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Abstract

We propose a model of posted prices in networks. The model maps traditional con-

cepts of market power, competition and double marginalization into networks, allowing

for the study of pricing in complex networks of intermediation such as supply chains,

transportation and communication networks and decentralized trading.

We provide a complete characterization of equilibrium prices for arbitrary networks.

Our experiments complement our theoretical work and point to node criticality as an

organizing principle for understanding pricing, efficiency and the division of surplus in

networked markets.
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1 Introduction

Supply, service and trading chains are a defining feature of the modern economy. They are

prominent in agriculture, in transport and communication networks, in international trade,

in markets for bribes and in finance. Goods and services pass through individuals or firms

located on these chains. The routing of economic activity, the earnings of individuals and the

efficiency of the system depend on the prices set by these different intermediaries. The aim

of this paper is to understand how the network structure of chains shapes market power and

thereby determines prices and efficiency.

To fix ideas, consider pricing in a transport network. A tourist wants to travel from

London to see the Louvre in Paris, using the Eurostar. The first leg of the journey is from

Home to St. Pancras Station. There are a number of different service such as taxi companies,

bus services and the Underground. Once at St. Pancras Station, the only service provider

to Paris Nord Station is Eurostar. Upon arriving at Paris Nord, there are a number of

alternatives (bus, Metro and taxi) to get to the Louvre. The network consists of alternative

paths each constituted of local transport alternatives in London and in Paris and a common

node (the Eurostar Company). Each of the service providers sets a price. The traveler picks

the cheapest ‘path’. Section 2 develops a number of other applications where pricing in

networks is important.

These examples motivate the following model. There is a source node, S, and a destination

node, D. A path between the two is a sequence of interconnected nodes, each occupied by

an intermediary. The source node and the destination node and all the paths between them

together define a network. The passage of goods from source to destination generates value.

Intermediaries simultaneously post a price to get a share of this value; the prices determine

a total cost for every path between S and D. We assume that the good moves along a least

cost path and an intermediary earns payoffs only if she is located on it. Posted prices are

the norm in transport and communication networks, and they are a good approximation in

environments where trade occurs at a high frequency, e.g., over-the-counter financial markets.

We study Nash equilibrium of the pricing game.

A node is said to be critical if it lies on all paths between S and D. Our main finding

is that criticality of nodes defines market power, and consequently pricing, earnings and the

efficiency of economic activity in networked markets. We now elaborate on the scope of this

finding, and locate it in the context of the literature.

In the benchmark model, intermediaries know the value. We prove existence and provide
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a complete characterization of Nash equilibrium (Theorem 1). For a given network, there

typically exist multiple equilibria: a. they range from efficient to inefficient (where trade

breaks down completely), and b. in every efficient equilibrium all the surplus goes either to S
and D or all of it goes to the intermediaries. The presence of critical traders is sufficient but

not necessary for intermediation rents; non-critical intermediaries may extract rents because

intermediaries in competing paths mis-coordinate and price themselves out of contention.

In the presence of critical traders, there exist equilibria in which the entire surplus accrues

to these traders, but there also exist equilibria in which it is captured by the non-critical

intermediaries. Standard equilibrium refinements do not help us in this situation: either they

are too demanding and we face non-existence problems, or they are insufficiently restrictive.

To gain a deeper understanding of the relation between networks and market power, we

take the model to the laboratory. Our experiments highlight the ability of human subjects to

coordinate on efficient outcomes. They show that critical traders set high prices and extract

most of the surplus. Thus our theoretical work and experiments taken together establish

that the presence of critical intermediaries is both necessary and sufficient for large surplus

extraction by intermediaries and that most of the surplus does accrue to critical traders.

In markets with multiple vertically related firms, double marginalization is a major concern

for policy and regulation; see e.g., Lerner (1934), Tirole (1993) and Spulber (1999).1 In our

benchmark model, the number of intermediaries per se has no impact on the efficiency of trade.

This is because the value is perfectly known to all intermediaries. We extend our benchmark

model to a setting where value is uncertain. We prove existence and provide a complete

characterization of equilibrium in this model (Theorem 2). As in the benchmark model, there

typically exist multiple equilibria. However, the new model also exhibits important differences.

Intermediaries who set positive prices and lie on a least cost path all set the same price; this

price and the efficiency of trade are falling in the number of intermediaries. The multiplicity

of equilibrium motivates an experimental investigation. Our experiments highlight the impact

of length of trading chains, especially the number of critical intermediaries, on prices and the

efficiency of trade.

Our finding on the relation between criticality and length of chains on the one hand and

market power and revenue sharing on the other hand is consistent with empirical work. In the

Net-Neutrality debate, policymakers seek a measure for quantifying network market power.

1Double marginalization figured prominently in the Microsoft anti-trust case in the United States: it was
used as an argument against splitting Microsoft into two firms one specializing in operating systems and the
other specializing in software development (Economides (2001).
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A network provider’s revenue, points of presence, and number of advertised IP addresses

are standard metrics, but in a market with over-lapping chains, there is a need to develop

more sophisticated metrics based on the topology of the Internet. D’Ignazio and Giovannetti

(2006, 2009) study market power in up-stream Internet services. They show that betweenness

centrality of a service provider is highly correlated with the traditional Lerner index. We relate

betweenness centrality to criticality in section 2 below. In an empirical study of the network

of dealers in over the counter markets (OTCs) for municipal bonds, Li and Schürhoff (2012)

show that ‘centrally located dealers’ charge significantly larger spreads than peripheral dealers

and that the total cost of dealership is monotonically increasing in the number of dealers

intermediating the bond. From a policy perspective, our results suggest that facilitating entry

in network segments with critical traders improves efficiency; similarly, entry/mergers that

shorten distance between source and destination improve efficiency.

Our model offers a generalization of the classical models of price competition (a la Bertrand)

and the Nash demand game (Nash, 1950), to a setting with multiple price setting agents where

both coordination, competition and double marginalization are important. In the theoreti-

cal literature, there has been considerable recent interest in the study of intermediation in

networks. There are broadly three protocols for ‘price’ formation: auctions (Kotowski and

Leister (2012)), bargaining (Condorelli and Galeotti (2011), Manea (2013)) and posted prices

(Acemoglu and Ozdagler (2007a, 2007b), Blume et al. (2007) and Gale and Kariv (2009)). As

we study a model with posted prices, our paper falls in the third strand of work.2 There are

three main difference between our paper and these papers: one, the generality of our network

framework (that encompasses all networks and allows for incomplete information), two, our

complete characterization of equilibrium and three, the methodological combination of theory

and experiments. To the best of our knowledge, the result on role of node criticality in shaping

pricing and division of surplus is novel.3

In production supply chains and in transportation and communication networks a firm or a

2For models where traders choose quantities see Babus and Kondor (2013), Malamud and Rostek (2013)
and Nava (2010). Our paper also broadly relates to Ostrovsky (2008) that extends the study of pairwise
stability developed in the matching literature to more general environments of trade as such supply chains.
Our focus on how the structure of supply chains affect market power is very different from the questions
studies in Ostrovsky (2008).

3Acemoglu and Ozdaglar (2007a, 2007b) consider parallel paths between the source and destination pair.
This rules out the existence of ‘critical’ traders. Blume et al. (2007) consider a setting with only a single
layer of intermediation; this rules out coordination problems and the interaction between coordination and
the market power of intermediaries. Finally, Gale and Kariv (2009) study multiple layers of intermediaries
and fully connectivity across adjacent layers; this rules out ‘critical’ traders.
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consumer will choose the cheapest path. In agriculture supply chains and financial brokerage

chains the current owner of an object sells to the highest bidder downstream; he/she will

typically not have any interest in the cost of the entire path. Appendix II relates our model

of simultaneous posted price to the sequential auction model in Kotowski and Leister (2012)

and to the simultaneous Bid-Ask model in Gale and Kariv (2009). There we show how our

equilibrium characterization result with posted prices and cheapest cost routing (Theorem 1)

is informative – and broadly similar – to the outcome generated in these trading protocols.

We contribute to the economic study of networks. The research on networks has been

concerned with the formation, structure and functioning of social and economic networks;

for book length surveys, see Goyal (2007), Jackson (2008), and Vega-Redondo(2007). The

problem of ‘key players’ has traditionally been studied in terms of maximal independent

sets, Bonacich centrality, eigenvector and degree centrality, see e.g., Ballester et al. (2006),

Bramoulle and Kranton (2007), De Marzo et al. (2003), Elliot and Golub (2013), Galeotti et

al. (2010), Golub and Jackson (2010). The contribution of our paper is to show that criticality

of nodes, which is very different from “classical” measures of centrality, offers an appropriate

measure of market power.4

Our paper also contributes to the large body of experimental work on bargaining and

trading in markets. Our finding on efficiency in the benchmark model echoes a recurring

theme in economics, first pointed out in the pioneering work of Smith (1962), and more

recently highlighted in the work of Gale and Kariv (2009). The special case of one critical

intermediary can be interpreted as a dictator game; our results on full extraction of surplus

stand in contrast to the general message from the research on dictator games; see Engel (2011).

The case of two critical intermediaries may be viewed as a symmetric Nash demand game.

Our experiments reveal a high frequency of trade and equal division of surplus; these results

are consistent with existing literature, e.g., Roth and Murnighan (1982), Roth (1995), and

Fischer et al. (2006).5 The treatments involving a combination of critical and non-critical

intermediaries are novel relative to the literature. These treatments provide us a first glimpse

into the interaction between market power and competition in supply chains and related

4This is easily seen in a network with a single chain – say with 4 intermediaries – between the S and D.
Standard measures of centrality assign greater centrality to the two middle nodes, while all nodes are critical.
Our theory and experiments suggest that all the four intermediaries set the same price.

5There is a large sociological literature on exchange. We share with this literature the motivation of how
power may emerge in networks, but we are also interested in questions of efficiency and our formulation in
terms of posted prices and our results are quite different. We refer to Easley and Keinberg (2010) for a survey
of this work.
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environments.

The rest of the paper is organized as follows. In section 2 we describe the model and

discuss how a number of important questions in applications can be studied within our frame-

work. Section 3 analyzes the benchmark model where value is common knowledge, while

Section 4 takes up the model with unknown value. Section 5 discusses potential sources of

anomalous pricing behavior in the experiments. Section 6 concludes. All proofs are presented

in Appendix I. Supplementary material is presented in Appendices II-IV. The paper also uses

Online Appendices for sample instructions of experiments and further data analysis.6

2 The model

There is a source node, S, and a destination node, D. A path q between S and D, is a

sequence of distinct nodes {i1, ..., il} such that gSi1 = gi1i2 = ... = gilD = 1. The set of paths

is denoted by Q. Every node i is called an intermediary ; let N = {1, 2, 3..., n}, n ≥ 1, denote

the set of intermediaries. The nodes N ∪ {S,D} and the paths Q define a network, g.

Every intermediary i simultaneously posts a price pi ≥ 0. Let p = {p1, p2, ..., pn} denote

the price profile. The network g and the price profile p define a cost for every path q between

S and D:

c(q, p) =
∑
i∈q

pi. (1)

Payoffs arise out of active intermediation: an intermediary i obtains pi only if he lies on a

feasible least cost path. A least cost path q′ is one such that c(q′, p) = minq∈Q c(q, p). Define

c(p) = minq∈Q c(q, p). A path q is feasible if c(q, p) ≤ v, where v is the value of economic

‘good’ generated by the path. All paths generate the same value v. If there are multiple least

cost paths, one of them is chosen randomly to be the active path. We assume that v is known

and it is normalized to be equal to v = 1. Section 4 studies the case where intermediaries

have incomplete information about v.

Given g and p, let Q∗ = {q ∈ Q : c(q, p) = c(p), c(p) ≤ 1} be the set of feasible least cost

paths. Given network g and price profile p, the payoff to intermediary i ∈ N is:

Πi(p) =

{
0 if i 6∈ q, ∀ q ∈ Q∗
η∗i
|Q∗|pi if i ∈ q, q ∈ Q∗,

(2)

6http://www.homepages.ucl.ac.uk/˜uctpsc0/Research/CGG I OnlineAppendices.pdf
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where η∗i is the number of paths in Q∗ that contain intermediary i.

We study (pure strategy) Nash equilibrium of the posted price game. A price profile p∗ is

a Nash equilibrium if for all i ∈ N , Πi(p
∗) ≥ Πi(pi, p

∗
−i) for all pi ≥ 0. An equilibrium p∗ is

efficient if c(p∗) ≤ 1. Otherwise, the equilibrium is inefficient.

In principle, nodes that lie on many paths have more opportunities to act as an inter-

mediary. The betweenness centrality of a node i ∈ N is the fraction of paths on which

intermediary i lies.7 Let ηi = |{q ∈ Q|i ∈ q}| and define betweenness centrality of interme-

diary i as ci = ηi/|Q|, where ci ∈ [0, 1]. Intermediary i is said to be critical if ci = 1. Let

C = {i ∈ N : ci = 1} be the set of critical intermediaries. Observe that criticality is a property

of the network per se, and is independent of the price profile. For simplicity, we suppress the

dependence of C on g.

Remark: Our model extends naturally the case of an arbitrary number of source-destination

pairs. The key assumption is that traders know the location of the source-destination in the

network, and can discriminate based on this location. We have also assumed that only inter-

mediaries set prices: the source and destination are price takers. We can easily accommodate

price setting by source-destination; in that case our characterization result, Theorem 1, applies

to the surplus net of the prices that the source-destination pair set.

The model offers a general framework to study the relation between networks and pricing

behavior of traders. We now discuss a number of applications to illustrate the scope of the

model.

2.1 Applications

1. Transportation and communication Networks: The example we sketched in the

introduction falls under the large umbrella of transportation and communication networks

(that include air lines, shipping, Internet, cable TV). Traditionally, these sectors have been

heavily regulated or were under public sector control. The large scale privatization in the UK

in the early 1980’s was a precursor for a global trend. Now it is common for a consumer to

make a choice among alternative bundles of services provided by a number of distinct service

providers. A key policy concern is the nature of market power in these networks.

2. Supply chains: Consider a Sony Vaio Laptop. It usually has an Intel processor, the

hard drive is from Seagate Technology, Hitachi, Fujitsu or Toshiba, the RAM is from Infineon

or Elpida, the wireless chipset is from Atheros or Intel, the optical drive is from Hitachi or

7We consider all paths and not just the shortest paths; in this, we follow Borgatti and Everett (2005).
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Matsushita, the graphics card is from Intel, NVIDIA or AMD. The speakers may be from HP

or is from Sony. The different intermediate input suppliers set prices; Sony picks the best

combination of inputs and prices.

Anderson and Wincoop (2004) show that trade intermediation costs amount to a significant

tax on international transactions. Hummels et al. (2001) showed that production supply

chains increasingly traverse the world and decisively shape the pattern and volume of trade.

The scale of this transformation calls for a general theory of pricing in supply chains.

3. Corruption: The bribing of public officials for access to goods and services and for the

granting of licenses and permits is a prominent feature of economic life in many countries.

Shleifer and Vishney (1993) and Ades and Di Tella (1999) have argued that the level of bribes

should be viewed as a function of the ‘market power’ of officials. In some contexts there is a

single line of officials (or committees) who must approve a decision, while in others there may

exist multiple competing chains of decision makers (as on highway tolls, Olken and Barron

(2009)). These examples motivate an enquiry into the ways the network of decision making

shapes the power of officials in the market for bribes.

4. Intermediation in agriculture: Consider coffee. At the start, there is a farmer in a

developing country who typically works on a small farm. The farmer chooses from among

a few intermediaries who process his coffee cherries to obtain beans. These intermediaries

sell the beans onward to one of the small number of exporting trading firms. The exporters

sell to dealers/brokers, who in turn sell to roasters (like Nestle). Nestle then sells to large

supermarkets and local stores. Finally, consumers buy the coffee from a retailer.

Such long chains of intermediation are common across the agricultural sector, e.g., Fafchamps

and Minten (1999). Historically, the market power of intermediaries has been a major concern

and has led to large scale state intervention in this sector. But by the 1990’s, it was felt that

state agencies discouraged innovation and the entry of new intermediaries, leading to a very

inefficient system (see e.g., Bayley, (2002), Meerman (1997)). Recent decades have witnessed

a large scale liberalization of the intermediation sector. The effects of liberalization have,

however, been mixed; for a discussion, see Trauba and Jayne (2008). This research motivates

a theoretical study of the determinants of pricing and division of surplus in intermediation

networks.

5. Financial Intermediation: Consider the market for municipal bonds in the United

States. This is the largest capital market for state and municipal issuers. It has market

capitalization of over $4 trillion, with daily trading volumes of around $ 10-20 billion. Li and

Schürhoff (2012) show that trading of these bonds is organized as a decentralized over the
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counter (OTC) broker-dealer market. The network of traders has a core-periphery structure,

with roughly 20-30 dealer firms at the core and several hundred peripheral dealer firms (there

are around 700 firms trading in municipal bonds in any given month). Bonds move from the

municipality through an average of 6 inter-dealer trades. There is systematic price dispersion

across dealers, with dealers in the core maintaining systematically larger margins. These

empirical patterns motivate a theoretical study of how the network shapes pricing margins

and the profitability.

In Examples 1, 2 and 3, a consumer or a firm will choose the path: it is reasonable to

suppose that the cheapest path will be picked. In Examples 4 and 5, on the other hand, the

agent who owns an object will sell it to the highest bidder downstream and does not have any

interest in the cost of the entire path.

This motivates the following Bid-Ask price variant of our model. Following Gale and Kariv

(2009), suppose that every intermediary i ∈ N simultaneously sets a bid and ask (bi, ai). The

source S accepts the highest bid, and the destination D buys as long as the lowest ask price

is not greater than v. The object passes from intermediary i to a connected intermediary j

with the highest bid bj, subject to the condition that bj ≥ ai. We study this alternative model

of pricing in Appendix II. The analysis there establishes that every equilibrium outcome in

our model is also an equilibrium outcome of the Bid-Ask model; the converse is not true in

general. However, for some important classes of networks – that include trees and multi-

partite networks – the equilibrium outcomes in the two models are equivalent. So, for these

networks, our equilibrium characterization result in the benchmark model, Theorem 1, also

holds for the Bid-Ask model.

3 Networks, market power and efficiency

We prove existence and provide a complete characterization of Nash equilibrium. For any

given network, there typically exist multiple equilibria, with widely varying pricing, efficiency

and division of surplus. We then take the model to the laboratory. The experiments highlight

two points: one, the ability of human subjects to coordinate on efficient outcomes, and two,

the role of node criticality as an organizing principle for understanding market power.

We say that trader i is essential under p if he belongs to every feasible least cost path.

Given price profile p, for path q, let c−j(q, p) =
∑

i∈q,i6=j pi, be the total cost of all intermediaries

other than j.
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Theorem 1

A. Existence: In every network there exists an efficient equilibrium.

B. Characterization: An equilibrium p∗ is either inefficient (c(p∗) > 1), intermediaries

extract all the surplus (c(p∗) = 1), or they earn nothing (c(p∗) = 0). Moreover,

1. c(p∗) = 0 is an equilibrium if, and only if, no trader is essential.

2. c(p∗) = 1 is an equilibrium if, and only if, (i) every trader i ∈ q, q ∈ Q∗ who

sets p∗i > 0 is essential, and (ii) for every trader i /∈ q, ∀q ∈ Q∗, if i ∈ q′ then

c−i(q
′, p∗) ≥ 1.

3. c(p∗) > 1 is an equilibrium, if, and only if, c−i(q, p
∗) ≥ 1, ∀ i ∈ q, ∀q ∈ Q.

The argument for the existence of efficient equilibrium is constructive. First, consider a

network with no critical traders. The 0 price profile is a Nash equilibrium, as no intermediary

can earn positive profits by deviating and setting a positive price. If an intermediary sets

a positive price S and D will circumvent him, as there exists a zero cost path without him.

Next consider a network with critical traders. It may be checked that a price profile in which

critical traders set positive prices that add up to 1 and all non-critical traders set 0 price is

an equilibrium.

The characterization yields a number of insights. The first observation is that in every

efficient equilibrium intermediation costs take on extreme values. The intuition is as follows:

if the feasible least cost path is unique, then intermediaries in that path exercise market power

and so, if intermediation costs are below the value of exchange, an intermediary in that path

could slightly increase his intermediation price while guaranteeing that exchange takes place

through him. In contrast, when there are multiple feasible least cost paths, there is price

competition among intermediaries on different paths. In this case, whenever intermediation

costs are larger than zero, an intermediary demanding a positive price gains by undercutting

his price. Price competition drives down intermediation costs to zero.

The second observation is on how critical traders have market power. Observe that a

critical trader is essential. Hence, the presence of critical traders is sufficient to ensure that

intermediaries extract all surplus in every efficient equilibrium.

Criticality dictates that all surplus must accrue to intermediaries, but the theory is permis-

sive about how it is distributed among them. To see this point, consider the Ring with Hubs

and Spokes network presented in Figure 1 and suppose that S and D are located on (a1, d1).
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Then there exists an equilibrium in which all surplus accrues to the critical intermediaries,

e.g., A and D charge 1/2 and all other intermediaries charge 0, but there is also an equilibrium

in which the entire surplus is earned by non-critical intermediaries, e.g., A and D charge 0, B

and C charge 1/2, and F and E charge 1.

The final observation is about the multiplicity of equilibria. Consider the ring network

with 6 traders presented in Figure 1 and suppose that S is located at A and D is located at D.

The three equilibria described by Theorem 1 are possible in this network: all intermediaries

set price 0, all of them set price 1, and intermediaries B and C set price 1 while intermediaries

E and F set price 1/2 each.

This multiplicity motivates an exploration of equilibrium refinements. We consider a num-

ber of possible refinements – trembling hand perfection, strictness, strong Nash equilibrium,

elimination of weakly dominated strategies, and perturbed Nash demand games. We find that

in some cases these refinements are too strong, e.g., there do not exist strict or strong Nash

equilibrium in some networks. In other cases, the refinement is not effective, e.g., a wide

range of outcomes (including those with coordination failure) may be sustained under trem-

bling hand perfection, elimination of weakly dominated strategies, and perturbed bargaining.8

To gain a deeper understanding of the relation between networks, competition, market power

and efficiency, we therefore conduct an experimental investigation of posted prices in networks.

3.1 Posted prices in the Laboratory

3.1.1 Experimental Design

We have chosen networks that allow us to examine the role of coordination, competition and

market power. These networks are depicted in Figure 1.

The ring networks with 4, 6 and 10 traders allow us to focus on coordination and competi-

tion.9 For every choice of S and D, there are always two competing paths of intermediaries. In

Ring 4, for any non-adjacent pair, there are two paths with a single intermediary each. Ring 6

and Ring 10 allow for situations with a higher (and possibly unequal) number of intermediaries

on either path.

8Goyal and Vega-Redondo (2007) considered a cooperative solution concept – the kernel – in their work.
They showed that non-critical traders would earn 0 and critical traders would split the cake equally in allo-
cations in the kernel. Our analysis above reveals that this solution is a Nash equilibrium of the pricing game
but that there exist a variety of other equilibria.

9We have also run experiments on a ring network with 8 traders. The results are in line with the one
presented in this section and they are not presented to simplify exposition.
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Figure 1: Networks in the benchmark design

The Ring with Hubs and Spokes network allows for a study of the impact of market power:

for instance, if S is located at a1 and D is located at a2, intermediary A is a pure monopoly,

while if D is b1, then the intermediaries A and B play a symmetric Nash demand game. This

network also creates the space for both market power and competition to come into play. For

instance, if S is located at a1 and D is located at e1, then there are two competing paths: a

shorter path (through A, F , and E) and a longer path (through A, B, C, D, and E). Traders

A and E are the only critical intermediaries.

To put these experimental variations in perspective, we summarize the equilibrium analysis

for the selected networks. In Ring 4 there is a unique equilibrium that corresponds to the

Bertrand outcome. In every other network, whenever there are at least two intermediaries on

every path, there exist both efficient and inefficient equilibria. This observation motivates our

first question:

Question 1: How does the efficiency of trade vary with ring size and the presence of critical

traders?

If trading does take place, Theorem 1 predicts an extremal division of trade surplus: either

intermediaries earn 0 surplus or they extract all trade surplus. In the Ring 4, intermediation
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Session
Treatment 1 2 Total

Ring 4 16 / 240 16 / 240 32 / 480
Ring 6 18 / 180 24 / 240 42 / 420
Ring 10 20 / 120 20 / 120 40 / 240
Ring w. hubs/spokes 18 / 180 24 / 240 42 / 420

Table 1: Treatments in Benchmark Model

cost is 0 in the unique equilibrium; but in all other Rings, both extremal outcomes are possible

in equilibrium. In the Ring with Hubs and Spokes, whenever exchange involves critical traders,

equilibrium dictates full surplus extraction by intermediaries. These considerations motivate

the second question:

Question 2: Is the division of surplus extremal? How does it vary with the presence of critical

traders?

Finally, we turn to the situation in the Ring with Hubs and Spokes where all three forces

of interest – coordination, competing paths and critical traders – are present. Theorem 1

tells us that all surplus must accrue to intermediaries, but it is silent on how the surplus is

distributed among the intermediaries. This observation motivates our third question:

Question 3: What is the division of surplus between critical and non-critical intermediaries?

3.1.2 Experimental procedures

We ran the experiments at the Experimental Laboratory of the Centre for Economic Learning

and Social Evolution (ELSE) at University College London (UCL) between June and De-

cember 2012. The subjects in the experiment were recruited from the ELSE pool of human

subjects consisting UCL undergraduate and master students across all disciplines. Each sub-

ject participated in only one of the experimental sessions. After subjects read the instructions,

an experimental administrator read the instructions aloud. Each experimental session lasted

around two hours. The experiment was computerized and conducted using the experimental

software z-Tree developed by Fischbacher (2007). Sample instructions are reported in the

Online Appendix. Each session uses one network treatment. We ran 2 sessions for each treat-

ment. Each session consisted of 60 independent rounds. Table 1 provides an overview of the

experimental design. In each cell we report number of subjects/number of group observations.

We employ random matching with random assignment of network positions across rounds.

In each round of a treatment subjects are assigned with equal probability to one of the possible
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positions of a network. In Ring n, all nodes are possible positions. In Ring with Hubs and

Spokes, each spoke node is a computer-generated agent, and the remaining nodes are all

feasible positions for the human subjects. Groups with one subject per intermediary position

are then randomly formed. The position of a subject and the groups formed in each round

depend solely upon chance and is independent of the subject’s position and the groups formed

in previous rounds, respectively.

For each group, a pair of two non-adjacent nodes is randomly selected as S and D. Each

pair of two non-adjacent nodes is equally likely to be selected. All subjects in each group

are informed of the position of S and D in the network. All traders are informed that the

surplus/value of exchange is 100 tokens. Then, all human subjects in an intermediary role are

asked to submit an intermediation price: a real number (up to two decimal places) between 0

and 100. The computer calculates the intermediation costs across different paths. Exchange

takes place if the least cost among all paths is less than or equal to 100. If there are multiple

feasible least cost paths then one of them is picked at random.

At the end of the round, subjects observe all posted prices in their group, the trading

outcome, and the earnings of all subjects. We assume that S and D are each allocated one

half of the net surplus, i.e., one half of 100 minus the intermediation costs. Then the subjects

move to the next round.

In each round, earnings are calculated in terms of tokens. For each subject, the earnings

in the experiment are the sum of his or her earnings over 60 rounds. At the end of the

experiment, subjects are informed of their earnings in tokens. The tokens are exchanged in

British pounds with 60 tokens being set equal to £1. Subjects received their earnings plus £5

show-up fee privately, at the end of the experiment.

3.1.3 Findings

We start by examining the efficiency of trade in networks. Table 2 reports the relative fre-

quency of trade across different treatments.

Trade occurs with probability 1 in ring networks, regardless of their size and of the distance

between S and D. In Ring with Hubs and Spokes the frequency of trade is around 0.95. So,

market power does not have any significant effect on efficiency of trading. Overall, despite the

need for coordination among intermediaries along the same path, the presence of competition

between paths and the presence of market power of some intermediaries, traders across all

treatments are very successful in coordinating on prices that ensure exchange.
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All ( ≥ 2) 2 3 4 5

1.00 1.00 -- -- --

(480) (480)

1.00 1.00 1.00 -- --

(420) (289) (131)

1.00 1.00 1.00 1.00 1.00

(240) (49) (87) (69) (35)

0.95 1.00 0.94 0.90 0.90

(420) (126) (155) (109) (30)

Ring 10

Ring with Hubs

and Spokes

Note. The number of group observations is reported in parentheses.

Network
minimum distance of buyer-sell pair

Ring 4

Ring 6

Table 2: Frequency of Trading

Finding 1: The level of efficiency is remarkably high in all networks. Trading in Rings with

4, 6, and 10 intermediaries occurs with probability 1. In the Ring with Hubs and Spokes,

trading occurs with probability around 0.95.

In Rings we distinguish trading situations with respect to distances of the two competing

paths between S and D, denoted by (d (q) , d (q′)). In Ring with Hubs and Spokes we distin-

guish trading situations with respect to (i) the number of critical intermediaries (#Cr), (ii) the

number of intermediation paths (#Paths), and (iii) the distance of each path (d (q) , d (q′)).

Figure 2 presents average intermediation costs, conditional on trading, based on the last 20

rounds, with 95% confidence interval across different trading situations.

In Appendix IV we report the movement across rounds in average intermediation costs

across distinct trading situations in Rings and Ring with Hubs and Spokes (see Table 10).

Whenever there are no critical traders (resp. there are only critical traders) there is a clear

downward trend (resp. upward trend) in the movement of intermediation costs across rounds.

When there are both critical and non-critical traders, intermediation costs are stable over

time.

In Ring 4, intermediation costs are around 5 percent of the surplus. In the other rings,

intermediation costs vary between 10 and 20 percent of the surplus. The overall conclusion

is that intermediation costs in all ring networks are modest and, between the two efficient

equilibria, are much closer to the one with zero intermediation cost, especially in the smaller

rings.

In the Ring with Hubs and Spokes, when S and D are served by a sole critical intermediary,

the situation is analogous to the dictator game, widely studied in the experimental literature
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Figure 2: Costs of intermediation

(for a survey, see Engel (2011)). We found a surplus extraction of 99%, which is much higher

than the one reported in the experimental literature. This suggests that traders located at

critical nodes in a network interpret their location as a form of ‘earned endowment’ in the

sense of Cherry et al. (2002). This may give rise to a sense of entitlement that is distinct

from the standard dictator game.10

When S and D are connecting via one single path with two intermediaries, the game

played by the two intermediaries is analogous to a symmetric Nash demand game. We find

that intermediaries extract, in total, around 96% of the surplus, and they share it roughly

equally (refer to Table 11). These findings are consistent with the findings in the experimental

literature of Nash bargaining (e.g., Roth and Murnighan (1982) and Fischer et al (2006)).

Finally, when there are two competing paths and critical traders, intermediation cost

ranges between 62% and 83%. In the case without critical intermediaries, this cost falls

sharply to around 28%, which is comparable to the low-cost outcome found in Rings. We

summarize this discussion in our second finding.

Finding 2: The presence of critical traders is both necessary and sufficient for large surplus

extraction by intermediaries. In Rings with 4,6, and 10 traders, intermediation costs are

small (ranging from 5% to 20%). In the Ring with Hubs and Spokes, with critical traders,

10We also note that in our design, in some situations, both S and D are computer generated agents, while
in others one of them is a human subject. We found no behavioral difference across these cases. This leads us
to believe that the human subject vs. computer issue does not play a major role in explaining the behavior of
subjects in our experiment.
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1 ~ 20 21 ~ 41 41 ~ 60

0.56 0.68 0.72

(20) (26) (25)

0.48 0.56 0.67

(16) (13) (10)

0.73 0.77 0.80

(16) (19) (24)

0.65 0.67 0.74

(8) (8) (11)

Notes. The number in a cell is the average fraction of costs charged by critical traders. The

number of observations is reported in parentheses. #Cr denotes the number of critical

intermediaries, #Paths denotes the number of paths connecting buyer and seller, d(q) denotes

the length of path q beween buyer and seller.

Network (#Cr,#Paths, d(q),d(q'))
Rounds

Ring with

Hubs and

Spokes

(1, 2, 3, 5)

(1, 2, 4, 4)

(2, 2, 4, 6)

(2, 2, 5, 5)

Table 3: Surplus division among intermediaries

intermediation costs are large (60% to over 95%).

We now turn to the issue of how surplus is divided between critical and non-critical in-

termediaries. Table 3 presents the average fraction of intermediation costs charged by critical

traders, conditional on exchange (here data is grouped into the blocks of 20 rounds, due to

small samples). The number within parentheses is the number of group observations. Look-

ing at the last 20 rounds, we observe that 67% to 80% of intermediation costs go to critical

trader(s). In all the cases, regardless of whether an exchange takes place along the shorter or

longer path, the number of non-critical traders is at least as large as the number of critical

traders. To summarize:

Finding 3: In the Ring with Hubs and Spokes, critical intermediaries set higher prices and

earn a much higher share of surplus as compared to non-critical intermediaries.

We have established that network structure – reflected in the criticality of nodes – has

powerful effects on intermediation costs and the division of surplus. To gain a deeper under-

standing of the mechanisms of competition and market power, we now examine the pricing

behavior of traders directly.

We focus on the last 20 rounds and Figure 3 depicts average prices.11 In Appendix IV,

Table 11 reports average prices charged across rounds by intermediaries in Rings and Ring with

11Our design employs random matching with random assignment to limit repeated games effects and al-
lows subjects to learn how to play against random opponents over rounds. We have conducted session-level
analysis and found little variation of subjects’ pricing behavior across sessions. For instance, in the case of
(#Cr,#Paths, d (q) , d (q′)) = (1, 2, 3, 5) of the Ring with Hubs and Spokes, we found that average prices for
critical trader, non-critical trader on the shorter path, and non-critical trader on the longer path are 54, 26,
and 11 in the first session, and 46, 25, and 8 in the second session. Hence, it is less likely that subjects have
developed within-session norm varying much across sessions.
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Hubs and Spokes, respectively. In the Ring with 6 and 10 traders, there is a tight competition

between paths. Intermediaries on a longer path chose, on average, prices somewhere between

5 and 10, independently of the distances of the two paths across all ring networks. Responding

strategically to this, intermediaries on a shorter path chose higher prices that are proportionate

to the difference in distance between two paths. As a result, even when the two paths are

very asymmetric, they have very similar intermediation costs and trade occurs frequently –

roughly one third of the time –along the longer path! Table 4 provides data on these patterns.

In the Ring with Hubs and Spokes, the pricing of critical and non-critical intermediaries is

very different. Critical intermediaries post much higher prices than non-critical intermediaries.

The non-critical intermediaries post prices that are similar to intermediaries in Rings. For

instance, when there is one critical intermediary and the two competing paths are of distance

3 and 5, the critical intermediary charges, on average, a price close to 50, the only non-critical

intermediary lying in the shorter path charges a price close to 24 and the three non-critical

intermediaries in the longer path post a price around 8. Similar behavior is observed in the

other cases. This demonstrates the strong impact of network criticality on pricing behavior

and the division of surplus.

This evidence suggests that subjects are strategically sophisticated in their choice of prices.

While intermediation costs do take on extreme values, they depart significantly from the

theoretical predictions. In Section 5 we show that observed departures from equilibrium

pricing and surplus extraction are consistent with a model of noisy best response with risk
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Ring 4 (2, 2) 3.99 --

(2, 4) 4.45 0.65

(3, 3) 4.01 --

(2, 8) 15.20 0.64

(3, 7) 5.30 0.68

(4, 6) 6.82 0.68

(5, 5) 5.01 --

Freq. on a shorter path|cost1 - cost2|

Ring 6

Ring 10

Notes. We report the sample median of absolute differences of two
competing paths, using the sample of last 20 rounds. The number in the last
column is the frequency of trading on a shorter path.

Network (d(q), d(q'))

Table 4: Short versus long paths

aversion.

4 Uncertain demand, competition and market power

In our benchmark model, the number of intermediaries per se has no impact on the efficiency

of trade. This is because the value of surplus is perfectly known to all intermediaries. We

now extend the benchmark model to allow for uncertain demand. We prove existence and

provide a complete characterization of equilibrium in this model. As in the benchmark model,

there typically exist multiple equilibria, with very different pricing, efficiency and division of

surplus. However, the analysis also reveals important differences with the benchmark model:

active intermediaries are predicted to all set the same price and the number of intermediaries

has powerful effects on pricing and the efficiency of trade. Our experiments highlight the

interplay between these theoretical predictions and the role of node criticality.

We now assume that the surplus v is unknown; it has a distribution F (.) on the interval

[0, 1] (with a continuously differentiable density f(.)). Given g and p, define Qv to be the set

of feasible least cost paths, for a realized value v. Given network g and price profile p, the

payoff to an intermediary i, for every realized value v, is

πi(p, v) =

{
0 if i 6∈ q ∀ q ∈ Qv
ηvi
|Qv |pi if i ∈ q for q ∈ Qv,

where ηvi is the number of paths in Qv that contain intermediary i. Finally, given network g
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and price profile p, the expected payoff to intermediary i is:

Πi(p) = Ev[πi(p, v)]. (3)

An equilibrium is efficient (resp. inefficient) if trade occurs (resp. does not occur) regardless

of the realization of v. Clearly, an equilibrium is efficient (resp. inefficient) if, and only if,

the associated intermediation cost is zero (resp. larger than 1). An equilibrium is partially

efficient if it is neither inefficient nor efficient. Define h(x) = f(x)/[1−F (x)] to be the hazard

rate.

The next result proves existence and provides a complete characterization of equilibrium,

for all networks. E(g, p) denotes the set of essential traders, i.e., a set of traders that lies on

all paths q ∈ Q1.

Theorem 2 Assume that the hazard rate is increasing.

A. Existence: In every network there exists an efficient or a partially efficient equilibrium.

B. Characterization:

1. c(p∗) = 0 is an equilibrium if, and only if, no trader is essential.

2. c(p∗) ∈ (0, 1) is an equilibrium if, and only if, (a) |E(g, p∗)| ≥ 1 and ∀i ∈ E(g, p∗):

p∗i = p̂ =
1

h(|E(g, p∗)|p̂)
, (4)

(b) for every non-essential trader i ∈ q, q ∈ Q1, p∗i = 0. (c) for all traders i /∈ q,
∀q ∈ Q1, if i ∈ q′ then c−i(q

′, p∗) ≥ |E(g, p∗)|p̂.

3. c(p∗) > 1 is an equilibrium, if, and only if, c−i(q, p
∗) ≥ 1, ∀i ∈ q, ∀q ∈ Q.

Theorem 2 brings out two important implications of pricing in networks under uncertain

demand.12 The first is that lack of criticality is necessary and sufficient for the existence of

an efficient equilibrium. So, whenever there are critical intermediaries, the equilibrium will

involve some inefficiency. This is novel relative to Theorem 1. The second observation relates

to equilibrium pricing by essential traders: they set a unique common price which solves

condition (4). As c(p∗) ∈ (0, 1), intermediaries always share surplus with S/D.

12All parts of the result, except for part [2] continue to hold if we relax the increasing hazard rate assumption.
In part [2] we exploit the increasing hazard rate assumption for the sufficiency part of the proof only.
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We now show how pricing, efficiency and division of surplus, vary with the number of

essential traders.

Proposition 1 Assume that the hazard rate is increasing. Suppose p∗ and p′ are two partially

efficient equilibria, with |E∗| > |E ′| essential traders, respectively. Then:

1. Price for essential traders under p∗ is strictly lower than the price under p′.

2. c(p∗) > c(p′). Hence, p∗ is less efficient.

3. The sum of intermediaries payoffs and sum of S/D’s payoffs are both lower under p∗.

This proposition brings out another novel implication of pricing under uncertain demand:

recall that in the benchmark model, there is no systematic relation between number of essential

traders and prices and intermediation costs (refer to Theorem 1).

To summarize, the theoretical analysis of pricing under uncertain demand tells us that

there exist multiple equilibria with widely varying pricing, division of surplus and efficiency.

This is similar to the situation under known demand.13 Uncertain demand does, however,

have powerful effects on pricing: in equilibrium with trading activity, all essential traders set

equal prices; these prices are falling and the intermediation costs are increasing in the number

of essential traders.

4.1 Uncertain Demand in the Laboratory

4.1.1 Experimental design and procedures

We study the effects of uncertain demand on pricing, the division of surplus and efficiency of

trade. In particular, we test the new theoretical predictions on equal pricing and on partially

efficient equilibrium. With this in mind, in addition to rings of size 4, 6, 10 and the Ring with

Hubs and Spokes, we also consider Line networks with 6 and 8 traders.14 Figure 4 presents

these networks.

Recall that in ring networks there always exists an efficient equilibrium, but in rings with

6 and 10 traders there are also inefficient and partially efficient equilibria. In Lines and in

Ring with Hubs and Spokes (with critical intermediaries) an efficient equilibrium does not

13For instance, natural variants of the three equilibria in a ring network with 6 traders identified in section
3 also exist under uncertain demand.

14In the Line network with 6 and 8 traders, the pair S and D are always the two end nodes and computer-
generated agents.
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Figure 4: Networks in uncertain demand case

exist, but there exists a partially efficient equilibrium. The frequency of trade declines with

the number of critical traders in this equilibrium. These observations motivate the following

question.

Question 1A: In the presence of uncertain demand, how does the efficiency of trade vary

with ring size and the presence of critical traders?

Our theoretical analysis reveals that in equilibrium, all essential traders –critical and non-

critical – must set the same price and that this price declines in the number of essential traders.

This motivates our second question:

Question 2A: In the presence of uncertain demand, how does pricing vary with network

location and number of critical traders?

4.1.2 Procedures

The experiment was run at the Experimental Laboratory of the University of Essex (ES-

SEXLab; http://www.essex.ac.uk/essexlab/) in May and October 2013. The subjects in the
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Session
Treatment 1 2 3 4 Total

Ring 4 16 / 240 24 / 360 40 / 600
Ring 6 18 / 180 18 / 180 36 / 360
Ring 10 30 / 180 30 / 180 60 / 360
Ring w. Hubs/Spokes 18 / 180 18 / 180 24 / 240 30 / 300 90 / 900
Line 6 16 / 240 20 / 300 36 / 540
Line 8 18 / 180 18 / 180 36 / 360

Table 5: Treatments with uncertain demand

experiment were recruited from the ESSEXLab pool consisting undergraduate and masters

students across all disciplines at the University of Essex. The experimental procedures follow

the one we have discussed in Section 2.3; sample instructions are reported in Online Appendix

I. We note that in the experiment the value of exchange v is randomly drawn to be an integer

between 1 and 100 at the beginning of each round. Table 5 summarizes the experimental de-

sign and treatments. In each cell we report number of subjects / number of group observations

in a session.

4.1.3 Findings

We start with an examination of efficiency of trade. Table 6 presents data on the frequency

of trade across the different networks. We split the data of Ring with Hubs and Spokes

with respect to the number of paths. The cases in which there is only one path between S
and D correspond to line networks with one or two critical intermediaries. In Table 6 and

subsequently, we refer to these cases as Line 3 and Line 4, respectively. We refer to all other

cases as belonging to Ring with Hubs and Spokes.

Our first observation is that, for fixed a network architecture, the distance between S and

D has a significant impact on efficiency. In the Ring network with 10 traders, frequency of

trade declines from 0.73 to 0.57 as we move from distance 2 to distance 5. In the Ring with

Hubs and Spokes the frequency falls from 0.60 to 0.45 as we move from distance 3 to distance

5. In line networks, the frequency of trade falls from 0.65 to 0.25 as we move from distance

2 to distance 6. Our second observation is on the effects of critical intermediaries. For fixed

distance, the frequency of trade in a ring network and in a line network is very different. The

frequency of trade in Ring with Hubs and Spokes lies somewhere between that in rings and

in lines, for each fixed distance.

To draw out more clearly the effects of distance and the number of critical traders on

efficiency, we compare efficiency between ring networks and line networks in Figure 5.15 We

15In Appendix IV we report average intermediation costs (see Table 12) and average prices for network
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Network #Paths All ( ≥ 2) 2 3 4 5 6 7

0.89 0.89 -- -- -- -- --

(600) (600)

0.73 0.74 0.69 -- -- -- --

(360) (234) (126)

0.64 0.73 0.62 0.60 0.57 -- --

(360) (108) (114) (91) (47)

0.51 -- 0.60 0.47 0.45 -- --

(504) (158) (270) (76)

0.65 0.65 -- -- -- -- --

(227) (227)

0.53 -- 0.53 -- -- -- --

(169) (169)

0.36 -- -- -- 0.36 -- --

(540) (540)

0.25 -- -- -- -- -- 0.25

(360) (360)
Line 8 1

Notes. The number of group observations is reported in parentheses. #Paths denotes the number of paths connecting

buyer and seller. The samples of Line 3 and 4 are from sessions with Ring with Hubs and Spokes.

Ring with Hubs

and Spokes

Line 3

Line 4

1

Ring 10 2

2

1

Line 6 1

minimum distance between buyer and seller

Ring 4 2

Ring 6 2

Table 6: Frequency of trade

calculate the frequency of trade in ring networks after pooling all the observations in rings

with 4, 6 and 10 traders where the length of the shortest path between S and D is the same

(circles on the dotted line in Figure 5). The frequency of trade declines with distance. We

also present the frequency of trade in lines networks (squares on the solid line in Figure 5).

We note that the frequency of trade is lower at every distance level and that the gradient

remains significant all the way through. To summarize:

Finding 1A: In the presence of uncertain demand, networks have large effects on efficiency.

The frequency of the trade falls with distance and falls even more sharply with the number of

critical traders.

We now turn to the pricing behavior of traders by focusing on sample average in the last

20 rounds. First, we look at the pricing behavior in Ring networks and Ring with Hubs and

Spokes. This is presented in Figure 6. Similarly to our benchmark experiment, there is clear

evidence that subjects responded strategically to the distances of two paths: intermediaries

on a shorter path chose higher prices that appear proportionate to the difference in distance

between two paths. As a consequence, also under demand uncertainty trade occurs often along

the longer path. In contrast with the result in our benchmark experiment, in Ring with Hubs

and Spokes we found that critical intermediaries chose similar prices to non-critical traders

location (see Table 13) over time and across treatments.
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Figure 5: Efficiency and distance

on a shorter path.

Next, we examine the pricing behavior in Line networks. Theorem 2 (in a partially efficient

equilibrium) predicts the declining patterns of prices in distance: 50 in Line 3; 33.3 in Line

4; 20 in Line 6; and 14.3 in Line 8. Figure 7 presents the sample average of prices with

95 percent confidence interval across Line networks, along with the theoretically predicted

price. As theory predicts, average prices fall with distance between S and D: 34 in Line 2;

24 in Line 3; 17 in Line 6; 13 in Line 8. However, average prices quantitatively depart from

the predictions in a manner that subjects under-price relative to the equilibrium. The gap

between empirical prices and equilibrium prices shrinks with distance. We shall return to

these departures in the next section.

We finally turn to the empirical investigation of the theoretical prediction that critical

traders across different positions set a common price. We focus on Line 6 and Line 8 networks

for this analysis. Table 7 reports the average prices across positions. We also report p-values

of pairwise t-test for the null hypothesis of the equivalence of prices between any two positions

in each Line network. Average prices are quite similar across trading positions. We cannot

reject the null hypothesis for each pair of trading positions at an usual significant level.

We summarize the pricing behavior in networks with demand uncertainty as follows.
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Networks d(q) A B C D E F
5 17.01 16.60 16.65 17.10
7 13.83 12.62 13.28 13.61 13.34 13.24

A B C D
A -- 0.59 0.64 0.91
B -- 0.95 0.57
C -- 0.61
D --

A B C D E F
A -- 0.14 0.52 0.82 0.55 0.49
B -- 0.38 0.24 0.32 0.41
C -- 0.70 0.93 0.96
D -- 0.75 0.66
E -- 0.89
F --

B. pairwise t-tests for equivalence of prices in Line 6 network (p-value)

C. pairwise t-tests for equivalence of prices in Line 8 network (p-value)

Line

A. Average prices across trading positions

Table 7: Prices across positions in Line networks

Finding 2A: ( i) Subjects responded strategically to the distances of two paths. Critical traders

and non-critical traders on a shorter path set similar prices, while non-critical traders on a

longer path set much lower prices. ( ii) Average prices in Line networks decline in distance,

as theory predicts. However, average prices are lower than equilibrium prices; the gap between

them shrinks with distance.

5 Explaining the Pricing Behavior

We have found that subjects’ behavior conforms to equilibrium predictions broadly and that

the number of critical traders has powerful effects on economic outcomes. However, pricing

behavior does depart significantly from equilibrium predictions: one, intermediation costs

depart from both 0 and 100, and two, in the uncertain demand case prices set by critical

traders are systematically lower than equilibrium prediction. In this section we argue that

risk aversion and noisy best response help provide an explanation for these departures.

5.1 Risk aversion

The experimental literature shows that people exhibit moderate levels of risk aversion in

decisions involving even small stakes in a strategic environment (e.g., Goeree et al. (2002,

2003)) as well as in a non-strategic environment (e.g., Holt and Laury (2002)). We explore

the effects of risk-aversion in our setting, first theoretically and then estimate a model of risk
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Equilibrium
Networks Average prices ρ = 0 ρ = 0.5

Line 3 32.21 50 33.33
Line 4 22.14 33.33 25
Line 6 16.84 20 16.67
Line 8 13.32 14.29 12.50

Table 8: Risk Aversion and Prices in Line Networks

aversion from our data.

Suppose that individual subjects share a common degree of risk aversion, characterized

by the following power utility function: u (x; ρ) = x1−ρ

1−ρ , where ρ ≥ 0 represents the CRRA

coefficient. In a Line network with η intermediaries, the equilibrium price of each intermediary

i and the associated intermediation cost are

p∗i =
1− ρ

(η + 1)− ηρ
and c (p∗) =

η (1− ρ)

(η + 1)− ηρ
.

It is possible to verify that both equilibrium price and intermediation cost decrease in ρ.16

In order to get a sense of how risk aversion comes into play, Table 8 compares average

prices in the data with equilibrium prices for two different levels of risk aversion – when ρ = 0

(risk neutral) and when ρ = 0.5. We observe that a moderate level of risk aversion can provide

a much better fit with the observed prices. Applying the argument of risk aversion to other

networks is less transparent due to the multiplicity of equilibrium. In the next section, we

combine risk-aversion with a model of noisy best response.

5.2 Strategic uncertainty

We study a standard model of noisy best response. The model makes two key assumptions.

First, that each intermediary forms consistent beliefs about the behavior of traders occupying

distinct locations in a network. Beliefs are consistent in the sense that they correspond to

the empirical distribution of choices from the data.17 Second, we assume that a trader makes

errors in choosing a price and that the probability of choosing a particular price depends

positively on its associated payoff. We further assume the conventional logistic choice function

with payoff-sensitivity parameter λ ≥ 0; as λ approaches 0 choice behavior becomes purely

16The derivation of the equilibrium with risk aversion follows along the lines of the proof of Theorem 2; the
details are omitted.

17For instance, in Ring 10 network where S and D are B and H, intermediary A forms beliefs about the
behaviors of two distinct traders–trader on the shorter path and trader on the longer path. These beliefs are
consistent with empirical distributions of the behaviors of traders on a shorter path and on the longer path.
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random, while as λ goes to the infinity, the individual chooses a best response with certainty.18

Further details of the model are given in Appendix III.

We combine the model of strategic uncertainty with risk aversion by assuming the above

power utility function and estimate the payoff-sensitivity parameters (λs) and the CRRA

coefficients (ρs). We pool the data of all ring networks to estimate a single common CRRA

coefficients in each experiment. We do the same with the data on all line networks under

demand uncertainty. For the Ring with Hubs and Spokes, we focus on the samples of those

trading situations where critical and non-critical intermediaries co-exist. With regard to

decision-error parameters, we allow them to vary across distinct trading situations because

they entail different strategic incentives.

Table 9 presents the maximum likelihood estimation results of the benchmark experiment

and the experiment with demand uncertainty. In the estimation we use the last 30 rounds of

the samples and we discretize the choice data to be the set of integer numbers, ranging from 0

to 100, by rounding observe choices to their nearest integer. We report the estimated ρ and λs

and their standard errors, along with the maximized log likelihood value, in each estimation

case. We use the bootstrap method in computing standard errors with 500 replications. To

see how the model fits the data, we present the difference of average price and predicted price

and its 95% confidence interval in each trading situation.

First, subjects in our experiments exhibit a moderate level of risk aversion. The estimated

CRRA coefficients range from 0.46 (for ring networks of the benchmark experiment) to 0.67

(for ring networks with uncertain demand). The CRRA estimate of line networks is around

0.61. These estimates are similar to those reported in the literature.19

Second, Table 9 shows that the estimated λs are large and significant for all trading situ-

ations, suggesting that the subjects in the experiments responded ‘optimally’ against others’

pricing.

Third, the estimated model replicates closely the average prices of the data. In most of

the trading situations, the difference between empirical and predicted average prices is small:

the difference is less than 5 in 37 cases out of a total of 46 distinct situations. In the majority

18We have tried to develop a stochastic equilibrium model such as Quantal Response equilibrium (QRE),
proposed by McKelvey and Palfrey (1995). Solving such an equilibrium is complicated because it requires us to
find a distribution from a system of equations involving the convolutions of multiple probability distributions.
A numerical approach is also computationally demanding. This practical challenge leads us to adopt a non-
equilibrium model of noisy best response under strategic uncertainty.

19Goeree et al. (2002, 2003) report ρ = 0.52 and 0.44 for first-price private value auctions and asymmetric
matching pennies games, respectively. Holt and Laury (2002) report that most of their subjects in their
lottery-choice experiment exhibit risk aversion corresponding to the 0.15− 0.68 range of CRRA coefficient.
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ρ (St. Err.) λ
(sample mean - 
predicted mean)

ρ (St. Err.) λ
(sample mean - 
predicted mean)

& Log 
likelihood

(St. Err.) [95% CI]
& Log 

likelihood
(St. Err.) [95% CI]

10.30 -9.26 34.17 -6.23
(0.72) [-10.12, -8.30] (6.68) [-7.32, -5.30]
5.88 2.63 16.12 -1.03

(0.69) [1.18, 4.12] (2.91) [-3.43, 0.78]
33.94 -2.47 84.11 -1.43
(2.87) [-4.80, -0.84] (22.28) [-4.44, -0.26]
14.76 0.56 35.01 -2.59
(1.00) [-0.54, 1.50] (6.99) [-4.57, -1.81]
9.06 2.07 14.78 -1.36

0.667 (2.03) [-0.92, 4.33] 0.461 (5.72) [-18.91, 4.53]
(0.018) 269.12 -1.03 (0.062) 149.00 -4.80

& (76.88) [-2.48, 0.07] & (51.75) [-13.40, -0.60]
-9860.7 16.56 -1.82 -6482.5 12.62 -8.35

(1.91) [-4.42, 0.15] (1.06) [-11.96, -4.68]
115.79 0.13 103.96 -1.06
(23.69) [-0.80, 0.89] (27.32) [-2.39, -0.15]
15.63 -4.10 7.49 -19.42
(1.11) [-6.49, -1.97] (0.48) [-23.08, -13.89]
54.61 -0.06 103.55 -0.39
(7.30) [-1.83, 1.19] (29.98) [-3.58, 0.28]
38.86 -0.27 64.00 -0.67
(2.45) [-1.34, 0.69] (11.66) [-1.54, -0.04]
38.84 -3.86 7.97 -5.69
(6.18) [-5.99, -1.88] (1.73) [-7.10, -4.51]
13.84 1.16 5.62 -3.71
(1.86) [-0.58, 2.50] (1.84) [-7.77, -0.57]
72.59 -1.92 56.35 -1.50
(8.79) [-3.80, -0.39] (23.67) [-3.84, 0.18]
17.09 -8.97 3.29 -11.23

0.578 (4.51) [-12.56, -5.63] 0.480 (0.80) [-15.27, -7.65]
(0.023) 27.69 -0.96 (0.078) 23.80 -0.47

& (2.55) [-2.21, -0.03] & (5.62) [-1.57, 0.15]
-5054.3 27.44 -2.07 -2036.3 16.60 0.20

(3.68) [-3.68, -0.59] (3.65) [-2.88, 3.54]
21.66 0.75 9.22 -2.88
(3.01) [-0.93, 1.81] (2.37) [-7.55, -0.12]
125.45 -2.63 58.96 -1.45
(19.44) [-5.13, -0.61] (21.04) [-6.31, 0.15]
26.23 -5.83 11.44 -5.28
(3.29) [-9.01, -2.83] (3.16) [-9.24, -1.86]
38.78 0.26 24.38 -1.34
(3.99) [-1.19, 1.47] (5.98) [-2.74, -0.53]
16.71 1.10
(2.95) [-1.12, 3.17]

0.608 32.17 -0.98
(0.010) (5.45) [-2.68, 0.73]

& 49.38 -0.14
-8034.1 (2.11) [-0.57, 0.36]

69.72 0.20
(2.75) [-0.16, 0.57]

Ring with 
Hubs & 
Spokes

Line

(1,1,2,--) Critical

(2,1,3,--) Critical

(4,1,5,--) Critical

(6,1,7,--) Critical

(2, 2, 5, 5)
Critical

Non-critical

Benchmark experiment

Critical

3 / non-critical

5 / non-critical

(2, 2, 4, 6)

Critical

4 / non-critical

6 / non-critical

(1, 2, 4, 4)
Critical

Non-critical

(1, 2, 3, 5)

Ring 10

(2, 8)
2

8

(3, 7)
3

7

(4, 6)
4

6

(5, 5) 5

Ring 6
(2, 4)

2

4

(3, 3) 3

Network
(#Cr,#Paths, 
d(q),d(q'))

Distance of own 
path / criticality

Experiment with demand uncertainty

Ring 4 (2, 2) 2

Table 9: Estimation of strategic uncertainty model with risk aversion
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of cases, we cannot reject the null hypothesis for the equivalence of empirical and predicted

average prices at 5% significance level.

Finally, we plot the predicted distribution of prices and the observed prices, to get a

further sense of the quality of the match between our model and subjects’s behavior. The

overall quality of the match between the model and the experimental data appears to be good,

across the different treatments. This fit is particularly good in the case of pure market power

as represented in the line networks. Figures 8 and 9 in Appendix IV present a selective set of

these plots from both experiments.20

6 Conclusion

We propose a general model of posted prices in networks of intermediaries. Our theoret-

ical analysis provides a complete characterization of posted price equilibrium for arbitrary

structures of intermediation. This is a first step towards understanding the functioning of

intermediated networks. Our experiments complement our theoretical work and point to node

criticality as an organizing principle for understanding pricing, efficiency and the division of

surplus in networked markets.

In this paper, we assumed that intermediaries know the origin and destination of trades,

when they set prices. In some applications, traders set prices that apply uniformly to all

intermediated trades, independently of the location of the origin and destination. An example

of uniform prices are road tolls: two drivers who use a bridge across a river will pay the same

amount, irrespective of where they started or where they are subsequently planning to go.

This motivates the study of pricing in a model where the network origin and destination of

trades is unknown.

In a companion paper, Choi et al. (2014), we study this setting. We suppose that all

traders simultaneously post prices: the price that a trader sets applies to all potential trades

that go through him. Once prices are set, a S/D pair is picked at random from the set of

all traders. As before, a feasible least cost path is picked. Given a profile of prices, a trader

faces the following trade-off. A higher price raises the payoff if trade does take place, but it

rules out long distance trade, between farther away S/D pairs. The theory and experiments

suggest that location uncertainty leads to breakdown of long distance trade and creates large

losses in efficiency.

20The full set of these plots are presented in Online Appendix II.
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Appendix I: Proofs

Proof of Theorem 1:

Existence: If C = ∅, set p∗i = 0 for all i ∈ N . Note that no intermediary can earn positive

profits by deviating and setting a positive price, because, since there are no critical traders,

there is always an alternative zero cost path. If C 6= ∅, then consider a price profile p∗ such

that p∗i = 0 if i /∈ C, and for j ∈ C set p∗j so that
∑

j∈C p
∗
j = 1. It is easily checked that no

critical or non-critical intermediary has a profitable deviation from this profile.

Characterization: We first show that c∗(p∗) ∈ (0, 1) cannot be sustained in equilibrium.

We consider two cases.

Case 1: Suppose |Q∗| = 1; in this case a trader i on q ∈ Q∗ can raise his price slightly and

strictly increase payoffs.

Case 2: Suppose |Q∗| > 1; consider a path q ∈ Q∗ and fix a trader i ∈ q with pi > 0. Note

that such a trader always exists, given that c(p∗) > 0. We have two possibilities:

2a: If intermediary i is essential, he can raise his price slightly and he will remain essential as

all other prices remain as before and the sum of prices being less than 1. So there is a strictly

profitable deviation.

2b: If i is not essential, given that |Q∗| > 1, the probability that i is used in exchange is at

most 1/2. If trader i lowers his price slightly, he ensures that he is on the unique feasible least

cost path. Thus the deviation strictly increases payoff.

Now we take up each of the remaining three possibilities with regard to intermediation

costs and characterize the conditions for which they can be sustained in equilibrium.

1. Assume c(p∗) = 0. We first establish sufficiency. In equilibrium every trader makes payoff

0. Consider an increase in price by some intermediary i. As no intermediary is essential under

p, there exists an alternative path between b and s at cost 0, and this path excludes trader i.

So there is no profitable deviation, and p∗ is an equilibrium.

We now establish necessity. Suppose there is a trader i who is essential under p∗. As c(p∗) = 0,

essential trader i can raise his price slightly, still ensure that exchange takes place through

him, and thereby he strictly raises his payoffs. So p∗ is not an equilibrium.

2. Assume c(p∗) = 1. We first establish sufficiency. Consider intermediary j ∈ q, with q ∈ Q∗.
If p∗j > 0 then intermediary j is essential and so trade occurs with probability 1 via j and he

earns p∗j . If j raises his price then total costs of intermediation exceed 1 and no trade takes
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place, yielding a zero payoff to j. If j lowers his price, trade does occur with probability 1

via him, so he only succeeds in lowering his payoff below p∗j . Next consider trader k ∈ q with

q ∈ Q∗ such that pk = 0. It is easily verified that k cannot increase his payoff by raising his

price. Finally, consider l /∈ q, ∀ q ∈ Q∗. This trader earns 0 in p∗. A deviation to a lower

positive price leaves the trade probability via l at 0, as c−l(q
′∗) ≥ 1 for all q′ such that l ∈ q′.

We have shown that p∗ is an equilibrium.

We now establish necessity. Suppose j ∈ q, with q ∈ Q∗, p∗j > 0 and j is not essential. So

the probability that exchange occurs via trader j is at most 1/2. Trader j can lower his price

slightly and this will push the probability of trade via himself to 1, and thereby he strictly

raises his payoff. Next consider k /∈ q for all q ∈ Q∗ and suppose c−k(q
′∗) < 1 for some

q′ such that k ∈ q′. Under p∗, the payoff to k is 0. But since c(p∗) = 1, there is a price

pk = 1− c−k(q′∗)− ε such that, for small ε > 0, the probability of trade via k is 1 and pk > 0.

This is therefore a profitable deviation.

3. Assume c(p∗) > 1. We first establish sufficiency. All traders earn 0 under profile p∗. It

can be checked that no deviation to another price can generate positive payoffs given that

c−j(q, p
∗) ≥ 1, for all j and for all q ∈ Q. A deviation to price 0 yields payoff 0. This proves

sufficiency.

We now establish necessity. Suppose that c(p∗) > 1 and that there is some j ∈ q such that

c−j(q, p
∗) < 1. Then there is a price pj = 1− c−j(p∗)− ε, for some ε > 0 such that trade takes

place via trader j with probability 1 and pj > 0. This constitutes a profitable deviation.

�

Proof of Theorem 2:

Existence: If there are no critical traders in g, then existence of efficient equilibrium follows

the arguments developed in Theorem 1. If there are critical traders then set pi = 0 for every

non-critical intermediary i, and for every critical intermediary set p∗ = 1/h(ηp∗), where η is

the number of critical players. The constructed profile satisfies part 2. Therefore there always

exists a partially efficient equilibrium in the presence of critical traders.

Characterization: The proof of Part 1 and Part 3 uses the arguments developed in the proof

of Part 1 and Part 3 of Theorem 1, and are therefore omitted. We now prove Part 2.

First consider necessity. Suppose p∗ is equilibrium and c(p∗) ∈ (0, 1). Take an arbitrary

least cost path q ∈ Q1. Observe that every player i who is not essential and who belongs to

path q must set price 0. For otherwise, a positive price by player i, pi > 0, is dominated by

a slightly lower price p′i < pi, that ensures the path q becomes the unique lowest cost path.
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This observation and the hypothesis that c(p∗) > 0, implies that there must exist essential

players, i.e., |E(g, p∗)| ≥ 1, and that c(p∗) =
∑

i∈E(g,p∗) p
∗
i .

Second, the optimal price of an essential player i ∈ E(g, p∗) solves

p∗i = arg max pi[1− F (pi + c∗−i(p
∗)]. (5)

It is easy to see that p∗i ∈
(
0, 1− c∗−i(p∗)

)
; the first order condition then says that for all

i ∈ E(g, p),

p∗i =
1− F (c(p∗))

f(c(p∗))
.

But this implies that ∀i, j ∈ E(g, p∗), p∗i = p∗j and p∗i ∈
(

0, 1
|E(g,p∗)|

)
. So equilibrium price is

given by

p∗i =
1− F (|E(g, p∗)|p∗)
f(|E(g, p∗)|p∗)

.

The existence of such a p∗ ∈
(

0, 1
|E(g,p∗)|

)
follows from the assumption that f(·) and F (·)

are both continuous functions and that f(0) > 0. Finally consider an intermediary i who

does not belong to any path in Q1 and suppose that c−i(q
′∗) < |E(g, p∗)|p∗ for some path q′

such that i ∈ q′. Then player i can charge a price p = |E(g, p∗)|p∗ − c−i(q′∗)− ε > 0 and now

whenever trade occurs it will occur via path q′; hence, this is a strictly profitable deviation for

intermediary i. The proof that these conditions are sufficient is straightforward, given that

the hazard rate is increasing.

�

Proof of Proposition 1: From Theorem 2 we know that in a partially efficient equilibrium

every essential player sets price, p∗i , such that:

p∗i =
1

h(ηp∗i )
(6)

where η = |E(g, p∗)| ≥ 1. The assumption of increasing hazard rate implies that there exists

a unique p∗ which solves p∗ = 1/h(ηp∗i ). We now prove the three parts in the proposition.

Part 1. Implicitly differentiating (6) and simplifying yields:

dp∗

dη
= − h

′
(ηp∗i )

h2(ηp∗i ) + h′(ηp∗i )
< 0, (7)

33



where the inequality follows from the assumption of increasing hazard rate.

Part 2. Next, note that in a partially efficient equilibrium intermediation costs are ηp∗i and

therefore the probability that trade does not occur is F (ηp∗i ). Again, implicit differentiation

yields

dF (ηp∗i )

dη
= f(ηp∗i )

[
p∗i + η

dp∗i
dη

]
= f(ηp∗i )p

∗
i

[
1− h

′
(ηp∗i )

h2(ηp∗i ) + h′(ηp∗i )

]
> 0

where the the second equality follows by substituting the expression for dp∗

dη
from above, and

the inequality follows from the assumption of increasing hazard rate.

Part 3. The expected payoff of an essential intermediary is p∗[1 − F (ηp∗)]; since inessential

intermediaries obtain a payoff of zero, the join profits of intermediaries are∑
i∈N

Πi(p
∗) = ηp∗[1− F (ηp∗)], (8)

and
d
∑

Πi(p
∗)

dηp∗
= [1− F (ηp∗)]− ηp∗f(ηp∗) = [1− F (ηp∗)](1− η) ≤ 1, (9)

where the second equality follows using equilibrium condition p∗ = 1/h(ηp∗), and the inequal-

ity follows because in a partially efficient equilibrium η ≥ 1. Finally, the joint profit of S and

D is

ΠS(p∗) + ΠD(p∗) = [1− F (ηp∗i )] [E[v|v ≥ ηp∗i ]− ηp∗i ] (10)

=

∫ 1

ηp∗i

xf(x)dx− ηp∗[1− F (ηp∗i )] (11)

and therefore

d[ΠS(p∗) + ΠD(p∗)]

dηp∗
= −[1− F (ηp∗i )] < 0. (12)

�
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Appendix II: Different Trading Protocols

Bid and Ask Model: In the bid-ask model each intermediary i ∈ N sets (bi, ai) where

bi is trader i’s bid price and ai is trader i’s ask price. Then S accepts the highest bid, as

long as it is non-negative. If there are multiple highest bids, S picks one randomly with

equal probability. D buys as long as the ask is not higher than 1. The object passes from

intermediary i to a connected intermediary j with the highest bid, bj, subject to the condition

that the bid bj ≥ ai. Ties are broken randomly.

For a posted-price equilibrium p∗ let {Ui(p∗)} be the profile of equilibrium utilities. For a

bid-and-ask equilibrium (b∗, a∗) let {Ui(b∗, a∗)} be the profile of equilibrium utilities.

Definition 1. p∗ is payoff equivalent to (b∗, a∗) whenever: 1. Ui(p
∗) = Ui(b

∗, a∗) for each

i ∈ N and 2. US(p∗) + UD(p∗) = US(b∗, a∗) + UD(b∗, a∗).

Theorem A: Fix a network g. For every posted-price equilibrium p∗ there exists a payoff

equivalent bid-and-ask equilibrium (b∗, a∗).

Proof of Theorem A: Suppose p∗ is an inefficient equilibrium. Then it has to be the case

that every path connecting S andD has a distance strictly higher than two. The corresponding

equilibrium in the bid-ask model is as follows: every agent bids 0 and asks 1.

We now focus on efficient equilibria. Recall from Theorem 1 that efficient equilibria in

posted-price model are extremal.

Case 1 (S and D extract all surplus): For such an outcome under posted-prices, there must be

no critical intermediaries in g. For every path q ∈ Q and for every i ∈ q, set ai = bi = 1. Under

this profile, each intermediary earns 0, S earns 1 and D earns 0, and so this profile is payoff

equivalent to p∗. To show that this profile (b, a) is an equilibrium note that intermediary i

cannot gain by lowering his ask, as each trader connecting to him bids 1. Furthermore, if

trader i lowers his bid, then he will not get the good, because every trader connecting to him

asks 1, and, since there are no critical intermediaries, S is always connected to at least two

intermediaries.

Case 2 (Intermediaries extract all surplus): From our characterization of posted-price equi-

libria we know that there exists q∗ ∈ Q∗ with
∑

i∈q∗ p
∗
i = 1 and that Ui = pi for each i ∈ q∗.

For convenience, label agents in q∗ as {i1, ..., in}, where gSi1 = gi1i2 = ... = ginD = 1. Consider

the following bid-ask profile:

A. Strategy of traders in q∗: aix = bix+1 for all x = 1, ..., n − 1, and ain = 1, and bix =

1−
∑

j=ix,...,in
p∗j for all x = 1, ..., n.
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B. Strategy of traders not in q∗: aj > 1 and bj < 0 for all j /∈ q∗

Our first observation is that under this profile, the good flows from S to D via path q∗ and

the payoff of intermediary ix is

aix − bix = bix+1 − bix = 1−
∑

j=ix+1,...,in

p∗j − (1−
∑

j=ix,...,in

p∗j) = pix ,

where the equalities follows by using the construction of the bid-ask profile (see part A); note

also that all intermediaries who do not belong to q∗ earn 0. So this profile is payoff equivalent

to the posted-price price equilibrium.

We now show that the strategy for every j ∈ q∗ is optimal. Take ix, for some x = 1, ..., n.

Intermediary ix cannot ask more than aix = bix+1 because, all intermediaries not in q∗ are

bidding strictly below bix+1 (note that if x = n then ain = 1 and clearly increasing the asking

price is not profitable). Intermediary ix cannot change his bid bix either. Indeed, if he decreases

his bid, then trade does not occur because agent ix−1 is asking bix . If he increases the bid,

then he will unambiguously decrease his profits as he will earn a lower margin.

We next show that the strategy is optimal for every j /∈ q∗. The first case is when gjix = 0

for all x = 1...n. This implies that every intermediary connected to j bids strictly less than

0 (see part B of the strategy), and so the maximum profit that j can obtain by deviating

and intermediating trade is 0, which is what he gets under the current strategy. Hence,

intermediary j is playing a best response.

The second case is when gjix = 1 for a unique x = 1...n. Suppose that the link is to a

upstream intermediary along the trading path. If j is not linked to the initial S, then every

downstream intermediary connected to j bids strictly less than 0 (see part B of the strategy),

and so the maximum profit that j can obtain by deviating and intermediating trade is 0,

which is what he earns under the current strategy. Hence, j is playing an optimal strategy.

If j is also linked to S, then it has to be the case that in the posted price equilibrium

pi1 = ... = pix = 0. This holds because i1, ..., ix are in the feasible least cost path and they

are competing with j. Part A of the strategy then implies that bix = 0 and therefore every

intermediary to which j can sell the object bids, at most, zero which implies that his maximum

payoff from buying and reselling is zero, e.g., so aj > 1 and bj < 0 is a best reply.

The last and third case is when gjix = 1 for at least two x = 1...n. In this case we can adopt

the last argument developed to show that there is no profitable deviation. This concludes the

proof. �
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We now develop two examples to show that the converse of Theorem A is not true: there

exist equilibrium outcomes in the bid-and-ask model that cannot be sustained in the posted-

price model.

Example 1: Consider a network where S has at least two links and there is at least one

critical intermediary. We know that in the posted-price price model, intermediaries extract

all surplus in every efficient equilibrium. Consider now the bid-and-ask model and set the

following bid-ask profile: all intermediaries set a bid of 1 and an ask of 1. Under this profile

the outcome is efficient, the intermediaries obtain zero payoff and S obtains the entire surplus.

It is easy to verify that this is an equilibrium. �

Example 2: Consider a network where there are η > 1 paths between s and b, each interme-

diary belongs only to one path and each of these paths contains at least two intermediaries.

Rings where the shortest distance between b and s is strictly greater than 2 are an example of

such networks with η = 2. In the bid-and-ask model consider the following profile: 1. every

intermediary bids b ∈ (0, 1), 2. every intermediary connected to D sets an ask a = 1, and 3.

every intermediary not connected to D sets an ask of b.

To see that this is equilibrium first consider an intermediary that is not linked to D and is

not linked to S. Such intermediary can resell the object at b and therefore it is not profitable

to bid more than b. If they bid b they get zero. If they bid less than b they also get zero

because each intermediary posts an ask of b. Consider an intermediary linked to S. If he bids

b he gets 0. If he raises his bid, he makes a negative profit because he can resell the object at

most at b. If he lowers his bid, he earns zero because S sells to another intermediary. Finally

consider an intermediary linked to D. Posting an ask of 1 to D is clearly optimal. So, if the

intermediary bids b he gets 1 − b. Increasing the bid lowers the intermediary margin, while

decreasing the bid leads zero payoff because intermediaries ask b.

This bid-and-ask equilibrium is efficient and in this equilibrium S gets 1 − b, each inter-

mediary not connected to the final D earns 0, and each intermediary connected to the final D
earns b/η (because S picks an intermediary with equal probability across all the η paths). �

Definition 2. The bid-ask model is payoff equivalent to the posted-price price model in

network g if the set of equilibrium payoffs in the two models are the same.

We now show that in a wide class of networks, the bid-ask model is payoff equivalent to

the posted-price model.
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Example 3: Networks with only critical intermediaries. Suppose there is only one

path between S and D. The equilibrium with trade in the bid-and-ask model must entail full

extraction of surplus by intermediaries. This is because the intermediary linked to s must set

bid at 0 and the intermediary connected to D must set an ask of 1. The corresponding payoff

outcome can be sustained in the posted-price price model. �

Example 4: Network with multiple Bertrand paths. Suppose that there are at least two

paths each with a sole intermediary, no other restrictions are imposed about the architecture

of the network. We claim that in all such networks the bid-ask model is payoff equivalent to

the posted-pricemodel.

S must earn the entire surplus in every equilibrium of the bid-and-ask model. Suppose

there is an equilibrium where S earns surplus b < 1. This implies that the highest bid that s

receives is b. Next note that there must exist one of the intermediary in the sole intermediary

path, say intermediary i, who must intermediate trade with probability strictly less than 1,

and whenever i intermediates trade he must get at most 1 − b (because 1 − b is the surplus

left after S sold the object). If intermediary i sets a bid slightly above b he will intermediate

trade with probability 1 and so he will strictly gain.

So, in every bid-and-ask equilibrium S earns the entire surplus and all other intermediaries

earn zero. This outcome can be supported in the posted-price model because the network has

no critical intermediaries (as there are two paths, each with a sole intermediary). �

Example 5. Competitive Multipartite networks. We define a k-multipartite network as

follows: there are L ≥ 1 layers of intermediation between S and D. Let nx denote the number

of nodes in layer ` ∈ {1, 2, .., L}. By construction n` ≥ 1, for all `. Every intermediary in

layer 1 is connected to S and a subset of intermediaries in layer 2. Every intermediary in layer

L is linked to D and a subset of intermediaries in layer L − 1. Every intermediary in each

layer 1 < ` < L− 1, is connected to a subset of intermediaries in layer `− 1 and a subset of

intermediaries in layer `+ 1, respectively.

When n` = 1 for all ` = 1...L we obtain the Line network as discussed in Example 3. Here

our interest is in competitive multipartite networks: n` ≥ 2 for each ` ∈ {1, ..., L} and each

node in layer ` is connected to all nodes in layer `− 1, for all ` ∈ {2, ...L}.
We now show that in these class of graphs the bid-and-ask model is payoff equivalent to

the posted-price price model. First, a competitive multipartite network with only one layer of

intermediation is a special case of the class of networks described in Example 4 and therefore

the claim follows. Second, suppose there is more than one layer. Since each path between D
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and S contains at least two intermediaries, there is always a bid-and-ask equilibrium which is

inefficient, e.g., each intermediary bids b < 0 and ask a > 1. An inefficient equilibrium exists

also in the posted-price model.

We conclude by showing that in every efficient equilibrium of the bid-and-ask model S
extracts all the surplus. First, note that each intermediary in layer L can resell the object at

an ask of 1 (as they are directly connected to D). Second, since each intermediary in layer

L is connected to all intermediaries in layer L − 1, it must be the case that the highest bid

across L-layer intermediaries is 1. In fact, since the equilibrium is efficient, the object will

arrive at layer L − 1 with probability 1 and, if the highest bid across L-layer intermediaries

is strictly below 1, then one of them strictly gains by posting a slightly higher bid. Since the

highest bid across L-layer intermediaries is 1 and since all intermediaries in layer L− 1 access

all intermediaries in layer L, every L− 1-layer intermediary can resell the object at a price of

1. So every intermediary in layer L− 1 must set ask 1 and correspondingly set a bid of 1. We

can then iterate the argument above to show that, for every layer ` ∈ 2, ..., L the bid and ask

is set equal to 1. Hence, S must earn the entire surplus. This outcome is sustainable in the

posted-price model if all intermediaries set a price pi = 0. It is easily verified that this price

profile is an equilibrium in the competitive multi-partite network. �

Sequential second price auction: Consider the following model which is the com-

plete information version of the model of Kotowski and Leister (2012). Two nodes S and

D are connected in a complete multipartite network, i.e. a multipartite network as defined

in Example 5 above. Node S has an indivisible object. S and all intermediaries have no

consumption value for the object whereas buyer D has a consumption value v.21

Trading occurs via a sequence of second price, sealed-bid auctions: first S runs an auction

where intermediaries in layer ` = 1 bid, the winner of this auction runs an auction where

intermediaries in layer ` = 2 bid, and so on. It is assumed that the intermediary in the last

layer L who eventually owns the object sells it to D at a price of v. It follows that if there is

only one intermediary in a layer, then the intermediary obtains the object at a price of 0.

For a given strategy profile, define the resale value of an intermediary in layer ` as the profit

that he anticipates to make if he wins the auction. The following proposition characterizes

(sub-game perfect) equilibrium where each intermediary bids his resale value. A complete

21Kotowski and Leister (2012) suppose that each intermediary has either a low or high transaction cost.
Low transaction cost is normalized to zero; high transaction cost is a number above v. The level of such cost
is private information of the intermediary, but it is common knowledge that an intermediary has a low cost
with probability p. In this section we have assumed that p = 1
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multipartite network, has critical intermediaries if, and only if, n` = 1 for some ` ∈ {1, ..., L}.
When there are critical intermediaries, let `∗ be the largest index such that n`∗ = 1, i.e., the

intermediary in layer `∗ is critical and there are no critical intermediaries in layer ` > `∗.

Theorem B. Consider a complete multi-partite network with L ≥ 1 layers and suppose

(n1, ..., nL) is the distribution of intermediaries across the layers.

1. If there are no critical intermediaries then it is an equilibrium for every intermediary to

bid v. In this equilibrium S earns the entire surplus.

2. If there are critical intermediaries, then it is an equilibrium for an intermediary in layer

` ∈ {`∗, ..., L} to bids v and each intermediary in layer ` ∈ {1, ..., `∗ − 1} bids 0 is an

equilibrium. In this equilibrium critical intermediary in layer `∗ earns the entire surplus.

Proof of Theorem B: Suppose C = ∅. The resale value of an intermediary in layer L is v

because, by assumption, an intermediary in the last layer re-sells to D at a price v. Consider

then the auction run by an intermediary in layer L − 1. Since C = ∅, there are at least two

bidders in the auction and their valuation is v. As standard, bidding v is a best reply and the

profit of the seller is v. Hence, the resale value of each intermediary in layer L− 1 is v. The

proof follows by iterating this argument.

Next, suppose C 6= ∅. The argument developed in the previous paragraph holds for every

auction run starting from an intermediary in layer ` ∈ {`∗, ..., L−1}. Now consider the auction

run by intermediary in layer `∗ − 1. Note that, since intermediary in `∗ is critical, he buys

the object at 0, regardless of his bid. Hence, bidding v is a best reply. This also implies that

the resale value of each intermediary in layer `∗ − 1 is 0. It is not easy to see that in the

auction run by an intermediary in layer `∗− 2, intermediaries in layer `∗− 1 play a best reply

by bidding 0, which, in turns, implies a resale value of each intermediary in layer `∗− 2 equal

to 0. Iterating the argument we conclude the proof. �

We now relate this result to our posted price model. Theorem 1 tells us that in the complete

multipartite networks the presence of critical traders implies that in an efficient equilibrium

intermediaries extract the entire surplus. The distribution across nodes is not tied down. So,

in the auction model, if intermediaries bid their valuation then the equilibrium corresponds

to the efficient equilibrium of our posted price model with a very specific division of surplus:

the last critical intermediary earns the entire surplus.
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Appendix III: Strategic uncertainty

In the model of strategic uncertainty we make the following two assumptions. First,

each trader is assumed to form beliefs about the behaviors of other traders, consistent with

their actual behaviors. Second, each trader make errors in choosing his own choice and the

probability of choosing a particular price is positively associated with its corresponding payoff.

We focus on the trading setting with demand uncertainty where the surplus is unknown and

drawn from a distribution Fv (·) on the interval [0, 100]. Given a utility function u, the

expected utility of intermediary i with his price pi is

Π̃i (pi) = u (pi)×Bi (pi) ,

where Bi (pi) denotes intermediary i’s beliefs about himself being used for trade. The precise

form of this depends on a network g. We denote F−j as intermediary i’s beliefs (joint dis-

tribution) about the pricing behaviors of all other intermediaries in a network. We start by

considering Line networks.

Line networks. Consider a line network with η ≥ 1 intermediaries. The probability of

intermediary i being used for trade is then given by

Bi (pi) =

∫
v∈[0,100]

∫
p−i

1

{
pi +

∑
j 6=i

pj ≤ v

}
dF−idFv,

where 1 {·} is an indicator function.

Ring networks. Consider a trading situation (d (q1) , d (q2)) in a ring network where

there are n1 ≥ 1 and n2 ≥ 1 numbers of intermediaries in paths q1 and q2, respectively. Fix

intermediary i ∈ q1. The probability of intermediary i being used for trade is then given by

Bi (pi) =

∫
v∈[0,100]

∫
p−i

1

{
pi +

∑
j 6=i,j∈q1 pj ≤ v

&
∑

j∈q1 pj ≤
∑

k∈q2 pk

}
dF−idFv.

Ring with Hubs and Spokes. Consider first a critical intermediary i in a trading

situation (d (q1) , d (q2)) in a ring network where there are n1 ≥ 2 and n2 ≥ 2 numbers of

intermediaries in paths q1 and q2, respectively. The probability of critical intermediary i
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being used for trade is

Bi (pi) =

∫
v∈[0,100]

∫
p−i

1

{
pi + min

{ ∑
j 6=i,j∈q1

pj,
∑

k 6=i,k∈q2

pk

}
≤ v

}
dF−idFv.

If intermediary i is non-critical and i ∈ q1, the probability of non-critical intermediary i being

used for trade is

Bi (pi) =

∫
v∈[0,100]

∫
p−i

1

{
pi +

∑
j 6=i,j∈q1 pj ≤ v

&
∑

j∈q1 pj ≤
∑

k∈q2 pk

}
dF−idFv.

In estimating the model of strategic uncertainty with the experimental data,22 we assume

that intermediary i makes a stochastic choice, modelled by a conventional logistic function:

Pr {pi = s} =
exp

(
λΠ̃i (s)

)
∑100

t=0 exp
(
λΠ̃i (t)

) ,
where λ is a payoff-sensitivity parameter in choice function. If λ goes to zero, the pricing

choice becomes purely random. If λ goes to the infinity, the individual chooses an optimal

price with probability 1. In the estimation, we assume that each individual intermediary forms

consistent beliefs about the behaviors of other traders across distinct trading positions in a

network. Beliefs are consistent in the sense that they correspond to empirical distributions of

choices from the experiment. We also assume that individual traders share the power utility

function

u (x; ρ) =
x1−ρ

1− ρ
,

where ρ represents the constant relative risk aversion (CRRA) coefficient.

We use the maximum likelihood estimation (MLE) method to estimate the payoff-sensitivity

parameters and the CRRA coefficient of the model of strategic uncertainty with stochastic

choice. Let the data consist of m number of distinct trading positions, k1, ..., km, in each of

which there are nki number of price choices, {pki}
nki
ki=1. Given the above formulas of expected

22In the estimation we discretize the experimental data to be the set of integer numbers, ranging from 0 to
100, by rounding observed choices to their nearest integer.
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payoffs and logistic choice function, we can then construct the log-likelihood function:

L
(
ρ, λk1 , ..., λkm ;

{
{pki}

nki
ki=1

}m
i=1

)
=

m∑
i=1

nki∑
ki=1

{
100∑
t=0

1 {pki = t} × log (Pr {pki = t})

}
.

The set of parameters, (ρ, λk1 , ..., λkm), are chosen to maximize the log-likelihood function.

Table 10 reports the MLE estimates with last 30 rounds of the data from the experiment with

demand uncertainty and the benchmark experiment, respectively. We use the nonparametric

bootstrap method of computing standard errors of the model parameters with 500 replications.

Appendix IV: additional empirical material

In this Appendix we report information about intermediation costs and average prices over

time and across different treatments, both for the benchmark experiment (Table 10 and Table

11) and for the experiment with demand uncertainty (Table 12 and Table 13). We also present

a selective set of plots on distributions of estimated prices and observed prices in the different

treatments (Figures 8 and 9).
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1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60

19.76 12.77 7.80 6.04 4.81 5.36

(80) (80) (80) (80) (80) (80)

41.77 24.62 18.44 14.08 11.96 12.01

(52) (49) (50) (44) (44) (50)

39.05 22.92 17.54 14.99 12.92 13.00

(18) (21) (20) (26) (26) (20)

40.40 30.51 22.36 20.35 17.60 20.71

(5) (11) (11) (8) (5) (9)

41.85 29.66 26.44 22.20 20.11 22.09

(17) (14) (15) (13) (14) (14)

41.41 29.31 23.53 22.01 20.07 17.54

(11) (11) (10) (12) (15) (10)

43.32 30.73 24.44 20.76 24.54 18.20

(7) (4) (4) (7) (6) (7)

89.19 98.09 98.06 99.20 99.67 99.31

(15) (22) (17) (15) (15) (16)

87.35 85.00 92.85 97.59 95.00 96.88

(14) (5) (18) (13) (12) (8)

66.09 73.44 74.59 74.28 73.50 66.31

(11) (9) (11) (15) (12) (13)

76.35 71.41 66.43 59.33 58.00 65.17

(7) (9) (7) (6) (4) (6)

86.06 87.51 86.90 85.53 84.94 81.82

(7) (9) (7) (12) (11) (13)

90.19 84.12 76.83 81.00 71.57 82.25

(5) (3) (3) (5) (7) (4)

40.60 47.00 46.50 31.33 32.33 25.56

(5) (5) (4) (3) (6) (8)

(1, 2, 4, 4)

(2, 2, 4, 6)

(2, 2, 5, 5)

(0, 2, 2, 4) or (0, 2, 3,

3)

Note: The number in a cell is the sample average. The number in parentheses is the number of observations. #Cr denotes

the number of critical intermediaries, #Paths denotes the number of paths connecting buyer and seller, d(q) denotes the

length of path q beween buyer and seller.

Ring with

hubs

(1, 1, 2, --)

(2, 1, 3, --)

(1, 2, 3, 5)

Ring 10

(0, 2, 2, 8)

(0, 2, 3, 7)

(0, 2, 4, 6)

(0, 2, 5, 5)

Ring 6

(0, 2, 2, 4)

(0, 2, 3, 3)

Network (#Cr,#Paths, d(q),d(q'))
Rounds

Ring 4 (0, 2, 2, 2)

Table 10: Intermediation costs, conditional on trading, in the benchmark case.
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1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60

23.91 14.98 10.61 8.36 8.84 10.41

(160) (160) (160) (160) (160) (160)

46.41 28.04 20.19 15.79 16.26 14.77

(52) (49) (50) (44) (44) (50)

16.23 9.88 7.49 6.29 5.69 6.53

(156) (147) (150) (132) (132) (150)

22.58 14.04 10.01 8.45 7.84 7.79

(72) (84) (80) (104) (104) (80)

41.40 30.81 24.69 20.93 21.80 30.85

(5) (11) (11) (8) (5) (9)

6.69 6.59 4.45 6.13 3.55 6.74

(35) (77) (77) (56) (35) (63)

24.15 15.89 14.17 12.29 10.60 12.49

(34) (28) (30) (26) (28) (28)

7.73 5.69 5.56 4.60 4.23 5.73

(102) (84) (90) (78) (84) (84)

17.16 10.23 9.00 8.42 7.16 6.56

(33) (33) (30) (36) (45) (30)

9.78 7.61 5.47 4.73 5.19 4.92

(55) (55) (50) (60) (75) (50)

12.65 9.25 7.12 6.08 6.66 5.77

(56) (32) (32) (56) (48) (56)

38.83 44.97 50.18 50.62 53.85 47.85

(12) (11) (11) (15) (13) (13)

36.67 40.36 33.59 32.09 26.31 24.62

(12) (11) (11) (15) (13) (13)

16.26 14.85 9.39 8.97 10.97 8.41

(36) (33) (33) (45) (39) (39)

38.29 36.18 34.86 35.83 35.00 46.17

(8) (9) (7) (6) (4) (6)

28.10 20.28 17.88 14.33 15.31 13.04

(32) (36) (28) (24) (16) (24)

33.14 35.02 34.86 32.47 36.94 33.18

(20) (22) (20) (24) (26) (26)

29.98 27.78 23.07 24.58 20.46 17.46

(10) (11) (10) (12) (13) (13)

12.69 9.59 10.57 8.11 7.82 7.91

(30) (33) (30) (36) (39) (39)

29.50 33.50 23.17 30.67 26.36 30.50

(10) (10) (6) (12) (14) (8)

21.17 16.97 15.71 14.08 12.07 13.00

(20) (20) (12) (24) (28) (16)

45.60 46.79 46.43 48.80 47.50 50.00

(30) (14) (36) (26) (24) (20)
(2, 1, 3, --) Critical

Note: The number in a cell is the sample average. The number in parentheses is the number of observations. #Cr denotes the number of critical
intermediaries, #Paths denotes the number of competing paths connecting buyer and seller, d(q) denotes the length of path q beween buyer and
seller.

Non-critical

(2, 2, 4, 6)

Critical

4 / non-critical

6 / non-critical

(2, 2, 5, 5)

Critical

Non-critical

(5, 5) 5

Ring with
hubs

(1, 2, 3, 5)

Critical

3 / non-critical

5 / non-critical

(1, 2, 4, 4)

Critical

Ring 10

(2, 8)

2

8

(3, 7)

3

7

(4, 6)

4

6

Ring 6

(2, 4)

2

4

(3, 3) 3

Ring 4 (2, 2) 2

Network
(#Cr,#Paths,
d(q),d(q'))

Distance of own
path / criticality

Rounds

Table 11: Pricing Behavior in the benchmark case.
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1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60

18.86 15.74 12.15 10.48 8.93 7.35

(100) (100) (100) (100) (100) (100)

34.28 31.01 27.30 27.28 26.88 24.78

(37) (34) (43) (42) (42) (36)

33.64 33.82 36.45 36.02 27.09 26.34

(23) (26) (29) (18) (18) (24)

41.04 25.30 28.19 27.48 31.73 23.31

(22) (17) (22) (12) (19) (16)

34.16 36.26 37.46 33.36 33.08 31.16

(16) (17) (19) (23) (14) (25)

53.50 38.06 39.48 34.62 35.47 33.01

(14) (17) (16) (19) (15) (10)

60.47 49.30 29.69 27.86 41.77 46.12

(8) (9) (3) (6) (12) (9)

43.75 41.75 48.36 41.30 39.95 41.05

(20) (22) (23) (37) (26) (30)

55.76 41.69 44.94 43.78 37.29 45.82

(16) (16) (21) (17) (15) (14)

71.88 67.66 58.02 54.53 59.11 61.00

(28) (30) (30) (20) (33) (30)

61.83 54.30 49.35 58.51 54.18 56.56

(14) (13) (14) (11) (13) (11)

35.44 31.67 31.65 33.29 36.50 31.97

(42) (41) (31) (38) (36) (39)

49.85 46.49 51.08 45.90 50.37 44.23

(30) (28) (31) (27) (27) (26)

69.67 63.67 59.76 64.35 64.92 69.81

(90) (90) (90) (90) (90) (90)

76.94 77.32 69.50 74.04 80.58 79.26

(60) (60) (60) (60) (60) (60)

Line 3

Line 4

(4, 6)

(5, 5)

Line 8 1 6 (7, --)

(3, 5)

(4, 4)

2

(4, 6)

(5, 5)

1

Ring with
Hubs and
Spokes

1

1

Note: The number in a cell is the sample average. The number in parentheses is the number of observations. #Cr

denotes the number of critical intermediaries, #Paths denotes the number of paths connecting buyer and seller, d(q)

denotes the length of path q beween buyer and seller.

Ring 10 2 0

(2, 8)

(3, 7)

(2, --)

2 (3, --)

Line 6 1 4 (5, --)

2

1

Ring 4 2 0 (2, 2)

Ring 6 2 0

(2, 4)

(3, 3)

Network #Paths #Cr (d(q), d(q'))
Rounds

Table 12: Intermediation costs, conditional on trading, in the uncertain demand case
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1 ~ 10 11 ~ 20 21 ~ 30 31 ~ 40 41 ~ 50 51 ~ 60

26.66 21.47 16.43 13.46 11.76 10.15

(200) (200) (200) (200) (200) (200)

37.99 32.70 34.38 32.04 28.74 29.93

(37) (34) (43) (42) (42) (36)

19.78 17.97 14.55 15.59 17.21 13.82

(111) (102) (129) (126) (126) (108)

21.31 22.71 21.68 24.05 17.69 21.11

(92) (104) (68) (72) (72) (96)

42.59 26.00 31.32 27.50 33.68 24.66

(22) (17) (22) (12) (19) (16)

15.20 11.05 8.32 12.42 12.67 10.09

(154) (119) (154) (84) (133) (112)

19.06 22.99 20.15 17.51 20.44 18.69

(32) (34) (38) (46) (28) (50)

12.29 7.73 12.05 12.44 11.33 11.63

(96) (102) (114) (138) (84) (150)

21.56 17.33 16.06 13.70 17.26 13.88

(42) (51) (48) (57) (45) (30)

16.51 11.65 12.78 13.68 8.75 8.82

(70) (85) (80) (95) (75) (50)

17.86 14.50 9.07 8.36 12.33 15.05

(64) (72) (24) (48) (96) (72)

23.27 22.47 29.39 22.57 21.02 23.68
(20) (22) (23) (37) (26) (30)

27.03 20.30 22.91 23.66 21.35 21.65

(20) (22) (23) (37) (26) (30)

12.72 11.87 13.39 13.89 14.25 9.38

(60) (66) (69) (111) (78) (90)

26.03 19.03 22.74 20.47 15.73 20.36

(16) (16) (21) (17) (15) (14)

21.72 16.01 17.03 15.57 15.34 16.06

(64) (64) (84) (68) (60) (56)

25.47 25.28 20.58 18.43 20.76 22.19

(56) (60) (60) (40) (66) (60)

25.39 20.33 18.72 19.28 18.99 18.83

(28) (30) (30) (20) (33) (30)

13.99 9.85 14.84 16.52 13.41 11.80

(84) (90) (90) (60) (99) (90)

19.09 16.92 15.43 16.64 16.72 16.81

(28) (26) (28) (22) (26) (22)

17.88 14.68 14.02 19.98 15.94 16.71

(56) (52) (56) (44) (52) (44)

35.44 31.67 31.65 33.29 36.50 31.97

(42) (41) (31) (38) (36) (39)

24.92 23.25 25.54 22.95 25.19 22.11

(60) (56) (62) (54) (54) (52)

17.42 15.92 14.94 16.09 16.23 17.45

(360) (360) (360) (360) (360) (360)

12.82 12.89 11.58 12.34 13.43 13.21

(360) (360) (360) (360) (360) (360)

Ring with

Hubs and

Spokes

Line 3

Line 4 Critical

(6, 1, 7, --) Critical

Note: The number in a cell is the sample average. The number in parentheses is the number of observations. #Cr denotes the number of critical

intermediaries, #Paths denotes the number of competing paths connecting buyer and seller, d(q) denotes the length of path q beween buyer and

seller.

(4, 1, 5, --) CriticalLine 6

Line 8

(2, 1, 2, --) Critical

(2, 2, 4, 6)

Critical

4 / non-critical

6 / non-critical

(2, 2, 5, 5)

Critical

3 / non-critical

5 / non-critical

(1, 2, 4, 4)

Critical

Non-critical

(2, 1, 3, --)

Ring 10

(2, 8)

2

8

(3, 7)

3

7

(4, 6)

4

6

Critical

Non-critical

(5, 5) 5

(1, 2, 3, 5)

Ring 6

(2, 4)

2

4

(3, 3) 3

Ring 4 (2, 2) 2

Network
(#Cr,#Paths,

d(q),d(q'))

Distance of own

path / criticality

Rounds

Table 13: Pricing behavior in the uncertain demand case
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Figure 8: Comparison: predicted vs observed prices in benchmark model
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Figure 9: Comparison: predicted vs observed prices with uncertain demand
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