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Abstract

Cyclical fluctuations in the U.S. labor market and output exhibit a significant asymmetry.

In this paper, I develop a search-and-matching model with endogenous job destruction and

permanently heterogeneous workers (in skill/productivity) that accounts for this asymmetry

while also generating (i) realistic volatility in unemployment and job-finding rates and (ii)

preserving a downward-sloping Beveridge curve. The model delivers stark predictions for the

time series of skill-specific unemployment rates that hold in CPS micro data once I sort workers

by age and education. A general implication of the analysis is that the responsiveness of

unemployment to stimulus policies increases substantially during recessions.
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1 Introduction

Labor market fluctuations are large and strongly asymmetric. The U.S. employment rate

contracts deeper and sharper during recessions than it expands in booms. Output, as em-

ployment, falls deeper below trend in recessions, but it declines as sharply as it raises.1 These

facts are well known, yet the literature lacks a quantitatively successful explanation.

Explaining these facts is interesting per se given the strong presence of asymmetry in U.S.

macroeconomic series. Moreover, as I show in the paper, developing such an explanation

leads to an explanation for the volatility of the U.S. labor market. In addition, understanding

these nonlinearities is critical to address policy-relevant questions such as how the effective-

ness of macroeconomic policies varies over the business cycle. By constructing a model in

which asymmetries arise in equilibrium, one can study state-dependent effects of stimulus

policies more rigorously.

To inform my theoretical analysis, Section 2 details new asymmetry facts. First, I show

that total hours worked feature cyclical asymmetries comparable to those of the U.S. employ-

ment rate. However, the asymmetric behavior is not exhibited in the fluctuations of hours

per worker. These two facts suggest that the extensive margin is critical to understand the

asymmetries of the labor input. Second, fluctuations in the U.S. participation rate (fraction

of the population in the labor force) are symmetric. This fact suggests I can safely abstract

from movements in and out of the labor force. Third, through a counterfactual exercise

based on Shimer (2012), I document that both the job creation and job destruction margin

of the labor market are needed to fully account for the asymmetric dynamics of the U.S.

employment rate.

Motivated by the facts above, Section 3 develops a search-and-matching model with

endogenous job destruction and permanently heterogeneous workers (in skill/productivity)

that accounts for the asymmetric fluctuations of the U.S. labor market and output.2 The

fundamental properties of the model are that recessions are initiated by a burst of job losses

leading to a spike in unemployment followed by recoveries that are driven by a low aggregate

job-finding rate.3 In what follows, I detail the key mechanism of the model that generates

1See Mitchell (1913, 1927), Mitchell and Burns (1946), Neftci (1984), Sichel (1989, 1993), Long and
Summers (1986), Falk (1986), Rothman (1991), McQueen and Thorley (1993), Verbrugge (1997), Belaire-
Franch and Peiro (2003), Bai and Ng (2005), Hamilton (2005), and McKay and Reis (2008).

2The permanent nature of heterogeneity is reasonable in the sense that over the cycle there is not much
workers can do to change their skills/productivity.

3See Davis et al. (2006, 2010), Fujita and Ramey (2009), and Elsby et al. (2009) for evidence supporting
this view.
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asymmetry in the labor market.

Consider first the scenario in which the economy rests at the steady state and it is hit

by a positive shock to productivity. In this case, no endogenous separation occurs and

job destruction is only due to exogenous separations. Therefore, unemployment dynamics

are exclusively driven by a high aggregate job-finding rate. In this case, the distribution

of skills in the unemployment pool closely replicates the distribution of skills in the econ-

omy. Consider now a negative shock to productivity. Given the heterogeneity in workers’

skill/productivity, the model features a “reservation property” such that all matches with

workers with productivity below a cutoff value are endogenously destroyed. Since laid-off

workers are permanently low-skilled, they are not rehired until aggregate productivity re-

turns to its normal level. Thus, in this case the unemployment pool is characterized by

a distribution of skills that is skewed to the left. It is this change in the distribution of

skills of the unemployment pool over the cycle that generates asymmetries in the aggregate

job-finding rate.

In principle, worker heterogeneity aside, endogenous job destruction alone can give rise

to “spiky” dynamics in the job-separation rate leading to asymmetries in employment. For

example, consider the Diamond-Mortensen-Pissarides (DMP) model augmented with shocks

to the separation rate as in Shimer (2005) or the endogenous job separation model à la

Mortensen and Pissarides (1994). While these models could (at least qualitatively) account

for the asymmetries in the U.S. data, it is well known that this class of models generate a

counterfactual Beveridge curve and fail to generate realistic volatility in vacancies and job-

finding rates. Furthermore, as discussed above, I document in the paper that the asymmetries

in the U.S. data are due to both job-separation and job-finding rates. As such a model relying

exclusively on endogenous job destruction would be counterfactual vis-à-vis this observation.

Thus, while relying solely on endogenous job destruction would “match” the asymmetry facts

it will be at odds with other key empirical facts. It is the interaction between the endogenous

separation margin and the permanent heterogeneity that allows the model to account for the

asymmetry facts jointly with (i) realistic volatility in unemployment and job-finding rates,

as well as (ii) the correct relative contribution of job-separation and job-finding rates to the

asymmetry properties of the data.

In Section 4, I calibrate the model and evaluate its quantitative implications. I argue

the model is able to replicate the key asymmetry facts as well as generate realistic volatil-

ity in unemployment and job-finding rates while preserving a downward-sloping Beveridge

curve (unemployment-vacancy locus). Specifically, it is well known that accounting for the
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volatility of the U.S. labor market is one of the puzzles in analysis based on DMP mod-

els.4 Crucially, the model does not rely on a high calibration of the worker’s outside option.

Precisely, worker heterogeneity jointly with a fixed outside option delivers a spectrum of

replacement ratios (i.e., worker’s outside option as percent of the wage). This leads to a

disconnect between average and marginal workers. On the one hand, marginal workers are

the least productive in the labor force and the ones laid off during recessions. These workers

feature high replacement ratios but account for only 5 percent of the labor force. On the

other hand, high-skilled workers have low replacement ratios and account for the bulk of the

workforce. As such the economy features on average a low replacement ratio.

As a by-product, the model provides stark predictions for the time series of skill-specific

unemployment rates. In Section 5, I use CPS micro data for the period 1976:M1- 2013:M2 to

test these predictions. Specifically, the model predicts that less productive workers account

for the bulk of the average and variation over time of the unemployment rate. Since age and

education are natural proxies for skills, I analyze their unemployment behavior and indeed

find that (i) young and least-educated workers experience average unemployment rates that

are up to nine times that of prime-aged workers and (ii) they account for approximately

70 percent of the time series variation in the U.S. unemployment rate. These facts provide

strong support for the main prediction of the model: understanding cyclical movements of

low-skilled workers is critical to explain the large fluctuations of the U.S. labor market.

The model has a wide range of implications for the design of macroeconomic policies. A

general prediction of the analysis is that the effectiveness of stimulus policies varies over the

business cycle. In Section 6, I show that the effects of policies that restore the profitability

of low-productivity matches are time varying: these policies are much more effective during

economic downturns than expansions. That is, the economy features impulse responses that

vary with the state of the economy.

This paper relates to the literature on asymmetric cycles. Most of this literature consists

of papers focusing on output and/or investment.5 Two exceptions are the studies on the

labor market of Andolfatto (1997) and McKay and Reis (2008). However, this paper is the

first attempt to provide a unified and quantitatively successful explanation for the volatility

and asymmetry of the U.S. labor market. Importantly, I also show how cyclical asymmetries

connect with nonlinearities in the amplification and propagation of shocks and argue about

4See Andolfatto (1996), Shimer (2005), and Costain and Reiter (2008).
5See Ball and Mankiw (1994), Acemoglu and Scott (1997), Kocherlakota (2000), Hansen and Prescott

(2005), Jovanovic (2006), Van Nieuwerburgh and Veldkamp (2006), Devereux and Siu (2007), Cheremukhin
and Tutino (2013), and Görtz and Tsoukalas (2013).
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their relevance for policy analysis.

2 Asymmetry Facts

This section details the basic facts on hours, unemployment and output that motivate the

paper and discusses new facts on their asymmetry properties. I consider the employment

rate (fraction of the labor force working in a given month, one minus the unemployment rate)

as the main cyclical indicator of the U.S. labor market. Following Sichel (1993), I measure

deepness and steepness asymmetry in an economic time series with the skewness coefficient

of respectively its detrended counterpart—asymmetry in levels—and log-first-differences—

asymmetry in growth rates. To test for asymmetry against the null hypothesis of symmetry,

I use the test developed by Bai and Ng (2005). To isolate fluctuations at business cycle

frequencies, I detrend the data with the Hodrick-Prescott (HP) filter. Figure 1 summarizes

the main asymmetry facts for employment and output.

2.1 Hours, unemployment, and output

In Figure 2, I report percent deviations from the HP trend for the U.S. employment rate for

the period 1948:Q1-2012:Q2. This figure illustrates that the largest deviations below trend

(in absolute value) exceed the largest deviations above trend, i.e., troughs are deeper than

peaks are tall. For example, there are six NBER-dated recessions during which the U.S.

employment rate falls 2 percent below trend or more. On the other hand, the employment

rate barely reaches as high as 2 percent above trend over the same period. This asymmetry

between peaks and troughs indicates deepness in employment cycles. Moreover, the rate at

which the employment rate falls during downturns exceeds the rate at which it raises during

upturns. This asymmetry in rates of change over the contraction and expansion phases

indicates steepness in employment.

Fact 1. Employment rates display negative skewness in levels and growth rates.

Fact 1 is well-known in the empirical literature on asymmetric cycles. Since Sichel (1993),

this fact has been confirmed by many authors.6 Panel A and B in Figure 1 show that

the empirical distributions of respectively detrended and first-difference employment rates

6See Verbrugge (1997) and Bai and Ng (2005) among others.
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Skewness = −0.581

P−value = 0.005

A. HP−Filtered Employment Rate

−0.04 −0.02 0 0.02 0.04
0

5

10

15

20

25

30

35

Skewness = −1.115

P−value = 0.001

B. First−Difference Employment Rate

−0.02 −0.01 0 0.01 0.02
0

10

20

30

40

50

60

70

Skewness = −0.644

P−value = 0.001

C. HP−Filtered Industrial Production

−0.1 −0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

30

35

Skewness = −0.238

P−value = 0.258

D. First−Difference Industrial Production

−0.1 −0.05 0 0.05 0.1
0

10

20

30

40

50

60

70

Figure 1: Asymmetry in Quarterly U.S. Data, 1948:Q1-2012:Q2

Notes: Panel A and B show the empirical distribution for respectively employment rate

as deviations from the HP trend with smoothing parameter 105 and log-first-differences.

Employment rate is the fraction of the labor force working in a given month, one minus the

unemployment rate. The seasonally-adjusted unemployment rate is from the CPS survey of

the BLS. Survey home page http://www.bls.gov/cps/. Panel C and D show the empirical

distribution for respectively industrial production (IP) as deviations from the HP trend with

smoothing parameter 1600 and log-first-differences. All data are logged quarterly averages

of monthly series for the period 1948:Q1-2012:Q2. Data are downloaded from the FRED

website at http://research.stlouisfed.org/fred2/.
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are left-skewed. For the detrended series, the skewness coefficient equals −0.581 and it is

highly statistically significant with a p-value of 0.005. Negative skewness in the detrended

series is capturing the fact there are a relatively large number of small deviations above

trend compared to a relatively small number of large deviations below trend. The tails of

the distribution reflects the asymmetry between peaks and troughs. For the series in first

differences, the skewness coefficient equals −1.115 with a p-value of 0.001. The skewness

coefficient of growth rates is a simple statistics apt to identify large and sudden changes in

employment rates. Negative skewness captures the presence of a relatively large number of

small positive changes compared to a small number of large negative changes. These large

negative changes in the employment rate occur at the onset of U.S. recessions.
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Figure 2: Detrended Quarterly U.S. Employment Rate, 1948:Q1-2012:Q2

Notes: Solid line shows a logged quarterly average of the U.S. employment rate (fraction

of the labor force working in a given month, one minus the unemployment rate) as devia-

tions from the HP trend with smoothing parameter 105. Gray bands indicate NBER-dated

recessions. The seasonally-adjusted unemployment rate is from the CPS survey of the BLS

for the period 1948:Q1-2012:Q2. Survey home page http://www.bls.gov/cps/. Data are

downloaded from the FRED website at http://research.stlouisfed.org/fred2/.

To strengthen Fact 1, I further document that cyclical asymmetries also characterize age-,

gender- and education-specific employment rates and are a robust feature across U.S. states
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and different sectors of the U.S. economy. These findings prove that cyclical asymmetries

characterize the entire labor market as such they can be meaningfully studied as an aggregate

phenomenon (see Appendix B for further details).

Furthermore, I show that total hours worked feature cyclical asymmetries comparable

to those of the U.S. employment rate. However, the asymmetric behavior is not present in

hours per worker. These two facts suggest that the extensive margin of the labor market is

critical to understand the asymmetries of the labor input. This observation is reminiscent of

the well-known fact that most of the volatility of hours worked at business cycle frequencies

is due to fluctuations in the number of employed as opposed to fluctuations in hours per

employed worker.7 Table 1 shows results for hours and hours per worker.

Table 1: Asymmetry in Quarterly U.S. Hours, 1948:Q1-2012:Q2

x Hours Hours per worker

Skew(x̃) −0.329∗∗ 0.303
(0.028) (0.165)

Skew(∆x) −0.513∗∗ 0.120
(0.036) (0.225)

Notes: Hours and hours per worker are respectively seasonally-adjusted quarterly hours

worked and hours to employment ratio in the nonfarm business sector. Data are from the

LPC release of the BLS for the period 1948:Q1-2012:Q2. Release home page http://www.

bls.gov/lpc. Nonfarm business sector output (NBSO) excludes from the business sector

the farm sector. Business sector output (BSO) is the annual-weighted index constructed

by the BLS after excluding from gross domestic product (GDP) the following outputs:

general government, nonprofit institutions, paid employees of private households, and the

rental value of owner-occupied dwellings. Data are downloaded from the FRED website

at http://research.stlouisfed.org/fred2/. Variables x̃ are in logs as deviations from

the HP trend with smoothing parameter 105. P-values (one-sided test) in parenthesis. **

denote statistical significance at 5% level.

There is some debate in the literature as whether the employment rate (as fraction of

the labor force) or the employment-population ratio is a better indicator representing the

state of the labor market. For example, Blanchard et al. (1990) argue that the number

of workers moving directly into employment from out-of-the-labor force is as large as the

7See Rogerson and Shimer (2011) among others.
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number who move from unemployment to employment.8 To address this issue, I study the

asymmetry properties of the U.S. participation rate, i.e., fraction of the population in the

labor force (employed plus unemployed to population ratio). Figure 3 clearly shows that the

null hypothesis of symmetry cannot be rejected in the data.

Skewness = 0.108

P−value = 0.297

A. HP−Filtered Participation Rate
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Figure 3: Asymmetry in Quarterly U.S. Participation Rate, 1948:Q1-2012:Q2

Notes: Panel A and B show the empirical distribution for respectively participation rate as devi-

ations from the HP trend with smoothing parameter 105 and log-first-differences. Participation

rate is the fraction of the population in the labor force (employed plus unemployed to population

ratio). Data are from the CPS survey of the BLS. Survey home page http://www.bls.gov/cps/.

Data are logged quarterly averages of monthly series for the period 1948:Q1-2012:Q2. Data are

downloaded from the FRED website at http://research.stlouisfed.org/fred2/.

The results in Figure 3 establish that fluctuations in the U.S. participation rate are

symmetric. This fact suggests that to understand cyclical asymmetries in employment, I

can abstract from movements in and out of the labor force.

In Figure 1, Panel C and D show the empirical distributions of detrended and first-

difference industrial production (IP). In Panel C, the skewness coefficient for the detrended

8See also Flinn and Heckman (1983), Juhn et al. (1991), Jones and Riddell (1999) and Cole and Rogerson
(2001) for further discussions on whether the categories “unemployed” and “out-of-the-labor force” are
different labor force states.
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series equals −0.644 and is highly statistically significant with a p-value of 0.001. However,

we cannot reject the null hypothesis of symmetry for the series in first differences. Panel D

reports a skewness coefficient of −0.238 with a p-value of 0.258.

Fact 2. Output displays negative skewness in levels but no skewness in growth rates.

Fact 2 is consistent with the evidence documented by Sichel (1993), Falk (1986), Long

and Summers (1986) and more recently McKay and Reis (2008). Appendix B reports further

results showing that steepness asymmetry is rejected in the data for several measure of real

output as real GDP, business sector and nonfarm business sector output.

2.2 Inflows and Outflows of Unemployment

In this section, I document new facts about the asymmetric dynamics of the U.S. labor

market. I compute counterfactual employment rate series based on Shimer (2012) and assess

the relative contribution of job-finding and job-separation rates to the asymmetry properties

of the U.S. employment rate.

2.2.1 Job-Finding and Separation Rates

In the standard DMP framework, the continuous time law of motion for employment is the

following differential equation:

ė(t) = u(t)f(t)− e(t)s(t), (1)

where a dot denotes a time derivative, u(t) denotes the number of unemployed, f(t) and s(t)

denote respectively job-finding rate (JFR) and job-separation rate (JSR). To estimate f(t)

and s(t), I follow Shimer (2012). As such, I simply summarize here, and refer the reader

to Shimer’s work for further details.9 The approach uses monthly data on employment,

unemployment and short-term unemployment from the CPS of BLS. All variables are in level

(thousands of persons) and short-term unemployment refers to the number of unemployed

persons for less than five weeks. The job-finding probability, Ft, between month t and t+1

can be computed as:

9The job-finding and job-separation rates are derived under two assumptions: 1) workers do not transit
in and out of the labor force; 2) workers are homogeneous with respect to job-finding and job-separation
probabilities.
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Ft = 1−
ut+1 − ust+1

ut
,

where ut is the unemployment level in month t and ust+1, short-term unemployment level,

is the number of persons unemployed for less than 5 weeks in month t+1. The job-finding

rate is then ft ≡ −log (1− Ft) ≥ 0. Shimer (2012) shows that one can solve the differential

equation (1) forward to obtain an implicit nonlinear expression for the job-separation rate

st. Given the job-finding rate ft, data on employment and unemployment levels then the

job-separation rate st is uniquely determined. Finally, I calculate quarterly job-finding and

job-separation rates by averaging over the corresponding monthly observations.

2.2.2 Employment Counterfactuals

To compute employment counterfactuals, I follow Shimer (2012) by approximating the U.S.

employment rate series using its theoretical steady-state value from equation (1), associated

with the contemporaneous job-separation and job-finding rate—Stochastic equilibrium:

ese
t =

ft
st + ft

. (2)

Hall (2005b) and Shimer (2012) show that the stochastic equilibrium is a strikingly good

approximation for the actual U.S. employment rate (see Appendix B for a plot of actual and

counterfactual employment). Given equation (2), I construct two counterfactual series. The

first is an employment rate series that only allows for variation in the job-finding rate:

ejfr
t =

ft
s̄+ ft

, (3)

where s̄ is the sample average of the job-separation rate st. The second counterfactual,

instead, only allows for variation in the job-separation rate:

ejsr
t =

f̄

st + f̄
, (4)

where f̄ is the sample average of the job-finding rate ft.

Which counterfactual series better accounts for the asymmetric dynamics of the U.S.

employment rate? To answer this question, I implement the asymmetry tests of Section 2.1

on the counterfactual employment rates ejfr
t and ejsr

t .10

10The counterfactual employment series (3) and (4) are constructed under the assumption that job-finding
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Table 2: Asymmetry in Employment Rate Counterfactuals

x eus ese ejfr ejsr

Skew(x̃) −0.581∗∗∗ −0.682∗∗∗ −0.792∗ −0.330∗∗∗

(0.005) (0.001) (0.061) (0.009)

Skew(∆x) −1.115∗∗∗ −0.999∗∗ 0.328∗ −0.409∗∗∗

(0.001) (0.010) (0.078) (0.000)

Notes: eus is a logged quarterly average of the U.S. employment rate

(fraction of the labor force working in a given month, one minus the

unemployment rate). The seasonally-adjusted unemployment rate is

from the CPS survey of the BLS for the period 1948:Q1-2012:Q2.

Survey home page http://www.bls.gov/cps/. Data are down-

loaded from the FRED website at http://research.stlouisfed.

org/fred2/. ese = f/(s+f) is the counterfactual employment series

under stochastic equilibrium. ejfr = f/(s̄ + f) is the counterfactual

employment series with job-separation rate fixed at the sample aver-

age. ejsr = f̄/(s + f̄) is the counterfactual employment series with

the job-finding rate fixed at the sample average. x̃’s are in logs as

deviations from the HP trend with smoothing parameter 105. P-

values (one-sided test) in parenthesis. ***, **, * denote statistical

significance respectively at 1%, 5% and 10% level.
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In Table 2, the first row shows that both counterfactual employment series, ejfr and ejsr,

display significant negative skewness as in the U.S. data. I conclude that both job-finding

and job-separation rates are critical in accounting for the depth of fluctuations in the U.S.

employment rate.

Fact 3. Job-finding and job-separation rates are jointly responsible for the negative skewness

in levels in the employment rate.

In Table 2, the second row forcefully shows that negative steepness in the U.S. employ-

ment rate is entirely driven by the dynamics of job-separation rates.

Fact 4. Job-separation rates are the only responsible for the negative skewness in growth

rates in the employment rate.

Barnichon (2012) reaches the same conclusion in Fact 4 using a different approach. Fur-

thermore, notice that if the dynamics of the U.S. employment rate was only driven by job-

finding rates then we would observe positive skewness in the distributions of employment

rate changes, i.e., positive instead of negative steepness as in the U.S. data.

Overall, this section suggests that both job-finding and job-separation rates are relevant

to fully account for the asymmetric dynamics of the U.S. labor market. Specifically, job-

separation rates are the only responsible for the sharp reductions in the U.S. employment

rate that occur at the onset of recessions. Job-finding rates are instead mostly responsible

for why U.S. employment spends more time below trend. The combined of Fact 3 and 4

contribute to the ongoing debate on the proper treatment of the separation margin over

which there is still little consensus in the literature.11

3 Model

In this section, I extend the textbook Pissarides (2000)’s model by introducing worker het-

erogeneity. Precisely, workers exhibit permanent differences in skill/productivity while em-

and job-separation rates are two independent sources of fluctuations in the employment rate. The indepen-
dence assumption holds in all DMP models with exogenous and constant job-separation rate (trivially in
this case) and in the Mortensen and Pissarides (1994)’s model with endogenous job separations.

11This debate has been recently revived by a series of papers with contrasting conclusions. On the one
hand, Hall (2005a,b) and Shimer (2012) attribute most of the volatility in unemployment at business cycle
frequencies to the dynamics of job-finding rates—“hiring-driven view.” On the other hand, Fujita and Ramey
(2009) and Elsby et al. (2009) resurrect the role played by the job-separation margin. While these papers
focus on second-order moments of the data, I analyze their asymmetry properties.
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ployers are identical.

3.1 Economic Environment

Time is discrete and indexed by t ∈ {0, 1, . . . ,∞}. Workers are heterogeneous in their

skills. Specifically, I consider an economy populated by M types of workers indexed by

x ∈ {x1 < . . . < xM}. The type x is a permanent characteristic of the worker which is

perfectly observable to employers. I ex-ante sort workers in submarkets based on their types.

Therefore, the aggregate labor market is organized in M submarkets indexed by worker’s

type x. In each submarket, there is a unit mass of infinitely lived workers of type x, either

employed, et(x) ∈ [0, 1], or unemployed and searching for a job, ut(x) ∈ [0, 1]. The aggregate

labor force is then
∑

x

(
et(x) + ut(x)

)
= M . Each worker is endowed with an indivisible

unit of labor. I adopt a 2-state representation of the labor market such that I abstract

from movements in and out of the labor force. There is no on-the-job search, therefore only

unemployed workers can search for a job. The economy is also populated by a continuum

of identical and infinitely lived employers, either producing output, yt(x), or posting job

vacancies, vt(x), to hire unemployed workers of type x. Workers and employers have risk-

neutral preferences and discount future payoffs at rate β ∈ (0, 1). I assume workers and

employers can respectively search for jobs and post vacancies only in one submarket at the

time. Specifically, employers are allowed to optimally choose how many vacancies to create

and in which submarket to locate them. Workers instead do not move across submarkets.12

Matching and production technologies. I adopt the standard view of matching

frictions in the labor market and postulate the exitence of a matching technology.

ASSUMPTION 1 (Matching function). In each submarket x, the matching function

m
(
vt(x), ut(x)

)
= µvt(x)αut(x)1−α is strictly increasing and concave in both arguments and

homogeneous of degree one in the number of unemployed workers, ut(x), and vacancies,

vt(x). The scale parameter µ measures matching efficiency, and α ∈ (0, 1) is the elasticity

of new matches, or hires, m
(
vt(x), ut(x)

)
with respect to the number of vacancies vt(x).

Each submarket is characterized by the tightness ratio θt(x) ≡ vt(x)/ut(x).13 An un-

employed worker of type x finds a job with probability φ
(
θt(x)

)
≡ m

(
vt(x), ut(x)

)
/ut(x) =

12This modelling choice is without loss of generality. One can show that in the equilibrium under directed
search any active submarket is visited exclusively by one type of worker. Hence, the labor market is endoge-
nously segmented by worker’s type. See Menzio and Shi (2010) and Carrillo-Tudela and Visschers (2013) for
a similar result.

13Petrongolo and Pissarides (2001) provide evidence supporting the constant-returns-to-scale assumption.
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µθt(x)α that is strictly increasing and concave in θt(x), i.e., φ′(·) > 0 and φ′′(·) < 0, and a

vacancy posted in submarket x is filled with probability ρ(θt(x)) ≡ m
(
vt(x), ut(x)

)
/vt(x) =

φ(θt(x))/θt(x) = µθt(x)α−1 that is strictly decreasing and convex in θt(x), i.e., ρ′(·) < 0 and

ρ′′(·) > 0. I assume workers and firms that are matched at time t produce output at time

t+ 1. A worker-employer match produces output via a linear technology.

ASSUMPTION 2 (Production function). In each submarket x, output is produced ac-

cording to the linear production function, yt(x) = ztx, where zt is the aggregate stochastic

component of labor productivity and x is a time-invariant worker-specific component.

Shocks. Fluctuations are driven by exogenous variations in the aggegate component of

labor productivity {zt}∞t=0.14

ASSUMPTION 3 (Symmetric shocks). The stochastic process for the exogenous state

{zt} is an asymptotically stationary S-state Markov chain (Z,Π, π0), with a unique, sym-

metric, and uni-modal stationary distribution π∞.15

3.2 Equilibrium Characterization

I next characterize the equilibrium dynamics of a single submarket x ∈ {x1, . . . , xM}. Abus-

ing notation slightly, let φs(x) ≡ φ
(
θs(x)

)
and ρs(x) ≡ ρ

(
θs(x)

)
denote respectively the

job-finding and job-filling rate in submarket x when the random state of the model economy

is s ∈ {1, . . . ,S}.

Employer’s problem. The employer decides either to remain in the match, and get the

value J cs(x), or to post a job vacancy, and get the value Vs(x). Specifically, let Js(x) denote

the value for an employer in submarket x if the economy is in state s,

Js(x) = max
{
J cs(x), Vs(x)

}
14Empirical evidence by Abraham and Katz (1986) and Blanchard et al. (1989) suggests that recessions

are driven by aggregate activity shocks. In line with this evidence, I assume that fluctuations are driven by
aggregate disturbances.

15The state space for {zt} is the finite set Z = {z1, . . . , zS}. The states zs ∈ Z take on S possible values,
z1 < . . . < zsm < . . . < zS , that are symmetrically spaced around the median state zsm which I normalize
to one. The probability transition matrix is a (S × S) matrix Π = [πs,s′ ] with transition probabilities
πs,s′ = Prob {zt+1 = zs′ |zt = zs}, non-negative and stochastic, i.e., πs,s′ ≥ 0 and

∑
s′ πs,s′ = 1, for all (s, s′).

The stationary distribution π′∞ = limt→∞ π′0Πt is symmetric and uni-modal, satisfying: πs∞ = πS−s+1
∞ and

πs∞ < πs+1
∞ , for s ∈ {1, . . . , sm − 1}, where πs∞ denotes the s-th element of the probability vector π∞. The

probability distribution at time t = 0 is the (S × 1) vector π0.
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with

J cs(x) = ps(x)− ωs(x) + β
∑
s′

πs,s′

{[
1− δs′(x)

]
Js′(x) + δs′(x) max

x

(
Vs′(x), 0

)}
,

where J cs(x) is the value of remaining in the match. Πs(x) = zsx − ωs(x) are profits

accruing to the employer, ps(x) ≡ zsx denotes output, ωs(x) is the wage payment to the

worker, and δs(x) is the state-contingent job-separation rate. The price of output is normal-

ized to one. The economy transits from state s to the next period state s′ according to the

transition probability πs,s′ . The value for the employer to post a vacancy in submarket x if

the economy is in state s is,

Vs(x) = −k(x) + β
∑
s′

πs,s′

{
ρs(x)Js′(x) +

[
1− ρs(x)

]
max
x

(
Vs′(x), 0

)}
, (5)

where k(x) is the unit cost to keep a job vacancy open for one period.

Worker’s problem. The worker decides either to remain in the match, and get the

value W c
s (x), or to be unemployed, and get the value Us(x). Specifically, let Ws(x) denote

the value for a worker in submarket x if the economy is in state s,

Ws(x) = max
{
W c
s (x), Us(x)

}
with

W c
s (x) = ωs(x) + β

∑
s′

πs,s′

{[
1− δs′(x)

]
Ws′(x) + δs′(x)Us′(x)

}
,

where W c
s (x) is the value of working in a continuing match. The value for the worker of

being unemployed and searching for a job in submarket x when the economy is in state s is,

Us(x) = λ+ β
∑
s′

πs,s′

{
φs(x)Ws′(x) +

[
1− φs(x)

]
Us′(x)

}
, (6)

where λ is the worker’s outside option, i.e., income earned when unemployed.

Timing. At time t, the aggregate shock zt realizes. Endogenous separations (layoffs)

take place. The search and matching process follows: employers post job vacancies on one

side and unemployed workers search for jobs on the other side. Unemployed workers matched
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with employers at time t become productive at time t+ 1. Finally, production takes place.

Nash-bargaining equilibrium. Upon matching, the employer and worker enter Nash

bargaining to determine the wage. The tightness ratio θs(x) is taken parametrically by agents

and determined in equilibrium by the collection of all the individual optimal allocations.

DEFINITION 1 (Nash-bargaining equilibrium). A Nash-Bargaining Equilibrium is a

collection of value functions Js(x) and Vs(x) for the employers, Us(x) and Ws(x) for the

workers, wage payments ωs(x), and tightness ratios θs(x), such that for each s ∈ {1, . . . ,S},

1. Employers are optimizing, taking as given the tightness ratios θs(x) and the wage pay-

ments ωs(x). That is, employers with a filled job prefer to remain matched with the

worker rather than posting a vacancy, Js(x)− Vs(x) > 0;

2. Workers are optimizing, taking as given the tightness ratios θs(x) and the wage pay-

ments ωs(x). That is, workers in a job prefer to remain matched with an employer

rather than being unemployed, Ws(x)− Us(x) > 0;

3. The free-entry condition is satisfied, Vs(x) = 0;

4. Wage payments for newly formed and continuing matches solve the generalized Nash-

bargaining problem:

ωs(x) = arg max
[
Ws(x)− Us(x)

]η · [Js(x)− Vs(x)
]1−η

,

where η denotes the bargaining weight of workers.

The Nash-bargaining solution implies that worker and employer receive a constant and

proportional share of the total surplus, Ws(x) − Us(x) = ηSs(x) and Js(x) = (1 − η)Ss(x),

where Ss(x) ≡ Ws(x) + Js(x)− Us(x). The wage payment to the worker is,

ωs(x) = (1− η)λ+ η
[
zsx+ k(x)θs(x)

]
. (7)

Under Nash-bargaining, the equilibrium dynamics of the model economy is fully charac-

terized by the Bellman value equation for total match surplus,

Ss(x) = max
{
Scs(x), 0

}
(8)

with
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Scs(x) = zsx− λ+ β
∑
s′

πs,s′
[
1− δs′(x)− ηφs(x)

]
Ss′(x),

where Scs(x) is the continuation value of the total match surplus. After imposing Vs(x) =

0 for all s ∈ {1, . . . ,S}, equation (5) becomes,

k(x) = βρs(x)
∑
s′

πs,s′
(
1− η

)
Ss′(x). (9)

Equation (9) captures a central aspect of the model dynamics. Employers post vacancies

up to the point where the expected surplus from making a match, β
∑

s′ πs,s′(1 − η)Ss′(x),

is exactly offset by the expected recruiting costs, k(x)/ρs(x). As the employers post more

vacancies, the tightness ratio θs(x) rises, the probability to fill the posted vacancy ρs(x)

decreases, and the point of zero net expected surplus is achieved. This mechanism pins

down the key variable of the model, that is, the vacancy-unemployment ratio, θs(x). In a

tight market with a relatively high ratio of vacancies to unemployment, it is easy for job

seekers to find jobs—the job-finding rate φ(θs(x)) is high—and difficult for firms to hire—the

job-filling rate ρ(θs(x)) is low.

3.3 Endogenous Job Destruction

Equation (8) determines when jobs are endogenously destroyed—Job destruction margin.

Since the continuation value of the total match surplus Scs(x) is monotonically increasing

in labor productivity, ps(x) = zsx, job destruction satisfies the reservation property. There

exists a unique cutoff value for the aggregate state, z̄(x), such that all matches with workers

of type x are endogenously destroyed when hit by an adverse aggregate shock, zs ≤ z̄(x).

Since employers and workers have the option to separate at no cost, a match continues in

operation for as long as its value is above zero. Note that under Nash bargaining, separations

are bilaterally efficient in that employers and workers agree on the decision to destroy existing

matches. Hence, large negative shocks induce job destruction but the choice of when to

destroy the job is optimally chosen by employers and workers, jointly. Therefore, the job

destruction rate δs(x) is the following step function,

δs(x) =


δ if zs > z̄(x)⇔ Scs(x) > 0

1 if zs ≤ z̄(x)⇔ Scs(x) ≤ 0

(10)
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for each submarket x ∈ {x1, . . . , xM}. Since total match surpluses are increasing in x,

the cutoff on the aggregate state varies across workers’ types, z̄(x1) > . . . > z̄(xM). This

implies that matches with low-skilled workers are more likely to be destroyed, i.e., low-

skilled workers face an higher probability to be laid off. Notice that the reservation property

defines three regions in the productivity space: (1) ScS(x) = 0. Matches with workers of type

x ≤ x are never active in that total match surpluses are negative for any realization of the

aggregate shock; (2) Sc1(x) = 0. Matches with workers of type x > x feature an exogenous

constant rate of job destruction in that total match surpluses are always above zero; and (3)

matches with workers of type x < x ≤ x feature both endogenous and exogenous rates of job

destruction. This happens because exogenous variations in the aggregate state lead swings in

total match surpluses that occasionally hit the non-negativity constraint, Scs(x) ≥ 0. Hence,

heterogeneous jobs respond differently to common shocks. Specifically, low-skilled workers

experience more frequent and longer unemployment spells. Davis (2005) argues that layoffs

are associated with greater unemployment incidence and longer unemployment spells than

quits. To summarize, endogenous job destruction operates through a “selection mechanism.”

As the model economy is hit by an adverse aggregate shock, low-skilled workers are laid off.

High-skilled workers instead enter unemployment spells at a constant exogenous rate. This

implies that the aggregate separation rate spikes at the onset of economic downturns. Fujita

and Ramey (2009) and Elsby et al. (2009) provide evidence supporting this prediction.

The model also predicts that layoffs are countercyclical. As such, a disproportionate part of

unemployment inflows during a downturns consists of laid-off workers. Davis et al. (1998) and

Elsby et al. (2013) provide evidence supporting this view. Furthermore, since in the model

laid-off workers are low-skilled, during downturns low-skill workers are over-represented in

the group flowing into unemployment which in turn leads to a decrease in the average skill

level of the unemployed pool, i.e.,
∑

x xut(x)/
∑

x ut(x) falls during downturns.

To further sharpen intuition, I next focus on the labor market in steady state, i.e., zt = zs

for s ∈ {1, . . . ,S} and all t. This enables me to derive the cutoff value on the aggregate

state analytically. To this aim, after manipulating equation (8), one gets

p̂(x) ≡ ẑx = λ. (11)

Equation (11) is a key condition of the model. The left hand side of the equation is

the lowest productivity acceptable to employers with a filled job for remaining matched

with workers of type x rather than dissolve the match. The right hand side is instead the
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opportunity cost of employment for workers of type x, which consists of the worker’s outside

option λ. It is easy to verify that when x decreases the cutoff on the aggregate state ẑ needs

to increase for (11) to hold, i.e., the cutoff value ẑ(x) = λ/x is decreasing in worker’s type x.

In other words, high-skilled workers are laid off at lower realizations of the aggregate shock.

Furthermore, for given x, an increase in λ requires an equal increase in ẑ(x) for (11) to hold.

This implies that workers of type x are more likely to be laid off and that a larger fraction of

the labor force is now at risk of layoffs. The analysis suggests that workers’ outside options

are critical to understand the destruction margin of the labor market. This is particularly

true for low-skilled workers who are always at the margin between participating the labor

market and enjoying the value of non-market activities. A direct implication of this argument

is that exogenous increases in workers’ outside options, i.e., changes in the relative return

to market versus non-market activity, lead to longer unemployment durations for low-skilled

workers and extend the endogenous destruction region to workers with higher skills.

3.4 Job Creation and Job Rationing

In the model, endogenous job destruction and job creation are entwined by the reservation

productivity in equation (11) that determines when (i) matches with low-skilled workers are

endogenously destroyed and when (ii) low-skilled workers previously laid-off are viable for

hiring (in the sense that they generate a positive surplus). This implies that the (perma-

nent) heterogeneity in workers’ skills that matters for the endogenous separation decision

also affects hiring decisions. Specifically, it becomes profitable to hire low-skilled workers

only when the aggregate state returns to a level that is high enough to guarantee positive

surpluses. This is the essence of the selection mechanism that drives the dynamics of the

model during downturns and recoveries. The model predicts that jobs are rationed during

recessions.

DEFINITION 2 (Job rationing). Following Michaillat (2012), I define job rationing as

the situation in which positive unemployment would persist even if the recruiting cost k(x)

was zero.

To understand how job rationing emerges in equilibrium, notice that the threshold p̂(x)

in equation (11) is independent of the cost of posting a vacancy k(x). Employers would find

unprofitable to hire low-skilled workers with ps(x) ≤ p̂(x) even if the cost to post a vacancy

was zero. This is intuitive since skills are a time-invariant characteristic of the labor force

and low-skilled workers previously laid off remain low-skilled at the time of hiring.
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To further sharpen intuition, I focus on the labor market in steady state, i.e., zt = zs for

s ∈ {1, . . . ,S} and all t. This enables me to represent the equilibrium diagrammatically. To

this aim, consider steady-state employment in submarket x,

es(x) =
φ
(
θs(x)

)
δs(x) + φ

(
θs(x)

) . (12)

After manipulating equations (8) and (9), one gets

zsx− λ︸ ︷︷ ︸
Net marginal

profits

=
k(x)

β(1− η)
·
[

1− β
(
1− δs(x)

)
ρ
(
θs(x)

) + ηβθs(x)

]
︸ ︷︷ ︸

Marginal

recruiting expenses

. (13)

Equations (12) and (13) fully characterize the steady-state equilibrium. Figure 4 repre-

sents the equilibrium diagrammatically.

In Figure 4, Panel A shows the equilibrium in the submarket for high-skilled workers,

i.e., workers of type xhigh > x. As discussed in Section 3.3, these workers never experience

endogenous separations in equilibrium, i.e., Ss(xhigh) > 0 for all realization of the aggregate

shock. Equilibrium employment is obtained at the intersection of net marginal profits and

recruiting expenses curves. Panel B depicts the equilibrim for high-skilled workers as I

progressively decrease the cost of posting a job vacancy k(xhigh). A decrease in the cost of

posting a vacancy makes the marginal recruiting expenses curve shift rightward which in

turn leads to an increase in employment. This mechanism is the cornerstone of the frictional

view of labor markets. As the recruting cost goes to zero, unemployment tends to vanish

with high-skilled workers approaching full employment. Panel C shows how equilibrium

employment changes as the aggregate state falls. The fall in the aggregate state makes the

net marginal profits curve shift downwards, which in turn leads to a decrease in employment.

An adverse shock to profits curtails the incentives to vacancy posting which in turn leads

a drop in the market tightness ratio, job-finding probabilities and employment. This is the

core mechanism driving recessionary unemployment in search-and-matching models. For

high-skilled workers all unemployment is frictional at any point of the business cycle. Panel

D depicts instead the equilibrium for low-skilled workers, i.e., workers of type x < xlow ≤ x,

when the adverse aggregate shock makes their productivity hit the rationing threshold, i.e.,

ps(xlow) ≤ p̂(x). For these workers, employment goes to zero irrespective of the cost of
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Figure 4: Frictional and Rationing Unemployment

Notes: On the x-axis, employment is steady-state employment as in equation (12). On the y-axis,

net marginal profits and marginal recruiting expenses are respectively the left-hand and right-

hand side of equation (13). High-skilled workers have productivity p(xhigh) > p̂(x) and low-skilled

workers have productivity p(xlow) ≤ p̂(x). The threshold p̂(x) is determined by equation (11).
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posting a vacancy.

The model predicts that during downturns job-finding probabilities endogenously fall for

all workers, though disproportionally more for low-skilled workers previously laid-off. This

happens because jobs are rationed. At each point in time, aggregate unemployment consists

of frictional (UF
t ) and rationing (UR

t ) unemployment,

Ut =
∑

pt(x)≤p̂(x)

ut(x)︸ ︷︷ ︸
Rationing

unemployment

+
∑

pt(x)>p̂(x)

ut(x)︸ ︷︷ ︸
Frictional

unemployment

= UR
t + UF

t . (14)

Furthermore, the relative importance of each component depends on the magnitude of the

adverse aggregate shock. Specifically, deeper dowturns are characterized by larger shares of

rationing unemployment, i.e., uRt ≡ UR
t /(U

R
t +UF

t ) is decreasing in the aggregate shock. This

happens because a bigger fraction of the aggregate labor force hits the rationing threshold,

p̂(x), in equation (11).

3.4.1 Absence of Job Rationing in Existing Search-and-Matching

Models with Endogenous Separations

Michaillat (2012) discusses the absence of job rationing in standard search-and-matching

models with a constant exogenous rate of job destruction. As such, I refer the reader to

Michaillat’s work for further details. In this section, I show that job rationing is also absent

in models with endogenous separations à la Mortensen and Pissarides (1994). To this aim, I

focus on a discrete time version of Mortensen and Pissarides’s model as discussed in Fujita

and Ramey (2012). In this setting, workers are identical. Heterogeneity arises ex-post

due to match-specific idiosyncratic shocks to productivity. The match-specific component

of productivity, x ∈ {x1, . . . , xM}, switches to a new value with probability ξ. In this

latter event, the value of x is drawn randomly according to the c.d.f. G(x). Matches

are exogenously destroyed at the constant rate δ and those whose productivity is below a

cutoff are endogenously destroyed. All new matches start at x = xM . Hence, workers are

homogeneous at the time of hiring. I refer the reader to Fujita and Ramey’s work for further

details on the model’s structure.

To study the equilibrium theoretically, I focus on steady states (i.e., zt = z for all t).
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PROPOSITION 1 (Job rationing in models à la Mortensen and Pissarides). Under

assumptions in Mortensen and Pissarides (1994), limk↘0 θ(k) = +∞ and limk↘0 e(k) = 1,

i.e., full employment, or limk↘0 θ(k) = 0 and limk↘0 e(k) = 0, i.e., the entire labor market

shuts down.

Proof. See Appendix C. �

Hence, in models with endogenous separations à la Mortensen and Pissarides, as the cost

to post a job vacancy goes to zero, either the economy converges to full employment or it

features a 100% unemployment rate, i.e., labor-market shutdown. The full employment case

is a standard property of the texbook DMP model in that frictional unemployment vanishes

in the absence of recruiting costs. In the case of market shutdown, the 100% unemployment

rate is due to rationing (in the sense that all matches would generate negative surplus).

Obviously, this latter case is unrealistic. As such I conclude that models in the extended

Mortensen-Pissarides class are unable to generate job rationing.

3.5 Aggregate Job-Finding Rate

In this section, I focus on the labor market in steady state, i.e., zt = zs for s ∈ {1, . . . ,S}
and all t. This allows me to discuss the key properties of the aggregate job-finding rate in a

transparent manner. The main goal of this section is to show that permanent heterogeneity

in workers’ skill/productivity is the critical ingredient that enables the model to account

for the volatility and asymmetry of actual job-finding rates. To this aim, in Section 3.5.2

below, I analyze a version of the model in which the labor market is integrated instead

of (endogenously) segmented as presented in Section 3.1. This allows me to make a clear

assessment of which margin, permanent heterogeneity versus segmentation, is the key for

the qualitative and quantitative properties of aggregate job-finding rates. In fact, I argue

that permanent heterogeneity, instead of segmentation, is the most relevant margin at work.

3.5.1 Segmented Labor Market

In this section, I study the steady-state properties of the aggregate job-finding rate in the

segmented labor market as presented in Section 3. Let Φ(zs) denote the aggregate job-finding

rate which is a weighted average of job-finding probabilities specific to each submarket with

weights equal to unemployment shares πs(x) ≡ us(x)/Us where Us =
∑

x us(x) denotes

aggregate unemployment:
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Φ (zs) =
∑
x

πs(x)φ
(
θs(x)

)
=

UE
(
x≤x̂(zs)

)
= 0︷ ︸︸ ︷∑

x≤x̂(zs)

us(x)φ
(
θs(x)

)
+

UE
(
x>x̂(zs)

)
> 0︷ ︸︸ ︷∑

x>x̂(zs)

us(x)φ
(
θs(x)

)
∑

x≤x̂(zs)

us(x)︸ ︷︷ ︸
UR = Non-employable

workers

+
∑

x>x̂(zs)

us(x)︸ ︷︷ ︸
UF = Employable

workers

. (15)

At the numerator of equation (15), UE(zs) = UE
(
x ≤ x̂(zs)

)
+ UE

(
x > x̂(zs)

)
are

unemployment-to-employment (UE, hereafter) worker flows when the aggregate state of the

economy is s ∈ {1, . . . ,S}. Note that UE
(
x ≤ x̂(zs)

)
= 0 since low-skilled workers below the

rationing threshold x̂(zs) in (11) are non-employable workers (in the sense that they generate

negative surplus), i.e., φ
(
θs(x)

)
= 0 for all x ≤ x̂(zs). However, low-skilled, non-employable

workers are in the unemployed pool, as such they count in the denominator of equation (15).

This is the direct outcome of the selection mechanism that drives the endogenous separation

decision. Low-skilled workers that are not viable for hiring are exactly the ones that have

been laid off. This mechanism ties endogenous job destruction and job creation all together.

Importantly, this is also the main point of departure from models of endogenous separations

à la Mortensen and Pissarides (1994).

In Mortensen-Pissarides class of models, workers are identical, and heterogeneity across

matches comes ex-post due to match-specific idiosyncratic shocks. Once matches are en-

dogenously destroyed, workers flowing into the unemployment pool become viable for hiring.

To make a closer analogy with the model of this paper, a Mortensen-Pissarides economy

behaves as if laid-off workers become employable as soon as they enter the unemployment

pool. As such the incentives to vacancy posting are larger and job-finding rates fall by less

during downturns. In fact, the selection effect at work in the model of this paper is entirely

due to the permanent nature of skills and it is also the only responsible for the large and

deep falls of the aggregate job-finding rate during recessions.

Figure 5 shows the aggregate job-finding rate Φ (zs) (see Panel A), UE worker flows

UE(zs) (see Panel B), share of rationing unemployment, uRs ≡ UR
s /
(
UR
s + UF

s

)
(see Panel

C), and share of frictional unemployment, uFs ≡ UF
s /
(
UR
s + UF

s

)
(see Panel D). The steady-

state values are computed numerically with the same parameter values used for the quanti-
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Figure 5: Aggregate Job-Finding Rate in the Segmented Labor Market

Notes: Panels A-D refer to the (segmented) labor market in steady state, i.e., zt = zs for s ∈
{1, . . . ,S} and all t. The x-axis is the support of the aggregate shock, zs with s ∈ {1, 2, . . . , 9}. I

compute the steady-state values of the endogenous variables numerically with the same parameter

values used for the quantitative analysis of Section 4. Details of the calibration are in Section 4.1,

Table 3.
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tative analysis of Section 4. Panel A shows that aggregate job-finding rates are asymmetric.

Same asymmetric behavior holds for UE worker flows in Panel B. These asymmetries de-

rive from the fact that the number of non-employable workers in the unemployed pool (i.e.,

share of rationing unemployment to total unemployment) sharply increases in response to a

negative aggregate shock (see Panel C). The share of frictional unemployment instead de-

creases in recessions (see Panel D). Consistently with Michaillat (2012), the model suggests

that the unemployment problem during recessions is caused by insufficient economic activity

rather than matching frictions. However, differently from Michaillat’s work, I argue that

an increasing share of recessionary unemployment involves workers in the left tail of the

skill/productivity distributon.

To further clarify the main point of this section, I rewrite the aggregate job-finding rate

in (15) as follows:

Φ (zs) =
∑

x>x̂(zs)

πs(x)φ
(
θs(x)

)
with πs(x) ≡ us(x)

Us
. (16)

In principle, fluctuations in the aggregate job-finding rate Φ (zs) come from movements

in worker-specific shares of employable workers in the unemployed pool, πs(x), and worker-

specific job-finding probabilities of employable workers, φ
(
θs(x)

)
. To assess which margin is

the most relevant, in the quantitative analysis of Section 4, I contrast two versions of the

model: (i) endogenous job destruction (EJD) model which features endogenous separations

and job rationing; and (ii) constant job destruction (CJD) model in which I calibrate the

distribution of skills such that endogenous separations never occur in equilibrium. In this

latter case, all workers in the unemployed pool are employable at any point of the business

cycle. The quantitative results show that, different from the EJD model, the CJD model is

unable to replicate the large and asymmetric fluctuations of the U.S. labor market. Thus, I

conclude that fluctuations in the fraction of employable workers are of first-order importance

for the quantitative success of the model.

As a final remark, note that during recessions the unemployment pool is characterized

by a distribution of skills that is skewed to the left. This affects the aggregate job-finding

rate only through changes in the share of employable workers. Job-finding probabilities

in each submarket are instead independent of the distribution of skills of the unemployed

pool and only depend on the aggregate state of the economy. This latter result comes from

the assumption that workers’ types are observable to the employers at the time of vacancy

posting such that the labor market is segmented.
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3.5.2 Integrated Labor Market

In this section, I study the steady-state properties of the aggregate job-finding rate in the

integrated labor market version of the model presented in Section 3. In this version of

the model, the worker’s type is known to the worker but it is unobservable by vacancy

posting employers. Hence, an employer posting a vacancy to hire an unemployed worker

internalize that it may come in contact with a worker of any type x ∈ {x1, . . . , xM}. The

contact probability is taken parametrically by the employer and determined in equilibrium

by the distribution of unemployment across worker types, πs = {πs(x1), . . . , πs(xM)} with

πs(x) = us(x)/
∑

x us(x). Upon contact, the worker’s type is revealed. At this stage, workers

and employers decide whether to form a match and create a job or to continue their search

process. The structure of the matching process implies that all unemployed workers face

the same job-contact probability, φ
(
θs(πs)

)
, but different job-finding and separation rates.

Notice that I explicitly denote the dependence of the tightness ratio θs(πs) on the entire

distribution of contact probabilities, πs. I refer the reader to Appendix D for further details

on the model structure. Let ΦInt (zs) denote the aggregate job-finding rate in the integrated

labor market:

ΦInt (zs) =
φ
(
θs(πs)

)∑
x>x̂(zs) us(x)∑

x us(x)
= φ

(
θs(πs)

)︸ ︷︷ ︸
Job-contact

rate

×
∑

x>x̂(zs)

πs(x).︸ ︷︷ ︸
Employable share

of unemployed

(17)

In principle, fluctuations in the aggregate job-finding rate ΦInt (zs) come from cyclical

movements in job-contact probabilities, φ
(
θs(πs)

)
, and the share of employable workers in

the unemployed pool,
∑

x>x̂(zs) πs(x). Notice that in the integrated labor market, worker-

specific shares of the unemployed pool πs(x) affect the aggregate job-finding rate through two

channels: (1) the distribution of worker-specific shares πs = {πs(x1), . . . , πs(xM)} directly

affects market tightness θs (πs). This channel is absent in the model with a segmented

labor market. (2) The share of employable workers
∑

x>x̂(zs) πs(x) determines the fraction of

workers in the unemployment pool that generate positive surplus once they come in contact

with an employer. This channel is the only one at work in the model with a segmented labor

market.

Figure 6 shows the aggregate job-finding, ΦInt (zs), and job-contact rate, φ
(
θs(πs)

)
(see

Panel A), UE worker flows (see Panel B), and the shares of rationing and frictional unem-
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ployment (see Panels C-D). Panel A shows that the aggregate job-finding rate (dotted line)

displays a noticeable asymmetry. As such the job-finding rate in the economy with an inte-

grated labor market shares the same asymmetric behavior of the economy with segmented

labor markets (see Table 5, Panel A). Furthermore, as for the segmented labor-market case

I discuss above, most of the asymmetry in the aggregate job-finding rate comes from the

marked asymmetry in the share of non-employable workers in the unemployed pool (see Ta-

ble 6, Panel C). Note that also the job-contact rate is asymmetric. However, its asymmetry

is much less pronounced if compared to that of the job-finding rate. This result is important

for two reasons: (1) the direct effect from the composition of the unemployed pool to market

tighteness is not of first-order importance; and (2) the key mechanism driving asymmetry

in the aggregate job-finding rate is the share of non-employable workers in the unemployed

pool. Importantly, this is the key force at work in the model with segmented labor markets.
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Figure 6: Aggregate Job-Finding Rate in the Integrated Labor Market

Notes: Panels A-D refer to the (integrated) labor market in steady state, i.e., zt = zs for s ∈
{1, . . . ,S} and all t. The x-axis is the support of the aggregate shock, zs with s ∈ {1, 2, . . . , 9}. I

compute the steady-state values of the endogenous variables numerically with calibrated parameter

values. I set the vacancy cost to k = 0.168 such that θsm(πsm) = 1 (zsm = 1 in my normalization).

The rest of the parameters are set as in Section 4.1, Table 3.
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3.6 Aggregate Variables

Unemployment in submarket x ∈ {x1, . . . , xM} follows the process

ut+1(x) =


1 if St(x) ≤ 0

ut(x) + δet(x)− φ
(
θt(x)

)
ut(x) if St(x) > 0.

(18)

Aggregate labor force is
∑

x

(
et(x) + ut(x)

)
= Et + Ut = M , where Et =

∑
x et(x)

and Ut =
∑

x ut(x) denote respectively aggregate employment and unemployment. The

aggregate employment and unemployment rates are respectively et = Et/M and ut = Ut/M .

The aggregate job-finding and job-separation rates are respectively,

Φt+1 =
1

Ut

∑
x

φ
(
θt(x)

)
ut(x) and ∆t+1 =

1

Et

∑
x

δt+1(x)et(x),

where φ(θt(x)) and δt(x) are respectively job-finding and job-separation probabilities

for workers of type x. Aggregate vacancies are vt =
∑

x vt(x), where vt(x) is the number

of vacancies posted in submarket x. Total output and aggregate labor productivity are

respectively,

Yt =
∑
x

yt(x) = zt
∑
x

xet(x) and pt =
Yt
Et

= zt ·
∑

x xet(x)∑
x et(x)

.

Notice that aggregate labor productivity pt consists of an exogenous component, zt, and

an endogenous component,
∑

x xet(x)/
∑

x et(x), which is a skill-adjusted measure of the

employed pool.

3.7 Cross-Sectional Dispersion in Labor-Market Conditions and

Matching Efficiency

The model features cross-sectional dispersion in labor-market conditions. Dispersion comes

from the fact that different types of workers respond differently to aggregate shocks. This is a

fundamental property of the model which endogenosuly arises since workers are permanently

heterogenous in skill/productivity. I next show that if an econometrician wrongly assumes

the existence of an aggregate matching function then she would infer cyclical movements in

matching efficiency. This would be misleading since in the model the technology parameter

governing the efficiency of the market-specific matching function, µ, is constant. Recall that
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for each submarket the number of hires is mt(x) = µvt(x)αut(x)1−α. In the aggregate instead,

total hires are Mt =
∑

xmt(x),

Mt = µ
∑
x

vt(x)αut(x)1−α, (19)

which is the true data generating process (DGP). Now, if an econometrician assumes the

existence of an aggregate matching function then she would expect the following relationships

to hold,

M̃t = Ãt

(∑
x

vt(x)

)α(∑
x

ut(x)

)1−α

= ÃtV
α
t U

1−α
t , (20)

where M̃t are the number of hires implied by an aggregate matching function, Vt =∑
x vt(x) and Ut =

∑
x ut(x) are respectively aggregate vacancies and unemployment, and

Ãt is measured matching efficiency. Suppose the econometrician is endowed with a dataset

of artifical data generated by the model, {Mt, Vt, Ut}Tt=0, and the value of the parameter α.

I ask now the fictional econometrician to estimate matching efficiency Ãt without providing

her the true DGP in equation (19). She would calculate efficiency in a residual way as

ln Ãt = lnMt − α lnVt − (1− α) lnUt. (21)

Concavity of the matching function and Jensen’s inequality imply that Mt ≤ M̃t such

that ln Ãt ≤ 0 for all t ≥ 0. Therefore, cross-sectional dispersion in tightness ratios induces

a negative level effect on measured matching efficiency as compared to the benchmark econ-

omy with homogenous workers. Table 7 shows that, in addition to a level effect, measured

matching efficiency would also display cyclical properties.

However, these infered variations are the artifact of neglecting heterogeneity. If the

econometrican is endowed with the DGP in equation (19) and market-specific data on job

vacancies and unemployment, {vt(x), ut(x)}Tt=0, then she would estimate ln Ãt = µ for all

t ≥ 0.

The model suggests that recessions would look like periods of extremely low matching

efficiency. The model generates an high correlation between measured matching efficiency

and the aggregate shock, i.e., corr(ln Ãt, ln zt) = 0.792. Elsby et al. (2010) and Barnichon

and Figura (2011) provide empirical support for this prediction. Using CPS micro data for

1976-2010, Barnichon and Figura (2011) show that the composition of the pool of unemployed
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Figure 7: Time-Varying Matching Efficiency

Notes: Panel A refers to the labor market in steady state. The x-axis is the support of the aggregate

shock, zs with s = {1, 2, . . . , 9}. The y-axis is measured matching efficiency relative to the median

state (zsm = 1 in my normalization), i.e., ln Ãs/| ln Ãsm |. I compute the steady-state values of

the endogenous variables numerically with the same parameter values used for the quantitative

analysis of Section 4. Details of the calibration are in Section 4.1, Table 3.
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accounts for most of the cyclical variation in matching efficiency up to 2006, and forty-five

percent of the decline in matching efficiency for the 2007-2010 period. Note that in the model,

dispersion in labor-market conditions across workers depends only on their different responses

to aggregate shocks. Hence, there is no room for “mismatch.” By mismatch I mean the

sectoral misalignment between vacant jobs and unemployed workers, i.e., unemployed seeking

employment in sectors (occupations, industries, locations) different from those where the

available jobs are. Sahin et al. (2012) and Herz and van Rens (2012) argue that fluctuations

in unemployment due to mismatch are small compared to the overall unemployment rate.

As a final remark, the discussion of this section also suggests that interpreting cyclical

movements in matching efficiency as “structural shocks” to the matching process can lead

to erroneous explanations of unemployment dynamics during recessions.

3.8 Textbook DMP Model

In this section, I discuss the properties of the textbook DMP model which is a special case

of the model with worker heterogeneity.

REMARK 1 (Textbook DMP model). When xj = 1 for all j ∈ {1, . . . ,M}, all workers

are identical. In this case, the model nests a standard DMP model with a constant exogenous

rate of job destruction.

The analysis focuses on the stochastic equilibrium of the economy. This allows me to

study the equilibrium analytically.

DEFINITION 3 (Stochastic equilibrium). A stochastic equilirium is any equilibrium

in which the shock {zt} repeats itself, i.e., zt+1 = zt = zs, for s ∈ {1, . . . ,S}.

At the stochastic equilibrium, the employment rate is

es =
φ(θs)

δ + φ(θs)
.

Employment rate, es, job-finding rate, φ(θs), vacancies, vs = θsus, and log output, ln ys,

are strictly increasing and concave functions of the tightness ratio, θs.

3.9 Three Propositions

I next derive analytical results for the stochastic equilibrium of the standard DMP model.
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PROPOSITION 2 (Asymmetry bounds). Any stochastic equilibrium consistent with a

constant exogenous rate of job destruction features asymmetry bounds on the unconditional

distributions of the endogenous variables: for market tightness, (i) ∆θMMD ≡ E [θ]−θsm > 0;

and for any strictly increasing and concave function ξ(θ) (i.e., employment rate, job-finding

rate, vacancies, and log of output), (ii) ∆ξMMD ≡ E [ξ(θ)] − ξ(θsm) < ξ(E[θ]) − ξ(θsm) <

ξ′(θsm)∆θMMD.

Proof. See Appendix C. �

Proposition 2 formally states that the asymmetry properties of the endogenous variables

are bounded by those of market tightness. Despite the theoretical convexity proved by

Lemma 1 in Appendix C, the relationship between market tightness and aggregate shock

turns out to be approximatively linear for all plausible calibrations of the model. This latter

observation motivates the next corollary.

COROLLARY 1 (Mean-median asymmetry in levels). Consider the stochastic equi-

librium for market tightness. If the support of the distribution of θ is symmetric around

the median value then any equilibrium consistent with a constant exogenous rate of job de-

struction features negative skewness in the unconditional distribution of employment rate,

job-finding rate, vacancies and log of output.

Proof. See Appendix C. �

The results in Corollary 1 derive from a key property of the search-and-matching frame-

work, i.e., matching displays decreasing returns to unemployment and vacancy posting.

When the labor market is tight—θ is high—increasingly more vacancies are needed to gen-

erate a given redution in unemployment. This is the essence of the congestion externality

which drives fluctuations in DMP models.

PROPOSITION 3 (Volatility and mean-median asymmetry in levels). Consider

a mean-median-preserving spread ∆ in the distribution of market tightness with stochastic

equilibrium, θs = θsm + (s−sm)
(S−sm)

· ∆, for s ∈ {1, . . . ,S} and ∆ > 0. In any stochastic

equilibrium consistent with a constant exogenous rate of job destruction, as ∆ increases, the

unconditional distribution of employment rate, job-finding rate, vacancies and log of output

become more negatively skewed.

Proof. See Appendix C. �
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Notice that by construction ∆ does not affect the symmetry of the distribution of the tight-

ness ratio, but it controls its range of variation. Hence, Proposition 3 characterizes a tight

link between volatility and asymmetry in levels. Notice also that the proposition is built on

the properties of the key endogenous variable of the model, i.e., market tightness, implying

that any mechanism, be it exogenous or endogenous, raising the volatility of the tightness ra-

tio also affects the asymmetry properties of the model. Specifically, more volatility induces

more asymmetry in levels. Figure 8 shows a numerical example of the analytical results

stated in Proposition 3.
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Figure 8: Probability Distributions under Stochastic Equilibrium

Notes: The unconditional probability distributions are computed numerically. Details of the

calibration are in Table B.5 in Appendix B. Given the calibrated volatility of aggregate shocks,

to induce greater dispersion in the distribution of the tightness ratio, I progressively increase

the value of the worker’s outside option, λ. Specifically, I use λ = 73% of mean wage (red

line), λ = 80% of mean wage (blu line), λ = 90% of mean wage (green line), and λ = 95% of

mean wage (purple line). In each case, I calibrate the cost of posting a vacancy to match the

same median value of the variable over all λ’s calibration. The vertical dashed line denotes the

median value of the variable.
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In Figure 8, the inner distributions (red lines) are associated to the least volatile tightness

ratio. The outer distributions (purple lines) are associated instead to the most volatile

tightness ratio. Two features of the theoretical distributions are worth further explanation.

First, in Panel A, notice that despite an evident increase in volatility, the distributions of

tightness ratios preserve a substantial symmetry. This happens because the tightness ratio

is approximately linear in the shock, see Panel A in Figure 9. Second, as the dispersion in

the distribution of the tightness ratio increases, the distributions of the endogenous variables

become increasingly left-skewed. This happens because employment rate, job-finding rate,

vacancies and output are concave functions of the tightness ratio, see Figure 9. Notice that

asymmetries arise with perfectly symmetric shocks, see Panel F in Figure 8.

I next characterize the properties of the endogenous variables in first-differences.

PROPOSITION 4 (Mean-median asymmetry in first-differences). Consider the

stochastic equilibrium of a generic variable of the model x̃s, for s ∈ {1, . . . ,S}. At any

equilibrium of the model consistent with a constant exogenous rate of job destruction: (i) if the

support of the distribution of x̃s is symmetric around the median, x̃sm, then the unconditional

distribution of ∆x̃s,s′ is symmetric; (ii) if the support of the distribution of x̃s has a longer

left tail, then the unconditional distribution of ∆x̃s,s′ is right-skewed; and (iii) if the support

of the distribution of x̃s has a longer right tail, then the unconditional distribution of ∆x̃s,s′

is left-skewed.

Proof. See Appendix C. �

Tables B.6 and B.7 show numerical results which further strengthen the theoretical pre-

dictions of this section. The numerical analysis is based on two alternative calibrations of

the worker’s outside option. In the first calibration, which I refer to as Hall and Milgrom

(2008)-type calibration, the worker’s outside option amounts to 73% of steady-state wage.

In the second calibration, which I refer to as Hagedorn and Manovskii (2008)-type calibra-

tion, I set the worker’s outside option to 95% of steady-state wage. It is well-known that a

textbook DMP model with a Hall-Milgrom-type calibration fails to generate realistic ampli-

fication in response to exogenous impulses. On the other hand, Hagedorn-Manovskii-type

calibrations greatly help the standard model to generate realistic unemployment fluctua-

tions. The numerical results in Appendix B suggest that a textbook DMP model with a

constant exogenous rate of job destruction cannot account for the asymmetry properties of

the data irrespective of its ability to generate realistic volatility.
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Figure 9: Policy Rules under Stochastic Equilibrium

Notes: Policy rules are computed numerically. Details of the calibration are in Table B.5 in

Appendix B. Given the calibrated volatility of aggregate shocks, to induce greater dispersion in

the distribution of the tightness ratio, I progressively increase the value of the worker’s outside

option, λ. Specifically, I use λ = 73% of mean wage (red line), λ = 80% of mean wage (blu

line), λ = 90% of mean wage (green line), and λ = 95% of mean wage (purple line). In each

case, I calibrate the cost of posting a vacancy to match the same median value of the variable

over all λ’s calibration. The vertical dashed line denotes the median value of the aggregate

shock.
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4 Quantitative Analysis

In this section, I assess the quantitative properties of the model.

4.1 Calibration

The model is calibrated at the monthly frequency, as summarized in Table 3. The discount

rate is set to β = 0.9959 to accord with an annual risk-free interest rate of 5%. I next discuss

calibration of the labor-market parameters: α and µ for the matching function, worker’s

Nash-bargaining weight, η, vacancy costs, k(x), exogenous and constant job destruction

rate, δ, and worker’s outside option, λ. Relative to the standard DMP model, the model

adds a number of new parameters: xj, for j = 1, . . . ,M .

Table 3: Calibration

Interpretation Value Source/Target

β Discount factor 0.9959 5% annual interest rate

δ Separation rate 0.0189 JOLTS, 2001:M1-2011:M9

k(x) Vacancy cost [0.0005, . . . , 0.3359] θ(x) = 1 when z = 1

α Matching function: m(v, u) = µvαu1−α 0.4 Brügemann (2008)

µ Matching function scale 0.33 Median unemployment rate of 5.6%

η Worker Nash-bargaining weight 0.6 Hosios (1990)’s condition

λ Flow value of unemployment 0.44 62% of mean wage rate

ln(x180/x20) Productivity dispersion, 90-10 pctl range 0.651 Syverson (2011)

ρz Autocorrelation of exogenous state 0.9642 LPC, 1948:Q1-2011:Q3

σε Standard deviation of shocks 0.0055 LPC, 1948:Q1-2011:Q3

I assume a Cobb-Douglas matching function, such that the job-finding rate, φ(θ), and

job-filling rate, ρ(θ), are in the following relation, φ(θ) = θρ(θ) = µθα. A large literature

that directly estimates the aggregate matching function, provides a range of estimates for

the parameter α. Petrongolo and Pissarides (2001) establish a plausable range of 0.3-0.5.

Brügemann (2008) obtains a refined range of 0.37-0.46. I specify α = 0.4 at the mid point

of these ranges. For comparability with previous work, I specify the parameter of the Nash-

bargaining problem as η = 1 − α such that the Hosios (1990)’s condition is met and the

decentralized equilibrium is efficient. I refer to Shimer (2005) for further details.
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I set the matching function scale to µ = 0.33 such that the model-implied median un-

employment rate equals 5.6%, which matches the median unemployment rate in the U.S.

data for 1948:Q1-2011:Q3. The seasonally-adjusted monthly U.S. unemployment rate series

is constructed by the BLS from the CPS. I set the constant exogenous rate of job destruction

to δ = 0.0189, which is the average quit rate in the U.S. data for 2001:M1-2011:M9. The

seasonally-adjusted monthly series for total quits to employment in the nonfarm business

sector is constructed by the BLS from JOLTS.

I choose to target a v-u ratio of 1 in each submarket, which requires setting vacancy

costs to k(x) ∈ [0.0005, . . . , 0.3359]. This calibration strategy implies that the cost to post

a vacancy is (approximately) linearly increasing in skills, i.e., k(x) = kx. This is broadly

consistent with the empirical evidence reported by Hamermesh and Pfann (1996).

I assume that workers’ productivity distribution is uniform, satisfying x1 = x, xM = x,

and xj − xj−1 = (x− x) /M . Thus, j = M is the most productive, and j = 1 is the least

productive submarket. I choose M = 200 and normalize x = 1. For the lower bound, I

set x = 0.44, such that the submarket at the 90th percentile of the distribution is twice as

productive as the submarket at the 10th percentile, ln(x180/x20) = 0.651. Syverson (2011)

finds productivity differences of this order of magnitude within four-digit SIC industries in

the U.S. manufacturing sector.

I set the flow value of unemployment to λ = 0.44 such that all submarkets feature

positive match surpluses in steady-state (zsm = 1 in my normalization), as such steady-

state unemployment is all frictional. This calibration implies an average replacement ratio

of 62%, which is a value smaller than those used in Hall and Milgrom (2008), Mortensen

and Nagypal (2007) and Pissarides (2000), and much smaller than Hagedorn and Manovskii

(2008)’s calibration. In this regard, this paper’s calibration is a conservative one.

Calibration of the worker’s outside option, λ, deserves further explanation. The assump-

tion that λ is the same across workers of different skills implies that replacement ratios, i.e., λ

as percent of the wage, greatly differ across workers’ types. This happens because low-skilled

workers earn lower wages. Hence, while on average λ amounts to 62% of aggregate wage

compensation, there is a spectrum of replacement ratios. In Figure 10, Panel A shows the

CDF of replacement ratios. Notice that approximately 5% of the aggregate labor force fea-

tures a Hagedorn-Manovskii-type calibration, and approximately 70% of the labor force have

replacement ratios smaller than those implied by a Hall-Milgrom-type calibration. Panel B

shows that replacement ratios are decreasing in workers’ productivity. Specifically, the 5%
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Figure 10: Replacement Ratios

Notes: In Hall-Milgrom-type calibration, the worker’s outside option is set to 73% of steady-

state wage. In Hagedorn-Manovskii-type calibration, the worker’s outside option is set to 95%

of steady-state wage. In this paper calibration, the worker’s outside option is set to 62% of

steady-state wage. See Table 3 for further details on calibration.
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of Hagedorn-Manovskii-type of workers are the least productive in the labor force. These

low-skilled workers are the ones benefiting relatively less from being employed and always

at risk of layoff. They are necessarily marginal workers in that they are almost indifferent

to work in the labor market and enjoy the value of non-market activities.

Finally, I calibrate the exogenous stochastic process for labor productivity, which is the

only driving force of fluctuations. I estimate an AR(1) process for the HP-filtered seasonally-

adjusted quarterly real output per worker in the nonfarm business sector constructed by

the BLS from the LPC release, for 1948:Q1-2011:Q3: ln(zt+1) = ρz ln(zt) + σεεt+1 with

εt
iid∼ N (0, 1). The HP-filter smoothing parameter is 105. With quarterly data, we obtain

an autocorrelation of ρ̂z = 0.8963 and a residual standard deviation of σ̂ε = 0.0091, which

yields ρ̂z = 0.89631/3 = 0.9642 and σ̂ε = 0.0055 at monthly frequency. Following Tauchen

(1986), I approximate the continuous-valued AR(1) process for ln(zt) through a S-state

Markov chain, having a discrete state space {z1, . . . , zS} and transition probabilities πs,s′ =

Pr {zt+1 = zs′|zt = zs}. I set the number of grid points for the state space to S = 9.

4.2 Simulated Moments

In this section, I assess the quantitative performance of the model by comparing important

simulated moments to their empirical counterparts in the U.S. data. I contrast two versions

of the model which differ for the calibration of the lower bound of the workers’ productivity

distribution: (1) endogenous job destruction (EJD) model. In this case, x = 0.438, and the

model features an endogenous rate of job destruction as in (10); (2) constant job destruction

(CJD) model. In this case, x = 0.455, and endogenous job separations never occur in

equilibrium. Notice that the CJD model can be seen as a collection of standard DMP

models with constant exogenous rates of job destruction and cross-sectional dispersion of

total match surpluses, i.e., Ss(x) < Ss(x2) < . . . < Ss(x). Comparing these two versions of

the model highlights the key ingredients for the quantitative success of the model.

4.2.1 Volatility and Comovement in U.S. Data and Model

Table 4 shows standard deviations (relative to labor productivity) and correlations for labor-

market variables in the model and U.S. data. Panel A forcefully shows that the EJD model

generates fluctuations in the unemployment rate, vacancies and job-finding rates that are

comparable to those in the U.S. data. The EJD model outperforms the CJD model in any di-

mension. In this regard, the results for the CJD model confirm the previous negative findings

40



on the inability of the standard DMP model to amplify exogenous impulses. The findings

suggest that key for the amplification properties of the model is the selection mechanism

which drives endogenous job destruction and job creation.

In Table 4, Panel B shows comovements between labor-market variables. Except for

the correlation between vacancies and unemployment (Beveridge curve), the EJD model

outperfomrs the CJD model. However, it still produces correlations of unemployment, job-

finding rates and vacancies with labor productivity that are too high (in absolute value)

compared to the data. The success of the CJD model in replicating the empirical Beveridge

curve is not surprising given its resemblance to a textbook DMP model. Shimer (2005)

shows that the Berveridge curve is the only quantitative success of a textbook DMP model.

To understand the comovement between vacancies and unemployment, Figure 11 shows

lead-lag correlations, where the current period unemployment rate is associated with future

and lagged values of vacancies up to four quarters. First observe that a large value of

contemporaneous correlation between unemployment and vacancies observed in the U.S.

data, −0.858, is reasonably close to the value generated by the model of −0.561. The

model preserves a downward-sloping Beveridge curve. A well-known criticism to models

with endogenous job separations à la Mortensen and Pissarides (1994), is their counterfactual

implications for the Beveridge curve. These models produce a strong positive correlation of

unemployment with vacancies, whereas in the U.S. data this correlation is strongly negative

at business cycle frequencies. With respect to the lead-lag relationship, the data suggest

some tendency for vacancies to lead unemployment.16 Qualitatively, this pattern is captured

well in the model. This reflects the mechanics of the model, wherein the search friction

produces some lagged response in unemployment after the response in vacancy posting. In

Mortensen and Pissarides’s type of models, in contrast, the feedback from the movement of

the separation rate into vacancy posting erases this feature, generating the tendency that

unemployment leads vacancies.

4.2.2 Asymmetry in U.S. Data and Model

Table 5 contrasts the model with the asymmetry properties of the data. The EJD model

generates asymmetries in employment, output and job-finding rates comparable to those

observed in the data. Not surprisingly, given the results in Section 3.8, the CJD model

completely fails to do so. Remarkably, the EJD model is also able to replicate the disconnect

16Correlations between lagged values of vacancies and current unemployment tend to be larger (in absolute
value) than those between future values of vacancies and current unemployment.
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Table 4: Volatility and Comovement in U.S. Data and Model

Data EJD Model CJD Model

A. Volatility

sd(u)/sd(p) 9.851 9.051 1.327

sd(φ)/sd(p) 7.213 9.232 1.491

sd(v)/sd(p) 8.131 5.464 2.484

B. Comovement

corr(u, v) −0.858 −0.561 −0.812

corr(u, p) −0.412 −0.773 −0.912

corr(φ, p) 0.383 0.824 0.996

corr(v, p) 0.433 0.830 0.978

Notes: The seasonally-adjusted unemployment rate, u, is from the CPS survey

of the BLS. Survey home page http://www.bls.gov/cps/. Labor productiv-

ity, p, is seasonally-adjusted quarterly real output per worker in the nonfarm

business sector constructed by the BLS from the LPC release. Release home

page http://www.bls.gov/lpc. The series are downloaded from the FRED

website at http://research.stlouisfed.org/fred2/. Job-finding rates, φ,

are calculated based on Shimer (2012). Vacancies, v, are the composite Help-

Wanted Index constructed by Barnichon (2010). The variables u, φ, and v

are quarterly averages of monthly series. All series cover the period 1948:Q1-

2011:Q3. EJD model refers to the version of the model with endogenous job

destruction. CJD model refer to the version of the model with constant and

exogenous job destruction. Model simulated data are quarterly averages of 765

observations at the monthly frequency. The statistics reported are averages

across 500 replications. All variables are reported in logs as deviations from

the HP trend with smoothing parameter 105.
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Figure 11: Dynamic Beveridge Curve

Notes: The seasonally-adjusted unemployment rate, u, is from the CPS survey of the BLS. Sur-

vey home page http://www.bls.gov/cps/. The series is downloaded from the FRED website

at http://research.stlouisfed.org/fred2/. Vacancies, v, are the composite Help-Wanted

Index constructed by Barnichon (2010). Model refers to the EJD model. Fujita-Ramey model

refers to a stochastic discrete-time version of Mortensen and Pissarides (1994)’s model as pre-

sented in Fujita and Ramey (2012).
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between the asymmetry properties of employment and output, i.e., it generates deep and

steep cycles in employment, and deep cycles in output with no steepness.

The model produces counterfactual implications for the asymmetry properties of vacan-

cies, i.e., positive instead of negative skeweness in level and growth rates. These counter-

factual predictions are due to the “echo effect” that characterizes the dynamics of vacancies

in models with endogenous job separations. After a adverse aggregate shock that induces

endogenous destruction of jobs, the pool of unemployed raises, the probability to fill a va-

cancy increases such that for the employer the expected recruiting cost decreases. This gives

to employers strong incentives to post vacancies right at the end of a downturn since it is

relatively cheaper to do so. Because in the model vacancies are a jump variable, they react

“too much and too fast” to positive changes in the aggregate state coming from a recession

causing positive skewness in levels and growth rates.

4.2.3 What drives asymmetric employment dynamics?

In this section, I assess the relative contribution of job-finding and job-separation rates to

the skewness asymmetry of the employment rate series generated by the model. To this aim,

I construct two counterfactual series for the employment rate in the EJD model. Recall that

aggregate employment and employment rate are respectively Et =
∑

x et(x) and et = Et/M .

The first counterfactual is an employment rate series that only allows for variation in job-

finding rates, ejfr
t+1 = Ejfr

t+1/M , where

Ejfr
t+1 = Ejfr

t +
∑
x

φ
(
θt(x)

)
ujfr
t (x)−

∑
x

δsm(x)ejfr
t (x),

and δsm(x) = δ are steady-state job-separation rates which are calibrated to be the

same across submarkets. The second counterfactual series only allows for variation in job-

separation rates, ejsr
t+1 = Ejsr

t+1/M , where

Ejsr
t+1 = Ejsr

t +
∑
x

φ
(
θsm(x)

)
ujsr
t (x)−

∑
x

δt+1(x)ejsr
t (x),

and φ
(
θsm(x)

)
= µ are steady-state job-finding rates which are calibrated to be the same

across submarkets. Which counterfactual series better accounts for the asymmetry properties

of the employment rate? Recall I asked the same question in Section 2 for the actual U.S.

employment rate. Answering this question allows us to disentangle the contribution of job-

finding and separation rates to the skewenss in levels and growth rates. In Table 6, Panel A
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Table 5: Asymmetry in U.S. Data and Model

Data EJD Model CJD Model

A. Skewness in levels

Skew(e) −0.591∗∗∗ −0.877 −0.254

Skew(y) −0.345∗∗ −0.246 −0.013

Skew(φ) −0.249∗∗ −0.922 −0.230

Skew(v) −0.469∗∗∗ 0.542 −0.130

B. Skewness in growth rates

Skew(∆e) −0.958∗∗∗ −0.794 0.044

Skew(∆y) −0.170 −0.055 0.005

Skew(∆φ) 0.235∗∗∗ 0.319 0.042

Skew(∆v) −0.613∗∗∗ 0.670 0.044

Notes: The seasonally-adjusted unemployment rate, u, is from the CPS survey of the

BLS. Survey home page http://www.bls.gov/cps/. Labor productivity, p, is seasonally-

adjusted quarterly real output per worker in the nonfarm business sector constructed by

the BLS from the LPC release. Release home page http://www.bls.gov/lpc. Output,

y, is industrial production (IP). The series are downloaded from the FRED website at

http://research.stlouisfed.org/fred2/. Job-finding rates, φ, are calculated based on

Shimer (2012). Vacancies, v, are the composite Help-Wanted Index constructed by Barni-

chon (2010). The variables u, φ, and v are quarterly averages of monthly series. All series

cover the period 1948:Q1-2011:Q3. EJD model refers to the version of the model with en-

dogenous job destruction. CJD model refers to the version of the model with constant and

exogenous job destruction. Model simulated data are quarterly averages of 765 observations

at the monthly frequency. The statistics reported are averages across 500 replications. In

Panel A, all variables are reported in logs as deviations from the HP trend with smoothing

parameter 105. In Panel B, all variables are reported as 3-months log-differences. ***, **

denote statistical significance at respectively 1% and 5% level.
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shows that both margins of the labor market, i.e., job-finding and job-separation rates, are

jointly responsible for the skewness in levels of the employment rate. This prediction hold

in U.S. data (see Fact 3 in Section 2).

Table 6: Asymmetry in Employment Rate Counterfactuals

x e ejfr ejsr

A. Skewness in levels

Skew(x) −0.877 −0.937 −1.068

B. Skewness in growth rates

Skew(∆x) −0.794 1.691 −1.075

Notes: EJD model simulations are 765 observations at the

monthly frequency. The statistics reported are averages across

500 replications. e is the employment rate (fraction of the la-

bor force working in a given month, one minus the unemploy-

ment rate), ejfr is the counterfactual employment rate series with

job-separation rates fixed at steady-state values, and ejsr is the

counterfactual employment rate series with job-finding rates fixed

at steady-state values. In Panel A, all variables are quarterly

averages reported in logs as deviations from the HP trend with

smoothing parameter 105. In Panel B, all variables are reported

as 3-months log-differences.

Panel B shows that in the model, job-separation rates are the only responsible for negative

skewness in growth rates. Moreover, when the dynamics are only driven by job-finding rates,

the model generates positive instead of negative skewness in growth rates. Importantly, these

model predictions hold in the data (see Fact 4 in Section 2). To summarize, this section

strengthens the results in Section 4.2.2 in that it shows the model is able to replicate not

only the skewness asymmetry in employment but also the asymmetry properties implied by

job-finding and separation rates.

4.2.4 What drives asymmetric output dynamics?

To understand what drives the disconnect between the asymmetry properties of employment

and output, Table 7 shows statistics for the skewness in levels and growth rates for each

output component simulated from the EJD model. In the model, aggregate output is
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Yt =
∑
x

yt(x) = zt ·
∑
x

xet(x),

where zt is the exogenous aggregate shock, and
∑

x xet(x) is a quality-adjusted measure

of aggregate employment, which is a weighted average of worker-specific employment rates

with weights equal to workers’ types x ∈ {x1 < . . . < xM}. In Table 7, the column labeled Y

reproduces the skewness statistics for aggregate output in Table 5. As discussed in Section

4.2.2, in the model as in the data, aggregate output displays negative skewness in levels with

nearly no skewness in growth rates. Recall that the aggregate state zt is by assumption a

symmetric Markov process, as such simulated shocks display (approximately) zero skewness

both in levels and growth rates. Note that quality-adjusted employment,
∑

x xe(x), displays

negative skewness in levels and growth rates. Hence, it inherits the asymmetry properties of

aggregate employment (see Table 5).

Table 7: Asymmetry in Output and its Components

Y z
∑

x xe(x)

A. Skewness in levels −0.246 0.000 −0.858

B. Skewness in growth rates −0.055 0.000 −0.761

Notes: EJD model simulated data are quarterly averages of 765 observations

at the monthly frequency. The statistics reported are averages across 500 repli-

cations. In Panel A, all variables are reported in logs as deviations from the

HP trend with smoothing parameter 105. In Panel B, all variables are reported

as 3-months log-differences.

The results in Table 7 suggest the reason why aggregate output behaves more symmet-

rically than employment is that aggregate shocks are symmetric and hit the production

function directly.

4.3 Impulse Response Functions

In this section, I discuss key properties of the model by the means of impulse response

functions (IRFs). I derive the dynamic response to a productivity shock by comparing the

expected paths of two economies. The first economy starts with the level of the endogenous

variable associated with the median state but is in the state below (above) the median state.
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The second economy starts with the same level of the endogenous variable and is in the

median state. The difference between the two paths is the response over time to a negative

(positive) impulse, which is the transition from the median to lower (higher) states that

occured at time zero. I report the average response across 5, 000 replications. Critically,

the size of the positive and negative shock is the same. Figure 12 shows the responses of

labor-market variables to a negative (solid line) and positive (dashed line) impulse. I flip

the sign of the response to a positive impulse (dashed line) such that both responses lie in

the same quadrant. Panel D shows the responses of the exogenous aggregate shock, which

is by assumption a symmetric stochastic process.
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Figure 12: Impulse Responses for the Employment Rate

In Figure 12, Panel A shows that the employment rate’s response to shocks is strongly

asymmetric, with the response to a negative impulse being stronger than the response to

a positive impulse. What is driving the asymmetric dynamics of the employment rate?

Suppose at time t = 0 the economy rests at the median state (zsm = 1 in my normalization),

and a negative shock realizes. The immediate response of the model economy is a burst of job

destruction which leads a spike in the aggregate separation rate, see Panel B. The endogenous

job destruction margin is the one contributing more to the speed at which the employment

rate reaches the trough of the response. At this stage, the aggregate job-finding rate plays
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a minor role in the dynamics. After the trough of the response is reached, the dynamics are

governed by a low aggregate job-finding rate which determines the slow recovery towards

the initial state. At this stage, job rationing is at work. The employment rate’s response

to a positive shock is driven only by a high aggregate job-finding rate. In this case, the

forces driving the dynamics are the same as those of a standard DMP model with a constant

job-separation rate. Panel C shows that the IRFs of the aggregate job-finding rate are also

strongly asymmetric. The aggregate job-finding rate falls in response to a negative impulse

much farther than it raises in response to a positive impulse. This asymmetric response

comes from the direct effect that endogenous job destruction exerts on the aggregate job-

finding rate. After a negative shock, job-finding probabilities of all workers fall, however,

they drop disproportionally more for low-skilled workers previously fired which are over-

represented in the group flowing into unemployment. Notice that the asymmetric behavior

of the labor market comes entirely from the mechanics of the model. Panel D shows that the

IRFs of the exogenous aggregate shock are fully symmetric. In the model, aggregate output

is Yt =
∑

x yt(x) = zt ·
∑

x xet(x). Labor productivity, Yt/Et, consists of an exogenous and

endogenous component,

Yt
Et

= zt︸︷︷︸
Aggregate

shock

·
∑

x xet(x)∑
x et(x)

.︸ ︷︷ ︸
“Composition effect”

(22)

The first term on the right hand side of equation (22) is the exogenous aggregate shock, zt.

The second term on the right hand side—“composition effect”—is a skill-adjusted measure

of employment, which is an endogenous variable. Figure 13 shows the impulse responses for

output, labor productivity, and the composition effect.

In Figure 13, Panel A shows that output contracts deeper after a negative impulse than

it expands after a positive shock, i.e., the trough (in absolute value) exceeds the peak.

However, besides the peak-trough asymmetry, the impulse responses are more symmetric if

compared to those of the employment rate (see Panel A in Figure 12). Panel B shows the

response of labor productivity. The sharp fall in employment after a negative impulse is

muted by the endogenous response of labor productivity, which tends to fall by less because

of the composition effect. Panel C shows that the composition effect’s responses to shocks

are strongly asymmetric. It reacts much stronger to a negative than to a postive impulse.

Specifically, it raises more in response to a negative impulse than it falls after a positive
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Figure 13: Impulse Responses for Output

impulse. After a negative impulse, low-skilled workers are laid off, a disproportionate part

of the employed pool consists of high-skilled workers. This selection mechanism causes skill-

adjusted employment to raise sharply. After a positive impulse instead, no endogenous

job destruction occurs, a disproportionate part of the employed pool consists of low-skilled

workers. In this case, the composition effect causes skill-adjusted employment to smoothly

decrease.

5 Labor-Market Fluctuations at the Micro Level

The model highlights the crucial role of low-skilled workers in shaping cyclical movements

in aggregate unemployment. As a by-product, the model provides stark predictions for the

time series of skill-specific unemployment rates. Precisely, low-skilled workers experience

(i) higher average unemployment rates and (ii) they account for most of the variation in

aggregate unemployment. In this section, I use CPS micro data for the period 1976:M1-

2013:M2 and test this prediction. Specifically, the goal is to investigate whether there are

relatively unskilled groups of workers that contribute disproportionately more to the large

fluctuations of the U.S. labor market.
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Clearly, the identification of worker’s abilities in the data is challenging. However, a large

empirical literature in the tradition of Mincer (1974)’s work, has identified experience and

education as important drivers of wage differentials. Hence, to the extent to which actual

wages reflect workers’ marginal product, one can arguably think of age and education as good

proxies for worker-specific producitivity on the job. Following the lead of this literature, I

consider unemployment rates by age and education groups and investigate whether their time

series properties accord with the predictions of the model. To this aim, I consider 6 age groups

(16-24, 25-34, 35-44, 45-54, 55-64, 65 and over) and 3 education levels (High school dropouts,

HSD, High school graduates joint with some college, HSG/SC, and College graduates and

post-college degree holders, CGPC). As such there are 18 age/education groups. The first

row of Table 8 reports average unemployment rates for different age groups.

Table 8: Average Unemployment Rates by Age Group

16-24 25-34 35-44 45-54 55-64 65+

Percent (%) 12.90 6.16 4.64 4.09 3.92 3.83

Normalized 3.16 1.51 1.14 1 0.96 0.94

Notes: Data are from the CPS micro files for 1976:M1-2013:M2 and downloaded from

the NBER website at http://www.nber.org/data/cps_basic.html. Seasonal adjust-

ment is implemented with a 13-term symmetric moving average. The first row shows

sample averages of unemployment rates by age in percent. The second row reports

average unemployment rates by age relative to that of 45-54 years old.

Unemployment rates decrease monotonically with age. This fact is well-known, see Ger-

vais et al. (2013). Specifically, the average unemployment rate for the 16-24 years old is

12.9% and sharply falls to 3.92% for the 55-64 years old. Note also that the age differences

are large. The second row of Table 8 displays the average unemployment rate for each age

group relative to that of the 45-54 years old. Over the period 1976:M1-2013:M2, the average

unemployment rate for the 16-24 years old was 3.16 times that of the 45-54 years old.

Table 9 displays average unemployment rates for different education groups. Clearly,

unemployment rates sharply decrease with education. The average unemployment rate for

high-school dropouts is 12.72% and falls to 2.79% for workers with the highest educational

attainments. Note that the average unemployment rate for HSD is 2 times that of the

HSG/SC and as high as 4.56 times that of workers with a college or post-college degree.

Table 10 reports average unemployment rates for different age/education groups. The
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Table 9: Average Unemployment Rates by Education Group

HSD HSG/SC CGPC

Percent (%) 12.72 6.10 2.79

Normalized 4.56 2.19 1

Notes: Data are from the CPS micro files for 1976:M1-

2013:M2 and downloaded from the NBER website at http:

//www.nber.org/data/cps_basic.html. HSD, HSG, SC

and CGPC denote respectively High School Dropouts, High

School Graduates, Some College and College Graduates and

Post-College Degree Holders. Seasonal adjustment is imple-

mented with a 13-term symmetric moving average. The first

row shows sample averages of unemployment rates by educa-

tion in percent. The second row reports average unemploy-

ment rates by education relative to that of CGPC.

results show that unemployment rates are decreasing in age and education even within

groups. Precisely, (i) average unemployment rates decrease monotonically with age after

sorting on education levels and (ii) average unemployment rates decrease monotonically with

education after sorting on age differences. These facts are important since confirm a tight

monotonic link between unemployment rates and skill levels. Note also that age/education

differences are large. High-school dropouts in the 16-24 years old group experience an average

unemployment rate of 21% which is 9 times that of the CGPC workers in the 45-54 years

hold group.

Overall, the empirical findings suggest that the U.S. labor market features large differ-

ences in average unemployment rates once I sort workers by age and education. These facts

are broadly consistent with the predictions of the model. Table 11 displays average unem-

ployment rates by skill/productivity group for artificial data generated by the model. Recall

that the index x ∈ {x1, . . . , xM} denotes the skill type of the worker which determines her

productivity on the job. The model generates large dispersion in average unemployment rates

across workers. Specifically, lowest-skilled workers experience an average unemployment rate

8.5 times larger than that of high-skilled workers in the right tail of the productivity dis-

tribution, i.e., (x7 − x200) group. Importantly, this dispersion in unemployment rates is the

endogenous outcome of the model. I calibrated the unemployment rates to be the same

across workers in the median state (zsm = 1 in my normalization). As such these large dif-
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ferences in average unemployment rates come exclusively from the different cyclical behavior

of workers with different skills.

I next provide evidence that the young and least-educated workers not only experience

higher average unemployment rates but they also contribute disproportionately more to the

time series variation of the U.S. unemployment rate.

Table 10: Average Unemployment Rates by Age/Education Group

16-24 25-34 35-44 45-54 55-64 65+

A. Average, percent (%)

HSD 21.01 13.02 9.46 7.57 6.08 5.08

HSG/SC 10.45 6.60 4.87 4.09 3.82 3.77

CGPC 6.05 2.86 2.35 2.31 2.50 2.71

B. Average, normalized

HSD 9.10 5.64 4.10 3.28 2.63 2.20

HSG/SC 4.52 2.86 2.11 1.77 1.65 1.63

CGPC 2.62 1.24 1.02 1 1.08 1.17

Notes: Data are from the CPS micro files for 1976:M1-2013:M2 and downloaded from

the NBER website at http://www.nber.org/data/cps_basic.html. HSD, HSG, SC

and CGPC denote respectively High School Dropouts, High School Graduates, Some

College and College Graduates and Post-College Degree Holders. Seasonal adjustment

is implemented with a 13-term symmetric moving average. Panel A shows sample

averages of unemployment rates by age/education group. Panel B shows average

unemployment rates by age/education relative to that of 45-54 years old with CGPC

education level.

To this aim, let us decompose the actual U.S. unemployment rate as the sum of unem-

ployed workers sorted in different groups indexed by x divided by the aggregate labor force,

lft ≡ Et + Ut, such that

ut =
Ut

Et + Ut
=

ut(x1)

Et + Ut
+

ut(x2)

Et + Ut
+ . . . . . .+

ut(xM)

Et + Ut
(23)
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Table 11: Average Unemployment Rates by Skill/Productivity Group

x1 x2 x3 x4 x5 x6 (x7 − x200)

Percent (%) 46.35 34.15 32.94 21.17 12.92 12.13 5.43

Normalized 8.54 6.29 6.07 3.90 2.38 2.23 1

Notes: The statistics reported are average unemployment rates in the EJD model by skill/productivity

group averaged across 500 replications. The second row reports average unemployment rates by

skill/productivity relative to that of (x7 − x200) group.

where Ut =
∑

x ut(x) and Et =
∑

x et(x) are respectively the total number of unemployed

and employed. The index x ∈ {x1, . . . , xM} denotes an observable worker-specific charecter-

istics, e.g., age and/or educational attainments. Let ût(x) ≡ ut(x)/lft denote the share of

unemployed workers of characteristic x in the labor force. Standard calculations yield

V ar(ut) =
∑
x

V ar
(
ût(x)

)
+
∑
x 6=x′

Cov
(
ût(x), ût(x

′)
)
. (24)

Tables 12-13 report percentage shares of U.S. unemployment rate variance attributed to

a specific group of workers. Specifically, I group workers by age (see Table 12), education

(see Table 13), and age/education (see Table B.8 in Appendix B).

Table 12: Volatility Shares by Age Group

16-24 25-34 35-44 45-54 55-64 65+

Cov. not incl. 47.28 25.93 8.87 12.32 5.28 0.33

Cov. incl. 30.84 28.12 13.53 14.69 10.86 1.96

Notes: Data are from the CPS micro files for 1976:M1-2013:M2 and downloaded from the

NBER website at http://www.nber.org/data/cps_basic.html. Seasonal adjustment

is implemented with a 13-term symmetric moving average. The statistics reported are

percentage shares of total U.S. unemployment rate variance attributed to each age group.

“Cov. not incl.” means covariance terms are ignored such that total variation is the sum

of the variables’ variances. “Cov. incl.” means total variation includes covariance terms

such that total variation is the sum of the variables’ variances plus two times their

covariance.

Table 12 shows that 2 age groups, i.e., 16-24 and 25-34, account for the bulk of the
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variation in the actual U.S. unemployment rate. A similar picture emerges from Table

13 in which HSD, HSG and SC are responsible for most of the time series variation of

U.S. unemployment. Table B.8 in Appendix B further confirms that in the U.S. economy,

unemployment volatility is clustered between the young and the least-educated workers.

Importantly, these findings are consistent with the predictions of the model. In Table 14,

I report volatility shares for artificial data generated by the model. In the model, as in the

data, few skill/productivity groups account for most of the variation of the unemployment

rate. These are workers in the left tail of the skill/productivity distribution.

Table 13: Volatility Shares by Education Group

HSD HSG/SC CGPC

Cov. not incl. 24.51 69.39 6.10

Cov. incl. 26.16 62.38 11.46

Notes: Data are from the CPS micro files for 1976:M1-

2013:M2 and downloaded from the NBER website at http:

//www.nber.org/data/cps_basic.html. HSD, HSG, SC and

CGPC denote respectively High School Dropouts, High School

Graduates, Some College and College Graduates and Post-

College Degree Holders. Seasonal adjustment is implemented

with a 13-term symmetric moving average. The statistics re-

ported are percentage shares of total U.S. unemployment rate

variance attributed to each education group. “Cov. not incl.”

means covariance terms are ignored such that total variation

is the sum of the variables’ variances. “Cov. incl.” means

total variation includes covariance terms such that total varia-

tion is the sum of the variables’ variances plus two times their

covariance.

Note that changes in unemployment shares ût(x) ≡ ut(x)/lft are due to changes in either

skill-specific unemployment rates, or skill-specific shares of the aggregate labor force:

ût(x) =
ut(x)

et(x) + ut(x)︸ ︷︷ ︸
Skill-specific

unemployment rate

× et(x) + ut(x)

Et + Ut
.︸ ︷︷ ︸

Skill-specific

shares of the labor force

(25)

I refer to the first margin as the unemployment margin, and to the latter as the participa-

55

http://www.nber.org/data/cps_basic.html
http://www.nber.org/data/cps_basic.html


Table 14: Volatility Shares by Skill/Productivity Group

x1 x2 x3 x4 x5 x6 x7 − x200

Cov. not incl. 29.19 22.81 22.03 13.67 6.34 5.83 0.13

Cov. incl. 19.72 19.37 18.96 13.56 7.79 7.16 13.44

Notes: The statistics reported are percentage shares of total unemployment rate variance in the EJD

model attributed to each skill/productivity group averaged across 500 replications. “Cov. not incl.”

means covariance terms are ignored such that total variation is the sum of the variables’ variances.

“Cov. incl.” means total variation includes covariance terms such that total variation is the sum of the

variables’ variances plus two times their covariance.

tion margin. If the participation margin was the main driver of fluctuations in unemployment

shares of young and/or least educated workers then modeling skill-specific differences in par-

ticipation decisions would be of first-order importance. In this case, my modelling choice of

constant labor force shares would be unappealing. If not, it would suggest that to a first-

order, the factor generating age/education group differences are variations in skill-specific

unemployment rates. This would bring support to the main mechanism at work in the model.

The variance of unemployment shares is decomposed as:

V ar
(
ût
)

= V ar
(
urt(x)

)
+ V ar

(
lfst(x)

)
+ 2Cov

(
urt(x), lfst(x)

)
, (26)

where urt(x) = ut(x)/
(
et(x) + ut(x)

)
and lfst(x) =

(
et(x) + ut(x)

)
/
(
Et + Ut

)
. Tables

15-16 show that almost all variation at business cycle frequencies in unemployment shares

comes from fluctuations in skill-specific unemployment rates. Table B.9 in Appendix B shows

the unemployment shares’ variance decomposition by age/education group.

To summarize, the facts documented in this section state that: (i) most of the time series

variation in the U.S. unemployment rate can be attributed to the young and least-educated

workers. Since age and education are natural proxies for skills, the empirical findings suggest

that understanding the cyclical behavior of low-skilled workers is critical to explain the

large fluctuations of the U.S. labor market; (ii) at business cycle frequencies, most of the

volatility in unemployment shares comes from changes in skill-specific unemployment rates

and not from variation in skill-specific shares of the aggregate labor force. These facts are

reminiscent of the well-known observation that volatility in labor markt conditions greatly

differs for workers of different age and education levels (see Clark and Summers (1981),
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Table 15: Unemployment versus Participation Margin by Age Group

16-24 25-34 35-44 45-54 55-64 65+

Unemployment margin 98.95 99.81 99.81 99.82 99.67 97.12

Participation margin 1.05 0.19 0.19 0.18 0.33 2.88

Notes: Data are from the CPS micro files for 1976:M1-2013:M2 and downloaded from the NBER

website at http://www.nber.org/data/cps_basic.html. Seasonal adjustment is implemented with

a 13-term symmetric moving average. Data are logged and HP-filtered with smoothing parameter

129,000 at the monthly frequency. See Ravn and Uhlig (2002) for a thorough discussion on the

choice of the HP smoothing parameter and the frequency of observations. The statistics reported

are percentage shares of total unemployment shares variance attributed to the unemployment and

participation margin by each age group. Covariance terms are not included such that total variation

is the sum of the variables’ variances.

Table 16: Unemployment versus Participation Margin by Education Group

HSD HSG/SC CGPC

Unemployment margin 98.78 99.94 99.80

Participation margin 1.22 0.06 0.20

Notes: Data are from the CPS micro files for 1976:M1-2013:M2 and

downloaded from the NBER website at http://www.nber.org/data/cps_

basic.html. HSD, HSG, SC and CGPC denote respectively High School

Dropouts, High School Graduates, Some College and College Graduates and

Post-College Degree Holders. Seasonal adjustment is implemented with a

13-term symmetric moving average. Data are logged and HP-filtered with

smoothing parameter 129,000 at the monthly frequency. See Ravn and Uh-

lig (2002) for a thorough discussion on the choice of the HP smoothing

parameter and the frequency of observations. The statistics reported are

percentage shares of total unemployment shares variance attributed to the

unemployment and participation margin by each education group. Covari-

ance terms are not included such that total variation is the sum of the

variables’ variances.
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Gomme et al. (2005), and Jaimovich and Siu (2009) among others). Importantly, this latter

result also suggests that modelling skill-specific differences in participation decisions is not

of first-order importance. Overall, the emprical analysis provides strong support for the

main prediction of the model: the left tail of the skill/productivity distribution is key to

understand unemployment dynamics.

6 Policy Analysis

In this section, I show that in addition to matching key business cycle moments, the model

also generates a wide range of implications for the design of macroeconomic policies. For

instance, a general prediction of the analysis is that the effectiveness of macroeconomic poli-

cies varies over the business cycle. For instance, policies apt to decrease matching frictions

in the labor market are less effective during recessions than during booms: programmes de-

signed to give job search assistance to the unemployed (e.g., think of an exogenous increase

in matching efficiency) and/or policies apt to decrease recruiting costs are far less effective

in reducing unemployment during recessions than expansions. This happens because during

recessions, jobs are rationed: matches with low-skilled workers would generate negative sur-

pluses even if the cost to post a job vacancy was zero (i.e., no recruiting costs). Note that the

ineffectiveness of these type of policies in a search-and-matching framework with rationing

has been first discussed by Michaillat (2012). However, in Michaillat’s model workers are

identical and rationing arises in recessions because of decreasing returns to labor and wage

stickiness. In this paper instead, rationing is a by-product of worker permanent heterogene-

ity. Hence, differently from Michaillat’s work, I argue that low-skilled workers are the ones

bearing the cost of this policy failure. The main insight of the analysis is that any policy

that leaves un-changed the surplus after the match has occurred, it is then ineffective in

reducing unemployment. This line of resoning suggests that key to tackle the unemployment

problem during recessions is to restore the profitability of low-productivity firms, or in other

words, subsidize matches with low-skilled workers. Policies restoring firms’ profitability are

the most effective in economic dowturns. Note that also the effectiveness of this latter type of

policies is time varying. Specifically, subsidies to worker-employer low-productivity matches

are much more effective during economic downturns than expansions. The time-varying

effect of labor-market policies derives from the property that the impulse responses to ag-

gregate shocks vary with the state of the economy. Since fiscal stimulus is tipically timed

during recessions, assessing the response of the labor market and output to aggregate shocks

58



during recessions is of particular relevance. I show that in the model unemployment is more

responsive to changes in aggregate conditions during recessions than during normal times.
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Figure 14: State-Dependent Impulse Responses

State-dependent effects of aggregate shocks. As in Section 4.3, I derive the dynamic

response to a positive aggregate shock by comparing the expected paths of two simulated

economies. For the IRF in “bad times,” the first simulated economy starts with the level

of the endogenous variable associated with the lowest aggregate state but is in the median

state. The second simulated economy starts with the same level of the endogenous variable

and is in the lowest aggregate state. The difference between the two paths is the response

over time to a positive impulse during recessions. For the IRF in “normal times” instead,

the first economy starts with the level of the endogenous variable associated with the median

state but is in the highest state. The second simulated economy starts with the same level of

the endogenous variable and is in the median state. The difference between the two paths is

the response over time to a positive impulse during normal times. In both cases, I report the

average response across 5, 000 replications. Critically, the size of the shock is the same across

scenarios. In Figure 14, Panel A shows that the employment rate is much more responsive
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to aggregate shocks in bad than in good times. The difference in responsiveness between bad

and good times is instead far less pronounced for output (see Figure 14, Panel B). This latter

result is perhaps not surprising given that the bahavior of output is far less asymmetric than

that of the employment rate (see Sections 4.2 and 4.3). Overall, the analysis suggests that

the model economy features counter-cyclical IRFs. This property comes entirely from the

asymmetric amplification and propagation of symmetric shocks. In Appendix B, I document

that the response of the actual U.S. unemployment rate to shocks is systematically stronger

during recessions than during expansions. To this aim, I follow Bachmann et al. (2010)

and estimate a two-stage time series model. In the first stage, I astimate an AR(2) process

for the U.S. unemployment rate. Then in the second stage, I regress the absolute value

of the first stage residuals on the average lagged unemployment rate to assess whether

residual variance differs during recessions. The estimates show that the U.S. unemployment

rate displays conditional heteroskedasticity. Specifically, the variance of the reduced-form

innovations raise dramatically during times of high unemployment. However, this finding

can be rationalized in two different ways: (1) the shocks driving fluctuations have constant

variance but U.S. unemployment respond more to these shocks during recessions than during

booms. Note that this is exactly what happens in the model. (2) Aggregate shocks are

conditionally heteroskedastic with recessions initiated by shocks of larger size. However,

Berger and Vavra (2012) show that there is no evidence of conditional heteroskedasticity for

shocks commonly used in the business cycle literature. These facts seem to suggests that

asymmetric responses, instead of asymmetric shocks, are responsible for heteroskedasticity

in the U.S. unemployment rate.

State-dependent effects of fiscal stimulus. To understand the exact link between

aggregate shocks and exogenous changes in policies, I introduce into the model four tax

instruments: (1) sales tax, τS; (2) labor income tax, τW ; (3) payroll tax, τF ; and (4) recruiting

costs expensing, τK . Equations (8) and (9) then become,

Ss(x) = max
{
Scs(x), 0

}
(27)

with

Scs(x) = (1− τS) zsx−
(

1 + τF
1− τW

)
λ+ β

∑
s′

πs,s′
[
1− δs′(x)− ηφs(x)

]
Ss′(x),
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where Πs

(
zsx, λ, τS, τF , τW

)
≡
[

(1− τS) zsx −
(

1+τF
1−τW

)
λ

]
denote “profits” accruing to

the worker-employer relationship. The free-entry condition for each submarket is

(1− τK)k(x) = βρs(x)
∑
s′

πs,s′
(
1− η

)
Ss′(x). (28)

Note that: (i) all tax rates affect Ss(x) through the profit term Πs

(
zsx, λ, τS, τF , τW

)
.

As such cuts in either tax rate can be seen as “subsidies” to the worker-employer match.

Moreover, since these subsidies act like changes in the aggregate shock, exogenous changes

in tax rates can be interpreted as shocks to the aggregate state of the economy. Hence,

the dynamics in Figure 14 can also be interpreted as responses to exogenous decreases in

either tax rate. This observation implies that fiscal policy is more effective during recessions

than expansions. These predictions are consistent with the empirical evidence produced by

Auerbach and Gorodnichenko (2012); (ii) the expensing rate of vacancy posting costs only

enters the free-entry condition (28). As discussed in Section 3.4, changes in the cost to post

a job vacancy are irrelevant for rationing unemployment. As such policies working through

that margin are ineffective in reducing unemployment during recessions.

7 Conclusions

The paper develops a search-and-matching model with permanently heterogeneous workers

(in skill/productivity) that accounts for the asymmetric fluctuations of the U.S. labor market

and output. The fundamental property of the model is that recessions are initiated by a

burst of job losses and job-finding rates display asymmetries over the cycle. The model

generates realistic volatility in unemployment and job vacancies preserving a downward-

sloping Beveridge curve. As a by-product, the model provides stark predictions for the

time series of skill-specific unemployment rates. These predictions hold in CPS micro data

once I sort workers by age and education. The model predicts that the effectiveness of

macroeconomic policies varies over the business cycle. For instance, the effects of policies

that restore the profitability of low-productivity matches are time varying: these policies

are much more effective during economic downturns than expansions. That is, the economy

features impulse responses that vary with the state of the economy.
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Appendix

A Data Sources

The seasonally-adjusted monthly U.S. unemployment rate, participation rate (fraction of the

population in the labor force), unemployment rates by age, gender, education, employment

(thousands of persons), unemployment (thousands of persons), and short-term unemploy-

ment level (thousands of persons, number of unemployed persons for less than five weeks) are

constructed by the Bureau of Labor Statistics (BLS) from the Current Population Survey

(CPS). Survey home page http://www.bls.gov/cps/. Seasonally-adjusted monthly em-

ployment (thousands of persons) by major sectors is constructed by the BLS from the Current

Employment Statistics (CES). Survey home page http://www.bls.gov/ces/. Following

Yedid-Levi (2013), I classify natural resources and mining, construction, durable goods man-

ufacturing, and a half of professional and business services as investment sector, and the rest

as consumption sector. State-level employment rates are from the Local Area Unemployment

Statistics (LAUS) survey of the BLS for the period 1976:Q1-2012:Q2. Survey home page

http://www.bls.gov/lau/. CPS micro data for 1976:M1-2013:M2 are downloaded from

the NBER website at http://www.nber.org/data/cps_basic.html. Seasonally-adjusted

quarterly hours, hours per worker, and real output per worker in the nonfarm business sector

is constructed by the BLS from the Labor and Productivity Costs (LPC) release. Release

home page http://www.bls.gov/lpc. BLS definitions: Business sector output (BSO) is the

annual-weighted index constructed by the BLS after excluding from gross domestic product

(GDP) the following outputs: general government, nonprofit institutions, paid employees of

private households, and the rental value of owner-occupied dwellings. Nonfarm business sec-

tor output (NBSO) excludes from the business sector the farm sector. The series are down-

loaded from the FRED website at http://research.stlouisfed.org/fred2/. Monthly

job-finding and job separation rates are calculated based on Shimer (2012). Vacancies are

the monthly composite Help-Wanted Index constructed by Barnichon (2010).
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B Tables and Figures

Table B.1: Asymmetry in Employment Rates by Age
25-34 35-44 45-54 55+

Skew(ẽ) −0.728∗∗∗ −0.690∗∗∗ −0.610∗∗∗ −0.407∗∗∗

(0.003) (0.004) (0.001) (0.009)

Skew(∆e) −1.033∗∗∗ −0.866∗∗∗ −0.775∗∗ −0.434∗

(0.001) (0.001) (0.010) (0.075)

Notes: e is a logged quarterly average of the seasonally-adjusted monthly U.S. em-

ployment rate (fraction of the labor force working in a given month, one minus the

unemployment rate) by age group. ẽ is the HP-filtered counterpart of e with smoothing

parameter 105. Data are from the CPS survey of the BLS for the period 1948:Q1-

2013:Q1. Survey home page http://www.bls.gov/cps/. Data are downloaded from

the FRED website at http://research.stlouisfed.org/fred2/. P-values (one-sided

test) in parenthesis. ***, **, * denote statistical significance respectively at 1%, 5%

and 10% level.

Table B.2: Asymmetry in Employment Rates by Education
HSD HSG SC CGPC

Skew(ẽ) −0.553∗∗ −0.675∗∗ −0.396∗ −0.140
(0.032) (0.022) (0.073) (0.298)

Skew(∆e) −1.582∗ −1.527∗ −1.537∗ −1.088∗

(0.090) (0.076) (0.082) (0.065)

Notes: e is a logged quarterly average of the seasonally-adjusted monthly U.S. employ-

ment rate (fraction of the labor force working in a given month, one minus the unemploy-

ment rate) by education gropus. ẽ is the HP-filtered counterpart of e with smoothing

parameter 105. HSD, HSG, SC and CGPC denote respectively High School Dropouts,

High School Graduates, Some College and College Graduates and Post-College Degree

Holders. Data are from the CPS survey of the BLS for the period 1992:Q11-2013:Q1.

Survey home page http://www.bls.gov/cps/. Data are downloaded from the FRED

website at http://research.stlouisfed.org/fred2/. P-values (one-sided test) in

parenthesis. **, * denote statistical significance respectively at 5% and 10% level.
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Table B.3: Asymmetry in Employment Rates By Gender

Men Women

Skew(ẽ) −0.690∗∗∗ −0.417∗∗

(0.004) (0.012)

Skew(∆e) −0.938∗∗∗ −1.372∗∗∗

(0.002) (0.009)

Notes: e is a logged quarterly average of the seasonally-adjusted monthly U.S. em-

ployment rate (fraction of the labor force working in a given month, one minus the

unemployment rate) by gender. ẽ is the HP-filtered counterpart of e with smoothing

parameter 105. Data are from the CPS survey of the BLS for the period 1948:Q1-

2012:Q2. Survey home page http://www.bls.gov/cps/. Data are downloaded from

the FRED website at http://research.stlouisfed.org/fred2/. P-values (one-sided

test) in parenthesis. ***, ** denote statistical significance respectively at 1% and 5%

level.

Table B.4: Asymmetry in Employment by Sector

Consumption Investment

Skew(ẽ) −0.271∗ −0.266∗

(0.055) (0.075)

Skew(∆ẽ) −0.820∗∗∗ −0.530∗

(0.003) (0.065)

Notes: e is a logged quarterly average of seasonally-adjusted monthly employment

(thousands of persons) as deviations from the HP trend with smoothing parameter 105.

Data are from the CES survey of the BLS for the period 1948:Q1-2012:Q2. Survey

home page http://www.bls.gov/ces/. Following Yedid-Levi (2013), I classify natural

resources and mining, construction, durable goods manufacturing, and a half of profes-

sional and business services as investment sector, and the rest as consumption sector.

Data are downloaded from the FRED website at http://research.stlouisfed.org/

fred2/. P-values (one-sided test) in parenthesis. ***, * denote statistical significance

respectively at 1% and 10% level.
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Figure B.1: Deepness Asymmetry in Quarterly U.S. Output, 1948:Q1-2012:Q2

Notes: All series are in logs as deviations from the HP trend with smoothing parameter 1600.

In Panel A, business sector output (BSO) is the annual-weighted index constructed by the BLS

after excluding from gross domestic product (GDP) the following outputs: general government,

nonprofit institutions, paid employees of private households, and the rental value of owner-occupied

dwellings. In Panel B, nonfarm business sector output (NBSO) excludes from the business sector

the farm sector. In Panel C, real GDP is in billions of chained 2005 dollars. Data are seasonally-

adjusted at the quarterly frequency for the period 1948:Q1-2012:Q2. BSO and NBSO data are from

the LPC release of the BLS. Release home page http://www.bls.gov/lpc. BSO and NBSO data

are downloaded from the FRED website at http://research.stlouisfed.org/fred2/. Real

GDP data are from the NIPA Table 1.1.6. and downloaded from the BEA website at http:

//www.bea.gov/index.htm.
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Figure B.2: Steepness Asymmetry in Quarterly U.S. Output, 1948:Q1-2012:Q2

Notes: All series are in log-first-differences. In Panel A, business sector output (BSO) is the annual-

weighted index constructed by the BLS after excluding from gross domestic product (GDP) the

following outputs: general government, nonprofit institutions, paid employees of private house-

holds, and the rental value of owner-occupied dwellings. In Panel B, nonfarm business sector

output (NBSO) excludes from the business sector the farm sector. In Panel C, real GDP is in

billions of chained 2005 dollars. Data are seasonally-adjusted at the quarterly frequency for the

period 1948:Q1-2012:Q2. BSO and NBSO data are from the LPC release of the BLS. Release home

page http://www.bls.gov/lpc. BSO and NBSO data are downloaded from the FRED website

at http://research.stlouisfed.org/fred2/. Real GDP data are from the NIPA Table 1.1.6.

and downloaded from the BEA website at http://www.bea.gov/index.htm.
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Figure B.3: Asymmetry in Employment Rates by State

Notes: In Panel A, red dot indicates the value of the skewness coefficient for the U.S. state-level em-

ployment rate (fraction of the labor force working in a given month, one minus the unemployment

rate) as deviations from the HP trend with smoothing parameter 105. In Panel B, red dot indi-

cates the value of the skewness coefficient for the first-difference of the U.S. state-level employment

rate. Employment rate is the logged quarterly average of the monthly series. On the x-axis, U.S.

states are in alphabetical order. Data are from the LAUS survey of the BLS for the period 1976:Q1-

2012:Q2. Survey home page http://www.bls.gov/lau/. Data are downloaded from the FRED website

at http://research.stlouisfed.org/fred2/.
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Figure B.4: Quarterly U.S. Employment Rate and Stochastic Equilibrium, 1948:Q1-2012:Q2

Notes: Solid line shows a quarterly average of the U.S. employment rate (fraction of the labor force

working in a given month, one minus the unemployment rate) for the period 1948:Q1-2012:Q2. The

seasonally-adjusted unemployment rate is from the CPS survey of the BLS for the period 1948:Q1-

2012:Q2. Survey home page http://www.bls.gov/cps/. Data are downloaded from the FRED website

at http://research.stlouisfed.org/fred2/. Dashed line shows the counterfactual employment rate

series under stochastic equilibrium. See Section 2.2.2 for details.

68

http://www.bls.gov/cps/
http://research.stlouisfed.org/fred2/


Table B.5: Calibration of the Standard DMP Model (Monthly Frequency)

Interpretation Value Source/Target

β Discount factor 0.9959 5% annual interest rate

δ Separation rate 0.036 JOLTS, 2001:M1-2011:M9

k Vacancy cost 0.1669 θ = 1 when z = 1

α Matching function: m(v, u) = µvαu1−α 0.4 Brügemann (2008)

µ Matching function scale 0.607 Median unemployment rate of 5.6%

η Worker Nash-bargaining weight 0.6 Hosios (1990)’s condition

λ Flow value of unemployment 0.7221 0.73% of mean wage rate

ρz Autocorrelation of exogenous state 0.9642 LPC, 1948:Q1-2011:Q3

σε Standard deviation of shocks 0.0055 LPC, 1948:Q1-2011:Q3

Notes: The separation rate, δ, is the monthly average of seasonally-adjusted total separa-

tions to employment in the nonfarm business sector. Data are from the JOLTS survey of

the BLS for the period 2001:M1-2011:M9. Survey home page http://www.bls.gov/jlt/.

To calibrate the stochatic process for labor productivity, I estimate an AR(1) process

for the HP-filtered seasonally-adjusted quarterly real output per worker in the nonfarm

business sector constructed by the BLS from the LPC release, for 1948:Q1-2011:Q3:

ln(zt+1) = ρz ln(zt) + σεεt+1 with εt
iid∼ N (0, 1). The HP-filter smoothing parameter is

105. With quarterly data, we obtain an autocorrelation of ρ̂z = 0.8963 and a residual

standard deviation of σ̂ε = 0.0091, which yields ρ̂z = 0.89631/3 = 0.9642 and σ̂ε = 0.0055

at monthly frequency. Following Tauchen (1986), I approximate the continuous-valued

AR(1) process for ln(zt) through a S-state Markov chain, having a discrete state space

{z1, . . . , zS} and transition probabilities πs,s′ = Pr {zt+1 = zs′ |zt = zs}. I set the number

of grid points for the state space to S = 9. Release home page http://www.bls.gov/lpc.

Nonfarm business sector output (NBSO) excludes from the business sector the farm sec-

tor. Business sector output (BSO) is the annual-weighted index constructed by the BLS

after excluding from gross domestic product (GDP) the following outputs: general gov-

ernment, nonprofit institutions, paid employees of private households, and the rental

value of owner-occupied dwellings. Data are downloaded from the FRED website at

http://research.stlouisfed.org/fred2/.
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Table B.6: Volatility and Comovement in U.S. Data and DMP Model

Data DMP Model DMP Model
λ = 0.73 · ω̄ λ = 0.95 · ω̄

A. Volatility

sd(u)/sd(p) 9.851 1.303 7.864

sd(φ)/sd(p) 7.213 1.401 8.599

sd(v)/sd(p) 8.131 2.284 14.167

B. Comovement

corr(u, v) -0.858 -0.900 -0.880

corr(u, p) -0.412 -0.958 -0.934

corr(φ, p) 0.383 0.999 0.974

corr(v, p) 0.433 0.986 0.954

Notes: The seasonally-adjusted unemployment rate, u, is from the CPS survey of the BLS.

Survey home page http://www.bls.gov/cps/. Labor productivity, p, is seasonally-adjusted

quarterly real output per worker in the nonfarm business sector constructed by the BLS from

the LPC release. Release home page http://www.bls.gov/lpc. Nonfarm business sector

output (NBSO) excludes from the business sector the farm sector. Business sector output

(BSO) is the annual-weighted index constructed by the BLS after excluding from gross

domestic product (GDP) the following outputs: general government, nonprofit institutions,

paid employees of private households, and the rental value of owner-occupied dwellings.

The series are downloaded from the FRED website at http://research.stlouisfed.org/

fred2/. Job-finding rates, φ, are calculated based on Shimer (2012). Vacancies, v, are the

composite Help-Wanted Index constructed by Barnichon (2010). The variables u, φ, and v

are quarterly averages of monthly series. All series cover the period 1948:Q1-2011:Q3. DMP

model refers to the standard DMP model with Nash-Bargaining and a constant exogenous

rate of job destruction. λ and ω̄ denote respectively the flow value of unemployment and

the mean wage rate. Model simulated data are quarterly averages of 765 observations at

the monthly frequency. The statistics reported are averages across 500 replications. All

variables are reported in logs as deviations from the HP trend with smoothing parameter

105.
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Table B.7: Asymmetry in U.S. Data and DMP Model

Data DMP Model DMP Model
λ = 0.73 · ω̄ λ = 0.95 · ω̄

A. Skewness in levels

Skew(e) −0.591∗∗∗ -0.105 -0.898

Skew(y) −0.345∗∗ -0.000 -0.267

Skew(φ) −0.249∗∗ -0.068 -0.649

Skew(v) −0.469∗∗∗ -0.081 -0.760

B. Skewness in growth rates

Skew(∆e) −0.958∗∗∗ 0.018 0.158

Skew(∆y) −0.170 0.002 0.089

Skew(∆φ) 0.235∗∗∗ 0.000 0.007

Skew(∆v) −0.613∗∗∗ 0.012 0.110

Notes: Employment rate, e, is the fraction of the labor force working in a given month, one

minus the unemployment rate. The seasonally-adjusted unemployment rate is from the CPS

survey of the BLS. Survey home page http://www.bls.gov/cps/. Output, y, is industrial

production (IP). The series are downloaded from the FRED website at http://research.

stlouisfed.org/fred2/. Job-finding rates, φ, are calculated based on Shimer (2012).

Vacancies, v, are the composite Help-Wanted Index constructed by Barnichon (2010). The

variables e, y, φ, and v are quarterly averages of monthly series. All series cover the period

for period 1948:Q1-2011:Q3. DMP model refers to the standard DMP model with Nash-

Bargaining and a constant exogenous rate of job destruction. λ and ω̄ denote respectively

the flow value of unemployment and the mean wage rate. Model simulated data are quarterly

averages of 765 observations at the monthly frequency. The statistics reported are averages

across 500 replications. In Panel A, all variables are reported in logs as deviations from the

HP trend with smoothing parameter 105. In Panel B, all variables are reported as 3-months

log-differences. ***, ** denote statistical significance respectively at 1% and 5% level.
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Table B.8: Volatility Shares by Age/Education Group

16-24 25-34 35-44 45-54 55-64 65+

A. Cov. not incl.

HSD 17.90 2.56 1.03 1.31 0.92 0.04

HSG/SC 26.57 22.27 7.44 10.93 4.18 0.25

CGPC 0.16 0.85 0.94 1.49 1.08 0.08

B. Cov. incl.

HSD 9.43 5.18 3.79 4.38 2.96 0.42

HSG/SC 19.87 19.15 7.70 8.66 5.98 1.03

CGPC 1.55 3.80 2.04 1.65 1.92 0.50

Notes: Data are from the CPS micro files for 1976:M1-2013:M2 and downloaded from

the NBER website at http://www.nber.org/data/cps_basic.html. HSD, HSG,

SC and CGPC denote respectively High School Dropouts, High School Graduates,

Some College and College Graduates and Post-College Degree Holders. Seasonal

adjustment is implemented with a 13-term symmetric moving average. The statistics

reported are percentage shares of total U.S. unemployment rate variance attributed

to each age-education group. “Cov. not incl.” means covariance terms are ignored

such that total variation is the sum of the variables’ variances. “Cov. incl.” means

total variation includes covariance terms such that total variation is the sum of the

variables’ variances plus two times their covariance.
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Table B.9: Unemployment versus Participation Margin by Age/Education Group

16-24 25-34 35-44 45-54 55-64 65+

A. Unemployment margin

HSD 93.36 97.41 98.23 97.72 98.92 93.75

HSG/SC 98.76 99.71 99.70 99.66 99.67 97.51

CGPC 95.27 99.56 99.63 99.26 98.18 97.21

B. Participation margin

HSD 6.64 2.59 1.77 2.28 1.08 6.25

HSG/SC 1.24 0.29 0.30 0.34 0.33 2.49

CGPC 4.73 0.44 0.37 0.74 1.82 2.79

Notes: Data are from the CPS micro files for 1976:M1-2013:M2 and downloaded from

the NBER website at http://www.nber.org/data/cps_basic.html. HSD, HSG,

SC and CGPC denote respectively High School Dropouts, High School Graduates,

Some College and College Graduates and Post-College Degree Holders. Seasonal ad-

justment is implemented with a 13-term symmetric moving average. Data are logged

and HP-filtered with smoothing parameter 129,000 at the monthly frequency. See

Ravn and Uhlig (2002) for a thorough discussion on the choice of the HP smoothing

parameter and the frequency of observations. The statistics reported are percentage

shares of total unemployment shares variance attributed to the unemployment and

participation margin by each education group. Covariance terms are not included

such that total variation is the sum of the variables’ variances.
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Figure B.5: Conditional Heteroskedasticity in Quarterly U.S. Unemployment Rate, 1959:Q1-
2012:Q2
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C Proofs

Proof of Proposition 1. Standard reasoning provides the reservation productivity,

zx = λ+
ηk

1− η
· θ − ξβ(1− δ) ·

∫ xM

x

S(y)dG(y). (C.1)

Rearrange equation (C.1) to get,

θ =
1− η
ηk
·
[
zx− λ+ ξβ(1− δ) ·

∫ xM

x

S(y)dG(y)

]
. (C.2)

In equation (C.2), as long as the term in square brackets is larger than zero, limk↘0 θ(k) =

+∞ and limk↘0 e(k) = 1. On the other hand, as the term in square brackets falls below

zero, limk↘0 θ(k) = 0 and limk↘0 e(k) = 0. �

LEMMA 1 (Convexity of market tightness). At any stochastic equilibrium consistent

with a constant exogenous rate of job destruction, the tightness ratio, θ, is a strictly increasing

and convex function of the exogenous state, z, i.e., θ = ϕ (z) with ϕ′ (·) > 0 and ϕ′′ (·) > 0.

Proof of Lemma 1. At any stochastic equilibrium consistent with a constant exogenous

rate of job destruction, the total match surplus Ss is,

Ss =
zs − λ

1− β
[
1− δ − ηφ(θs)

]
for s = 1, . . . ,S. After substituting Ss into the free-entry condition, k = βρ (θs) (1− η)Ss,

using φ (θ) = µθα, and rearranging terms,

k
[
1− β (1− δ)

]︸ ︷︷ ︸
A>0

= βµ (1− η)︸ ︷︷ ︸
B>0

(z − λ) θα−1 − kβµη︸ ︷︷ ︸
C>0

θα,

where we omit the state subscript, s, for notational convenience. I can further rearrange the

equation above to get θ as an implicit function F (θ, z) of z,

F (θ, z) ≡ Aθ1−α + Cθ − Bz = −Bλ.

By applying the implicit function theorem,

dθ

dz
= −∂F (θ, z) /∂z

∂F (θ, z) /∂θ
=

B
A (1− α) θ−α + C

> 0,
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implying that θ is strictly increasing in z. To further characterize the shape of the relationship

between the market-tightness ratio and the exogenous state, I compute d2θ/dzdθ,

d2θ

dzdθ
=

α (1− α)Aθ−(1+α)[
A (1− α) θ−α + C

]2 > 0 (C.3)

such that θ is strictly convex in z, and this proves the lemma. �

Proof of Proposition 2. Part (i). From Lemma 1, the tightness ratio is a strictly

increasing and convex function of the exogenous state z, i.e., θ = ϕ (z) with ϕ′ (·) > 0 and

ϕ′′ (·) > 0. By Jensen’s inequality,

E [θ] ≡ E [ϕ (z)] > ϕ (E [z]) .

By Assumption 3, E [z] = zsm such that ϕ (E [z]) = ϕ (zsm) and E [ϕ (z)] > ϕ (zsm).

Hence,

∆θMMD ≡ E [θ]− θsm > 0

and this proves part (i) of the proposition. Part (ii). At any stochastic equilibrium

consistent with a constant exogenous rate of job destruction, the employment rate, job-

finding rate, vacancies, and log output are strictly increasing and concave functions of the

tightness ratio θ. Consider a generic increasing and concave function ξ (θ), with ξ′ (·) > 0

and ξ′′ (·) < 0. By Jensen’s inequality, we know that E [ξ (θ)] < ξ (E [θ]), and by adding and

subtracting ξ (θsm) on the right hand side of the inequality, we get

∆ξMMD ≡ E [ξ (θ)]− ξ (θsm) < ξ (E [θ])− ξ (θsm) < ξ′(θsm)∆θMMD > 0.

The second term on the right hand side, ξ (E [θ])− ξ (θsm), is larger than zero given that

∆θMMD ≡ E [θ] − θsm > 0 and ξ′ (·) > 0. The second inequality on the right hand side is a

fundamental property of concave functions. Finally, the third term on the right hand side,

ξ′(θsm)∆θMMD, is larger than zero given ξ′(·) > 0 and ∆θMMD > 0 from part (i), and this

completes the proof of the proposition. �

Proof of Corollary 1. The symmetry and uni-modality of the stationary distribution of

the exogenous state, z, (Assumption 3), and the linear support of the distribution of the

tightness ratio θ,
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θs = θsm +
(s− sm)

(S − sm)
·∆,

imply that ∆θMMD ≡ E [θ] − θsm = 0. From Proposition 2, it follows that for any incrasing

and concave function of the tightness ratio ξ(θ) (i.e., employment rate, job-finding rate,

vacancies, log output), ∆ξMMD ≡ E [ξ (θ)]− ξ (θsm) < 0, and this proves the corollary. �

Proof of Proposition 3. Part (i). The state space of the tightness ratio θ is the finite set

Θ = {θ1, . . . , θS}. In order to isolate the effects of an increase in volatility, let’s assume that

θs ∈ Θ takes on values, θ1 < . . . < θsm < . . . < θS , that are symmetrically spaced around

the median θsm , satisfying the condition:

θs = θsm +
(s− sm)

(S − sm)
·∆

for s ∈ {1, . . . ,S} and ∆ > 0. The parameter ∆ controls the range of variation of the

support of the distribution of θ. Notice that by construction, changes in ∆ have no effect

on the median value θsm . Given the symmetry assumption πs∞ = πS−s+1
∞ for s = 1, . . . , sm

(Assumption 3), also the expected value of θ under the stationary distribution π∞ is invariant

to changes in ∆ and equal to the median value θsm , i.e., E [θ] =
∑S

s=1 π
s
∞θs = θsm for

all ∆ ≥ 0. Hence, the parameter ∆ acts like a mean-median-preserving spread in the

distribution of θ.

In any equilibrium of the model consistent with a constant exogenous rate of job destruc-

tion δ, the unemployment rate follows a S-state Markov chain with stochastic equilibrium

us =
δ

δ + φ(θs)
(C.4)

for s ∈ {1, . . . ,S}. The function f(θ) = δ
δ+φ(θ)

is differentiable, decreasing, f ′(·) < 0, and

convex, f ′′(·) > 0, with f(0) = 1 and limθ→∞ f(θ) = 0.

Let ∆uMMD ≡ E [u] − usm denote the difference between the expected and the median

value of unemployment, and use u = f(θ) to write ∆uMMD as:

∆uMMD =
∑S

s=1 π
s
∞f(θs)− f(θsm) = (πsm∞ − 1) f(θsm) + π1

∞f (θsm −∆) + . . .

. . .+ πsm−1
∞ f

(
θsm − ∆

S−sm

)
+ . . .+ πsm+1

∞ f
(
θsm + ∆

S−sm

)
+ . . .+ πS∞f (θsm + ∆) .
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By using the symmetry assumption πs∞ = πS−s+1
∞ for s = 1, . . . , sm (Assumption 3), we

can rewrite the expression above as,

∆uMMD = (πsm∞ − 1) f(θsm) + π1
∞ [f (θsm −∆) + f (θsm + ∆)] + . . .

. . .+ πsm−1
∞

[
f

(
θsm −

∆

S − sm

)
+ f

(
θsm +

∆

S − sm

)]
.

We are interested in how ∆uMMD changes as ∆ increases:

∂∆uMMD

∂∆
= π1

∞ [f ′(θsm + ∆)− f ′(θsm −∆)] + . . .

. . .+
πsm−1
∞
S − sm

[
f ′
(
θsm +

∆

S − sm

)
− f ′

(
θsm −

∆

S − sm

)]
. (C.5)

Using f ′(·) < 0, we rewrite (C.5) is a slightly different way,

∂∆uMMD

∂∆
= π1

∞ [|f ′ (θsm −∆)| − |f ′ (θsm + ∆)|] + . . .

. . .+
πsm−1
∞
S − sm

[∣∣∣f ′(θsm − ∆

S − sm

)∣∣∣− ∣∣∣f ′(θsm +
∆

S − sm

)∣∣∣] . (C.6)

Since f ′(·) < 0 and f ′′(·) > 0, |f ′ (θsm − ε)| > |f ′ (θsm + ε)| for all ε > 0, and all terms in

square brackets on the right hand side of (C.6) are strictly positive,
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|f ′ (θsm −∆)| > |f ′ (θsm + ∆)|

∣∣∣f ′(θsm − (sm − 2) ∆

S − sm

)∣∣∣ >
∣∣∣f ′(θsm +

(sm − 2) ∆

S − sm

)∣∣∣
...

...
...

...
...

...

∣∣∣f ′(θsm − ∆

S − sm

)∣∣∣ >
∣∣∣f ′(θsm +

∆

S − sm

)∣∣∣,
such that ∂∆uMMD/∂∆ > 0 for all ∆ > 0. Given es = 1 − us for s ∈ {1, . . . ,S}, ∆eMMD =

−∆uMMD. Hence, ∂∆eMMD/∂∆ = −∂∆uMMD/∂∆ < 0, and this proves part (i) of the

proposition. Part (ii). In any equilibrium of the model consistent with a constant exogenous

rate of job destruction, the job-finding rate φ(θ) follows a S-state Markov chain with state

space Φ = {φ(θ1), . . . , φ(θS)}. Given Assumption 1, the function φ(θ) is differentiable,

increasing, φ′(·) > 0, and concave, φ′′(·) < 0.

Let ∆φMMD ≡ E [φ(θ)]− φ(θsm) denote the difference between the expected and the me-

dian value of the job-finding rate. Following the same steps as before for the unemployment

rate, we rewrite ∆φMMD as:

∆φMMD = (πsm∞ − 1)φ(θsm) + π1
∞ [φ (θsm −∆) + φ (θsm + ∆)] + . . .

. . .+ πsm−1
∞

[
φ

(
θsm −

∆

S − sm

)
+ φ

(
θsm +

∆

S − sm

)]
.

We are interested in how ∆φMMD changes as ∆ increases:

∂∆φMMD

∂∆
= π1

∞ [φ′(θsm + ∆)− φ′(θsm −∆)] + . . .

. . .+
πsm−1
∞
S − sm

[
φ′
(
θsm +

∆

S − sm

)
− φ′

(
θsm −

∆

S − sm

)]
. (C.7)
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Since φ′(·) > 0 and φ′′(·) < 0, φ′ (θsm + ε) < φ′ (θsm − ε) for all ε > 0, such that

all terms in square brackets on the right hand side of (C.7) are strictly negative. Hence,

∂∆φMMD/∂∆ < 0 for all ∆ > 0, and this proves part (ii) of the proposition. Part (iii).

In any equilibrium of the model consistent with a constant exogenous rate of job destruc-

tion, vacancies follow a S-state Markov chain with stochastic equilibrium vs = θsus, for

s ∈ {1, . . . ,S}. Let’s write vacancies as vs = θsf(θs), where the function f(θ) is differen-

tiable, decreasing, f ′(·) < 0, and convex, f ′′(·) > 0.

Let ∆vMMD ≡ E [v] − vsm denote the difference between the expected and the median

value of vacancies. By using the symmetry assumption πs∞ = πS−s+1
∞ for s = 1, . . . , sm

(Assumption 3), we can write ∆vMMD as,

∆vMMD = (πsm∞ − 1) θsmf(θsm) +

+π1
∞ [(θsm −∆) f (θsm −∆) + (θsm + ∆) f (θsm + ∆)] + . . .

. . .+ πsm−1
∞

[(
θsm − ∆

S−sm

)
f
(
θsm − ∆

S−sm

)
+
(
θsm + ∆

S−sm

)
f
(
θsm + ∆

S−sm

)]
.

We are interested in how ∆vMMD changes as ∆ increases:

∂∆vMMD

∂∆
= π1

∞[f(θsm + ∆)− f(θsm −∆) +

+(θsm + ∆)f ′(θsm + ∆)− (θsm −∆)f ′(θsm −∆)] + . . .

. . .+ πsm−1
∞
S−sm

[
f
(
θsm + ∆

S−sm

)
− f

(
θsm − ∆

S−sm

)
+

+
(
θsm + ∆

S−sm

)
f ′
(
θsm + ∆

S−sm

)
−
(
θsm − ∆

S−sm

)
f ′
(
θsm − ∆

S−sm

)]
. (C.8)

Notice that each term in square brackets on the right hand side of (C.8) takes the form,

E ≡ f(θsm + ε)− f(θsm − ε) + (θsm + ε)f ′(θsm + ε)− (θsm − ε)f ′(θsm − ε).
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By substituing the expressions for f(·) and f ′(·) in E , one can show that E < 0 for all

ε > 0, such that all terms on the right hand side of (C.8) are strictly negative. Hence,

∂∆vMMD/∂∆ < 0 for all ∆ > 0, and this proves part (iii) of the proposition. Part (iv). In

any equilibrium of the model consistent with a constant exogenous rate of job destruction,

output follows a S-state Markov chain with state space Y = {y1, . . . , yS}. At the stochastic

equilibrium, output is ys = zses, where the employment rate es is a strictly increasing and

concave function of the tightness ratio, ξ(θ) with ξ′(·) > 0 and ξ′′(·) < 0. From Lemma

1, we know that in equilibrium the tightness ratio is strictly increasing and convex in the

aggregate shock z, i.e., θ = ϕ(z) with ϕ′(·) > 0 and ϕ′′(·) > 0. By inverting the function

ϕ(·), it follows that z = φ(θ)−1 ≡ ψ(θ), with ψ′(·) > 0 and ψ′′(·) < 0. Let’s rewrite output

as ys = ψ(θ)ξ(θ), and ln ys = lnψ(θ) + ln ξ(θ). It is easily established that log output is

strictly increasing and concave in the tightness ratio θ, as such following the same steps of

parts (ii) and (iii) one can show that ∂∆yMMD/∂∆ < 0 for all ∆ > 0, and this completes

the proof of the proposition. �

Proof of Proposition 4. Part (i). Consider a mean-median-preserving spread ∆ in the

distribution of the generic endogenous variable x̃ with stochastic equilibrium,

x̃s = x̃sm +
(s− sm)

(S − sm)
·∆ (C.9)

for s ∈ {1, . . . ,S} and ∆ > 0. An increase in the parameter ∆ raises the variance of x̃, leaving

unaltered both the mean and the median of the stochastic process. Let ∆x̃s,s′ ≡ (x̃s′ − x̃s)
denote the change in the variable x̃ from the current state s to the next period state s′.

From equation (C.9):

∆x̃s,s′ =
(s′ − s)

(S − sm)
·∆ (C.10)

such that ∆x̃i,j = −∆x̃j,i > 0, for all j > i, and ∆x̃s,sm = ∆x̃S−s+1,sm , for all s ∈
{1, . . . , sm − 1}. Since the model is stationary, µ∆x̃ ≡ E[∆x̃] = 0, and the skewness co-

efficient of ∆x̃, Skew[∆x̃] = E
[
(∆x̃ − µ∆x̃)

3
]
/σ3

∆x̃, reduces to Skew[∆x̃] = E
[
∆x̃3

]
/σ3

∆x̃.

Because the sign of Skew[∆x̃] is determind by the sign of the numerator, I focus without

loss of generality on NSkew[∆x̃] ≡ E
[
∆x̃3

]
:
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NSkew[∆x̃] =
S∑
s=1

πs∞

S∑
s′=1

πs,s′∆x̃
3
s,s′ =

S∑
s=1

πs∞

(
πs,sm∆x̃3

s,sm + πsm,s∆x̃
3
sm,s

)
+

+
sm−1∑
s=1

πs∞

(
πs,S−s+1∆x̃3

s,S−s+1 + πS−s+1,s∆x̃
3
S−s+1,s

)
. (C.11)

Using Assumption 3 on the symmetry of transition probabilities πs,s′ , and that by defi-

nition ∆x̃s,s = 0, for all s ∈ {1, . . . ,S}, I rewrite equation (C.11) as,

NSkew[∆x̃] =
sm−1∑
s=1

πs∞πs,sm

(
∆x̃3

s,sm + ∆x̃3
S−s+1,sm

)
+

+
sm−1∑
s=1

πs∞πsm,s

(
∆x̃3

sm,s + ∆x̃3
sm,S−s+1,

)
+ (C.12)

+
sm−1∑
s=1

πs∞πs,S−s+1

(
∆x̃3

s,S−s+1 + ∆x̃3
S−s+1,s

)
.

Using equation (C.10) for the support of ∆x̃, I rewrite equation (C.12) as,

NSkew[∆x̃] =
∆3

(S − sm)3

sm−1∑
s=1

πs∞πs,sm

[(
sm − s

)3

+

(
sm − S + s− 1

)3
]

+

+
∆3

(S − sm)3

sm−1∑
s=1

πs∞πsm,s

[(
s− sm

)3

+

(
S − s+ 1− sm

)3
]

+ (C.13)

+
∆3

(S − sm)3

sm−1∑
s=1

πs∞πs,S−s+1

[(
S − s+ 1− s

)3

+

(
s− S + s− 1

)3
]
.

After substituting the expression for the median state, sm = (S + 1)/2, into equation

(C.13), it is straightforward to check that all terms in square brackets on the right hand

side equal zero, such that NSkew[∆x̃] = 0, for all ∆ > 0. Hence, regardless of the mean-

median-preserving spread ∆, the unconditional distribution of ∆x̃s,s′ is symmetric, and this

proves part (i) of the proposition. Part (ii). Assume the support of the distribution of x̃

is left-skewed, such that |∆x̃s,sm| > |∆x̃S−s+1,sm|, for s ∈ {1, . . . , sm − 1}. Let’s write again
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equation (C.12),

NSkew[∆x̃] =
sm−1∑
s=1

πs∞πs,sm

(
∆x̃3

s,sm + ∆x̃3
S−s+1,sm

)
+

+
sm−1∑
s=1

πs∞πsm,s

(
∆x̃3

sm,s + ∆x̃3
sm,S−s+1,

)
+ (C.14)

+
sm−1∑
s=1

πs∞πs,S−s+1

(
∆x̃3

s,S−s+1 + ∆x̃3
S−s+1,s

)
.

Since ∆x̃i,j = −∆x̃j,i, for all j > i, the third term in square brackets on the right hand

side of equation (C.14) equals zero. We can further rearrange equation (C.14),

NSkew[∆x̃] =
sm−1∑
s=1

πs∞

(
πs,sm − πsm,s

)(∣∣∣∣∆x̃3
s,sm

∣∣∣∣− ∣∣∣∣∆x̃3
S−s+1,sm

∣∣∣∣
)
> 0. (C.15)

In equation (C.15), the inequality NSkew[∆x̃] > 0, holds because πs,sm > πsm,s, for

s ∈ {1, . . . ,S}, which is the condition that the stationary distribution of the Markov chain

is uni-modal (Assumption 3), and |∆x̃3
s,sm| > |∆x̃

3
S−s+1,sm

|, for s ∈ {1, . . . , sm − 1}, and this

proves part (ii) of the proposition. Part (iii). Assume the support of the distribution of

x̃ is right-skewed, such that |∆x̃s,sm | < |∆x̃S−s+1,sm |, for s ∈ {1, . . . , sm − 1}. Following the

same steps of part (ii),

NSkew[∆x̃] =
sm−1∑
s=1

πs∞

(
πs,sm − πsm,s

)(∣∣∣∣∆x̃3
s,sm

∣∣∣∣− ∣∣∣∣∆x̃3
S−s+1,sm

∣∣∣∣
)
< 0, (C.16)

and this completes the proof of the proposition. �
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D Integrated Labor Market

This section details the building blocks of the integrated labor market version of the model

presented in Section 3. I consider the labor market in steady state, i.e., zt = zs for s ∈
{1, . . . ,S} and all t. As in the segmented labor market version of the model, there are M

types of workers index by x ∈ {x1, . . . , xM}. Total match surplus from being matched with

a worker of type x if the economy is in state s ∈ {1, . . . ,S} is

Ss(x) = max {Scs(x), 0} (D.1)

with

Scs(x) = zsx− λ+ β
[
1− δs(x)− ηφ

(
θs(πs)

)]
Ss(x). (D.2)

Scs(x) is the value of continuing the match. The free-entry condition for employers is

k = ρ
(
θs(πs)

)
β(1− η)

∑
x

πs(x)Ss(x), (D.3)

where the probability to come in contact with a worker of type x is πs(x) = us(x)/Us

where Us =
∑

x us(x) is aggregate unemployment.
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