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a b s t r a c t

Factor model methods recently have become extremely popular in the theory and practice of large panels
of time series data. Those methods rely on various factor models which all are particular cases of the
Generalized Dynamic Factor Model (GDFM) introduced in Forniet al. (2000). That paper, however, rests
on Brillinger’s dynamic principal components. The corresponding estimators are two-sided filters whose
performance at the end of the observation period or for forecasting purposes is rather poor. No such
problem arises with estimators based on standard principal components, which have been dominant
in this literature. On the other hand, those estimators require the assumption that the space spanned
by the factors has finite dimension. In the present paper, we argue that such an assumption is extremely
restrictive andpotentially quite harmful. Elaborating upon recent results byAnderson andDeistler (2008a,
b) on singular stationary processes with rational spectrum, we obtain one-sided representations for
the GDFM without assuming finite dimension of the factor space. Construction of the corresponding
estimators is also briefly outlined. In a companion paper, we establish consistency and rates for such
estimators, and provide Monte Carlo results further motivating our approach.

© 2015 Published by Elsevier B.V.
1. Introduction

1.1. Dynamic factor models

High-dimensional factor model methods can be traced back
to two seminal papers by Chamberlain (1983) and Chamberlain
and Rothschild (1983). The recent and fastly growing literature on
the subject, however, is starting with the contributions by Forni
et al. (2000), Forni and Lippi (2001), Stock and Watson (2002a,b),
Bai and Ng (2002) and Bai (2003). Fostered by their success
in applications, factor model methods since then have attracted
considerable attention. The recent literature in the area is so abun-
dant that even a brief review is impossible here, and we re-
strict ourselves to a short and unavoidably somewhat subjective
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selection of ‘‘representative’’ references. Applications include
(a) forecasting (Stock and Watson, 2002a,b; Forni et al., 2005;
Boivin and Ng, 2006), (b) business cycle indicators and nowcast-
ing (Cristadoro et al., 2005; Giannone et al., 2008; Altissimo et al.,
2010), (c) structural macroeconomic analysis and monetary policy
(Bernanke and Boivin, 2003; Bernanke et al., 2005; Stock andWat-
son, 2005; Giannone et al., 2005; Favero et al., 2005; Eickmeier,
2007; Forni et al., 2009; Boivin et al., 2009; Forni and Gambetti,
2010), (d) the analysis of financialmarkets (Corielli andMarcellino,
2006; Ludvigson and Ng, 2007, 2009; Hallin et al., 2011), to quote
only a few.

Apart for some minor features, most factor models considered
in the literature are particular cases of the so-called Generalized
Dynamic Factor Model (GDFM) introduced in Forni et al. (2000).
Consider a countable set {xit}, i ∈ N of observable stationary
stochastic processes. The GDFM relies on a decomposition of the
form

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + · · · + biq(L)uqt + ξit , (1.1)

http://dx.doi.org/10.1016/j.jeconom.2013.10.017
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i ∈ N, t ∈ Z, where ut = (u1t u2t · · · uqt)
′ is a q-dimensional

orthonormal unobservable white noise vector and bif (L), i ∈ N,
f = 1, . . . , q, are square-summable filters (L, as usual, stands for
the lag operator). Moreover:

(I) ut is orthogonal to ξi,t−k for all i ∈ N, t ∈ Z and k ∈ Z;
(II) cross-covariances among the ξit ’s are ‘‘weak’’.

By ‘‘weak’’, we mean that, while some cross-covariance among the
ξ ’s is allowed, all sequences of weighted cross-sectional averages
of the form

n
i=1wniξit such that limn→∞

n
i=1w

2
ni = 0 tend

to zero in mean square as n → ∞ (the sequence of arithmetic
averages n−1 n

i=1 ξit being a particular case).2 Note that E(ξ 2it ) ≤

M for all i and E(ξitξjt) = 0 for all i ≠ j, is sufficient, but not
necessary for (II) to hold (we refer to Section 2 for a detailed
presentation and discussion).

Weak covariance of the ξit ’s motivates calling them idiosyn-
cratic, while the χit ’s, being driven by the low-dimensional vector
of common shocks uft , f = 1, 2 . . . , q, are called common compo-
nents. The model implies that cross-covariances among the ob-
servable variables xit are essentially accounted for by the common
components χit .

The problem consists in recovering the unobserved common
and idiosyncratic components χit and ξit , the common shocks ut
and the filters bif (L), from finite realizations (i = 1, . . . , n; t =

1, . . . , T ) of the process {xit}, as n and T both tend to infinity.
The main tool so far has been a principal component analysis (PC)
of the variables xit , either standard or in the frequency domain
(Brillinger’s concept of dynamic principal components), depending
on the assumptionsmade. The results obtained can be summarized
as follows.

(i) The finite-dimension assumption. Most authors assume that,
denoting by span( . . . ) the space generated by a collection
of random variables,3 span(χit , i ∈ N), for given t , has finite
dimension r , where r ≥ q. Under that assumption,model (1.1)
can be rewritten as

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit

Ft = (F1t . . . Frt)′ = N(L)ut ,
(1.2)

i ∈ N, t ∈ Z. This is fairly easy to prove, see Forni et al.
(2009), Remark R, Section 2. In this case, we say that (1.1)
admits a static representation. If, in addition, N(L) = N(0),
so that Ft is a white noise vector, then (1.1) is a static factor
model. Criteria to determine r consistently are given in Bai
and Ng (2002) (see also Alessi et al., 2010). The vectors Ft
and the loadings λij can be estimated consistently using the
first r standard principal components, see Stock and Watson
(2002a,b), Bai and Ng (2002). Moreover, the second equation
in (1.2) is usually specified as a singular VAR, so that (1.2)
becomes

xit = λi1F1t + λi2F2t + · · · + λirFrt + ξit

(I − D1L − D2L2 − · · · − DpLp)Ft = Rut ,
(1.3)

2 Weak cross-covariance among the ξ ’s, as opposed to cross-sectional orthogo-
nality (that is, the much stronger assumption of no cross-covariances at all), is the
reason for using the term ‘‘generalized’’ in the denomination of the GDFM. It consti-
tutes a major difference with respect to the dynamic factor models studied in Sar-
gent and Sims (1977), Geweke (1977), Quah and Sargent (1993), which, being based
on a finite number n of equations of the form (1.1), require strict cross-sectional or-
thogonality.
3 More precisely, span(ζi, i ∈ N), where ζi belongs to the Hilbert space of

square-summable random variables defined over some probability space, equipped
with the corresponding L2 norm, is the closed Hilbert space of all mean-square
convergent linear combinations of the ζi ’s and limits of convergent sequences
thereof.
where the matrices Dj are r × r while R is r × q. Under
(1.3), Bai and Ng (2007) and Amengual and Watson (2007)
provide consistent criteria to determine q. VAR estimation,
and therefore, up to multiplication by an orthogonal matrix,
estimation of ut in (1.3), is standard.

(ii) Obtaining the static representation. Let us point out that (1.2)
or (1.3) are convenient ‘‘reduced forms’’ of other, more explic-
itly dynamic, representations. For example, an interesting dy-
namic factor model is

xit = µi0ft + µi1ft−1 + · · · + µipft−p + ξit , (1.4)

where ft is a q-dimensional stationary vector, µij is 1 × q and
D(L)ft = ut . Bai and Ng (2007) and Forni et al. (2009) show
how (1.4) can be put in the form (1.2), or (1.3), and obtain the
coefficients of (1.2), or (1.3), as functions of the coefficients of
(1.4).

(iii) The dynamically unrestricted model. Using the frequency-
domain principal components (Brillinger, 1981), and without
any finite-dimensional assumption of the form (1.2), Forni
et al. (2000) obtain an estimator of the spectral density of
the common components χit and show how to consistently
recover the common components themselves. Criteria to de-
termine q without assuming (1.2) or (1.3) are obtained in
Hallin and Liška (2007) and Onatski (2009). Unfortunately,
frequency-domain principal components produce estimators
of the χit ’s that are based on two-sided filters, which hence
cannot be used at the end of the sample or for prediction.

Due to that two-sidedness feature, the GDFM is seldom consid-
ered in practice, and finite-dimensional structure assumptions like
(1.2) or (1.3) aremadewith almost no exception. Even the paper by
Forni et al. (2005), which is based on the same frequency-domain
approach as Forni et al. (2000), adopts a finite-dimension assump-
tion for span(χit , i ∈ N) to obtain one-sided estimators.4

The moot point is that such assumptions are far from being
innocuous. For instance, (1.2) is so restrictive that even the very
elementary model

xit =
ai

1 − αiL
ut + ξit , (1.5)

where q = 1, ut is scalar white noise, and the coefficients αi
are drawn from a uniform distribution over (−1, 1), is ruled out.
Indeed, the space spanned, for a given t , by the common compo-
nents χit , i ∈ N, is easily seen to be infinite-dimensional. Infinite-
dimensional span(χit , i ∈ N)’s a fortiori occur if the AR common
component in (1.5) is replaced by more general ARMA ones.

But even when the dimension of span(χit , i ∈ N) is finite
there are interesting cases for which the dynamically unrestricted
model and related methods provide an advantage over the static
approach. Consider the model

xit =


ut + aut−1 + ξit if i = 1
ut + ξit if i > 1,

(1.6)

where ut is a scalarwhite noise, and suppose thatwe are interested
in the first variable x1t . Of course this model, unlike (1.5), can be
written in the static form (1.2), with F1t = ut and F2t = ut−1.
However, it does not fulfil a basic assumption of the static two-
factor model, since ut−1 is ‘‘non-pervasive’’ (see Assumption B.2,
Section 2). As a consequence, the impulse response function of
x1t , i.e. 1 − aL, cannot be obtained with the standard principal
component method. By contrast, as shown in Section 2, model

4 See also Altissimo et al. (2010), where the spectral-density principal-
component approach is used in combination with the finite-dimensional assump-
tion.
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(1.6) can be easily accommodated within the dynamic approach
proposed here.5

Such examples provide a strong theoretical motivation for
solving the one-sidedness problem in model (1.1) without turning
to the finite-dimension restriction and the related assumptions
andmethods. This is done in the present paper under assumptions
that include rational spectral density for the common components
χit .6

On the other hand, we must also point out that, even when
the finite-dimension assumption does not hold, model (1.2), or
(1.3), can provide a good approximation to model (1.1), or, in
empirical situations, with n and T given, a good fit or a good
performance in forecasting. These problems are not studied in the
present paper, in which we only deal with representation issues
andmake use of population covariances and spectral densities. The
companion paper, Forni et al. (2014), gives a detailed definition of
the estimators corresponding to the construction of the present
paper, studies their consistency rates, and compares, by means
of Monte Carlo experiments, the performance of the static and
the dynamic approach. A brief outline of these results is given in
Section 4.5.

1.2. Outline of the paper

Instead of finite-dimensional assumptions of the form (1.2) or
(1.3), we impose the much milder condition that the common
components have a rational spectral density, that is, each filter bif (L)
in (1.1) is a ratio of polynomials in L. More precisely, we assume the
following representation for the common components:

χit =
ci1(L)
di1(L)

u1t +
ci2(L)
di2(L)

u2t + · · · +
ciq(L)
diq(L)

uqt , (1.7)

where

cif (L) = cif ,0 + cif ,1L + · · · + cif ,s1L
s1 and

dif (L) = dif ,0 + dif ,1L + · · · + dif ,s2L
s2 ,

f = 1, 2, . . . , q. The assumption that s1 and s2, the degrees of cif (L)
and dif (L) respectively, are assumed to be independent of i is very
convenient, though not necessary. As for the idiosyncratic compo-
nents we do not make any parametric assumptions, nor restrict
their cross-covariance structure—except of course for the ‘‘weak
cross-correlation assumption’’ that characterizes idiosyncrasy, as
described above. Ourmodel, in that sense, is a semiparametric one,
with a huge nuisance; in particular, the autocorrelation structures
of idiosyncratic components remain completely unspecified.

We show that, for generic values of the parameters cif,k and dif,k
(i.e. apart from a subset that is negligible, in a sense to be spec-
ified in Section 2), the infinite-dimensional common-component
vector χt = (χ1t χ2t · · · χnt · · ·)′ admits a block-structure au-
toregressive representation

A1(L) 0 · · · 0 · · ·

0 A2(L) · · · 0
. . .

0 0 · · · Ak(L)
...

. . .

 χt =



R1

R2

...

Rk

...

ut , (1.8)

where eachAk(L) is a (q+1)×(q+1) polynomialmatrixwith finite
degree and Rk is (q + 1)× q. Denoting by A(L) and R the (infinite)

5 Model (1.6) is just a stylized example of a situation in which some of the lags of
the common shocks are non-pervasive.
6 Some of the results presented her have been outlined, without proofs, in a very

preliminary version in Forni and Lippi (2011).
matrices on the left- and right-hand sides of (1.8), respectively, and
defining xt and ξt in analogy with χt , we obtain

Zt = Rut + A(L)ξt , (1.9)

where Zt = A(L)xt , and, lastly,

zt = rut + φt , (1.10)

which results from (1.9) by normalization (both sides of the ith
equation are divided by the standard deviation of Zit ). This is a fac-
tor model with a representation of the form (1.2) and Ft = ut—
thus, according to the definition given in Section 1.1, a static factor
model.

Some comments on (1.8)–(1.10) are in order.

(i) We can rewrite (1.8) as Ak(L)χk
t = Rkut , k ∈ N, where the

vectors χk
t are the (q + 1)-dimensional subvectors

(χ1t χ2t · · · χq+1,t), (χq+2,t χq+3,t · · · χ2(q+1),t), . . . .

Thus (1.8) is made up of (a) obtaining an autoregressive
representation for each of the vectorsχk

t , and then (b) knitting
together such autoregressive representations.

(ii) As regards (a), each of the subvectors has dimension (q + 1)
and rank q (i.e. its spectral density has rank q for all θ ∈

[−π π]), and is therefore singular (i.e. its dimension is greater
than its rank). For singular (or reduced-rank) vectors, with
rational spectral density, existence of a finite-degree autore-
gressive representation, for generic values of the parame-
ters, has been proved in Anderson and Deistler (2008a,b). We
contribute to this literature by showing that, when the dimen-
sion is equal to q+ 1, the minimum-lag autoregressive repre-
sentation is generically unique. As regards (b), obtaining the
same ut for all the vectors χk

t requires the additional assump-
tion that, for each k, span(χk

t−h, h ≥ 0) = span(χt−h, h ≥ 0).
We will motivate this restriction by a genericity argument.

(iii) The matrices Ak(L) and Rk can be obtained starting with the
spectral densitymatrix of the observable variables xit . The vec-
tor zt results from the application of one-sided filters to the
variables xit , see (1.10). Lastly, ut can be obtained using the
first q principal components of the variables zit , i.e. only cur-
rent values of the variables zit . Our procedure thus solves the
one-sidedness problem.

(iv) Moreover, the matrices Ak(L) and Rk, which are (q + 1) ×

(q+ 1) and (q+ 1)× q respectively, result from separate low-
dimensional calculations. Thus we do not run into ‘‘curse of
dimensionality’’ problems.

In Section 2, we state the main assumptions underlying the
GDFM and review some basic results from previous literature. In
Section 3, we prove some general results on stochastic vectors
that are infinite-dimensional with finite rank, like χt , under the
assumption of rational spectral density. Rational spectral density
is assumed for χt throughout the paper. In Section 4, we present
results on autoregressive representations of singular stochastic
vectors. Such results are then used to construct the blockwise au-
toregressive representation (1.8) for χt and to transform the orig-
inal variables xit into another set of variables for which a static
factor model holds. Lastly, we briefly outline the correspondence
between our representation result here and the estimation pro-
cedure that we study in the companion paper Forni et al. (2014).
Section 5 concludes.

2. Main assumptions and background results

2.1. Notation

The GDFM (1.1) can be thought of as (i) a double-indexed
stochastic process {xit , i ∈ N, t ∈ Z}, (ii) a family of stationary
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processes {xit , t ∈ Z} indexed by i ∈ N, or (iii) a stationary family
of cross-sections {xit , i ∈ N} indexed by t ∈ Z, i.e. a stationary
infinite-dimensional stochastic process.7 We find the third option
convenient, and accordingly write xt for (x1t x2t · · · xnt · · · )′.
The notation χt , ξt and xt = χt + ξt is used in a similar way,
with obvious componentwise counterparts. Associated with this
infinite-dimensional vector notation, we also consider infinite-
dimensional matrices, such as A(L) or R (see (1.10)), which are
∞ × ∞ and ∞ × q, respectively. Also, defining b(L) as the ∞ × q
matrixwith (i, f )-entry bif (L), (1.1) is rewritten as xt = b(L)ut+ξt .
The reader will easily check that we never produce infinite sums
of products, so that our infinite-dimensional matrices are no more
than a notational convenience. All infinite-dimensional matrices
are underlined, while their finite-dimensional submatrices are not.
In particular, As(L) denotes the s × s upper left submatrix of A(L),
bs(L) andRs the s×q upper submatrices of b(L) andR, respectively.

Given the infinite-dimensional process yt = (y1t y2t · · · ynt
· · ·)′, we use the following notation:
(i) yst is the s-dimensional process (y1t y2t · · · yst)′;
(ii) Hy

= span(yit , i ∈ N, t ∈ Z), Hys = span(yit , 1 ≤ i ≤

s, t ∈ Z);
(iii) H

y
t = span(yiτ , i ∈ N, τ ≤ t), Hys

t = span(yiτ , 1 ≤ i ≤

s, τ ≤ t).

If yt is s-dimensional we use the notation Hy
= span(yit , i ≤

s, t ∈ Z), H
y
t = span(yiτ , i ≤ s, τ ≤ t) (we never need sub-

vectors of finite-dimensional vectors).
It is convenient, though not necessary, to assume throughout

the paper that all white-noise vectors are orthonormal.

2.2. Basic assumptions

All the stochastic variables xit , χit and ξit below have mean zero
and finite variance.

Assumption A.1. For all n ∈ N, the vector xnt is weakly stationary
(stationary henceforth), and has a spectral density (an absolutely
continuous spectral measure).

Denote by 6x
n(θ), with entries σ x

ij (θ), i, j ∈ N, θ ∈ [−π π],
the nested spectral density matrices of the vectors xnt =

(x1t x2t · · · xnt)′. The matrix 6x
n(θ) is Hermitian, non-negative

definite and has therefore non-negative real eigenvalues for all
θ ∈ [−π π ]. Denote by λxnj(θ) the jth eigenvalue, in decreasing
order, of6x

n(θ), and let λ̄xf (θ) = supn∈N λ
x
nf (θ). The notation6

χ
n (θ),

σ
χ

ij (θ), λ
χ

nj(θ), λ̄
χ

f (θ), 6
ξ
n(θ), σ

ξ

ij (θ), λ
ξ

nj(θ), and λ̄
ξ

f (θ) is used in a
similar way. Our second assumption is

Assumption A.2. There exists a positive integer q such that
(i) λ̄xq(θ) = ∞ for almost all θ in [−π π], and (ii) λ̄xq+1(θ) is
essentially bounded, i.e. there exists a real Bx such that λ̄xq+1(θ) ≤

Bx almost everywhere in [−π π].

Forni and Lippi (2001) prove that

Theorem A. Assumptions A.1 and A.2 imply that xt can be repre-
sented as in (1.1), i.e.

xt = χt + ξt = b(L)ut + ξt , (2.1)

where b(L) is an ∞ × q matrix of square-summable filters, ut is a
q-dimensional orthonormal white noise. Moreover,

7 For an introduction to infinite-dimensional stationary stochastic processes,
their spectral representation and prediction theory, see Salehi (1981). Some results
on infinite-dimensional processes are proved in the present paper. However, as we
assume rational spectral density and finite rank, see Section 3, our proofs only need
straightforward generalizations of results holding in the finite-dimensional case.
(i) ξnt satisfies Assumption A.1, and λ̄ξ1(θ) is essentially bounded,
i.e. there exists a real Bξ such that λ̄ξ1(θ) ≤ Bξ almost every-
where in [−π π] ;

(ii) χt satisfies A.1 and λ̄χq (θ) = ∞ almost everywhere in θ in
[−π π] (note that λ̄χq+s(θ) = 0 a.e. in [−π π] for all s > 0);

(iii) ξt and ut−k are uncorrelated for all t ∈ Z and k ∈ Z ;

(iv) the components χit and ξit are unique.

Conversely, if xt can be represented as in (2.1) with χt and ξt fulfill-
ing (i) , – (iii), then xt satisfies Assumptions A.1 and A.2.

An infinite-dimensional vector satisfying (i) is called an
idiosyncratic vector.

Under the restriction that the dimension of span(χit , i ∈ N) is
finite, so that the model has representation (1.2), or (1.3), the basic
assumptions are:

Assumption B.1. Same as A.1.

Assumption B.2. Let 0x
n be the variance–covariance matrix of xnt ,

µx
nj its jth eigenvalue and µ̄x

j = supn∈N µ
x
nj. There exists a positive

r such that (i) µ̄x
r = ∞, and (ii) µ̄x

r+1 < ∞.

Theorem B (Chamberlain and Rothschild, 1983). Assumptions B.1
and B.2 imply that xt can be represented as

xit = χit + ξit = λi1F1t + λi2F2t + · · · + λirFrt + ξit (2.2)

where Ft is a weakly stationary r-dimensional vector. Moreover,

(i) ξt satisfies Assumption B.1 and µ̄ξ1 < ∞;

(ii) χt satisfies Assumption B.1 and µ̄χr = ∞ (note that µ̄χr+s = 0
for all s > 0);

(iii) ξt and Ft are uncorrelated for all t ∈ Z;
(iv) the integer r and the components χit and ξit are unique.

Conversely, if xt can be represented as in (2.2) with χt and ξt
fulfilling (i) – (iii) , then xt satisfies Assumptions B.1 and B.2.

Under Assumptions A.1 and A.2, plus some technical assump-
tions, model (1.1) can be estimated using the (estimated) spectral
density of the x’s, see Forni et al. (2000). Asmentioned in the Intro-
duction, Hallin and Liška (2007) andOnatski (2009) provide criteria
to determine q, while Forni et al. (2000) construct a two-sided esti-
mator for χt . All these papers use spectral techniques. A combina-
tion of spectral and time-domain techniques is used in the present
paper to obtain a one-sided representation. For the corresponding
one-sided estimator, see Forni et al. (2014).

Under the finite-dimension restriction and Assumptions B.1
and B.2, plus some technical assumptions, model (1.2), or (1.3),
can be estimated using the variance–covariance matrix of the
x’s: seminal papers are Bai and Ng (2002), providing criteria to
determine r , and Stock and Watson (2002a,b), constructing an
estimator for Ft . Bai and Ng (2007) develop tests for the number
of dynamic factors q in model (1.3) without resorting to spectral
techniques.

Example (1.6) in the Introduction, i.e. x1t = ut + aut−1 + ξ1t ,
xit = ut + ξit for i > 1, nicely highlights a noticeable difference
between Assumptions A.1 and B.2, corresponding to a basic differ-
ence between the dynamic and the static approaches. Using the
dynamic approach, we see that the first eigenvalue of the spectral
densitymatrix diverges and Assumption A.2 is fulfilled with q = 1.
Hence the common component of the first variable is ut + aut−1
and its idiosyncratic component is ξ1t . Using the techniques of the
present paper, the (bivariate) VAR corresponding to the first block



M. Forni et al. / Journal of Econometrics 185 (2015) 359–371 363
in Eq. (1.8) is
1 −aL
0 1

 
χ1t
χ2t


=


1
1


ut ,

while all other bivariate blocks (x2j+1,t , x2(j+1),t) (j = 1, 2, . . .)
have Ak(L) = I2 and Rk

= (1 1)′, so that we obtain the correct
representation (1 + aL)ut for χ1t , that is, the correct response of
x1t to the common shock ut .

On the other hand, using the static approach, we find that only
the first eigenvalue of the variance–covariance matrix diverges.
Assumption B.2 is fulfilled with r = 1, namely, by Theorem B, the
model has a static factor representation with just one factor, i.e. ut ,
whereas ut−1, being non-pervasive, is not a common factor. The
common component of the first variable is ut and the term aut−1
is absorbed by the idiosyncratic component, so that themodel fails
to correctly represent the reaction of x1t to the shock ut .8

3. Infinite-dimensional processes with finite rank

Of course, uniqueness of χt and ξt in (2.1) does not imply
that ut or b(L) are unique. Alternative representations are χt =

[b(L)Q][Q′ut ] = c(L)vt , where Q is an arbitrary q × q orthogonal
matrix, or, more generally, χt = [b(L)Q(L)][Q′(F)ut ] = d(L)wt ,
where F = L−1 and Q(e−iθ )Q′(eiθ ) = Iq for almost all θ in [−π π].

More importantly, Theorem A does not ensure that χt admits
a one-sided moving-average representation, i.e., a representation of
the form χt = e(L)wt , where wt is q-dimensional orthonormal
white noise and e(L) = e0 + e1L + · · ·. For example, if

χit = ut+i−1, (3.1)

where ut is one-dimensional white noise (q = 1), then statement
(ii) of Theorem A holds true, so that χt is the common component
of some process xt satisfying A.1 and A.2, but χt has no one-sided
representations (this is quite obvious from Lemma 1 below).9

The existence of one-sided moving average representations of
infinite-dimensional stochastic vectors is analysed in Lemmas 1
and 2 under the assumptions of rational spectral density and finite
rank. A precise statement of those lemmas requires giving some
further definitions and recalling a few results on rational-spectrum
finite-dimensional stochastic vectors.

Definition 1. Consider the infinite-dimensional process yt =

(y1t y2t · · · ynt · · ·)′. Assume that yt fulfils Assumption A.1. We
say that yt has rank q if there exists a positive integer s such that
rank (6y

n(θ)) = q, for n ≥ s and almost all θ in [−π π].

Definition 2. Let yt denote an infinite-dimensional stationary
stochastic vector with a moving average representation

yt = b(L)vt , (3.2)

where vt is q-dimensional orthonormal white noise and b(L) is an
∞ × q square-summable filter. We say that (3.2) is a fundamental
representation if (1) b(L) is one-sided, and (2) vt belongs to H

y
t . In

that case, we also say that the white noise vt is fundamental for yt .
Note that if vt is fundamental for yt , then Hv

t = H
y
t .

8 The resulting lagged covariance between the common and the idiosyncratic
component of x1t is ignored within the static approach.
9 The possibility that χt has no one-sided representations arises here from

infinite dimension. This bears no relationship with the possible non-existence of
one-sided representations for finite-dimensional processes. For example, a scalar
process whose spectral density vanishes in [−1 1] and is positive elsewhere has no
one-sided representations, see e.g. Pourahmadi (2001), Theorem 10.5, p. 361.
Now suppose that yt is n-dimensional with representation

yt = b(L)vt , (3.3)

where vt is q-dimensional orthonormal white noise and b(L) is an
n× q square-summable filter. Fundamentalness of (3.3) and vt are
defined as in Definition 2. Moreover,

(I) if (3.3) is fundamental, then n ≥ q. Moreover, if yt = c(L)wt ,
where wt is orthonormal, is another fundamental representa-
tion, then wt has dimension q, c(L) = b(L)Q and wt = Q′vt ,
where Q is a q × q orthogonal matrix (Rozanov, 1967, pp.
56–57);

(II) if (3.3) is fundamental, then rank(b(z)) = q for all complex z
such that |z| < 1 (Rozanov, 1967, p. 63, Remark 3). In particu-
lar, rank(b0) = rank(b(0)) = q.

A finite-dimensional stationary process with a spectral density
does not necessarily possess a fundamental representation (see
footnote 9). However,

(III) if yt has rational spectral density, then it has fundamental
representations. If yt = b(L)vt is one of them, vt being
q-dimensional orthonormal white noise, then the entries of
b(L) are rational functions of L (Rozanov, 1967 Chapter I,
Section 10; Hannan, 1970, pp. 62–67);

(II′) suppose that yt has rational spectral density, that yt = b(L)vt ,
where b(L) is n×q, rational, square-summable and one-sided,
vt is q-dimensional orthonormal white noise, and that rank
(b(z)) = q for all z such that |z| < 1: then, yt = b(L)vt is
fundamental (Hannan, 1970, pp. 62–67).

We say that the infinite-dimensional process yt has rational
spectral density if ynt has rational spectral density for all n.

Lemma 1. Suppose that the infinite-dimensional process yt has
rational spectral density and rank q. The following statements are
equivalent:
(i) yt has a one-sided rational moving average representation yt =

b(L)vt (the entries of b(L) are rational functions of L), where vt
is q-dimensional orthonormal white noise.

(ii) There exists a positive integer s such that H
ys
t = H

y
t .

Proof. Assume (ii). By (III) there exists a one-sided rational fun-
damental representation for yst , denote it by yst = bs(L)vt . We
have H

ys
t = Hv

t . By assumption, ys+k,t ∈ H
ys
t and, therefore,

ys+k,t ∈ Hv
t , so that

yst = bs(L)vt and ys+k,t = bs+k(L)vt . (3.4)

Thewhite noise vt is fundamental for yst , hence also for (y′
st ys+k,t)

′.
Thus representation (3.4) is fundamental, so that, by (III), bs+k(L)
must be rational. The conclusion follows. Assume now that (i)
holds. We say that β is a zero of b(L) if the determinants of the
q × q submatrices of b(β) all vanish. Assume that α is a zero of
b(L) and that |α| < 1. There exists a unitary q × q matrix Bα
such that all the entries of the first column of b(L)Bα vanish at α.
Defining γα(L) as the q × q diagonal matrix with diagonal entries
(1 − αL)(L − α)−1 1 · · · 1


, we have

yt =

b(L)Bαγα(L)

 
γ α̃(L

−1)B̃αvt


= c(L)wt ,

where a tilde denotes transposition and conjugation. This is an al-
ternative one-sided rational representation inwhich themultiplic-
ity of α as a zero of the matrix polynomial has decreased by one
unit. Because a zero of b(L) is a zero of bq(L), with a finite num-
ber of iterations we obtain a rational representation, yt = d(L)zt ,
say, such that d(L) has no zeros of modulus less than one. For the
same reason, there exists an integer s such that ds(L) has no zeros
of modulus less than one. By (II′), yst = ds(L)zt is fundamental for
yst and therefore for yt . �
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Lemma 2. Suppose that the infinite-dimensional process yt has
rational spectral density and rank q. Then,

(i) if yt has a one-sided rational representation yt = b(L)vt , then
yt has a fundamental (rational) representation;

(ii) if yt = b(L)vt and yt = c(L)wt are fundamental, with vt
and wt q-dimensional and orthonormal, then c(L) = b(L)Q and
wt = Q′vt , where Q is some q × q orthogonal matrix;

(iii) if yt = b(L)vt = b0vt + b1vt−1 + · · · is fundamental, then b0
has rank q.

Proof. Statement (i) is part of the proof of Lemma 1. As for (ii),
suppose that yt = b(L)vt and yt = c(L)wt both are fundamental.
By Lemma 1, there exists s such that H

ys
t = H

y
t . As a consequence,

both vt and wt belong to H
ys
t , and therefore are fundamental for

yst . This implies that wt = Q′vt , where Q is orthogonal. Thus
yt = c(L)wt = [c(L)Q′

]vt = b(L)vt . As vt is orthonormal white
noise, we have c(L) = b(L)Q. Because vt is fundamental for yst ,
bs(0) has rank q, see (II), so that b(0) = b0 has rank q. �

Summing up, given the infinite-dimensional vector yt , assum-
ing A.1, finite rank, rational spectral density, and the existence of a
one-sided rational moving average representation, we obtain the
existence of a rational fundamental representation for yt , which is
unique up tomultiplication by an orthogonalmatrix. Moreover, for
some s, the space spanned by the current and past values of yst co-
incides with the space spanned by current and past values of the
whole vector yt (equivalently, a fundamental white noise of yst is
a fundamental white noise of yt ).

Let us now return to the infinite-dimensional vector xt and to
the decomposition xt = χt + ξt . Assume that χt has rational
spectral density, so that either rank(6χ

n (θ)) < q for all θ ∈ [−π π ]

or rank(6χ
n (θ)) = q for almost all θ in [−π π ]. On the other

hand, since λχnq(θ) diverges for almost all θ in [−π π ], this is
Assumption A.2, there exists s such that rank(6χ

n (θ)) = q for n ≥ s
and almost all θ in [−π π]. Therefore, χt has rank q.

Adding to a rational spectral density the assumption thatχt has
a one-sided rational representation or, equivalently, that H

χs
t =

H
χ
t for some s, so that cases like (3.1) cannot occur, Lemma 2

ensures that χt has a rational fundamental representation. More
precisely, for i ∈ N,

χit =
ci1(L)
di1(L)

u1t +
ci2(L)
di2(L)

u2t + · · · +
ciq(L)
diq(L)

uqt , (3.5)

where cif (L) and dif (L) are polynomials in L, and ut is fundamental
for χt .

However, in Assumption A.3 (see Section 4.2), we will re-
quire more than the existence of an integer s such that H

χs
t =

H
χ
t . Rather, we suppose that the space spanned by χi1τ , χi2τ ,

. . . , χiq+1,τ , τ ≤ t , coincides with H
χ
t for all (q + 1)-tuples i1 <

i2 < · · · < iq+1. Thus, ut in (3.5) is fundamental for any (q + 1)-
dimensional subvector of χt , not only for the subvector χst as-
sociated with some s. This stronger requirement is motivated in
Section 4. We prove that, under a quite general parameterization,
the stronger condition holds generically, i.e. outside of a negligible
subset, as defined in Section 4, of the parameter space.

4. AR representations of the vector χt

4.1. General results for singular stochastic vectors

Consider an n-dimensional vector yt such that

yit =
ci1(L)
di1(L)

v1t +
ci2(L)
di2(L)

v2t + · · · +
ciq(L)
diq(L)

vqt (4.1)
with

cif (L) = cif ,0 + cif ,1L + · · · + cif,s1L
s1 and

dif (L) = 1 + dif ,1L + · · · + dif,s2L
s2 (4.2)

for i = 1, 2, . . . , n, f = 1, 2, . . . , q, where vt = (v1t v2t · · · vqt) is
orthonormal white noise.

We assume that for any i the filters in (4.2) are parameterized
in the same setΠ ⊂ Rν , with ν = q(s1 + s2 + 1), where
(I)Π is the closure of an open subset of Rν ;
(II) dif (L) has no root of modulus smaller than or equal to one, for
f = 1, 2, . . . , q.
Thus, there exists a real φ > 1 such that all the roots of the poly-
nomials dif (L) are of modulus greater than or equal to φ.

As a consequence, the vector yt is described by a parameter
vector taking values in Πn

= Π ×Π × · · · ×Π  
n

, which is the

closure of a non-empty open subset of Rµ, with µ = nν.
We are interested in the case n > q. Such ‘‘tall systems’’ have

been studied recently by Anderson, Deistler and their coauthors
(see in particular, Anderson and Deistler, 2008a,b). One of their
results is that when n > q, there exists a nowhere dense set
N ⊂ Πn, i.e. a set whose closure has no interior points, such that
if the parameter vector lies in Πn

− N , yt has an autoregressive
representation of the form

A(L)yt = Rvt , (4.3)

where
(i) R is n × q, with rank(R) = q;
(ii) A(L) is an n × n finite-degreematrix polynomial.
When a property holds inΠn

−M and M is nowhere dense inΠn,
we say that the property holds generically in Πn. As R has gener-
ically full rank, (4.3) implies that, generically, vt is fundamental
for yt .10

To provide an intuition for this result and Proposition 1 below,
let us consider the following elementary example, in which n = 2,
q = 1, and

y1t = a1vt + b1vt−1

y2t = a2vt + b2vt−1,
(4.4)

with parameter (a1, b1, a2, b2) in R2
× R2. Outside of the nowhere

dense subset in which a1b2 − a2b1 = 0, we obtain

vt =
1

a1b2 − a2b1
(b2y1t − b1y2t). (4.5)

Using (4.5) to get rid of vt−1 in (4.4), we obtain the AR(1)
representation

y1t = db1b2y1t−1 − db21y2t−1 + a1vt
y2t = db22y1t−1 − db1b2y2t−1 + a2vt ,

(4.6)

where d = 1/(a1b2 − a2b1). Note that

(i) If a1b2 − a2b1 = 0, no finite-degree autoregressive repre-
sentation exists, unless b1 = b2 = 0. Moreover, fundamen-
talness of vt for yt requires that the root of a1 + b1L (which is
also the root of a2 + b2L) has modulus larger than one.

10 Results on the existence of autoregressive representations for singular vectors
are given in Miamee and Pourahmadi (1987). Without assuming rational spectral
density, they provide sufficient conditions. However, the existence of finite-degree
autoregressive representation is not considered.
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(ii) However, as soon as a1b2 − a2b1 ≠ 0, vt is fundamental for yt
even if both the roots of ai + biL, i = 1, 2, are smaller than one
in modulus.

(iii) Quite obviously, a1b2 − a2b1 ≠ 0 if and only if y1t−1 and
y2t−1 are linearly independent. Therefore, generically, the pro-
jection (4.6) is unique, i.e. generically no other autoregressive
representation of degree one exists.

(iv) But higher-degree autoregressive representations do exist.
Rewriting (with obvious definitions of A and a) (4.6) as yt =

Ayt−1 + avt , we get yt = A2yt−2 + Aavt−1 + avt . Using (4.5)
to get rid of vt−1, we obtain another autoregressive represen-
tation, of degree two. Such non-uniqueness does not occur for
square systems (when n = q).

(v) On the other hand, if n = 3 and yit = aivt +bivt−1, i = 1, 2, 3,
then, outside of the set in which a2b1 = a1b2 and a3b1 = a1b3,
which is nowhere dense in R2

× R2
× R2, we have

vt =
1

a1γ1 + a2γ2 + a3γ3
(γ1y1t + γ2y2t + γ3y3t),

where b1γ1 + b2γ2 + b3γ3 = 0. This can be used to get rid of
vt−1, in the sameway aswe did in the n = 2 case. Thus, gener-
ically, yt has an AR(1) representation. However, the variables
yit−1, i = 1, 2, 3, are not linearly independent, so that such
minimum-lag autoregressive representation is not unique.

Let us show that remark (iii) can be generalized. Precisely, if
n = q + 1, then, generically, there exists only one minimal-lag
autoregressive representation.

Proposition 1. Consider an n-dimensional vector yt with represen-
tation (4.1)–(4.2), and assume that n = q + 1. There exists a set
N ⊂ Πq+1, nowhere dense inΠq+1, such that, if the parameter vec-
tor lies inΠq+1

− N ,

(i) yt has a finite-degree AR representation A(L)yt = Rvt , where R
is (q+1)×q, Rif = cif (0), rank(R) = q, A(L) is (q+1)×(q+1)
and has degree not exceeding S = qs1 +q2s2. This implies that vt
is fundamental for yt .

(ii) Suppose that(a) A∗(L) is a (q + 1)× (q + 1) polynomial matrix
whose degree does not exceed S, with A∗(0) = I,(b) R∗ is
(q + 1) × q,(c) v∗

t is a q-dimensional orthonormal white noise
orthogonal to yt−k, k ≥ 1,(d) A∗(L)yt = R∗v∗

t . Then A∗(L) =

A(L), R∗
= RQ, v∗

t = Q′vt , whereQ is an orthogonal q×qmatrix.

See the Appendix for the proof.
Part (i) of Proposition 1 has already been proved in the papers

by Anderson and Deistler, as we have mentioned above. However,
the parameters in Anderson and Deistler’s papers are the entries
of the matrices in the state-space representation of the rational-
spectrum vector yt , whereas our parameters are the coefficients of
the rational functions in representation (4.1).

Note that Proposition 1 does not claim that, generically, the pro-
cess yt corresponding to a parameter vector in Πq+1 has no non-
fundamental representations. What it claims is that, generically,
such non-fundamental representations are not parameterized in
Πq+1. For example, representation (4.4) is generically fundamen-
tal in R2

× R2. On the other hand, given any a with |a| > 1, the
process yt also has the representation

yit =


(ai + biL)

1 − aL
1 − a−1L

 
1 − a−1L
1 − aL

vt


=
(ai + biL)(1 − aL)

1 − a−1L
wt (4.7)

for i = 1, 2, where

wt =
1 − a−1L
1 − aL

vt = −a−1F
1 − a−1L
1 − a−1F

vt
is white noise (this is easily proved by showing that its spectral
density is constant). Thus, yt has the non-fundamental representa-
tion (4.7). The latter, however, is parameterized in R2

× R2
× R,

not R2
× R2.

Now assume that yt is infinite-dimensional with yit modelled
as in (4.1) for i ∈ N. The vector yt is parameterized in Π∞

=

Π ×Π × · · ·. We define negligible sets and genericity inΠ∞ with
respect to the product topology.11 We say that a subset of Π∞ is
negligible if it ismeagre, i.e. the union of a countable set of nowhere
dense subsets, and that a property holds generically in Π∞ if the
subset where it does not hold is meagre.

Define the set Mm, for m ≥ q + 1, as the set of points in
Π∞ such that all vectors yi1,i2,...,iq+1

t = (yi1t yi2t · · · yiq+1t), with
i1 < i2 < · · · < iq+1 ≤ m, admit a representation of the form

Ai1,i2,...,iq+1(L)yi1,i2,...,iq+1
t = Ri1,i2,...,iq+1vt , (4.8)

where Ai1,i2,...,iq+1(L) is at most of degree S and unique in the
sense of Proposition 1(b). From Proposition 1, we see that Nm =

Π∞
− Mm is a nowhere dense subset in the product topology of

Π∞, so that the set N = ∪
∞

m=q+1 Nm, being a countable union of
nowhere dense subsets of Π∞, is a meagre subset. We thus have
the following.

Lemma 3. Assume that yt is infinite-dimensional, modelled as
in (4.1) for i ∈ N and parameterized inΠ∞. Generically inΠ∞, all the
vectors yi1,i2,...,iq+1

t = (yi1t yi2t · · · yiq+1t),with i1 < i2 < · · · < iq+1,
can be represented as in (4.8), where Ai1,i2,...,iq+1(L) is at most of
degree less than S and unique in the sense of Proposition 1(b).

Defining negligible subsets ofΠ∞ asmeagre subsets has a good
motivation in the fact that (i) the complement of ameagre subset of
Π∞ is not meagre, (ii) if a subset of Π∞ is not meagre, obtaining
it as the union of a family of nowhere dense subsets requires an
uncountable family.12

Moreover, assuming that the parameter space indexing the
polynomials cij(L) and dij(L) does not depend on i, as we do in (4.1),
is convenient but not necessary.With the dimension of the param-
eter space depending on i, a more general version of Proposition 1
holds aswell as themeagreness result for infinite-dimensional vec-
tors yt . However, the gain in generality does not seem to justify the
substantial additional complications in the proof of Proposition 1
and the determination of the degree of A(L).

4.2. Existence of AR representations of χt

Let us now turn our attention to the common-component vec-
torχt . As we have seen, assuming thatχt has rational spectral den-
sity and a one-sided rational representation implies, by Lemma 2,
thatχt has a fundamental rational representation of the form (4.1).
The meagreness argument developed in Section 4.1, as summa-
rized in Lemma 3, provides a motivation for assuming more.

Assumption A.3. The vector χt has a representation

χit =
ci1(L)
di1(L)

u1t +
ci2(L)
di2(L)

u2t + · · · +
ciq(L)
diq(L)

uqt ,

11 Let us recall that a basis for the open sets inΠ∞ in the product topology is the
family of all sets


∞

i=1 Gi , where Gi is an open subset of Π and Gi = Π but for a
finite number of values of i.
12 Let us recall that: (I) because Π is a closed subset of Rν , the space Π∞ is the
Cartesian product of a countable family of complete metric spaces and is therefore
a complete metric space (Dunford and Schwartz, 1988, p. 32, Lemma 4); (II) in
complete metric spaces the complement of a meagre subset is not meagre (same
reference, Baire Category Theorem, p. 20).



366 M. Forni et al. / Journal of Econometrics 185 (2015) 359–371
where

cif (L) = cif ,0 + cif ,1L + · · · + cif ,s1L
s1 and

dif (L) = 1 + dif ,1L + · · · + dif ,s2L
s2

for all i ∈ N and f = 1, 2, . . . , q. Moreover,

(i) Each vector χ
i1,i2,...,iq+1
t = (χi1t χi2t · · · χiq+1t)

′,with i1 < i2 <
· · · < iq+1, has an autoregressive representation

Ai1,i2,...,iq+1(L)χ
i1,i2,...,iq+1
t = Ri1,i2,...,iq+1ut , (4.9)

where Ai1,i2,...,iq+1(L) is of degree not greater than S = qs1
+ q2s2, and Ri1,i2,...,iq+1 has rank q. This implies that ut is
fundamental for all (q + 1)-dimensional subvectors of χt .

(ii) Representation (4.9) is unique in the sense of Proposition 1(ii).

An immediate consequence of Assumption A.3 is that χt can be
represented as in (1.8), that is,

A1(L)


χ1t
χ2t
...

χq+1,t

 = R1ut , A2(L)


χq+2,t
χq+3,t
...

χ2(q+1),t

 = R2ut , . . .

(4.10)

where the degrees of the polynomial matrices Ak(L) do not exceed
S. Moreover, those Ak(L)’s are unique among autoregressive repre-
sentations of degree not greater than S. Writing A(L) for the (infi-
nite) block-diagonalmatrixwith diagonal blocksA1(L),A2(L), . . . ,
and letting R = (R1′,R2′, . . .)′, we thus have

A(L)χt = Rut . (4.11)

Two comments are in order. Firstly, of course, any permutation
of the variables produces a distinct (q + 1)-blockwise autoregres-
sive representation of the form (4.10). This is consistent with the
observation in Section 4.1 that autoregressive representations of
singular vectors are not unique, even if their degree is minimum,
unless n = q + 1, see Proposition 1.

Secondly, ut and R do not play any special role. By Lemma 2(ii),
all the white noise vectors ũt and matrices R̃, corresponding to
alternative representations of the form (4.11) satisfy R̃ = QR,
and ũt = Q′ut where Q is an orthogonal q × q matrix.13 For
identification and estimation of a coupleu∗

t , R
∗ based on economic

theory, see Forni et al. (2009) and Forni et al. (2014).

4.3. Construction of the AR representations of χt

Assumption A.3 ensures existence and uniqueness of the
autoregressive representation (4.10). We now show how (4.10),
i.e. the matrices Ak(L) and (up to multiplication by an orthogonal
matrix) Rk, can be constructed from the spectral density of the χ ’s.

(i) Assume that the population spectral density of the vector χt
is known, i.e. that the nested spectral density matrices 6

χ
n (θ),

n ∈ N, are known.
(ii) Denote by χk

t the k-th (q + 1)-dimensional subvector of χt
appearing in (4.10), and write 6

χ

jk(θ) for the (q+ 1)× (q+ 1)
cross-spectral density between χ

j
t and χk

t . Then, denoting by
0
χ

jk,s the covariance between χ
j
t and χk

t−s,

0
χ

jk,s = E

χ
j
tχ

k
t−s

′


=

 π

−π

eisθ6χ

jk(θ)dθ. (4.12)

13 Of course, Rut , which is the one-step-ahead prediction error of χt , is identified.
(iii) Using the autocovariance function 0
χ

kk,s, we obtain the
minimum-lag matrix polynomial Ak(L) and the autocovari-
ance function of the unobservable vectors

91
t = A1(L)χ1

t , 92
t = A2(L)χ2

t , . . . . (4.13)

Indeed, letting Ak(L) = Iq+1 − Ak
1L − · · · − Ak

SL
S , define

A[k]
=


Ak
1 Ak

2 · · · Ak
S


, Bχk =


0
χ

kk,1 0
χ

kk,2 · · · 0
χ

kk,S


(4.14)

and

Cχjk =


0
χ

jk,0 0
χ

jk,1 · · · 0
χ

jk,S−1
0
χ

jk,−1 0
χ

jk,0 · · · 0
χ

jk,S−2
...

...

0
χ

jk,−S+1 0
χ

jk,−S+2 · · · 0
χ

jk,0

 . (4.15)

We have

A[k]
= Bχk


Cχkk

−1
= Bχk


Cχkk


ad det


Cχkk

−1 and

0
ψ

jk = 0
χ

jk − A[j]CχjkA
[k],

(4.16)

where Cad stands for the adjoint of a square matrix C. Invert-
ibility of Cχkk, hence of (Cχkk)ad, is a consequence of Assump-
tion A.3.

(iv) The ∞ × ∞ matrix 0Ψ obtained by piecing together the ma-
trices 0Ψjk is of rank q (see Lemma 2(iii)) and can therefore be
represented as 0Ψ = S S′, where S is an ∞ × q matrix. On
the other hand, 0Ψ is the covariance matrix of the right-hand
side terms in (4.10), so that S = RH, where H is q × q and
orthogonal.

Lastly, using xt = χt + ξt , letting Zt = A(L)xt and 8t = A(L)ξt ,
we obtain

Zt = Rut + 8t . (4.17)

In conclusion, starting with the spectral density of the χ ’s, we
obtain the filter A(L), the vector Zt and themodel (4.17). The above
construction, based on an estimate of the spectral density 6

χ
n (θ),

is used in the estimation procedure studied in Forni et al. (2014),
see Section 4.4 for an illustration.

4.4. Normalization of Zt

Under our assumptions, the dynamic factor model for the
variables xit has been transformed into model (4.17), which has
the form (2.2) for the variables Zit , with r = q and Ft = ut .
Application of standard principal components to estimate ut and
R requires that Assumptions B.1 and B.2 be fulfilled. The latter are
equivalent to statements (i)–(iii) of Theorem B, see Section 2.2. In
particular, the first eigenvalue of the variance–covariance matrix
of 8nt should be bounded. We show below that this is not a
consequence of our assumptions so far.

To see this, let us resort again to the simple case in which q = 1
and the common components are MA(1),

xit = ut + ciut−1 + ξit .

Considering the 2-dimensional vectors χk
t , we have, see (4.6):

Ak(L) = I2 − (ck − ck−1)
−1


ck−1ck −c2k−1
c2k −ck−1ck


L.

Assumption A.3 implies that ck − ck−1 ≠ 0 for all k (and all
possible groupings), but no more. In particular, it does not imply
that |ck − ck−1| ≥ d for some d > 0 and all k. As a consequence,
the variance of the components of 8t = A(L)ξt is not necessarily
bounded, as it should be if 8t were idiosyncratic.
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Two possible ways out of this difficulty are: (i) assuming that
det(Cχkk) ≥ c > 0 for all k, this is what we do in our companion
paper on estimation, Forni et al. (2014), (ii) normalizing Zt , this is
what we do here. Define:

(i) wi = 1 if var(Zit) = 0, otherwisewi =
√
var(Zit);

(ii) V as the ∞ × ∞ diagonal matrix withw−1
i in entry (i, i);

(iii) zt = VZt , r = V R, φt = V8t .

Eq. (4.17) becomes

zt = rut + φt . (4.18)

Adding the following assumption is sufficient, though not neces-
sary, to prove that φt fulfils statement (i) of Theorem B.

Assumption A.4. There exists a real bξ > 0 such that λξnn(θ) ≥ bξ

for all n and θ almost everywhere in [−π π ] (λξnn(θ) is the smallest
eigenvalue of 6

ξ
n(θ), see Section 2.2).

Proposition 2. Let 0
φ
n the variance–covariance matrix of φnt and

µ
φ

n1 its first eigenvalue. Under AssumptionsA.1–A.4, there exists a real
number M such that µφn1 ≤ M for all n.

Proof. It is convenient here to assume, without loss of generality,
that the number n of variables increases by blocks of size q + 1.
Thus n = m(q + 1), where m is the number of blocks. Let b be a
1 × n vector with |b| = 1. The notation b = (b1 b2

· · · bm) and
Vm = diag(V1 V2

· · · Vm) is used in an obvious way. We denote
by 6ξk(θ) the spectral density matrix of ξkt and by akj (e

−iθ ) the jth
row of Ak(e−iθ ), for j = 1, 2, . . . , q+ 1. Let c = (c1 c2 · · · cm), and
suppose that cj = 0 if j ≠ k. Then c6ξ

n(θ)c′
= ck6ξk(θ)ck′

. As a
consequence, if d is 1 × (q + 1), then

λξnn(θ)dd
′
≤ d6ξk(θ)d′

≤ λ
ξ

n1(θ)dd
′, (4.19)

for k = 1, 2, . . . ,m. Using Assumption A.4, statement (i) of
Theorem A and (4.19),

b6φ
n (θ)b

′
= bVA(e−iθ )6ξ (θ)A′(eiθ )Vb′

≤ λ
ξ

n1(θ)bVA(e
−iθ )A′(eiθ )Vb′

= λ
ξ

n1(θ)

m
k=1

bkVkAk(e−iθ )Ak′
(eiθ )Vkbk′

≤ λ
ξ

n1(θ)

m
k=1

bktrace

VkAk(e−iθ )Ak′

(eiθ )Vk

bk′

= λ
ξ

n1(θ)

m
k=1

bk


q+1
j=1

akj (e
−iθ )akj

′
(eiθ )

var(Zk
it)


bk′

≤ λ
ξ

n1(θ)

m
k=1

bk


q+1
j=1

akj (e
−iθ )akj

′
(eiθ ) π

−π
akj (e−iθ )6ξk(θ)akj

′
(eiθ )dθ


bk′

≤
Bξ

bξ

m
k=1

bk


q+1
j=1

akj (e
−iθ )akj

′
(eiθ ) π

−π
akj (e−iθ )akj

′
(e−iθ )dθ


bk′
,

θ-a.e. in [−π π]. Integrating, we obtain

b0φnb
′
=

 π

−π

b6φ
n (θ)b

′dθ ≤
Bξ

bξ
(q + 1),

which implies that µφn1 = max|b|=1 b0
φ
nb′ is bounded. �

Let us now consider statements (ii) and (iii) of Theorem B. The
definition of φt and statement (i) of Theorem A imply that φt and
ηt = rut fulfil statement (iii). As regards statement (ii), let again
q = 1 and

xit = (ci0 + ci1L)ut + ξit .
The corresponding representation (4.18) is

zit = di0ut + φit = ηit + φit , di0 =
ci0

c2i0 + var(Φit)

.

We have

λ
χ

n1(θ) =
1
2π

n
i=1

|ci0 + ci1e−iθ
|
2 and

µ
η

n1 =

n
i=1

c2i0
c2i0 + var(Φit)

.

We see that divergence of λχn1(θ) almost everywhere in [−π π ]

does not imply divergence ofµηn1. However, convergence ofµηn1 oc-
curs only if var(Φit)/c2i0 diverges. Sufficient conditions for this are
(1) var(Φit) → ∞ and c2i0 bounded away from zero, (2) var(Φit)

bounded away from zero and c2i0 → 0. Regarding (1), though we
do not assume that var(Φit) is bounded, divergence of var(Φit) re-
quires a very special sequence of coefficients (ci0, ci1). Regarding
(2), even if we do not assume a positive lower bound for ci0, con-
vergence to zero of c2i0 can be ruled out as very special. Even more
far-fetched are the cases in which the ratio var(Φit)/c2i0 diverges
though neither (1) nor (2) holds, like the ratio α1/β1 with

αi =


i for i odd
1 for i even βi =


1 for i odd
1/i for i even.

Extending these considerations to q > 1 and more complex mod-
els for χt does not seem worthwhile. We believe that the analysis
of the simple example above is sufficient to motivate the follow-
ing assumption on the qth eigenvalue of the variance–covariance
matrix of zt .

Assumption A.5. µηnq → ∞ as n → ∞.

Summing up, under Assumptions A.1 through A.5, the variables
xit can be transformed into the variables zit , which satisfy the
static model (4.18). Statements (i)–(iii) of Theorem B hold or,
equivalently, the variables zit fulfil Assumptions B.1 and B.2.

4.5. Estimation

The construction leading from the x’s to the z’s has a natural
counterpart in the estimation procedure developed in the compan-
ion paper Forni et al. (2014).
(I) We start with an estimate of 6x

n(θ), the spectral density of the
observable variables xit ; call 6̂

x
n(θ) such an estimate.

(II) An estimate of the spectral density of the common components,
call it 6̂

χ

n (θ), is then obtained using the first q dynamic principal
components of 6̂

x
n(θ), see Forni et al. (2000). An estimate of the

spectral density of the idiosyncratic components is obtained as
well as 6̂

ξ

n(θ) = 6̂
x
n(θ)− 6̂

χ

n (θ).

(III) Steps (ii)–(iv) of Section 4.3 are then reproduced, starting with
6̂
χ

n (θ) instead of6χ
n (θ). We thus obtain estimates Âk(L), R̂k, Ẑnt , r̂k,

ẑnt . Note that Ẑnt and ẑnt result from the application of one-sided
filters to the observable variables xit .
(IV) Lastly, we estimate a static representation with q factors for
ẑnt , obtaining an estimate ût . This step employs the first q principal
components of ẑnt , and therefore only current and past values of the
variables xit .

As already observed in the Introduction, though the dynamic
model studied in the present paper is more general than model
(1.3), when a dataset is given, with finite n and T , the static
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approach might perform well even if the data were generated by a
model not fulfilling the finite-dimension assumption.

Supposewewant to estimate the impulse-response functions of
the variables xit with respect to the shocks uft . Under the dynamic
approach, we have to determine q and the maximum lag S for the
matricesAk(L), e.g. bymeans of information criteria; then estimate
the corresponding

[S(q + 1)2 + (q + 1)q]
n

q + 1
= [S(q + 1)+ q]n

parameters of thematrices Ak(L) and Rk. Under the static approach
(1.3), wemust determine, r , q and the maximum lag for the matrix
D(L), then estimate the corresponding

nr + pr2 + rq

parameters λif and the matrices D(L) and R. It is easily seen that
an a priori assessment of the relative merits of the two methods is
impossible, the situation being much more complicated than the
problem we face when deciding which ARMA specification should
be chosen for a medium-size stochastic vector.

A simple illustration of the difficulty can be obtained by
considering example (1.5) again. In this case the dynamic approach
seems definitely superior. Even though a good approximation can
be obtained using the static approach, we may argue that there
is no good reason to use a moving average when the data have
been generated by an autoregression. On the other hand, as the
true model is unknown, even if we correctly specify S as 1 in our
dynamic model, we end up estimating n/2 unrestricted VAR’s of
degree 1 for the 2-dimensional vectors (χit χi+1,t), therefore twice
the ‘‘right’’ number of parameters.

With these considerations in mind, the static and dynamic
methods have been applied to simulated data in several Monte
Carlo experiments by Forni et al. (2014). A very short summary
of our results is that (i) when the data are generated by infinite-
dimensional models like (1.5), the estimation of impulse-response
functions and predictions by the dynamic method is by far better
than those obtained via the static method; (ii) when the data are
generated by (1.3), still the dynamic method performs slightly
better. Quite similar results are obtained if the data-generating
processes are data-driven, i.e. if their coefficients result from
applying the static or dynamic approach to a large macroeconomic
dataset.

Though not conclusive, the Monte Carlo results in Forni et al.
(2014) strongly suggest that the model proposed in the present
paper is a competitive specification for dynamic factor models.

5. Conclusion

Wehave argued that assuming a finite-dimensional factor space
strongly restricts the applicability of dynamic factor models, as
even models as simple as xit = [ai/(1 − αiL)] ut + ξit are ruled
out. On the other hand, without that assumption, only two-sided
estimators have been proposed in the literature so far.

The present paper provides a solution to this problem bymeans
of a feasible autoregressive representation of the high-dimensional
common-component vector χnt . The key result is that if a stochas-
tic vector χnt has dimension n and rank q, where q is fixed whereas
n is huge and growing, then, under some mild assumptions, for
generic values of the parameters, an autoregressive representation
for χnt can be determined piecewise. We do not need a huge, un-
feasible, n × n VAR, in which each yit is projected on all yjt−k, j =

1, 2, . . . , n. A sequence of small (q+1)×(q+1)VAR’s is sufficient.
Using the autoregressive representation of χnt , we transform

the original variables xit into variables zit that are governed by a
static factor model. All the steps of our construction have a natural
counterpart in an estimation procedure.
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Appendix. Proof of Proposition 1

A polynomial of the form

p(L) = a0 + a1L + · · · + arLr ,

where the coefficients ak are either scalar or matrices, is said to
have degree not greater than r; we say that p(L) has degree r if
ar ≠ 0. We need some preliminary results.

Lemma A.1. Assume that vt = (v1t v2t . . . vqt ) is orthonormal
white noise and let

yit = γi1(L)v1t + γi2(L)v2t + · · · + γiq(L)vqt ,

for i = 1, 2, . . . , n, where the filters γif (L) are square-summable. In
compact form,

yt = 0(L)vt ,

where 0(L) is n × q. For R ≥ 1 consider the nR-dimensional stack

Yt = (y′

t y
′

t−1 · · · y′

t−R+1)
′

and the 1 × q filter

W(L) =

β1(L) β2(L) · · · βn(L)


0(L),

where βi(L) is a finite-degree polynomial in L, i = 1, 2, . . . , n.
The entries of Yt are linearly dependent if and only if there exist
polynomials βi(L) of degree not greater than R−1, with βi(L) ≠ 0 for
some i, such that W(L) = 0. Equivalently, the entries of Yt are linearly
independent if and only if W(L) = 0 implies that either βi(L) = 0 for
all i or that the degree of βi(L) is greater than R − 1 for some i.

Proof. If the entries of Yt are linearly dependent, there exists

α = (α01 · · ·α0,n;α11 · · ·α1,n; · · · ;αR−1,1 · · ·αR−1,n) ≠ 0

such that

α(y′

t y
′

t−1 · · · y′

t−R+1)
′
= 0, (A.1)

that is, setting αk = (αk1 · · · αk,n),

α00(L)vt + α10(L)vt−1 + · · · + αR−10(L)vt−R+1

= (α0 + α1L + · · · + αR−1LR−1)0(L)vt = 0. (A.2)

Because vt is orthonormal white noise, (A.2) implies that

(α0 + α1L + · · · + αR−1LR−1)0(L) = 0,

that is, settingβi(L) = α0i+α1iL+· · · +αR−1,iLR−1, i = 1, 2, . . . , n,

(β1(L) β2(L) · · · βq+1(L))0(L) = 0. (A.3)

Since α ≠ 0, βi(L) ≠ 0 for some i. Conversely, starting with (A.3),
where the degree of βi(L) is not greater than R − 1 and βi(L) ≠ 0
for some i, we easily obtain an α ≠ 0 such that (A.1) holds. �
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Lemma A.2. Assume that vt = (v1t v2t . . . vqt) is orthonormal
white noise and

yit = pi1(L)v1t + pi2(L)v2t + · · · + piq(L)vqt , (A.4)

with

pif (L) = pif ,0 + pif ,1L + · · · + pif ,rLr ,

for i = 1, 2, . . . , q + 1, f = 1, 2, . . . , q. In compact form,

yt = P0vt + P1vt−1 + · · · + Prvt−r = P(L)vt , (A.5)

where the matrices Pk are (q + 1) × q. Let R = rq. Assume that
the entries of the stack Yt = (y′

t−1 y′

t−2 · · · y′

t−R)
′ are linearly

independent. Then,

yt = H1yt−1 + · · · + HRyt−R + P0vt , (A.6)

for some (q + 1)× (q + 1)matrices Hk.

Proof. Consider the stack

Yt−1 = (y′

t−1 y′

t−2 · · · y′

t−R)
′
= PR(v′

t−1 v′

t−2 · · · v′

t−R−r)
′

where

PR =


P0 P1 · · · Pr 0 · · · 0
0 P0 · · · Pr−1 Pr · · · 0
...

. . .

0 0 · · · · · · Pr

 .

The matrix PR is (q + 1)R × q(R + r). Setting R = rq, PR is square.
By assumption, the entries Yt−1 are linearly independent. Thus
the matrix PR is non singular, so that (v′

t−1 v′

t−2 · · · v′

t−R−r)
′

=

P −1
R (y′

t−1 y′

t−2 · · · y′

t−R)
′. Substituting vt−1, vt−2 . . . , vt−r into

(A.5), we get (A.6). �

Lemma A.3. Rewrite (4.1) in compact form

yt = E(L)vt , (A.7)

where

eif (L) =
cif (L)
dif (L)

=
cif ,0 + cif ,1L + · · · + cif ,s1L

s1

1 + dif ,1L + · · · + dif ,s2Ls2

for i = 1, 2, . . . , q + 1, f = 1, 2, . . . , q. Let S = s1q + s2q2.
For generic values of the parameters, the entries of the stack (y′

t y
′

t−1
· · · y′

t−S+1)
′ are linearly independent.

Proof. Using the notation of Section 4, letµ = (q+1)q(s1+s2+1).
Denote by p = (p1 p2 · · · pµ) the µ-dimensional vectors ofΠq+1

(the entries of p are the parameters c and d). In this proof, we deal
with scalar polynomials in L

a0 + a1L + · · · + arLr ,

where the coefficients am are polynomials in the parameters, of the
form
k1+k2+···+kµ≤K

αk1,k2,...,kµp
k1
1 pk22 · · · pkµµ . (A.8)

Because Πq+1 is the closure of an open set in Rµ, the polynomial
(A.8) is generically non zero in Πq+1 if and only if at least one
coefficient αk1,k2,...,kµ is non zero. Note also that (A.8) can be
rewritten as a polynomial in one of the variables, p1 for example,

A0pM1 + A1pM−1
1 + · · · + AM , (A.9)

where the coefficients Aj are polynomials in p2, . . . , pµ, and that
(A.8) is generically non zero in Πq+1 if and only if at least one of
the coefficients Aj in (A.9) is generically non zero.
By Lemma A.1, we must prove that, for generic values inΠq+1,
if
β1(L) β2(L) · · · βn(L)


E(L) = 0, (A.10)

where βi(L) is a finite-degree polynomial and βi(L) ≠ 0 for some i,
then the degree of βi(L) is greater than S − 1 for some i. Let Eq(L)
be the square submatrix obtained by dropping E(L)’s last row. We
can write

det(Eq(L)) = h(L)/
q

i,f=1

dif (L), (A.11)

where numerator and denominator have degree not greater than
S1 = qs1 + (q2 − q)s2 and S2 = s2q2, respectively. The coefficient
of LS2 in the denominator is the product

q
i,f=1 dif ,s2 and is there-

fore generically non zero. The coefficient of LS1 in the numerator
contains the term

c11,s1c22,s1 · · · cqq,s1


i,f=1,q
i≠f

dif,s2

and no other term with the same exponents for the c ’s and the d’s.
Thus, generically, numerator and denominator in (A.11) have de-
grees S1 and S2, respectively.

Using the same argument, the (i, f ) entry of the adjoint matrix
of Eq(L) can be written as

hif (L)/


h,k=1,...,q
h≠f , k≠i

dhk(L),

where generically the degrees of the numerator and the denomina-
tor are S3 = (q−1)s1 +[(q−1)2 − (q−1)]s2 and S4 = (q−1)2s2,
respectively. Thus, the matrix Eq(L) is generically invertible, as a
matrix of rational functions in L, and the entries of [Eq(L)]−1 can be
written as

hif (L)


h,j=1,...,q
h=f or k=i

dhk(L)/h(L) = h̃if (L)/h(L),

where generically the degrees of the numerator and the denomi-
nator are S5 = (q−1)s1+(q2−(q−1))s2 and S6 = qs1+(q2−q)s2,
respectively.

Consider now the system of equations
ρ1(L) ρ2(L) · · · ρq(L)


Eq(L)

= −

eq+1,1(L) eq+1,2(L) · · · eq+1,q(L)


in the unknown rational functions ρk(L). Generically, the system
has the unique solution

(τ1(L) τ2(L) · · · τq(L))

= −(eq+1,1(L) eq+1,2(L) · · · eq+1,q(L))[Eq(L)]−1.

We have

τk(L) = −

q
i=1

cq+1,i(L)h̃ik(L)
dq+1,i(L)h(L)

= −

q
i=1

cq+1,i(L)h̃ik(L)


j=1,...,q
j≠i

dq+1,j(L)


h(L)

q
i=1

dq+1,i(L)

= −
νk(L)
δ(L)

,

where generically both νk(L) and δ(L) are polynomials of degree
S = qs1 + q2s2. Moreover, for generic values of the parameters,
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νk(L) and δ(L) have no roots in common. To show this, recall that
the polynomials

νk(L) = νk,SLS + νk,S−1LS−1
+ · · · + νk,0 and

δ(L) = δSLS + δS−1LS−1
+ · · · + δ0,

both of degree S, have roots in common if and only if their resultant
vanishes. That resultant is a polynomial in the coefficients νk,j and
δj, involving the term νSk,Sδ

S
0 (see van derWaerden, 1953, pp. 83–5).

All other terms contain powers νS−h
k,S with 0 < h ≤ S. We have

νSk,Sδ
S
0 =

 q
i=1

cq+1,i,s1 h̃ik,g


j=1,...,q

j≠i

dq+1,j,s2

S
h(0)S

= cSq+1,1,s1


h̃S
1k,S5


j=2,...,q

dSq+1,j,s2h(0)
S


+ · · · , (A.12)

where h̃ik,S5 is the coefficient of order S5 of h̃(L). Note that h(L)
and h̃if (L) do not contain any of the parameters cq+1,i,h. As a conse-
quence, all other terms in (A.12) and in the resultant of νk(L) and
δ(L) contain powers cS−h

q+1,i,s1
, with 0 < h ≤ S. Thus the three-term

product within square brackets in the right-hand side of (A.12) is
the coefficient of cSq+1,1,s1

in the representation of the resultant as a
polynomial in cq+1,1,s1 . As each of the three terms is generically non
zero, the coefficient is generically non zero, so that the resultant is
generically non zero.

Suppose now that the polynomials βk(L)’s are such that (A.10)
holds, that is

(β1(L) β2(L) · · · βq(L))Eq(L)
= −βq+1(L)(eq+1,1(L) eq+1,2(L) · · · eq+1,q(L)).

Because the matrix Eq(L) is generically non singular, as a matrix
of rational functions, βq+1(L) = 0 implies βi(L) = 0 for all i =

1, 2, . . . , q + 1. Assuming that βq+1(L) ≠ 0, we have

τk(L) = −
βk(L)
βq+1(L)

.

The results above on τk(L) imply that generically the degree of
βq+1(L) and βk(L) is at least S. �

We now can proceed with the proof of Proposition 1. Rewrite
(A.7) as

h1(L) 0 · · · 0
0 h2(L) · · · 0

. . .

0 0 · · · hq+1(L)

 yt = G(L)vt , (A.13)

where

hi(L) =

q
f=1

dif (L), gif (L) = cif (L)


f=1,...,q
f ≠i

dif (L). (A.14)

Let us focus on the moving average on the right-hand side. The
polynomialmatrixG(L) has degree not greater than S̃ = s1+s2(q−
1). Suppose that
β1(L) β2(L) · · · βq+1(L)


G(L) = 0 (A.15)

where the degree of βj(L) is not greater than S̃q − 1. This implies
that
β1(L)h1(L) β2(L)h2(L) · · · βq+1(L)hq+1(L)


E(L) = 0. (A.16)

The polynomials βj(L)hj(L) have degrees not greater than S̃q− 1+

s2q = s1q + s2q2 − 1. Lemmas A.1 and A.3 imply that generically
βi(L)hi(L) = 0 for all i = 1, 2, . . . , q+1. Because hi(L) ≠ 0 for all i,
then generically (A.15) impliesβi(L) = 0 for all i. Using LemmaA.2,
G(L)vt generically has an autoregressive representation of degree
s1q + s2q(q − 1), so that, by (A.13)–(A.14), yt generically has an
autoregressive representation

yt = K1yt−1 + K2yt−2 + · · · + KSyt−S + E(0)vt (A.17)

of degree S = s1q + s2q2. Moreover, Lemma A.3 proves that
generically the components of the stack

(y′

t−1 y′

t−2 · · · y′

t−S)
′

are independent. The uniqueness part of the proposition follows.
�
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