

{
trm

[(
I ⊗ ξ′t+1A

′)BAξt+1

]}
=

trm
[
(I ⊗ A′)BAEt

{
ξt+1ξ

′
t+1

}]
= trm [(I ⊗ A′)BAUtU ′t ] ,

where “trm” is the matrix trace operator defined earlier, and in the last equality we used

Et(ξt+1ξ
′
t+1) = UtU

′
t , as implied by equation (3). Moreover, since Ut is a diagonal matrix

whose vector on the main diagonal is ut, the following also holds:

trm [(I ⊗ A′)BAUtU ′t ] = trm {dgm [(I ⊗ A′)BA] · utu′t} ,

11



from which we can conclude:

Et
{(
I ⊗ ξ′t+1A

′)BAξt+1

}
= trm {dgm [(I ⊗ A′)BA] · utu′t} . (25)

Recall the definition of the process for the standard deviations:

ut+1 = σz(Iz − Λu)ū+ Λuut + σvV εv,t+1.

We can use the above definition to write the quadratic term in ut+1 in equation (24) as:

Et

{(
Df̄ŷ ⊗ u′t+1

)
ḡuuut+1

}
= Et

{
σ2
z

[
Df̄ŷ ⊗ ū′(Iz − Λu)

′] ḡuu(Iz − Λu)ū

+
(
Df̄ŷ ⊗ u′tΛ′u

)
ḡuuΛuut + σ2

v

(
Df̄ŷ ⊗ ε′v,t+1V

′) ḡuuV εv,t+1

+ 2σz
[
Df̄ŷ ⊗ ū′(Iz − Λu)

′] ḡuuΛuut

}
. (26)

Using the above to collect all second-order terms in ut from equation (24), considering

equation (25) and exploiting the operators “trm” and “dgm”, we obtain the following

system of n · nz × nz equations

0 =
(
Df̄ŷ · ḡx ⊗ Iz

)
h̄uu +

(
Df̄ŷ ⊗ Λ′u

)
ḡuuΛu +

(
Df̄x̂ ⊗ Iz

)
h̄uu +

(
Df̄y ⊗ Iz

)
ḡuu

+ dgm
[(
Df̄ŷ ⊗ h̄′ξ

)
ḡxxh̄ξ +

(
In ⊗ h̄′ξḡ′x

)
Hf̄ŷ · M̄ξ +

(
In ⊗ h̄′ξ

)
Hf̄x̂ · M̄ξ

]
, (27)

which can be solved for matrices ḡuu and h̄uu, given h̄x, ḡx, h̄xx, ḡxx, Df̄ and Hf̄ . Notice

that h̄uu and ḡuu will therefore consist of nx and ny, respectively, vertically stacked matrices

of dimensions nz × nz which will be diagonal matrices.

We can further collect terms in σzut from equation (24), considering equation (26) and

using the trm operator, to obtain a set of n× nz equations:

0 = (Df̄ŷ · ḡx +Df̄x̂)h̄zu +Df̄ŷ · ḡzuΛu +Df̄y · ḡzu +
[
Df̄ŷ ⊗ ū′(Iz − Λu)

′] ḡuuΛu, (28)

which can be solved for the unknown matrices ḡzu and h̄zu, given ḡx, ḡuu, and Df̄ .

Similarly, we can collect the terms in σ2
z obtaining a set of n× 1 equations

0 = (Df̄ŷ · ḡx +Df̄x̂)h̄zz + (Df̄ŷ +Df̄y)ḡzz

+ 2Df̄ŷ · ḡzu(Iz − Λu)ū+
[
Df̄ŷ ⊗ ū′(Iz − Λu)

′] ḡuu(Iz − Λu)ū, (29)

which can be solved for ḡzz and h̄zz, given ḡx, ḡzu, ḡuu, and Df̄ .

Finally, we can collect the terms in σ2
v obtaining a set of n× 1 equations

0 = (Df̄ŷ · ḡx +Df̄x̂)h̄vv + (Df̄ŷ +Df̄y)ḡvv + trm
[
(Df̄ŷ ⊗ V ′)ḡuuV

]
, (30)

which deliver ḡvv and h̄vv, given ḡx, ḡuu, and Df̄ .

12



3 A model with time-varying variances

In this section we discuss a more parsimonious model with time-varying volatility in

which the volatility is modeled through an autoregressive linear process for conditional

variances rather than for conditional standard deviations, as in the previous section. The

only difference with respect to the previous model is in equation (4) which we now replace

with

u2
t+1 = σ2

z(Iz − Λuū
2) + Λuu

2
t + σ2

vV εv,t+1. (31)

Each element of u2
t is the corresponding squared value of each element of ut, which still

corresponds to the diagonal of matrix Ut as in (3); ū is a vector of dimension nz×1 with ū2

being a vector of the same dimension whose elements are each the square of the respective

element of ū; V and Λu are matrices of order nz × nz, εv,t+1 is a vector of innovation of

dimension nz × 1 which are assumed to have a bounded support and to be independently

and identically distributed with mean zero and variance/covariance matrix Iz; σv and σz

are scalars with σv, σz ≥ 0.

Differently from the previous model, it is now the conditional variance of each element

of the stochastic disturbances ξt+1 which is modeled as a linear process, (31). As a

consequence, the scale factors σz and σv have been appropriately squared.

It is straightforward to show that a first-order approximation of this alternative model

is identical to that of the previous section except that now (4) replaces (31).

Instead, a second order approximation will be of the form

ỹt = ḡxx̃t +
1

2
(Iy ⊗ x̃′t)ḡxxx̃t +

1

2
ḡuuu

2
t +

1

2
ḡzzσ

2
z , (32)

x̃t+1 = h̄xx̃t +
1

2
(Ix ⊗ x̃′t)h̄xxx̃t +

1

2
h̄uuu

2
t +

1

2
h̄zzσ

2
z + h̄ξξt+1, (33)

where the sizes of matrices ḡx, ḡxx, ḡzz, and h̄x, h̄xx, h̄zz, are the same as in the previous

section. Instead ḡuu and h̄uu are matrices of order ny × nz and nx × nz, respectively.13

We now evaluate the second-order expansion (18), using equations (7) and (8) for the

second-order terms, taking into account (31), and the second-order guess solutions (32)

and (33) for the first-order terms, taking into account the restrictions implied by (10).

13Notice that the expansion with respect to σ2
v is zero up to second-order terms.
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We obtain:

0 =
1

2
Et

{
Df̄ŷ

[
(ḡx ⊗ x̃′t) h̄xxx̃t + ḡxh̄uuu

2
t + ḡxh̄zzσ

2
z + ḡzzσ

2
z

+
[
Iy ⊗ (h̄xx̃t + h̄ξξt+1)

′] ḡxx(h̄xx̃t + h̄ξξt+1) + σ2
z ḡuu(Iz − Λu)ū

2 + ḡuuΛuu
2
t

]
+Df̄x̂

[
(Ix ⊗ x̃′t) h̄xxxt + h̄uuu

2
t + h̄zzσ

2
z

]
+Df̄y

[
(Iy ⊗ x̃′t) ḡxxxt + ḡuuu

2
t + ḡzzσ

2
z

]
+
[
In ⊗ (ḡxh̄xx̃t + ḡxh̄ξξt+1)

′]Hf̄ŷ · w̃t+1 +
[
In ⊗ (h̄xx̃t + h̄ξξt+1)

′]Hf̄x̂ · w̃t+1

+ (In ⊗ x̃′tḡ′x)Hf̄y · w̃t+1 + (In ⊗ x̃′t)Hf̄x · w̃t+1

}
, (34)

From the above equations it is clear that matrices ḡxx and h̄xx are equivalent to those of

the previous model and satisfy equation (23).

We can collect the remaining terms:

0 = Et

{
Df̄ŷ

[
ḡxh̄uuu

2
t + ḡxh̄zzσ

2
z + ḡzzσ

2
z +

(
Iy ⊗ ξ′t+1h̄

′
ξ

)
ḡxxh̄ξξt+1

+ σ2
z ḡuu(Iz − Λu)ū

2 + ḡuuΛuu
2
t

]
+Df̄x̂

[
h̄uuu

2
t + h̄zzσ

2
z

]
+
(
In ⊗ ξ′t+1h̄

′
ξḡ
′
x

)
Hf̄ŷ · M̄ξξt+1 +

(
In ⊗ ξ′t+1h̄

′
ξ

)
Hf̄x̂ · M̄ξξt+1

}
. (35)

Given a generic n·m×m matrix A consisting of n square matrices Ai stacked vertically,

with i = 1, ..., n, we define dgv(A) as the m× n matrix that stacks horizontally the main

diagonals of each of the m×m matrices Ai:

dgv(A) = [diagv(A1) diagv(A2) ... diagv(An)],

where diagv(Ai) is an m × 1 vector collecting the elements on the main diagonal of Ai.

We can use the above operator, together with the matrix trace operator defined in the

previous section, to show, for generic and conformable matrices A and B:

Et
{(
I ⊗ ξ′t+1A

′)BAξt+1

}
= Et

{
trm

[(
I ⊗ ξ′t+1A

′)BAξt+1

]}
=

trm
[
(I ⊗ A′)BAEt

{
ξt+1ξ

′
t+1

}]
= trm [(I ⊗ A′)BAUtU ′t ] = dgv [(I ⊗ A′)BA]

′
u2
t .

Using the above to express the quadratic terms in ξt+1 in equation (35) in terms of u2
t ,

we collect the latter to obtain the following system of n× nz conditions:

0 =
(
Df̄ŷ · ḡx +Df̄x̂

)
h̄uu +Df̄ŷ · ḡuuΛu +Df̄y · ḡuu

+ dgv
[(
Df̄ŷ ⊗ h̄′ξ

)
ḡxxh̄ξ +

(
In ⊗ h̄′ξḡ′x

)
Hf̄ŷ · M̄ξ +

(
In ⊗ h̄′ξ

)
Hf̄x̂ · M̄ξ

]′
, (36)
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which can be solved for matrices h̄uu and ḡuu.

Finally, we can collect the terms in σ2
z from equation (35), to show that matrices h̄zz

and ḡzz solve the following system of n× 1 equations:

0 =
(
Df̄ŷḡx +Df̄x̂

)
h̄zz +

(
Df̄ŷ +Df̄y

)
ḡzz +Df̄ŷḡuu (Iz − Λu) ū

2. (37)

4 Application: the neoclassical growth model

To apply our method to a simple example, we consider the standard neoclassical growth

model as it is also done in Schmitt-Grohé and Uribe (2004). We denote with Ct consump-

tion and with Kt the capital stock at the beginning of period t. The parameters β, δ, γ and

α represent (respectively) the subjective discount factor, the depreciation rate of capital,

relative risk aversion and the return to scale of capital in the production function. The

equilibrium conditions of the model are given by:

Kt+1 − eatKα
t − (1− δ)Kt + Ct = 0 (38)

Et

{
β
[
αeat+1Kα−1

t+1 + (1− δ)
](Ct+1

Ct

)−γ}
− 1 = 0 (39)

at+1 = ρat + utεa,t+1 (40)

∀t ≥ 0, given K0 and a0 = 0; where at denotes the log of the productivity shock. In

particular, the innovation εa,t+1 to the log-productivity process (40) is identically and

independently distributed process with mean zero and unitary variance; ut captures the

time-varying conditional standard deviation of at+1 and ρ is a parameter, with 0 ≤ ρ < 1.

We model the square of ut, i.e. the conditional variance of at+1, as an exogenous stochastic

linear process

u2
t+1 = (1− λ)σ2

aū
2 + λu2

t + σ2
vεv,t+1 (41)

with initial condition u2
0 = σ2

aū
2 where λ is a coefficient such that 0 ≤ λ < 1, while σa

and σv are non-negative scalars; ū is a positive parameter and the innovation εa,t+1 is

identically and independently distributed process with mean zero and unitary variance.

Notice that since Et (utεa,t+1) = 0, the log-productivity process (40) is a conditionally

linear stochastic process.

We can cast this model in the general notation of Section 2. Defining ct ≡ lnCt,
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kt ≡ lnKt, we can write yt = [ct] and xt = [kt, at] and therefore

Et {f(yt+1, yt, xt+1, xt)} = Et


β
[
αeat+1+(α−1)kt+1 + (1− δ)

]
e−γct+1 − e−γct

ekt+1 − eat+αkt − (1− δ)ekt + ect

at+1 − ρat

 = 0. (42)

According to (5) and (6), a solution to (42) takes the form

ct = g(kt, at, ut, σa, σv) (43)

kt+1 = h(kt, at, ut,σa, σv) (44)

at+1 = ρat + ξt+1

with ξt+1 ≡ utεa,t+1 and where the square of ut follows (41).

In the non-stochastic steady-state, in which σa = σv = 0 and f(ȳ, ȳ, x̄, x̄) = 0, the

following system is used to solve for K̄ and C̄

δK̄ − K̄α − C̄ = 0,

β
[
αK̄α−1 + (1− δ)

]
= 1.

Using the calibration of Schmitt-Grohé and Uribe (2004), i.e. β = 0.95, δ = 1, α = 0.3,

ρ = 0, γ = 2, we obtain:

K̄ = 0.1664, C̄ = 0.4175.

According to (7) and (8), a first-order approximation of (43) and (44) takes the form

c̃t = gkk̃t + gaat (45)

k̃t+1 = hkk̃t + haat (46)

where we have defined c̃t ≡ lnCt − ln C̄, k̃ ≡ lnKt − ln K̄ and the coefficients gk, ga, hk

and ha coincide with those of Schmitt-Grohé and Uribe (2004):

gk = 0.2525, ga = 0.8417

hk = 0.4191, ha = 1.3970.

However, there is an important difference between our approximation and that of

Schmitt-Grohé and Uribe (2004). In our case, at follows the conditionally-linear and

heteroskedastic process (40), in which the conditional variance is modelled as in (41). In
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their framework, instead, shocks are homoskedastic and at follows the following linear

process:

at+1 = ρat + σaūεa,t+1. (47)

In Fernandez-Villaverde et al. (2009, 2010) the original stochastic process for the exoge-

nous state variables is heteroskedastic as in (11) and (12), but a linear approximation of

this process would be consistent with (47) in which risk is no longer time-varying. Instead,

in our first-order approximation stochastic volatility still matters and will be particularly

relevant when estimating the model, as it is done in Justiniano and Primiceri (2008).

However, as mentioned in section 2.2, in our first-order approximation risk does not

play a “distinct and direct” role. To see this point, we discuss the impulse response

functions. Defining the impulse response of a generic variable xt at time t+j with respect

to the shock εt as

I(xt+j|εt) =
∂(Etxt+j − Et−1xt+j)

∂εt
,

we obtain that the impulse response with respect to the shock εa,t is given by

I(c̃t+j|εa,t) = gkI(k̃t+j|εa,t) + gaI(at+j|εa,t)

I(k̃t+j+1|εa,t) = hkI(k̃t+j|εa,t) + haI(at+j|εa,t)

for each j > 0 with I(k̃t|εa,t) = 0 where

I(at+j+1|εa,t) = ρI(at+j|εa,t)

for each j > 0 and

I(at|εa,t) = σaū.

The impulse response with respect to the shock εa,t will not be affected by the fact that

shocks are heteroskedastic or not and therefore will coincide with those of Schmitt-Grohé

and Uribe (2004). However, even if we compute the impulse response with respect to

risk, i.e. with respect to the shock εv,t, this will be zero at all times: I(c̃t+j|εv,t) = 0 and

I(k̃t+j|εv,t) = 0 for each j > 0. Therefore risk will not play a distinct and separate role in

affecting the variables of interest even in our first-order approximation. To get this role,

we need to go to a second-order approximation.

Following (32) and (33), the second-order approximation will be of the form

c̃t = gkk̃t + gaat +
1

2
guuu

2
t +

1

2
gkkk̃

2
t +

1

2
gaaa

2
t + gkaatk̃t +

1

2
gσσσ

2
a

k̃t+1 = hkk̃t + haat +
1

2
huuu

2
t +

1

2
hkkk̃

2
t +

1

2
haaa

2
t + hkaatk̃t +

1

2
hσσσ

2
a
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where again at follows (40) and u2
t follows (41). To compute the numerical values for

the remaining coefficients, we consider the calibration adopted by Schmitt-Grohé and

Uribe (2004) for the structural parameters, and σa = σv = ū = 1 and λ = 0.5 for the

parameters entering equation (41) and governing the dynamics of stochastic volatility.

This calibration implies:

guu = −0.1444, gkk = −0.0051, gaa = −0.0569, gka = −0.0171, gσσ = −0.0478,

huu = 0.3622, hkk = −0.0070, haa = −0.0778, hka = −0.0233, hσσ = 0.1199.

It is also clear that second-order-approximation impulse response function with respect to

the shock εa,t will not be affected by the fact that shocks are heteroskedastic or not and

therefore will correspond to those of Schmitt-Grohé and Uribe (2004). Instead, now there

is a distinct role for risk to affect the variables of interest. Indeed, the impulse responses

with respect to the shock εv,t will be of the form

I(c̃t+j|εv,t) = gkI(k̃t+j|εv,t) + guuI(u2
t+j|εv,t)

I(k̃t+j+1|εv,t) = hkI(k̃t+j|εv,t) + huuI(u2
t+j|εv,t)

for each j > 0 with I(k̃t|εv,t) = 0 where

I(u2
t+1+j|εv,t) = λI(u2

t+j|εv,t)

for each j > 0 and

I(u2
t |εv,t) = σ2

v .

Obviously, in Schmitt-Grohé and Uribe (2004) there is no role at all for time-varying

volatility while in Fernandez-Villaverde et al. (2009, 2010) there will not be a distinct

role and therefore impulse responses with respect to εv,t will be zero. To get this role,

they have to go to higher-order approximations.

In Figure 1 we show the impulse response of consumption and capital to 1% change in

risk to productivity shock. The impact response of consumption and investment depends

on the relative strength of two opposite forces. On the one hand, higher volatility tends

to increase the supply of saving for future production and therefore for precautionary

reasons.14 On the other hand, higher volatility increases the expected excess return on

capital reducing its appeal as an asset to accumulate. Under our parametrization, in par-

ticular with δ = 1, the precautionary-saving effect dominates and on impact consumption

14This channel is stronger when the depreciation is larger, and is clearly dominant with full depreciation.
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Figure 1: Dynamic response of consumption and capital to a 1% innovation to the variance of produc-
tivity shocks. Percentage points.

decreases while investment rises.15 In the following periods because of capital accumu-

lation, production and consumption increase above their steady state levels as long as

agents still accumulate capital above steady state.

As we have already discussed, another important advantage of our approach with

respect to Schmitt-Grohé and Uribe (2004) and Fernandez-Villaverde et al. (2009, 2010)

is that risk-premia evaluated using first-order approximation will be time-varying. To see

this, let rt+1 be the risk-free real rate, and define rk,t+1 as the return on capital from

period t to period t+ 1:

rk,t+1 = αeat+1+(α−1)kt+1 + (1− δ).

Using the above, we can show that in a second-order approximation the expected excess

return of capital is given by

Et(r̃k,t+1 − r̃t+1) +
1

2
vart(r̃k,t+1) = γcovt(r̃k,t+1,∆c̃t+1)

where r̃k,t+1 and r̃t+1 denote the log deviation from steady state of the real return on capital

and the risk-free rate, respectively. The right-hand side measures the risk premium and

15When γ = δ = 1, saving is always a constant fraction of income and therefore risk does not have a
distinct role.
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this will be time-varying because

covt(r̃k,t+1,∆c̃t+1) = φcovt(at+1 + (α− 1)k̃t+1, gkk̃t+1 + gaat+1)

= φ

{
Et

[
gaa

2
t+1 + ((α− 1)ga + gk)k̃t+1at+1 + (α− 1)gkk̃

2
t+1

]
−Et

[
at+1 + (α− 1)k̃t+1

]
Et

[
gkk̃t+1 + gaat+1

]}
= φgau

2
t

which will indeed depend on the time-variation of the variance u2
t , where φ ≡ 1−β(1−δ).

In Schmitt-Grohé and Uribe (2004) and Fernandez-Villaverde et al. (2009, 2010), this

risk premium, computed using a first-order approximation, will be constant.

5 Conclusion

Recent models used in macroeconomics examine the role of stochastic volatility for the

equilibrium allocation. To solve these models, researchers have appealed to global solu-

tions or high-order approximation techniques. Global-solution techniques suffer from the

‘curse of dimensionality’, since the number of state variables limits their computational

efficiency. Commonly used approximation techniques require third-order expansion of the

equilibrium conditions in order to display a distinct role for stochastic volatility.

Here we propose a first and second-order approximation method to study the role

of time-varying exogenous risk in discrete-time dynamic stochastic models which en-

compass standard dynamic general equilibrium models with rational expectations. In

our framework, an important assumption is that the exogenous state variables follow a

conditionally-linear stochastic process in which either the variance or the standard devi-

ation of the primitive shocks are modelled through a stochastic linear process. In this

way, we generalize the framework and the method developed by Schmitt-Grohé and Uribe

(2004), Kim et al. (2008) and Gomme and Klein (2008) to the case in which the exogenous

state variables follow an heteroskedastic process.

The main contribution of our paper is to show that first and second-order approxi-

mations of the solution are sufficient to capture most of the relevant elements needed to

study the impact of uncertainty in standard macroeconomic models. There are three main

advantages following our method. First, a first-order approximation falls in the broader

class of conditionally-linear approximations displaying a role for time-varying volatility,

although not a distinct one. Second, given that a first-order approximation retains a role

20



for stochastic volatility, the second-order approximation of the solution implies that the

time-varying volatility of primitive shocks can directly affect the endogenous variables.

Third, it follows from the previous results that risk-premia evaluated using first-order

approximations will be time-varying. All these advantages translate into a more parsimo-

nious model, more easily tractable for estimation purposes.

In addition to characterizing the second-order approximation of the solution when

shocks are conditionally linear, the paper offers a set of MATLAB codes designed to

compute the coefficients of the first and second-order approximations and provides a

simple example to illustrate the applicability of the method.16 In general, indeed, our

method can be applied easily to several macroeconomic models ranging from real business

cycle models, to monetary models and also to asset-pricing or finance models. In Benigno

et al. (2010), we employ this method to analyze how risk and monetary policy interact to

determine prices, exchange rates and asset prices in an open-economy model.

16The set of codes is available under the webpage of the authors.
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