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Abstract

We study interactions with different durations and termination
rules in a (quasi) continuous-time prisoner’s dilemma experiment.
We find that cooperation is easier to achieve and sustain with deter-
ministic horizons than with stochastic ones; end-game effects emerge,
but subjects postpone them with experience; longer duration helps
cooperation. Static theories for continuous-time games cannot si-
multaneously account for these findings and miss the evolution of
behavior across supergames. We propose a simple model – based on
the replicator dynamics – that proves consistent with this evidence.
The analysis of strategies and an additional treatment lend further
support to the proposed explanation.
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1 Introduction

In many field situations, actors can change actions frequently and asyn-
chronously, a different and less well understood strategic environment than
discretely repeated games. Examples include firms posting prices on the
Internet or via a centralized and transparent marketplace (as airlines),
workers choosing effort in a plant, nearby restaurants choosing menus, and
spouses sharing everyday chores. In these situations, the trade-off between
short-run gains from defection and long-term losses from punishment, cen-
tered on the discount factor, tends to lose relevance because reactions are
almost immediate. Other factors may then be more important as deter-
minants of cooperative behavior, and the question is whether the usual
comparative statics results for discretely repeated games also hold in con-
tinuous time.

The present paper reports results from laboratory experiments on Pris-
oner’s Dilemma games played in (almost) continuous time, shedding new
light on subjects’ behavior in high frequency environments. Besides study-
ing the comparative statics, this paper also examines which theories best
describe behavior in continuous-time games. Different theoretical frame-
works may be applied to these field and laboratory situations. We can think
of them as standard repeated games played very quickly (or with very low
discounting); we can adopt theories that model the game directly in con-
tinuous time (Simon and Stinchcombe, 1989; Bergin and MacLeod, 1993);
or we can model them as limits of perturbed discrete-time games (Kreps
et al., 1982; Radner, 1986; Friedman and Oprea, 2012). These theoretical
approaches generate different predictions regarding the existence of a fully
cooperative equilibrium, the uniqueness of the equilibrium, the individual
strategies that support equilibrium outcomes and the presence and timing
of an end-game effect. Running experiments in (almost) continuous time
offers a clean and controlled way to empirically investigate what is different
in these high frequency environments and which theoretical approach fits
them best.

Most previous experimental studies of social dilemmas compared situa-
tions where the game is repeated with relatively low frequency. This path
has only been broken recently by the experiment of Friedman and Oprea
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(2012), which has shown that continuous time does make a substantial dif-
ference. They found that when actions in a Prisoner’s Dilemma can be
changed at a very high frequency, so as to approximate a continuous-time
game, very high levels of cooperation are sustained with a deterministic
time horizon and relatively modest duration (60 seconds).

Here we study the comparative statics of cooperation levels in similar
high frequency interactions when changing key parameters such as period
duration – Long (60 seconds), Short (20 seconds), or Variable – and ter-
mination rule – deterministic or stochastic horizon. We parallel the exper-
imental study conducted by Dal Bó (2005) in discrete time to study the
comparative statics of games in continuous time.

While obtaining cooperation rates similar to Friedman and Oprea (2012)
in a comparable treatment, we uncover a puzzling qualitative difference
from the typical findings for discretely repeated games. In the short du-
ration treatments, cooperation rates are significantly higher with a deter-
ministic horizon than with a stochastic one (in the long duration they
are similar). In experiments with discretely repeated games, the oppo-
site effect of time horizon on cooperation rates is typically observed. The
result appears robust and contrasts both with predictions from standard
discrete-time repeated game theory and with previous experimental results
on discrete-time Prisoner’s Dilemma games.

A second puzzling result is that with deterministic duration, an end-
game effect exists but does not unravel cooperation. As subjects gained
experience, the end-game effect became less pronounced instead of the
subjects learning to apply backward induction and defect sooner. This
result also speaks against treating these situations like standard discretely
repeated games, and contrasts with experimental findings from discretely
repeated games where, with finite horizon, the end-game effect is stable or
strengthened by experience. It is also not entirely consistent with theories
of continuous-time games, as these do not predict an end-game effect (but
it is consistent with the third class of theories based on perturbations).

The third empirical regularity we observe is that cooperation rates are
significantly higher in treatments with longer expected duration. This find-
ing is in line with predictions based on standard, discretely repeated games,
where the shadow of the future is the main determinant of the decision to
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cooperate. It is particularly strong in treatments with a stochastic ending
and contrasts with predictions of continuous-time models.

How do these empirical findings compare with predictions of the three
classes of theoretical models? The most promising approach appears to
be the one based on a perturbation of discrete-time games (Kreps et al.,
1982; Radner, 1986; Friedman and Oprea, 2012), which predicts high co-
operation rates under deterministic duration and an end-game effect that
persists without leading to a complete unraveling of cooperation, with pos-
sible treatment-specific patterns. However, none of the mentioned theo-
retical approaches can simultaneously account for the three findings. In
particular, we are not aware of any equilibrium model which could explain
the considerably higher cooperation rates with a deterministic horizon than
with a stochastic one in the short duration treatments.

We hypothesize that a possible explanation of this puzzle is linked to
differences in agents’ learning patterns in the different treatments. To this
end, we introduce a simple evolutionary model based on the replicator
dynamics. We show that this model would predict that cooperation rates
increase with experience in all treatments, but that the increase should be
slower when the horizon is shorter and when it is stochastic rather than
deterministic. Hence, this model can account for cooperation rates being
higher in both deterministic horizon treatments and in longer expected
duration ones (something that none of the theoretical approaches discussed
earlier could explain in terms of equilibrium predictions). The model also
predicts a wider use of cut-off strategies – that prescribe cooperation up to
a given time and defection afterwards – when the horizon is deterministic
rather than stochastic. Empirical analysis of individual strategy adoption
brings consistent results: the use of cut-off strategies evolves to dominate
all treatments with a deterministic horizon (and only those).

To shed additional light on why learning appears slower in the Short-
Stochastic treatment, we run an additional treatment with periods of pre-
announced but variable duration. Period durations exactly replicate those
that occurred randomly in the Short-Stochastic treatment, but are de-
terministic and announced in advance. This allows us to disentangle the
two differences between the Short-Deterministic and Short-Stochastic treat-
ments: that in the latter period durations vary and are unknown at the
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beginning. Both factors have been suggested by different theories to have
a potential impact on learning. Our experimental results show that both
factors contribute to the faster learning to cooperate in the deterministic
treatment: the cooperation rates in the additional Variable-Deterministic
treatment are in between the other two short duration treatments, albeit
the median cooperation rates are closer to the Short-Deterministic one.

Finally, we find that subjects’ reaction time – while decreasing with
experience – remains consistently and significantly smaller in short duration
treatments than in long duration ones. This is suggestive of theories of
limited attention budgets (Simon, 1971; Kahneman, 1973; Sims, 2003) as
subjects seem to save and spread their limited attention energies along the
game’s duration. We leave to future, purposely designed experiments the
task of further exploring in this interesting direction.

The next section discusses the theoretical background in more detail;
Section 3 describes the experimental design; Section 4 presents our first
set of results; Section 5 contains our learning model; Section 6 presents
additional results and robustness checks and Section 7 reviews the related
literature. Section 8 briefly concludes.

2 Theoretical Considerations

The theory of games in continuous time is less developed than its counter-
part in discrete time. The topic can be approached from different perspec-
tives; here we sketch three of them that apply to social dilemma games.

A candidate theoretical approach is to view continuous-time games as
the smooth limit of standard discrete-time games. When a game is re-
peated in discrete time, theory predicts that behavior under deterministic
vs. stochastic time horizons should be quite different. Under the standard
assumptions of full rationality and self-regarding preferences, cooperation
cannot be sustained in equilibrium because of the standard backward in-
duction argument. In contrast, following the Folk theorems, if future inter-
actions loom sufficiently large, agents can support full cooperation under
a stochastic horizon. This approach would therefore predict significantly
higher rates of cooperation with stochastic rather than deterministic hori-
zons and with longer expected duration.
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A second possible approach is to model the games directly in continuous
time, which entails that deviations can be punished immediately (Simon
and Stinchcombe, 1989; Bergin and MacLeod, 1993). In continuous-time
games, the backward induction argument breaks down, as the real line is
not well ordered and a last period cannot be identified, even under a de-
terministic horizon. In other words, in continuous time ‘there is always
another period’ in which a deviation can be punished and backward in-
duction cannot be used. Moreover, the immediate gain from deviation is
negligible, since it can be punished with no delay. This setting leads to
the prediction that cooperation is an equilibrium regardless of the type of
stopping rule or of the length of the interaction, and (taken literally) that
no end-game effect should take place.

A third possible approach considers discrete-time games with a per-
turbation, which can take several forms (Kreps et al., 1982; Radner, 1986;
Friedman and Oprea, 2012). The continuous-time games can be modeled as
the limit of perturbed discrete-time games (as done in Friedman and Oprea,
2012). These models predict cooperation in the beginning of the game and
defections in the end, with the end-game effects depending on the beliefs
subjects have about the reaction times and the possible perturbations.

Table 1 summarizes the theoretical predictions of the above models,
which we briefly describe in what follows. Simon and Stinchcombe (1989)
build a general model of games with a finite number of actions and players.
They define the game on a discrete grid in a finite interval, then let the
grid interval go to zero, and assume that each strategy admits a uniformly
bounded number of moves in the game. Reasoning by backward induction,
they obtain that cooperation is typically sustainable in subgame perfect
equilibrium and that for the Prisoner’s Dilemma, full cooperation is the
unique equilibrium surviving iterated deletion of weakly dominated strate-
gies. The intuition behind this result is that no player would ever switch
from defection to cooperation when she has only one move left. So if both
players can react with a delay that tends to zero and can switch action at
least once in the game, the game will never end with one player defecting
and another one cooperating. Strictly speaking, in a continuous-time game
this theory suggests that under a deterministic horizon, there will be no
sizable end-game effects.
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Bergin and MacLeod (1993) build a related model that includes a degree
of inertia in changing actions as interactions are structured in a sequence
of intervals from t to t+ ε. They characterize the set of ε-subgame-perfect-
equilibria and then let ε go to zero. This leads to a full Folk Theorem for the
continuous-time Prisoner’s Dilemma that holds for both deterministic and
stochastic horizons. The intuition behind these predictions is that if players
adopt a trigger strategy that punishes a defection after a time interval of
size ε, the magnitude of the gains of defection is also of the order of ε.
Thus, as ε approaches zero, the incentive to deviate also vanishes. Because
of the multiplicity of equilibria, this theory has a weaker predictive power
than Simon and Stinchcombe (1989) and is consistent with a large number
of equilibrium paths observed in the lab.

Radner (1986) puts forward a theory of bounded rationality in dis-
cretely repeated games with a finite horizon based on ε−equilibria (re-
cently adopted and extended by Friedman and Oprea, 2012, to explain
their results). He predicts full initial cooperation, as long as there is a
small probability that the opponent plays a “cooperative” dynamic behav-
ioral strategy. His behavioral restriction is to a class of strategies of the
form “cooperate until period k or until the other player defects and defect
otherwise,” so-called cut-off strategies. He notes that if the players can
react swiftly to a defection of the other player, the losses that a player
may incur using a cut-off strategy with a very large k are bounded to be
very small, while the same strategy allows large gains from prolonged co-
operation if the opponent uses a cut-off strategy with a large k. The best
response strategy, defect at k − 1 if the other player waits until k, leads
to backward induction and unraveling. Relative to the safe but low non-
cooperation payoffs obtained using best reply and the induction argument
they trigger, the cooperative strategies become more and more attractive
when the number of repetitions grows. This implies that cooperation can
be sustained in deterministic horizon games with many periods or frequent
actions, if subjects realize that continuing cooperating rather than defect-
ing produces large expected benefits compared to the risk of small losses
one is exposed to. This argument applies, of course, to a stronger extent
to continuous-time games, as stressed by Friedman and Oprea (2012). It is
also consistent with an end-game effect at the end of the finite horizon. As
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shown in Appendix B.1, this model predicts the time distance between the
switch to permanent defection and the end of the game to be proportional
to subjects’ reaction time and otherwise independent of games’ duration.

Within the same approach, one can also include the ‘gang of four’ paper
for discrete-time games under a deterministic horizon (Kreps et al., 1982).
As we discuss in Appendix B.2, the main predictions of this model are
observationally equivalent to those of Friedman and Oprea (2012). Taking
the periods to be short, Kreps et al. (1982) also predict high rates of coop-
eration in the beginning of the game and an end-game effect. The timing
of this effect should be independent of the game’s duration but a function
of subjects’ reaction time. There are subtle differences between the pre-
dictions in Kreps et al. (1982) and Friedman and Oprea (2012) since the
models are built around slightly different perturbations of rational behav-
ior. Our data are not well-suited to discriminate between these models.

The models in Kreps et al. (1982), Radner (1986), and Friedman and
Oprea (2012) are built for a deterministic horizon, hence their application
to a stochastic horizon is less straightforward. That said, it appears that
the presence of types that play cooperative strategies, once appropriately
adjusted for the infinite horizon, should not make cooperation more difficult
to sustain as an equilibrium outcome.

3 Experimental Design

The experiment has five treatments. The two treatment variables are the
expected duration of each period and the termination rule. Table 2 sum-
marizes the characteristics of each treatment.

In all treatments, subjects played a series of (quasi) continuous-time
Prisoner’s Dilemma games with stage-game payoffs as in Table 3.1

Each session comprised a non-overlapping group of 24 subjects, who
interacted in pairs for 23 periods. Pairs were formed so that each subject

1As the instructions explained, the experiment was in quasi continuous time: “Within
a period, both you and the other will be able to change action as many times as you
wish. The time flows in very rapid ticks (of 16 hundredths of a second); in practice
there are between six and seven ticks every second, so that if you wish you can change
action six or seven times per second.” For brevity, from now on we will refer to it as a
continuous-time experiment.
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Termination rule
Deterministic Stochastic

Short
(20 secs.)

N=48
Period endowment: 15 pts.
Conversion rate: 50 pts.=1 e
- January 24, 2011
- February 4, 2011

N=48
Period endowment: 15 pts.
Conversion rate: 50 pts.=1 e
Average realized duration: 22.6”
- February 2, 2011
- February 4, 2011

Long
(60 secs.)

N=48
Period endowment: 50 pts.
Conversion rate: 150 pts.=1 e
- October 21, 2010
- October 28, 2010

N=48
Period endowment: 50 pts.
Conversion rate: 150 pts.=1 e
Average realized duration: 68.3”
- October 22, 2010
- October 28, 2010

Variable N=48
Period endowment: 15 pts.
Conversion rate: 50 pts.=1 e
Same realized durations as in
Short-Stochastic
- April 4, 2012
- April 4, 2012

Table 2: Treatments and sessions

coop. defect
coop. 1, 1 -2, 2
defect 2, -2 0, 0

Notes: The numbers in each cell represent the payoff per second.

Table 3: Stage game payoffs
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met all the others once and only once in a session (perfect strangers).2

In all treatments, the stage game was as follows. Each subject had to
select an initial action for the period, either Cooperate (green) or Defect
(orange). When all subjects were done, the period began. Within a period,
subjects could switch action up to six or seven times per second. More
precisely, there was a tick every 16/100th of a second, which gave the
participants the feeling of continuous time. The PCs had touch screens,
hence a switch of action could not be heard by others, as subjects simply
touched the screen with a finger.

Earnings for all possible combinations of actions were visible on the
screen at all time (Figure 1). The payoff matrix showed earnings in tokens
per second. The subject’s current action was always highlighted in yellow
in the payoff matrix. Moreover, every subject could observe her cumulative
earnings on a continuously updated graph (Figure 1). Subjects’ earnings
in every period included an initial endowment (see Table 2), and could stay
constant, increase, or decrease over time, depending on the choices of the
pair. The graph showed these patterns of earnings as a flat, increasing, or
decreasing line, respectively. A steeper line indicated a faster accumulation
or depletion. The line color was green or orange depending on the subject’s
own action. Hence, from the graph, subjects could unambiguously infer
the action taken in any moment by their opponent. The progression of the
earnings line marked the timing of the period for the subjects. They could
observe at every instant the speed of the game, which ran at the same pace
for all subjects in the session. For the Deterministic treatments, subjects
could always check the time remaining before the end of a period by looking
at the graph on the screen.

In the Long-Deterministic treatment, a period always lasted 60 sec-
onds. In the Long-Stochastic treatment, a period lasted in expectation 60
seconds. Similarly for the short treatments, where the expected duration
was 20 seconds. In the stochastic treatments, the exact duration was se-
lected at random period by period. As explained in the instructions for the
Long(Short)-Stochastic treatment, the period duration depended on a ran-

2In the Short-Deterministic session run on February 2, 2011, due to a technical
problem, subjects met again their opponents of period 1 in period 23. All reported
results hold even if period 23 in that session is dropped.
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dom draw. “Imagine a box with 10,000 (1000) balls, of which 9,973 (992)
are black and 27 (8) are white. It is as if a ball is drawn after every tick. If
the ball is white, the period ends. If the ball is black, the period continues
and the ball is put back into the box. At the next tick, another ball is
drawn at random. You have to imagine very fast draws, i.e. one every
tick of 16 hundredths of a seconds. As a consequence of this procedure, we
have estimated that periods will last, on average, 60 (20) seconds. There
may be periods that are short and periods that are long.” In case a period
lasted beyond 60 seconds, the the scale of the horizontal axis of the graph
automatically shifted forward.

The Variable-Deterministic treatment was designed as a modification
of the Short-Stochastic treatment. Period durations were variable and pre-
announced. At the beginning of each period, the current period duration
was disclosed to the subjects both numerically – in terms of seconds – and
graphically – through a vertical line drawn in the chart of Figure 1. To fa-
cilitate comparisons, the actual period durations in Variable-Deterministic
sessions replicated by design the random draws employed in the Short-
Stochastic sessions.

Stage-game payoffs are such that cooperation should be easily achieved
(at least in the stochastic ending treatments). In continuous time, cooper-
ation is always supportable because the instantaneous discount factor is 1:
then a grim trigger strategy should, in theory, always support cooperative
play as an equilibrium, no matter the arrival rate of the end of the game.
But even if agents perceived the game to be played discretely, e.g. because
of minimal human reaction time, cooperation should be easily sustained
with our parameterization. For example, if subjects react with 1 second
delay and treat it as a time interval length of 1 second, then, given our
stage game payoffs (see Figure 1), cooperation can be sustained with infi-
nite horizon for discount factors higher than 1/2, which implies an expected
duration of 2 seconds. If the time interval length is 0.25 of a second, then
it would be enough to have an expected duration of 0.5 of a second, and so
on. Hence, the 20 seconds is quite far from the theoretical bound.

Instructions were distributed and then read aloud. Subjects had the
opportunity to ask questions, which were answered in private, and then
went through three practice periods with a robot opponent that was pro-
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grammed to switch action in the middle of the period. After each practice
period, subjects had to guess the actions taken by the robot, and then
completed a computerized quiz to verify their full understanding of the
rules of the game. The experiment started as soon as all subjects answered
correctly to all control questions.3 The session ended with a questionnaire.

The experiment involved 240 subjects, mostly students at the University
of Bologna, participated to one of the ten sessions and assigned through
an online recruitment software (Greiner, 2004). The experiment was run
in the Bologna Laboratory for Experiments in Social Sciences using z-Tree
(Fischbacher, 2007). Subjects were seated at visually isolated computer
terminals and could not communicate. A session lasted, on average, 2
hours for the Long treatments and 1 hour and 20 minutes for the Short
and Variable ones. Subjects earned, on average, 16.72 Euros and 15.47
Euros, respectively, which include a show-up fee of 3 Euros.

4 Results

With our Long-Deterministic treatment, we replicate the results reported
in Friedman and Oprea (2012). The median cooperation rate from period
13 on in Friedman and Oprea (2012) ranges between 81% and 93%, depend-
ing on the treatment, and in our Long-Deterministic treatment it is 91%.
This provides a robustness check of their findings for different procedures,
subject pools, and payoff levels. The novelty of this study, however, stems
from the comparison across our treatments.

Result 1 Cooperation rates are higher in periods of longer (expected) du-
ration.

Support for Result 1 comes from Tables 4 and 5. The impact of duration
on cooperation rates is significant both in the deterministic and stochastic
treatments. The unit of observation is the cooperation rate, which is defined
as the fraction of time Rip a subject i spends cooperating within period p.
Given that these observations are not independent, to assess the significance

3In the three practice periods, 71% of the subjects always made correct guesses about
the sequence of actions taken by the robots. In answering the four control questions
about the instructions, 53.8% of the subjects made at most one mistake.
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of the observed differences we take the average cooperation rate by subject
across all periods, and run a linear regression with bootstrapped standard
errors. Results are reported in Table 5.4 The outcome of the regression
in Table 5 indicates that Result 1 holds when controlling for individual
characteristics.5

Termination rule
Duration Deterministic Stochastic
Long 65.5 ∼ 66.9

(84.0) (84.8)
∨∗ ∨∗∗∗

Short 63.3 >∗∗∗ 52.3
(79.2) (47.0)

Notes: The mean cooperation rate of a session is the average across all 23 periods and
all 24 subjects. The unit of observation is a subject per period. For every treatment
there are two sessions and 1104 observations. Median cooperation rates are reported
in parentheses. In this and in the following tables, symbols ∗, ∗∗, and ∗∗∗ indicate
significance at the 10%, 5% and 1% levels, respectively. Significance levels are derived
from the regression presented in Table 5.

Table 4: Mean (and median) cooperation rates

Result 2 With deterministic duration, cooperation rates are equal or high-
er than with stochastic duration.

Support for Result 2 comes from Tables 4 and 5. In the long duration
treatments, cooperation rates are statistically indistinguishable between

4We obtain similar results with a panel regression with random effects at the subject
level, where the unit of observation is the cooperation rate of a subject in a period, and
standard errors are robust for heteroschedasticity (see Table A.1 in Appendix A). As
a further robustness check we also ran linear regressions with standard errors robust
for clustering at the subject and pair level. The same treatment effects emerge if we
compare the rates of mutual cooperation (Tables A.2 and A.3), or the average profits
per second (Tables A.4 and A.5).

5In this and in the following regressions, we control for a number of factors: (i) de-
mographics: age, gender, field and degree of study, occupation, and Italian nationality
(93.3% subjects); (ii) task comprehension: number of wrong answers to control ques-
tions, and the total answering time; (iii) academic background: three dummies taking
value one for subjects who have previously followed courses of economics, statistics, and
game theory, respectively; (iv) non-incentivized questionnaire measures: risk attitudes,
level of generalized trust, and two IQ-type questions.
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Dependent variable: cooperation rate
Coefficient (s.e.)

Short-Deterministic -6.082* (3.265)
Long-Stochastic 1.998 (4.153)
Short-Stochastic -17.755*** (3.744)
Constant 62.600*** (12.508)
Controls for individual characteristics Yes
N 192
R-squared 0.223

Notes: Linear regression with bootstrapped standard errors. The unit of observation is
the fraction of time a subject spends cooperating within a period, averaged by subject
across all periods. Default treatment: Long-Deterministic.

Table 5: Linear regression on cooperation rates

stochastic and deterministic horizons (p-value > 0.1, see Table 5). By con-
trast, in the short duration treatments, cooperation rates are significantly
higher with a deterministic horizon than with a stochastic horizon (p-value
< 0.001, see Table 5). The absolute difference in cooperation between the
two treatments is 11.0 points in terms of means, and 32.2 points in terms
of median. This result is in stark contrast with experiments on repeated
games in discrete time, where cooperation is typically higher with stochas-
tic than with deterministic duration.6

The next result shifts the focus on the dynamics within each period,
as the same cooperation rate Rip can result from different sequences of
actions, especially in continuous-time games. The evidence suggests that
subjects do not apply backward induction.

Result 3 With deterministic duration, end-game effects exist, do not un-
ravel cooperation, and appear later with experience.

Support for Result 3 comes from Figure 2, which presents the time
profile of the mean share of cooperators, taken across periods and sessions.

6For example, in a repeated game with short expected duration, Dal Bó finds that,
“for every round, [. . . ] the percentage of cooperation in infinitely repeated games [. . . ] is
greater than in finitely repeated games of the same expected length [. . . ], with p-values
of less than 0.01.” (the expected number of action choices is 125 in our short treatments,
375 in our long treatments, while it ranges between 2 and 4 in his treatments). More
specifically, when the expected duration is 2 (4) periods, the average cooperation rate
is 28.3% (35.2%) with stochastic ending and 12.5% (24.8%) with deterministic ending.
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A subject can change action every 0.16 seconds. Our unit of observation is
the share of cooperators Stp over time t within a period p.

Figure 2: Time profile of the share of cooperators

Notes: The unit of observation is the share of cooperators in every second of a period.
A subject could switch action every 0.16 of a second. All subjects and all periods
are included for the first 20 or 60 seconds. In the Long-Stochastic treatments, 45.7%
of periods lasted more than 60 seconds. In the Short-Stochastic treatments, 30.4% of
periods lasted more than 20 seconds.

In both the Short- and Long-Deterministic treatments, there is a clear
end-game effect: the share of cooperators suddenly drops a few seconds
before the end of the period (Figure 2). With deterministic duration, this
end-game effect kicked in, on average, 8.4 seconds before the end of the
period (Table 6).7 There are, of course, many ways to quantitatively mea-
sure the timing of this switch from cooperation to permanent defection.
We measured it by focusing on all pairs that at some point during a pe-
riod reached simultaneous cooperation, CC, and then switched to defection

7Friedman and Oprea (2012) also report an end-game effect. They find that “coop-
eration level falls below 75 percent only when 5 seconds remain and below 50 percent
only when 1 second remains.”
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before the end of the period, i.e. CD, DC, or DD.8

Periods
Treatment 1-6 7-12 13-18 19-23 Overall
Long-Deterministic 17.7 11.5 11.4 7.1 11.9

N=95 N=110 N=110 N=99 N=414

Short-Deterministic 7.4 5.3 4.1 3.8 4.9
N=77 N=100 N=120 N=112 N=409

Notes: the table reports the average number of seconds before the end of the period
when a pair in CC permanently switches to defection, i.e. either CD, DC, or DD.

Table 6: Timing of the end-game effect

We observe that the end-game effect kicks in later and later, as subjects
gain experience (3.6 to 10.6 seconds later, Table 6). The impact of experi-
ence is significant both in the Long-Deterministic (p-value < 0.001) and in
the Short-Deterministic treatment (p-value < 0.001). In addition, in the
Short-Deterministic treatment, the end-game effect kicks in significantly
later than in the Long-Deterministic treatment (Table 6, p-value < 0.01).9

One reason behind the postponing of the end-game effect may be that
subjects become faster in reacting to defections as they gain experience.
Indeed, we observe that reaction time – measured as the time interval
between a deviation from mutual cooperation and the beginning of the
punishment phase – decreases across periods. The correlation between
reaction times and timing of the end-game effect, however, is not-significant
(Table A.7 in Appendix A). When controlling for the average reaction time
in the regression, the decrease in the duration of the end-game effect across
periods is still significant (see Table A.6 in Appendix A). These findings
show that the end-game effect does not unravel cooperation.

8This calculation includes the lion’s share of the observations. Out of a total of 552
subject-period observations per treatment, we have 468 and 460 in the Long and Short
treatment, respectively, such that both subjects cooperated simultaneously at least once
in that period. Of these, some (54/468 and 51/460, respectively) kept on cooperating
until the end of the period, while in the other cases (414/468 and 409/468, respectively)
at least one of the subjects in the pair switched to permanent defection.

9The p-values reported in this paragraph are obtained from linear regressions with
bootstrapped standard errors. The unit of observation is a session in a period. Regres-
sion’s results are reported in Table A.6 in Appendix A.
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Taken together, Results 1-3 offer a puzzling picture, because neither
the theories of games in discrete time nor those in continuous time can
provide a coherent explanation. In our treatments with stochastic horizon,
cooperation rates are higher when the horizon is longer (Result 1), which
is in line with theoretical and empirical findings for discretely repeated
games, but contrasts with all the theories of play in continuous time we
considered in Section 2.

Conversely, Result 2 suggests that when the frequency of interaction
becomes very high, the shadow of the future is not the main factor driving
subjects’ behavior. We find that cooperation can be achieved and sustained
even when the horizon is deterministic, a result which is in contrast with
the theory and (some of) the experimental evidence on discretely repeated
games (Dal Bó, 2005), and is instead in line with theories of games in
continuous time. In addition, Result 3 indicates that an end-game effect
emerges when the horizon is deterministic. This provides support for those
theories of games in continuous time that predict the presence of this effect,
such as the limit version of Kreps et al. (1982) and the theory developed
by Friedman and Oprea (2012) from the model by Radner (1986).

Another more serious puzzle is the low cooperation rate in the Short-
Stochastic treatment, which sets it apart from the other three treatments
(Result 2, see Tables 4 and 5, and Figure 2). None of the theories in discrete
time nor continuous time in Section 2 would predict such a result.

In the next section we introduce a new element to interpret the above
results. We conjecture that what changes across treatments is not the
equilibrium prediction, but the path of convergence to this equilibrium.

5 The dynamics across supergames

In this section, we develop an evolutionary model of how individuals change
their strategies across supergames. In particular, we model the path of
convergence to a stationary state through an evolutionary process across
periods (supergames) based on the replicator dynamics.10

10Börgers and Sarin (1997) have shown that strong analogies exist between the repli-
cator dynamics and reinforcement learning. We are grateful to George Mailath and
Jörgen Weibull, who both suggested to look at the replicator dynamics.
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Consider a large population of individuals programmed to play pure
strategies. Let x represent the population state, xi the population share
of individuals playing pure strategy i, and ei the vector having the i-th
element equal to 1 and all other elements equal to 0. In each period,
individuals are randomly matched to play the continuous-time Prisoner’s
Dilemma presented in Table 3, for a period of expected duration equal to T.
The average payoff u(ei,x) of a strategy i in a population state x measures
its “fitness”. The basic assumption of the replicator dynamics is that fitter
strategies replicate faster:

ẋi = [u(ei,x)− u(x,x)]xi.

Consequently, the growth rate ẋi/xi of the population share using strat-
egy i equals the difference between the strategy’s current payoff and the
current average payoff in the population, u(x,x).

Here we consider a population of individuals programmed to play one
of the following strategies: Always-cooperate (AC), Always-defect (AD),
Grim-trigger (GT), or a Cut-off strategy (CO). In line with the assumptions
of Radner (1986)’s and Friedman and Oprea (2012)’s models, strategy CO
prescribes to play Grim-trigger at every t < t̂, with t̂ < T , where T is the
expected duration of the period, and play Always-defect at every t ≥ t̂. We
use existing equilibrium models to link t̂ to the reaction time of players.

The expected period payoffs for a pair of players are as follows. Let
R be the expected payoff if both players cooperate throughout the whole
period, r the expected payoff if they both adopt the cut-off strategy, and d
the expected loss emerging from a delay in reacting to a defection, which is
proportional to reaction time. We assume that 0 < d < r < R and R− r >
d. If we consider each period of our experiment as a “generation”, in which
our players can choose only among the aforementioned four strategies, we
can write the matrix of the per-period expected payoffs as in Table 7.

We first identify which population states are asymptotically stable, then
discuss the impact of the reaction time in each treatment, and finally state
two propositions. If population state x is asymptotically stable in the
replicator dynamics, it must correspond to a (mixed or pure) trembling-
hand perfect Nash equilibrium strategy of the stage game (Weibull, 1995,
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Always- Grim- Always-
Player 1/Player 2 defect trigger Cut-off cooperate
Always-defect 0, 0 d, -d d, -d 2R,-2R
Grim-trigger -d, d R, R r-d, r+d R, R
Cut-off -d, d r+d, r-d r, r 2R-r, 3r-2R
Always-cooperate -2R, 2R R, R 3r-2R, 2R-r R, R

Table 7: Expected period payoffs in a pair with four possible strategies

Proposition 3.9). As a consequence, it cannot contain a positive fraction
of individuals playing any weakly dominated strategy. For this reason, we
can exclude Always-cooperate, and focus on the remaining three strategies.

Since the replicator dynamics is invariant under positive affine transfor-
mations of payoffs (Weibull, 1995, p.73), we can rewrite the payoff matrix
as in Table 8, where a = r/R and b = d/R.

Always- Grim-
defect trigger Cut-off

Always-defect 0, 0 b, -b b, -b
Grim-trigger -b, b 1, 1 a-b, a+b
Cut-off -b, b a+b, a-b a, a

Table 8: Expected period payoffs in a pair with three possible strategies

The game in Table 8 has seven Nash equilibria, three in pure strate-
gies, and four in mixed strategies.11 To find whether these equilibria are
asymptotically stable, we study the properties of the following system of
differential equations:ẋgt = xgt

(
−b+ xgt − axgt + bxgt − x2gt + ax2gt + axad − ax2ad

)
ẋad = −xad

(
a− b+ x2gt − ax2gt − 2axad + bxad + ax2ad

)
.

It can be shown that the four equilibria in mixed strategies are not asymp-
totically stable, while the three equilibria in pure strategies are (locally)
asymptotically stable (Figure 3).

11The equilibrium strategies are x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1), x4 =

(0, 1 − b
a ,

b
a ), x5 = (b, 1 − b, 0), x6 = ( b2

a(1−a)+b2 , 1 −
(1−a)b

a(1−a)+b2 ,
(1−a)b−b2
a(1−a)+b2 ), and x7 =

( b
1−a , 0, 1−

b
1−a ), where the first element of the triple corresponds to Grim-trigger, the

second element to Always-defect, and the third one to the Cut-off strategy.
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Figure 3: Replicator dynamics

We now relate the parameters of this model to the reaction time and
the four treatments. Recall that the relative loss for a cooperator when
the opponent switches from cooperation to defection, b, depends on her
reaction time; recall also that the relative payoff when both payers follow
a Cut-off strategy, a, depends on the timing of the cut-off. Given that
0 < d < r < R, it follows that 0 < b < a < 1. Let τ be the relative reaction
time (i.e. the reaction time as a fraction of the duration of the supergame).
With deterministic horizon, we have:

bDet = 2 · τ = 2 · reaction time
T

If we assume that reaction time does not depend on the duration of the
supergame, or decreases less than proportionally to the duration, we have
that parameter b is larger for the Short-Deterministic treatment than for
the Long-Deterministic treatment.

We propose to use existing theories as guidance about parameter a.
According to Friedman and Oprea (2012)’s extension of Radner (1986)’s
model and to our extension of Kreps et al. (1982)’s model, if the horizon is
deterministic, then the end-game effect will emerge at a time t̂, inversely
proportional to the reaction time (See Appendices B.1 and B.2):

t̂

T
= 1− k · τ, k > 1
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Therefore, with a deterministic horizon

aDet =
t̂

T
= 1− k · τ

according to both models (albeit, k is model-specific), so aDet is decreasing
in τ .

With a stochastic horizon, the profits from defection depend on the
realized duration of the period. If the period lasts shorter than the reaction
time, then they are equal to 2 times the period duration, otherwise they
are equal to 2 times the reaction time. Hence, the expected value of b in
the stochastic treatments is:

bStoch = 2 ·
(∫ τ

0

xe−xdx+ τ

∫ ∞
τ

e−xdx

)
= 2(1− e−τ ) ≤ 2τ (1)

Similarly, if all individuals played a Cut-off strategy, they would earn a
profit equal to the period duration in all periods lasting less than t̂, and a
profit equal to t̂ in longer periods. As a consequence, the expected value of
a in the stochastic treatments is:

aStoch =

∫ 1−k·τ

0

xe−xdx+ (1− k · τ)
∫ ∞
1−k·τ

e−xdx

= 1− ek·τ−1 ≤ 1− k · τ
(2)

Therefore, also with a stochastic horizon, aStoch is decreasing in τ , and
bStoch is increasing in τ .

From the above equations, it follows that ∂(b/a)
∂τ

> 0. Hence, if the
absolute reaction time is independent of the duration, or if it decreases less
than proportionally to duration, b

a
is larger for the Short than for the Long

treatments. This implies:

Proposition 1 If the relative reaction time is smaller in the longer treat-
ment, the basin of attraction of the equilibrium where all individuals play
Always-defect is larger in the Short than in the Long treatments.

Equations (1) and (2) also show that moving from a deterministic to a
stochastic horizon, holding period duration constant, induces both a and b
to be smaller. One can then show that for small relative reaction times (i.e.
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if the reaction time is small compared to the duration of the supergame),
moving from a deterministic to a stochastic horizon implies an increase in
the ratio b

a
, and a decrease in b

1−a . Indeed:

bStoch
aStoch

>
bDet
aDet

⇔ 2(1− e−τ )
1− ekτ−1

>
2τ

1− kτ
⇔ 1− e−τ

τ
>

1− ekτ−1

1− kτ

Let F (x) = 1−e−x

x
. Since F ′(x) < 0, it follows that

bStoch
aStoch

>
bDet
aDet

⇔ τ <
1

1 + k

Given that bStoch ≤ bDet from equation (1), and aStoch ≤ aDet from equation
(2), it also follows that

bStoch
1− aStoch

<
bDet

1− aDet

Since bDet > bStoch but bStoch

aStoch
> bDet

aDet
it is not a priori clear whether the

area of the basin of attraction of the equilibrium where all individuals play
Always-defect is larger in the stochastic than in the deterministic treat-
ments. This relation, however, can be shown to be true by direct com-
putation (see Appendix C). As a consequence, we can state the following
proposition.

Proposition 2 For small relative reaction times, the basin of attraction
of the equilibrium where all individuals play Always-defect is larger in the
stochastic than in the deterministic treatments, while the basin of attraction
of the equilibrium where all individuals play the Cut-off strategy is smaller.

Taken together, Propositions 1 and 2 can explain why cooperation rates
are particularly low in the Short-Stochastic treatment, which was our major
empirical puzzle. When the horizon is longer and when it is deterministic, it
should be easier for subjects to evolve towards adopting a cooperative strat-
egy (either Grim-trigger or Cut-off), rather than playing Always-defect.
These predictions can account for Results 1 and 2 together.

Moreover, Proposition 2 provides a reason for why we observe an end-
game effect in the deterministic but not in the stochastic treatments and,
most importantly, why this end-game effect does not lead cooperation to
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unravel with experience (Result 3). The explanation hinges on the adoption
of a cut-off strategy, which is progressively more widespread. Section 6
addresses this point from an empirical standpoint.

To conclude, the replicator dynamics can explain Results 1-3 through
modeling convergence and strategy adoption and makes additional pre-
dictions about the behavior in continuous-time games. We now turn to
comparing these additional predictions to what we observed in the experi-
ments.

6 Discussion and additional results

Here we shift the emphasis away from the equilibrium predictions of the
models and study the patterns of learning in continuous-time games. This
section discusses the individual strategy adoption (Result 4), the observed
evolution of cooperation rates across supergames as subjects gain experi-
ence (Result 5), and an additional treatment aimed at the identification of
empirical drivers of learning (Result 6). These results are mostly consistent
with the replicator dynamics model, but their aim is to report the impact
of experience more than to carry out a formal test of the model.

6.1 Empirical identification of individual strategies

When taking the four strategies considered in the replicator dynamics, one
can classify the majority of individuals in the last five periods of the exper-
iment, i.e. between 52.5% and 78.3%, depending on the treatment (Table
9). The unclassified subjects follow a pattern of actions that is incompat-
ible with all of the four strategies considered. They are overwhelmingly
“rabbit”-type subjects, i.e. subjects who switched more than twice within
the period and are hard to assign to any specific strategy category.12 In
short, our focus on these four strategies followed from suggestions of theo-
retical models and when bringing them to the data, we find broad support.

12For instance, considering “reverse cut-off” and “reverse-grim trigger” strategies, one
captures very few additional subjects.
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Result 4 With stochastic duration, Grim-trigger strategies prevail. With
deterministic duration, instead, Cut-off strategies are the most widely a-
dopted.

Stochastic Deterministic
Short Long Short Long Variable

Classified 0.679 0.525 0.713 0.662 0.783
Cut-off U.B. 0.158 0.033 0.621 0.492 0.583

& defect before the opponent L.B. 0.050 0.000 0.279 0.196 0.208
Grim-trigger U.B. 0.529 0.492 0.429 0.446 0.446

if the opponent defects L.B. 0.108 0.033 0.342 0.296 0.375
Always-cooperate U.B. 0.438 0.471 0.087 0.150 0.071

if the opponent defects L.B. 0.017 0.013 0.000 0.000 0.000
Always-defect U.B. 0.083 0.021 0.004 0.021 0.129

Unclassified 0.321 0.475 0.287 0.338 0.217
switch once 0.050 0.025 0.000 0.008 0.004
switch twice 0.063 0.075 0.017 0.021 0.042
switch more than twice 0.208 0.375 0.271 0.308 0.171

N 240 240 240 240 240
Notes: We classify the behavior of each subject in periods 19-23. A subject is
classified as compatible with Always-cooperate if she cooperates throughout the whole
period. Such a subject would also be considered compatible with Grim-trigger, if her
opponent cooperates for the whole period too. Hence, there is a possible overlap in the
classification. We report in italics the fraction of subjects whose behavior is compatible
with Always-cooperate, but not with Grim-trigger, as the opponent defects but the
subject keeps on cooperating until the end of the period.

Table 9: Subjects’ strategies in the last 5 periods

Support for Result 4 comes from Table 9, which shows the share of indi-
viduals compatible with the behavior prescribed by a given strategy. There
can be overlap between categories, hence Table 9 also supplies a classifica-
tion conditional on a specific behavior of the opponent. In the table, we
denote these two figures “upper bound” (U.B) and “lower bound” (L.B.),
respectively. For instance, the strategy Always-cooperate classifies 47% of
individuals in the Long-Stochastic treatment, but only 1% when restrict-
ing to cases where the opponent defects at some point in the period. More
generally, very few subjects always cooperate despite meeting an opponent
who defects, which suggests that Always-cooperate is not widespread.

The Cut-off strategy can account for up to 49-62% (L.B. 20-28%) of
individuals in the Deterministic treatments versus 3-16% (L.B. 0-5%) in
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the Short- and Long-Stochastic treatments. The Grim-trigger strategy can
account for up to 43-45% (L.B. 30-37%) of individuals in the Deterministic
treatments versus 49-53% (L.B. 3-11%) in the Stochastic treatments.

6.2 Evolution of cooperation with experience

The evolution toward cooperation occurs at different speeds depending on
the treatment, which can explain the observed differentials in average co-
operation rates.

Result 5 Cooperation rates increase with experience in all treatments, but
the increase is slowest in the Short-Stochastic treatment.

Support for Result 5 comes from Figure 4, which reports the average
of the cooperation rate Rip of subject i in period p across subjects. In all
treatments, there is an upward trend in cooperation, but this trend is weak-
est in the Short-Stochastic treatment. More detailed evidence comes from
the regressions reported in the Appendix (Tables A.8 and A.9). A similar
trend also emerges from the evolution of the fraction of subjects choosing
defection as their initial action of the period (Figure A.1 in Appendix A).
This fraction declines in all treatments, but the decline is the slowest in
the Short-Stochastic treatment, as predicted by the replicator dynamics.

Our results on the impact of experience on cooperation levels are consis-
tent with the findings of Dal Bó and Fréchette (2011) for discretely repeated
games. When playing repeated games, the amount of experience is a criti-
cal determinant of outcomes and it takes more than ten repetitions to settle
on a stable level of cooperation.

6.3 The Variable-Deterministic treatment

The data document a strong dynamic of learning in these continuous-time
games. We want to further clarify the differences in such dynamics across
treatments and provide further evidence for Results 1-4. In the Short-
Stochastic treatment, very short periods are frequent and there is a high
variability in period duration. The variability in period duration has an
impact on profits. The reason is that in very short periods, the immediate
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Notes: The unit of observation is the fraction of time a subject spends cooperating in
a period.

Figure 4: Evolution of cooperation

gains from defection may be larger than the foregone profits from coop-
eration, whereas defecting from the start in longer periods yields small
gains in comparison to the large foregone profit from cooperation. Ac-
cording to the reinforcement learning model studied in Bereby-Meyer and
Roth (2006), learning is faster in environments where the same action is
rewarded in the same way under all circumstances, rather than being re-
warded only in a variable and unpredictable way.13 These factors typical of
a stochastic horizon may therefore also have caused slower learning in the
Short-Stochastic treatment. One could also think that learning is slower
because in very short periods, players do not have time to think about
what is happening. Another plausible explanation for differences in coop-
eration rates across treatments could be linked to issues of coordination.
For example, one could think that a commonly known finite horizon helps
subjects to coordinate on a specific cooperative strategy, such as a Cut-off

13The authors compare games with deterministic or probabilistic payoffs having the
same expected value, and show that the pace at which subjects learn to cooperate is
strongly affected by the variance in payoffs, to the point that, in very noisy environments,
cooperation may fail to emerge altogether.
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strategy prescribing to cooperate until close to the end.
In order to deepen our understanding of how time horizon and period

length drive learning, we designed and ran an additional treatment. In
this treatment, called Variable-Deterministic, period ending is determinis-
tic but period duration is variable. The sequence of period durations was
calibrated to match exactly the realized durations in the Short-Stochastic
treatment, in order to allow for a tight comparison. Stochastic treatments
are different from Deterministic treatments both because period ending is
random and because period durations are variable. The specific goal of this
additional treatment is to understand which one of these factors has more
impact on the speed of learning.

Testing alternative learning models would require a specific design and
is beyond the scope of the present work. However, our additional treatment
can shed some light on which of the above possible explanations is more
likely. If the lower cooperation rates in the Short-Stochastic treatment are
caused by the variability of the period lengths and the presence of many
short periods, then we should expect similarly low rates and slow learning
in the Variable-Deterministic treatment. If, instead, the slower learning is
caused by the unpredictability introduced with the stochastic horizon, then
we should observe higher rates of cooperation in the Variable-Deterministic
treatment.

Result 6 Initial, mean, and median cooperation rates in the Variable-
Deterministic treatment are closer to the Short-Deterministic than to the
Short-Stochastic treatment. The same can be said for the individual strate-
gies adopted.

Support for Result 6 comes from Table 10. Initial and mean cooper-
ation rates are significantly higher in the Variable-Deterministic than in
the Short-Stochastic treatment (p-value < 0.05 and p-value < 0.10, respec-
tively, according to a linear regression with one observation per subject, and
bootstrapped standard errors).14 Hence, having a stochastic rather than a
deterministic horizon substantially changes behavior. Result 6 shows that
also under a variable period duration – and despite the short durations

14Regression results are reported in Tables A.10 and A.11, in Appendix A.
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of many periods – a deterministic horizon helps cooperation more than a
stochastic horizon. This finding complements Result 2 and it reinforces
the behavioral contrast between continuous-time games and discrete-time
games.

Cooperation rates
Treatment Average Median Initial Final

Short-Deterministic 63.3 79.2 82.6 15.8
Short-Stochastic 52.3 47.0 65.9 46.8
Variable-Deterministic 57.1 72.7 77.9 18.6

Table 10: Cooperation rates in the Variable-Deterministic treatment

The data from the Variable-Deterministic treatment suggest that both
the variability and the unpredictability of period durations had an impact
on learning and cooperation, but the unpredictability of the stochastic
horizon was the stronger force (Result 6). In the Variable-Deterministic
treatment, subjects seem to learn to cooperate faster than in the Short-
Stochastic. This evidence is compatible with models of reinforcement learn-
ing or replicator dynamics, and corroborates the explanation given in Sec-
tion 5 for the low cooperation rates in the Short-Stochastic treatment.

Other explanations received less support. Subjects had the same a-
mount of time to think about what was happening in Short-Stochastic
and Variable-Deterministic treatments, but cooperation rates were differ-
ent. On another front, the issue of coordination is compatible with different
(mean) cooperation rates across treatments, but if it was the main driver,
it should leave unaffected the evolution of cooperation with experience.
More specifically, if the lower cooperation rates in the Short-Stochastic
treatment are caused by impediments to coordination generated by the
uncertain duration, then we should observe a difference in the initial coop-
eration rates with the Variable-Deterministic treatment, at the beginning
of the first period, when behavior cannot be affected by learning from past
experience and is mainly determined by introspection. The evidence does
not quite support this interpretation, as the initial cooperation rates in the
first period of the Short-Stochastic treatment (60.4%) are similar to those in
the Short-Deterministic (52.1%) and in the Variable-Deterministic (62.5%)
ones (no significant difference emerges according to pairwise z-tests; p-value
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Figure 5: Median cooperation rate, by period duration

> 0.10 in all three cases).

The Variable-Deterministic treatment brings another contribution to
our understanding of cooperation and period duration in continuous time,
as one can map the relation between period length and observed coop-
eration rates. In the Variable-Deterministic treatment, the shorter the
period the lower the average cooperation (Figure 5). We knew this from
comparing the Short- vs. Long-Deterministic treatments (Result 1), but
there the difference in cooperation rates was quite small. Given the wide
range of period durations available, one can clearly see a monotonic re-
lation between initial cooperation rates and period duration (with a kink
around 10-15 seconds that makes it non-linear).15 This finding comple-
ments and reinforces Result 1. In terms of individual strategies employed,
the Variable-Deterministic treatment shows a marked difference with the
Short-Stochastic, in a direction that confirms and reinforces Result 4. The
Cut-off strategy is as widespread in the Variable-Deterministic treatment
(58%, Table 9) as it is in the other two deterministic treatments, providing
additional support to the theories of continuous-time games, which predict
the adoption of this kind of strategy when the horizon is deterministic.

15The presence of the kink suggests that when the horizon is deterministic, most
subjects cooperate only when the end is far enough, while in very short periods they
defect from the start.
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7 Related Literature

The repeated (or ‘iterated’) Prisoner’s Dilemma with perfect monitoring
has probably been the most important setup in which the question of what
leads people to cooperate has been explored experimentally since the early
work of Rapoport and Chammah (1965). A central and highly debated
issue has been the role played by the time horizon, sometimes called the
‘termination rule’. The experimental literature has shown that the theoret-
ical prediction that backward induction should apply to finitely repeated
games with the features of a Prisoner’s Dilemma often does not hold in
the laboratory.16 In field situations, the moment at which a relationship
will come to an end is often uncertain. To capture this feature, several
researchers, starting with Roth and Murnighan (1978) and Murnighan and
Roth (1983), have tried to reproduce an indefinite, uncertain horizon in the
lab under a stochastic continuation/termination rule for the repeated game.
Selten et al. (1997) argued against the attempt to replicate a potentially
infinite horizon in the lab, since no real experiment can have infinite dura-
tion, so subjects will be aware that the experiment will end in a reasonable
amount of time and their beliefs may vary about when exactly. Based on
previous experimental evidence (e.g. Selten and Stoecker 1986), they pro-
posed using finitely repeated games, given that the outcomes of repeated
laboratory games with deterministic and stochastic horizons are similar,
apart from the end-game effect that only takes place in the last rounds.
Dal Bó (2005) offered experimental evidence against this last conclusion.
He ran repeated Prisoner’s Dilemma games with two different parameter-
izations of the stage-game payoffs and with deterministic and stochastic
horizons with identical but short expected durations. Among other things,
he found that cooperation rates in both the first and last rounds of the
supergames are significantly lower in treatments with a deterministic hori-
zon. Normann and Wallace (2012) also compared these termination rules
(as well as a third, ‘unknown termination’), but in a different setup where
the Prisoner’s Dilemma is repeated 22 times before the different termi-
nation rules are introduced, finding instead no significant differences in

16See e.g. Selten and Stoecker (1986), Andreoni and Miller (1993), Cooper et al.
(1996), Hauk and Nagel (2001) and Bereby-Meyer and Roth (2006).
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cooperation rates.17

Closest to our work is Friedman and Oprea (2012), where subjects play
a symmetric Prisoner’s Dilemma in which they could switch actions with
latency times on the order of 0.02 seconds (for a total period length of 60
seconds), after which the interaction stops with certainty and subjects are
rematched to play another continuous-time supergame. Observed rates of
cooperation after some experience reach a median between 81% and 93%
and cooperation is typically sustained until the very last seconds of the
game, when a short but drastic end-game effect takes place.18

The present study differs from Friedman and Oprea (2012) because it
considers continuous-time Prisoner’s Dilemma games both under a deter-
ministic and a stochastic time horizon. Moreover, it does so for games of
different durations (60 and 20 seconds in expectation). It also includes a
treatment where the horizon is deterministic and the game duration varies
across periods. There are additional differences in other dimensions: the
stage-game payoffs; the protocol to match subjects across supergames; the
starting action in each supergame, which was random in Friedman and
Oprea (2012) and chosen by the subject in the present study.

Our work is also related to experimental studies of finitely repeated
games played in discrete time at low frequency that, among other things, in-
vestigate whether subjects learn with experience to apply backward induc-
tion. A consistent finding in this literature, including Selten and Stoecker
(1986), Andreoni and Miller (1993), Hauk and Nagel (2001) and Bereby-
Meyer and Roth (2006), among others, is that close to the end, cooperation
rates fall more the more subjects gain experience, the opposite pattern than
the one we observe in continuous time.

Finally, the experimental literature on games in continuous time has
blossomed during the last few years, so there are several less related studies
focusing on strategic situations that are quite different from a Prisoner’s
Dilemma, such as games of network formation (Berninghaus et al., 2006,

17See also Palfrey and Rosenthal (1994), who compared contributions to a public good
in one shot vs. indefinitely repeated games. Engle-Warnick and Slonim (2004) report
little difference when comparing a trust game repeated exactly five times vs. repeated
with a continuation probability of 0.8.

18Charness et al. (2011) ran a 4-person public good experiment in continuous time
and report a somewhat lower impact of continuous-time interaction on cooperation.
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2007), minimum effort games (Deck and Nikiforakis, 2012), and hawk-doves
games (Oprea et al., 2011).

8 Conclusions

We studied Prisoner’s Dilemma games of different durations in continuous
time, under deterministic and stochastic horizons. The experiment showed
how behavior in (quasi) continuous-time games is qualitatively different
from standard repeated games with discrete periods. The main findings
are as follows. For long duration treatments, cooperation rates were on a
similar, high level in the deterministic and stochastic horizon treatments.
With short duration, cooperation rates were significantly higher in deter-
ministic than in stochastic horizon treatments. As subjects gained expe-
rience, cooperation rates grew in all treatments. Moreover, in treatments
with a deterministic horizon we observed an end-game effect, which got
shorter and shorter as subjects acquired experience. The time horizon also
had significant impact on the strategies employed. In deterministic horizon
treatments, subjects widely employed cut-off strategies such as “Cooperate
until time T and then defect forever.”

Taken together, the observed patterns are not entirely consistent with
existing equilibrium-based theoretical frameworks, whether they model the
situation directly in continuous time, as the limit of standard games in
discrete time, or as the limit of perturbed games in discrete time. The
latter models (Kreps et al., 1982; Radner, 1986, and Friedman and Oprea,
2012), however, appear the most promising theories for continuous-time
behavior (Table 1), especially if we were to focus on behavior in the last
few supergames.

Since none of these equilibrium-based models found full empirical sup-
port, given the dataset as a whole, we turned attention to learning as a
potential explanation. Our aim was to highlight the overwhelming impact
of experience on behavior in continuous-time games, rather than carrying
out a horse race among different learning models. We argued that a simple
evolutionary model based on the replicator dynamics can account for most
of the observed patterns. In particular, the model predicts that experience
is an important drive toward cooperation in all treatments, but that its im-
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pact is weaker in games with a stochastic horizon. An additional treatment
with deterministic duration and periods of variable length matching the re-
alized durations of the stochastic treatment confirmed that the presence of
uncertainty in period duration slows down the convergence to cooperation
more than the variability in period lengths.

Theoretical and experimental analyses of repeated games in discrete
time have identified two economic forces that influence whether agents can
successfully cooperate: the backward induction reasoning in finitely re-
peated games and the tradeoff between immediate gains and the shadow of
future punishments. Our results suggest that – in situations where agents
can react quickly to moves by others – both these forces are second-order.
Instead, the ability to learn from past successes of cooperative strategies
appears to be a first-order determinant of cooperation levels.

The reported findings may have important implications for a variety of
field applications. People facing social dilemmas in which they can react
swiftly, as in many productive, labor, sporting, and military activities, can
easily overcome the challenge of achieving mutual cooperation, irrespective
of the deterministic or stochastic horizon of the interaction, even for short
duration activities. In those situations, a deterministic horizon is not an
impediment to cooperation and may even facilitate it.

On collusion practices, our results may explain why higher prices have
been observed in oligopolies when the date of the last interaction is made
public. Szymanski (1996), for example, noted that the two incumbent
shipping companies in the Channel increased prices substantially when the
threat of the Eurotunnel taking the best part of their market became real.
Assuming a monopolistic market, his model suggested that this happened
because of the reduced fear of regulatory intervention, given its fixed costs,
and the fact that the tunnel was expected to soon reduce prices dramat-
ically anyway. However, he admitted that he could not explain how this
theory could apply to the shipping duopoly that motivated his paper, i.e.
why competition among the duopolists did not drive prices down, given
that the Eurotunnel limited the horizon of their interaction. Our results
offer a plausible explanation. They also suggest that policies designed for
discretely repeated interactions may be ineffective or counterproductive in
high frequency environments.
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To draw implications from the experimental results, however, one should
keep in mind that these activities must share some well-defined features:
they should involve a continuous-time effort by participants, as when car-
rying together a heavy object or jointly rowing in a boat, and participants
must perfectly observe the action or effort taken by the opponent. Further
work is needed to understand the domain of application of these results,
for instance with respect to shorter period lengths or other details. In par-
ticular, the introduction of imperfect monitoring of the opponent’s action
may limit, or remove altogether, the possibility of sustaining a cooperative
outcome when actions are chosen frequently (as in the theoretical results
in Sannikov and Skrzypacz 2007).
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Appendix

A Additional tables

Dependent variable: cooperation rate
Coefficient (s.e.)

Short-Deterministic -6.082** (2.950)
Long-Stochastic 1.998 (3.632)
Short-Stochastic -17.755*** (3.781)
Constant 62.600*** (9.984)
Controls for individual characteristics Yes
N 4416
R-squared overall 0.047
R-squared between 0.223
R-squared within 0.000

Notes: Panel regression with random effects at the subjects’ level and standard errors
robust for heteroschedasticity. The unit of obs. is the fraction of time a subject spends
cooperating within a period. Default treatment: Long-Deterministic. The difference
between coefficients for the Short-Stochastic and Short-Deterministic treatments is sig-
nificant at any standard significance level (p-value < 0.001).

Table A.1: Panel regression on cooperation rates
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Termination rule
Duration Deterministic Stochastic
Long 0.613 ∼ 0.608

(0.791) (0.769)
∨∗∗∗ ∨∗∗∗

Short 0.557 >∗∗∗ 0.447
(0.700) (0.283)

Notes: The mean rate of mutual cooperation of a session is the average across all 23
periods and all 12 groups in each period. Median rates of mutual cooperation are
reported in parentheses. Significance levels are derived from the regression presented in
Model 1 of Table A.3.

Table A.2: Average rate of mutual cooperation per second

Dependent variable: rate of mutual cooperation
Model 1 Model 2

Coefficient (s.e.) Coefficient (s.e.)
Short-Deterministic -0.091*** (0.032) -0.091*** (0.029)
Long-Stochastic 0.007 (0.041) 0.007 (0.036)
Short-Stochastic -0.206*** (0.038) -0.206*** (0.038)
Constant 0.613*** (0.123) 0.613*** (0.099)
Controls for individual characteristics Yes Yes
N 192 4416
R-squared 0.259
R-squared overall 0.048
R-squared between 0.259
R-squared within 0.000

Notes: Model 1 presents results from a linear regression with bootstrapped standard
errors. The unit of observation is the average fraction of time a pair of subjects coordi-
nate on cooperation within a period, across all periods. Model 2 presents results from
a panel regression with random effects at the subjects’ level and standard errors robust
for heteroschedasticity. The unit of observation is the fraction of a period duration in
which both subjects in a pair cooperate. Default treatment: Long-Deterministic.

Table A.3: Linear regression on rates of mutual cooperation

38



Termination rule
Duration Deterministic Stochastic
Long 0.614 ∼ 0.608

(0.792) (0.793)
∨∗∗ ∨∗∗∗

Short 0.570 >∗∗∗ 0.447
(0.696) (0.455)

Notes: The mean profit per second of a session is the average across all 23 periods and all
24 subjects. Median profits are reported in parentheses. Significance levels are derived
from the regression presented in Model 1 of Table A.5.

Table A.4: Average profits per second

Dependent variable: average profit per second
Model 1 Model 2

Coefficient (s.e.) Coefficient (s.e.)
Short-Deterministic -0.062** (0.030) -0.062** (0.025)
Long-Stochastic 0.019 (0.031) 0.019 (0.029)
Short-Stochastic -0.188*** (0.030) -0.188*** (0.030)
Constant 0.685*** (0.096) 0.685*** (0.086)
Controls for individual characteristics Yes Yes
N 192 4416
R-squared 0.353
R-squared overall 0.034
R-squared between 0.353
R-squared within 0.000

Notes: Model 1 presents results from a linear regression with bootstrapped standard
errors. The unit of observation is the average profit per second, across all periods.
Model 2 presents results from a panel regression with random effects at the subjects’
level and standard errors robust for heteroschedasticity. The unit of observation is a
subject’s profit per second, in a period. Default treatment: Long-Deterministic.

Table A.5: Linear regression on average profits per second
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Dependent variable: average timing of the end-game effect
Coefficient (s.e.)

Short-Deterministic -7.182 (4.413)
Period -1.178** (0.576)
Period2 0.027 (0.021)
Period × Short-Deterministic 0.609 (0.609)
Period2× Short-Deterministic -0.012 (0.023)
Reaction time 4.135 (2.764)
Reaction time× Short-Deterministic -2.639 (2.842)
Constant 14.956*** (4.414)
N 92
R-squared 0.680

Notes: Linear regression with bootstrapped standard errors. The unit of observation is
the session average of timing of the end-game effect (in seconds) in each period. Default
treatment: Long-Deterministic.

Table A.6: Linear regression on the average timing of the end-game effect

Periods
Treatment 1-6 7-12 13-18 19-23 Overall
Long-Deterministic 1.73 1.38 1.52 1.44 1.52

N=236 N=262 N=244 N=212 N=954

Short-Deterministic 1.06 1.08 0.95 0.90 0.99
N=164 N=186 N=224 N=192 N=766

Table A.7: Average reaction time across periods.
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Mean
coop. rate

Initial
coop. rate

Short-Deterministic 10.802*** 15.757***
(4.060) (5.425)

Variable-Deterministic 6.353* 12.581**
(3.703) (5.281)

Constant 37.996** 65.389***
(17.023) (19.930)

Controls for individual characteristics Yes Yes
N 144 144
R-squared 0.169 0.226

Notes: Linear regressions with bootstrapped standard errors. The unit of observation is
the mean (initial) cooperation rate in a section in a period. Default treatment: Short-
Stochastic. Standard errors are reported in parentheses.

Table A.10: Linear regression on mean and initial cooperation rates

Mean
coop. rate

Initial
coop. rate

Short-Deterministic 10.802*** 0.681***
(3.398) (0.148)

Variable-Deterministic 6.353 0.409***
(3.928) (0.154)

Constant 37.996** -0.795**
(14.892) (0.390)

Controls for individual characteristics Yes Yes
N 3312 3312
R-squared overall 0.032
R-squared between 0.169
R-squared within 0.000
Log-likelihood -1517.3

Notes: Panel regression with random effects at the subjects’ level and standard er-
rors robust for heteroschedasticity. The unit of observation is a subject’s cooperation
rate/initial action a period. Since initial cooperation is a binary variable, in the last
column of this table we present results from a panel logit regression with random ef-
fects at the subjects’ level and standard errors robust for heteroschedasticity. Default
treatment: Short-Stochastic. Standard errors are reported in parentheses.

Table A.11: Panel regression on mean and initial cooperation rates
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Figure A.1: Initial defections
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B Timing of the end-game effect

B.1 Friedman and Oprea (2012)

According to the model developed by Friedman and Oprea (2012, p.352), it
can be shown that – under certain conditions – all strategies employed in a
nearly dominant ε-equilibrium involve cut-off strategies. That is, strategies
that start as grim-trigger strategies and, if there is no prior defection,
switch to permanent defection no earlier than some fraction sL of the total
duration of the game.

sL = 1− τ 2x

10− y
where τ denotes the response time as a fraction of the total period duration,
and x and y are the temptation and the punishment payoffs in the following,
generalized matrix for the prisoner’s dilemma.

C D
C 10 10 0 x
D x 0 y y

Table B.1: Generalized payoff matrix in Friedman and Oprea (2012)

In other words, this model predicts that the end-game effects would
arise no sooner than 2x

10−y t seconds from the end, where t is the response
time in absolute terms.

To obtain a specific prediction of the timing of the end-game effect in
our setup, we map the payoff matrix adopted in our experiment to the
matrix in Table B.1, by applying to each payoff π the following linear
transformation: π′ = (π + 2)10

3
. This yields:

C D

C 10 10 0 40
3

D 40
3

0 20
3

20
3

Table B.2: Payoff matrix adopted in our setup, mapped to Friedman and
Oprea (2012)’s model.

Hence, in our set-up, x = 40
3

and y = 20
3
, and the end-game effect should

emerge no sooner than 8t seconds from the end.
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To conclude, Friedman and Oprea (2012)’s model predicts that, if the
game has a finite horizon, an end-game effect will emerge, and that the
timing of this effect in terms of distance from the end of the period does
not depend on the total length of the period, but only on subjects’ reaction
time.

B.2 Kreps et al. (1982)

Along the lines of Kreps et al. (1982), let us assume that one player, say
the column player (col) is not absolutely certain that the other (row)
will play rationally, and assesses that, with probability δ, row is playing a
Grim-trigger strategy that prescribes to cooperate as long as the opponent
cooperates, and to switch to permanent defection as soon as possible after
a deviation by his opponent. To incorporate the reaction time, we model
the game as having a finite number of periods with a period length equal
to τ .

If we restrict attention to sequential equilibria that are not Pareto-
dominated by any other sequential equilibrium, we can show that both
players should cooperate in all but the last “few” seconds before the end of
the game, and that the duration of this final, non-cooperative phase does
not depend on the total duration of the period but only on the response
time τ and on the ex-ante expectations that the other player is not fully
rational, δ.

To keep the same notation as in the previous subsection, let us normalize
to 1 the total duration of the period, and let us refer to the generalized
payoff matrix in Table B.1. In the following arguments, we stick as close
as possible to Kreps et al. (1982), and simply translate their reasoning to
our environment, and use the payoff matrix in Table B.1. Notice that the
statement of each of the following steps but the last one should be preceded
by: “In every sequential equilibrium...”. All the statements refer to times
that are on the grid of periods defined by τ and the length of the supergame
(and we ignore integer problems; similar reasoning can be presented if
the game was modeled as a continuous-time game with a response time τ
but that would require additional notation and so we present this simpler
reasoning).
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Step 1: ...if at time ŝ ∈ [0, 1] it is common knowledge that row is ratio-
nal, both row and col will defect at any time s ∈ [ŝ, 1], and their payoffs
from the reminder of the period are (1− ŝ)y.

This follows by a standard backward induction argument in finitely
repeated games, since once there is common knowledge that the players
are rational, beliefs do not change in a sequential equilibrium.

Step 2: ...if col defects at time ŝ, then row will defect at any time
s ∈ [ŝ+ τ, 1], with probability one.

If row cooperated in ŝ+ τ , it would become common knowledge that
he is rational, hence the continuation payoff from ŝ + 2τ on would be y.
Because cooperating would not increase the continuation payoff, and would
strictly decrease the instantaneous payoff at ŝ + τ , defection does strictly
better overall, and row will defect with probability 1.

Step 3: ...starting from any point ŝ ∈ [0, 1] where col assesses that
row is a grim-trigger player with probability ρ and where both players
cooperated at any time s ∈ [0, ŝ), if col cooperates at ŝ his expected
payoff for the reminder of the game is no less than

ρ(1− ŝ)10 + (1− ρ)(1− ŝ− τ)y

To see this, consider that if row is a grim-trigger player, col’s payoff
will not be lower than (1− ŝ)10, while if row is a rational player, the worst
that can happen is that he defects at ŝ, thus revealing his type; hence col

will earn the sucker’s payoff (0) as long as he does not switch to defection
as well (which occurs with delay τ). Afterwards, both players will defect
until the end of the period.

Step 4: ...starting from any point ŝ ∈ [0, 1] where both players cooperated
at any time s ∈ [0, ŝ), if col defects at ŝ his expected payoff for the
reminder of the game is no more than

τx+ (1− ŝ− τ)y

To see this, consider that in the best case scenario (from the point of
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view of col), row is a grim-trigger player and will not defect at ŝ; hence
col will be able to get the temptation payoff x as long as row does not
switch to defection, which will occur with delay τ .

Step 5: ... at ŝ = 1− τ where col assesses that row is a Grim-trigger
player with probability ρ and where both players cooperated at any time
s ∈ [0, ŝ), if col cooperates at ŝ his expected payoff for the reminder of
the game is no more than

ρτ10

while if col defects his expected payoff is no less than

ρτx+ (1− ρ)τy

Hence, a rational col player should defect at ŝ = 1− τ , for any ρ ∈ [0, 1].

Step 6: From Step 5, it results that a rational col player should defect
no later than

sU = 1− τ

and from Steps 3 and 4 it results that he should defect no earlier than

sL(ρ) = 1− τ x− ρy
ρ(10− y)

because, for any s < sL(ρ), the lowest possible expected payoff from co-
operation (Step 3) is higher than the maximal payoff from defection (Step
4).

At the beginning of the game, the belief is ρ = δ and hence, if sL(δ) > 0,
a rational col player has strict incentives to cooperate as does the rational
row player. That means the belief would remain equal to δ until the period
τ and so on until time sL(δ) > 0. In other words, this model predicts
that the end-game effects would arise no sooner than x−δy

δ(10−y)t seconds from
the end, where t is the response time in absolute terms and what the
equilibrium looks like after time sL(δ) is independent of the duration of the
game (it can depend on the duration indirectly if duration affects reaction
time or beliefs). With our parameters, this implies that the end-game effect
should not emerge earlier than 2t

(
2
δ
− 1
)
seconds from the end.
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To conclude, as Friedman and Oprea (2012)’s as well as Kreps et al.
(1982)’s models predict, if the game has a finite horizon, an end-game effect
will emerge and the timing of this effect in terms of distance from the end
of the period does not depend on the total length of the period, but only
on subjects’ reaction time. Differently from Friedman and Oprea (2012),
Kreps et al. (1982)’s model also highlights the role of subjects’ expectations
on others’ rationality.
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C Proof of Proposition 2

The area of the basin of attraction of the strategy Always-defect is given
by the sum of the areas of the two triangles whose vertices identify the
following states.19 x2 = (0, 1, 0),
x4 = (0, 1− b

a
, b
a
),

x5 = (b, 1− b, 0), and
x6 = ( b2

a(1−a)+b2 , 1−
(1−a)b

a(1−a)+b2 ,
(1−a)b−b2
a(1−a)+b2 ).

This area can be expressed as a function A(a, b) of parameters a and b:

A(a, b) =
(a− 1)b2

(
a sin

(
π(a+b−1)
3(a−1)

)
+ sin

(
πb

3−3a

))
2a (a2 − a− b2)

(3)

In Section 6, we computed the value of a and b as a function of the relative
response time τ and of a parameter k, which characterizes the timing of
the end-game effect.
For games with a deterministic horizon, we have:

a = 1− k · τ (4)

b = 2 · τ (5)

Hence, replacing (4) and (5) in equation (3), we get the area of the basin
of attraction of strategy Always-defect as a function of τ and k:

ADet(k, τ) = −
2kτ 2

(
(kτ − 1) cos

(
π(k+4)

6k

)
− sin

(
2π
3k

))
(kτ − 1) (k2τ − k − 4τ)

For games with a stochastic horizon, we have:

a = 1− ek·τ−1 (6)

b = 2(1− e−τ ) (7)

Hence, replacing (6) and (7) in equation (3), we get the area of the basin

19In these triples, the first component represents the fraction of agents playing Grim-
trigger, the second element the fraction of agents playing Always-defect, and the third
element corresponds to the fraction of agents playing the Cut-off strategy, as explained
in footnote 11, at page 21.
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of attraction of the strategy Always-defect as a function of τ and k:

AStoch(k, τ) =2 (eτ − 1)2 ekτ+1×( (
ekτ − e

)
sin
(
1
3
π
(
1− 2 (eτ − 1) e1−(k+1)τ

))
(ekτ − e) (−e2(k+1)τ + e(k+2)τ+1 − 8eτ+2 + 4e2τ+2 + 4e2)

−

e sin
(
2
3
π (eτ − 1) e1−(k+1)τ

)
(ekτ − e) (−e2(k+1)τ + e(k+2)τ+1 − 8eτ+2 + 4e2τ+2 + 4e2)

)

Let D(k, τ) = ADet(k, τ)− AStoch(k, τ). We have that:

D(k, 0) = 0 ∀k

lim
τ→0

D′(k, 0) = 0 ∀k

lim
τ→0

D′′(k, 0) < 0 ∀k ≥ 1

We have thus proven, by direct computation, that D(k, τ) < 0 for values
of τ close enough to 0, and for any value of k ≥ 1.
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D Instructions

[Instructions for the Long-Stochastic treatment, translated from Italian.
the parts that are different in the Long-Deterministic treatment are re-
ported in italics.]

Welcome! This is a study about how people make economic decisions. This
study is funded by the University of Bologna and other institutions. If you
pay attention, the instructions will help you to make your decisions and
earn a reasonable amount of money. The earnings will be calculated in
points and then converted into euros.

For every 150 points you will receive 1 euro.

In addition, you will receive 3 euros for participation. Your earnings will
be paid in cash at the end of today’s session.

We ask that you turn off your phone now and do not communicate in any
way with the people present in the room until the end of the study. If you
have any questions, please raise your hand and we will assist you in private.

This study comprises 23 periods. In each period, you will be paired with
another person selected at random from those present in the room.

In every period you will be able to repeatedly choose between a "GRE-
EN" action and an "ORANGE" action. The person matched with
you will also be able to repeatedly choose between "green" and "orange"
actions. As a consequence, there are four possible combinations: GREEN-
green, ORANGE-orange, GREEN-orange, and ORANGE-green. For each
combination of actions there is a corresponding cell in Figure D.1 below.

In each cell you can see the gains or losses during the period according to
your action and the action of the other. Your action will determine the
table row, while the action of the person matched with you will determine
the table column.

The earnings described in Figure D.1 above represent earnings per second.
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Figure D.1: Earnings table

For instance, suppose you choose "GREEN" and hold that choice over time:
if the other chooses "green" and holds his choice in time, you earn 1 point
per second and the other earns 1 point per second; if the other chooses
"orange" and holds it, you lose 2 points per second and the other earns 2
points per second. And so on.

In each period, earnings depend on how much time you spend in each cell
of Figure D.1. The more time you spend in a cell, the more your average
earnings will approximate what is indicated in the cell. For instance, if
you spend half of the period in the GREEN-green cell where you earn 1
and half of the period in the ORANGE-orange cell where you earn 0, your
earnings will be 0.5 points per second. Are there any questions about how
to read the table?

Who is the other person matched with me?
It could be anyone in this room. Your identity and hers will be kept confi-
dential. Payments will also be made in private. There will be 23 periods.
At the beginning of each period pairs will be changed. People will be
recombined so that you will never meet the same person twice.

What should I do? In every period you choose an initial action and then
you can decide every instant whether to keep or change that action. The
person matched with you can do the same. During a period, both you and
the other will be able to change action as many times as you like. Time
flows through very fast ticks (16-hundredths of a second each); in practice
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there are between six and seven ticks per second, so if you want you can
change the action six or seven times per second.

Figure D.2: Earnings table

Earnings
During the period you will receive information in real time on your earnings.
In the screen pictured in Figure D.2 above, your cumulated earnings will
appear in a graph as a line that will form at every tick of 16-hundredths
of a second. In each period you will have an initial endowment of 50
points as cumulated earnings. If, during the period, your earnings
are zero, then the line will be flat. In case of losses, then the line
will be declining. In the case of positive earnings, then the line
will be increasing. For instance, if you earn 1 point per second there
will be an increasing line that is parallel to the graph grid. If you earn 2
points per second, the line will be increasing, but steeper. Looking at the
earnings graph will give you information on the current action of the other
person matched with you. Are there any questions?

To understand how to read the screen, we will do a trial period, without
consequences on your earnings. For simplicity, the trial period will last 60
seconds and the other will be played by a robot. The robot will start with
an action and then, halfway through the period, will change action. Now
please look at the screen and follow the exact guidelines you are given. To
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start, choose the initial action. Press the screen with your finger on the
button that you will be told to choose ("GREEN" or "ORANGE"). The
robot will also choose its initial action ("green" or "orange"). Everyone
please choose "GREEN" now as the initial action. The selected action
will be highlighted in yellow on the table. The period will begin when
everybody has chosen their initial action and pressed "OK". From this
moment on, the time will begin to run. Then you will see that the graph
line is green like your action. Now, please press your finger on the button
"OK" to confirm. Does anyone need help? After 10 seconds, everyone
please press the button "ORANGE." You will see that your action has
changed because the line highlighted in yellow in the table will change and
that indicates your current action. Moreover, the graph line will now be
orange in color. After 30 seconds, everyone please press again the button
"GREEN." Now we ask you to guess what actions the robot chose. Are
there any questions?

We will do two more trial periods, without consequences on your
earnings. For simplicity, the trial period will last 60 seconds and the other
will be played by a robot. The robot will start with an action and then,
halfway through the period, will change action. Now look at your screen.
Choose the initial action that you prefer. When everyone has completed,
you’ll see the time running. You are free to change the action at any time.
At the end of the period, we will ask you to guess what actions the robot
chose.

Now we will do the last trial period. Go ahead and choose the action you
want. Are there any questions?

For simplicity, in the trial periods the other was a robot and the duration
was 60 seconds. However, in the coming periods, the other will be a person
in this room while the duration of each period will be variable and deter-
mined randomly. Each period will stop without notice and for everybody
at the same moment, and the period duration could vary from less than a
second to several minutes.

How is a period duration established?
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The period may stop at every tick of 16 hundredths of a second. This event
depends on the result of a random draw. Imagine a box with 10,000 balls,
of which 9,973 black and 27 white. It is as if, after every tick, a ball was
drawn. If the ball drawn is white, the period ends. If the ball is black, the
period continues and the ball is placed back into the box. At the next tick, a
new ball is drawn at random. You have to imagine very rapid draws, that is
one every tick of 16 hundredths of a second. We calculated that as a result
of this, the periods will have an average duration of 60 seconds. There may
be some short periods and some long periods. Are there any questions about
this?
[DETERMINISTIC: The length of each period will be 60 seconds.]

Very well, then we can start.

56



References

Andreoni, J. and J. H. Miller (1993): “Rational Cooperation in the
Finitely Repeated Prisoner’s Dilemma: Experimental Evidence,” The
Economic Journal, 103, 570–585.

Bereby-Meyer, Y. and A. E. Roth (2006): “The Speed of Learning
in Noisy Games: Partial Reinforcement and the Sustainability of Coop-
eration,” The American Economic Review, 96, 1029–1042.

Bergin, J. and W. B. MacLeod (1993): “Continuous Time Repeated
Games,” International Economic Review, 34, 21–37.

Berninghaus, S., K.-M. Ehrhart, and M. Ott (2006): “A network
experiment in continuous time: The influence of link costs,” Experimental
Economics, 9, 237–251, 10.1007/s10683-006-9125-1.

Berninghaus, S., K.-M. Ehrhart, M. Ott, and B. Vogt (2007):
“Evolution of networks—an experimental analysis,” Journal of Evolu-
tionary Economics, 17, 317–347, 10.1007/s00191-006-0050-4.

Börgers, T. and R. Sarin (1997): “Learning Through Reinforcement
and Replicator Dynamics,” Journal of Economic Theory, 77, 1 – 14.

Charness, G., D. Friedman, and R. Oprea (2011): “Continuous Time
and Communication in a Public-goods Experiment,” mimeo.

Cooper, R., D. V. DeJong, R. Forsythe, and T. W. Ross (1996):
“Cooperation without Reputation: Experimental Evidence from Pris-
oner’s Dilemma Games,” Games and Economic Behavior, 12, 187 – 218.

Dal Bó, P. (2005): “Cooperation under the Shadow of the Future: Exper-
imental Evidence from Infinitely Repeated Games,” American Economic
Review, 95, 1591–1604.

Dal Bó, P. and G. Fréchette (2011): “The Evolution of Coopera-
tion in Infinitely Repeated Games: Experimental Evidence,” American
Economic Review, 101, 411–429.

57



Deck, C. and N. Nikiforakis (2012): “Perfect and imperfect real-time
monitoring in a minimum-effort game,” Experimental Economics, 15, 71–
88, 10.1007/s10683-011-9289-1.

Engle-Warnick, J. and R. L. Slonim (2004): “The Evolution of
Strategies in a Repeated Trust Game,” Journal of Economic Behavior &
Organization, 55, 553 – 573, trust and Trustworthiness.

Fischbacher, U. (2007): “z-Tree: Zurich Toolbox for Ready-made Eco-
nomic Experiments,” Experimental Economics, 10, 171–178.

Friedman, D. and R. Oprea (2012): “A Continuous Dilemma,” Amer-
ican Economic Review, 102, 337–63.

Greiner, B. (2004): “The Online Recruitment System ORSEE 2.0 - A
Guide for the Organization of Experiments in Economics.” University of
Cologne, Working Paper Series in Economics 10.

Hauk, E. and R. Nagel (2001): “Choice of Partners in Multiple Two-
Person Prisoner’s Dilemma Games: An Experimental Study,” The Jour-
nal of Conflict Resolution, 45, 770–793.

Kahneman, D. (1973): Attention and Effort, Prentice Hall.

Kreps, D. M., P. Milgrom, J. Roberts, and R. Wilson (1982):
“Rational Cooperation in the Finitely Repeated Prisoners’ Dilemma,”
Journal of Economic Theory, 27, 245–252.

Murnighan, J. K. and A. E. Roth (1983): “Expecting Continued Play
in Prisoner’s Dilemma Games: A Test of Several Models,” The Journal
of Conflict Resolution, 27, 279–300.

Normann, H.-T. and B. Wallace (2012): “The impact of the termina-
tion rule on cooperation in a prisoner’s dilemma experiment,” Interna-
tional Journal of Game Theory, 41, 707–718, 10.1007/s00182-012-0341-y.

Oprea, R., K. Henwood, and D. Friedman (2011): “Separating
the Hawks from the Doves: Evidence from continuous time laboratory
games,” Journal of Economic Theory, 146, 2206 – 2225.

58



Palfrey, T. R. and H. Rosenthal (1994): “Repeated Play, Cooper-
ation and Coordination: An Experimental Study,” The Review of Eco-
nomic Studies, 61, 545–565.

Radner, R. (1986): “Can Bounded Rationality Resolve at the Prisoner’s
Dilemma?” in Conributions to Mathematical Economics, ed. by A. Mas-
Colell and W. Hildenbrand, North-Holland, Amsterdam, 387–399.

Rapoport, A. and A. Chammah (1965): Prisoner’s Dilemma: a Study
in Conflict and Cooperation, Ann Arbor, University of Michigan Press.

Roth, A. E. and J. K. Murnighan (1978): “Equilibrium Behavior
and Repeated Play of the Prisoner’s Dilemma,” Journal of Mathematical
Psychology, 17, 189 – 198.

Sannikov, Y. and A. Skrzypacz (2007): “Impossibility of Collusion
under Imperfect Monitoring with Flexible Production,” American Eco-
nomic Review, 97, 1794–1823.

Selten, R., M. Mitzkewitz, and G. R. Uhlich (1997): “Duopoly
Strategies Programmed by Experienced Players,” Econometrica, 65, 517–
556.

Selten, R. and R. Stoecker (1986): “End behavior in Sequences of
Finite Prisoner’s Dilemma Supergames: A Learning Theory Approach,”
Journal of Economic Behavior & Organization, 7, 47 – 70.

Simon, H. A. (1971): “Designing Organizations for an Information-Rich
World,” in Computers, Communications, and the Public Interest, ed. by
M. Greenberger, Baltimore: The Johns Hopkins Press, 37–72.

Simon, L. K. and M. B. Stinchcombe (1989): “Extensive Form Games
in Continuous Time: Pure Strategies,” Econometrica, 57, 1171–1214.

Sims, C. (2003): “Implications of Rational Inattention,” Journal of mone-
tary Economics, 50, 665–690.

Szymanski, S. (1996): “Making Hay While the Sun Shines,” The Journal
of Industrial Economics, 44, 1–16.

59



Weibull, J. (1995): Evolutionary Game Theory, Cambridge, USA: MIT
Press.

60


	Cover EIEF WP_16.pdf
	130118BigoniCasariSkrzypaczSpagnolo
	Introduction
	Theoretical Considerations
	Experimental Design
	Results
	The dynamics across supergames
	Discussion and additional results
	Empirical identification of individual strategies
	Evolution of cooperation with experience
	The Variable-Deterministic treatment

	Related Literature
	Conclusions
	Additional tables
	Timing of the end-game effect
	Friedman2011
	Kreps1982

	Proof of Proposition 2
	Instructions


