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Abstract

We propose parametric and semiparametric IV estimators for spatial autoregressive models with network

data where the network structure is endogenous. We embed a dyadic network formation process in the

control function approach as in Heckman and Robb (1985). In the semiparametric case, we use power

series to approximate the correction terms. We establish the consistency and asymptotic normality for

both parametric and semiparametric cases. We also investigate their finite sample properties via Monte

Carlo simulation.
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1 Introduction

The estimation procedures for the spatial autoregressive (SAR) models with network data and an exogenous

network structure are now well established (see Lee, 2007; Lee et al., 2010; Liu, 2013b; Liu and Lee, 2010). In

almost all social and economic contexts, however, network is chosen exogenously and behaviors were derived

given this network structure. Network formation and behavior over networks can happen simultaneously. Fail

to account individual characteristics driving both can result serious endogeneity issues.

Despite the problem of endogeneity, estimation methods for network models with selectivity are not widely

available. Hsieh and Lee (2014) and Goldsmith-Pinkham and Imbens (2013) propose a simultaneous estimation

of dyadic network formation and outcome choice using a Bayesian modeling approach. They use MCMC

methods to draw from the posterior distribution due to the complexity of their likelihood function. However,

a behavioral foundation under such a framework is challenging. As networks can form under various rules,

one needs to find conditions that match the properties of equilibrium outcomes for many different games.

Bayesian methods are also unfeasible when the sample size is large. Blume et al. (2014, forthcoming) suggests

using control function approach to address network formation.1 They consider the development of the control

function approach to address network formation as an important direction of future research.2

This paper develops this approach. An independent study by Qu and Lee (2015) proposes a control

function method to estimate a SAR model with an endogenous spatial weight matrix. They construct the

spatial weights using distances between units in terms of economic variables (such as GDP or trade volumes).

Endogeneity arises when these weights are correlated with the outcome. They thus employ an OLS estimator

for the selection equation (first stage) and correct the SAR outcome model with the estimated residuals (second

stage). We consider network data, such that the entries of the spatial weights matrix are binary. We modeled a

dyadic network formation mechanism for the selection equation as in Graham (2014).3 Graham (2014) presents

a comprehensive tractation of dyadic empirical models of network formation. In particular, he parametrizes

link formation in a logit form and derives the statistical properties of a maximum likelihood estimator.4 Due to

the technical complication in estimating a selection correction term at the individual level (i.e. with a dyadic

network formation, as in Graham, 2014), no estimation method has been proposed for this case so far.5

We propose two estimation methods. The first method is a simple two-stage instrumental variable estimator

with a parametric selection procedure (2SP IV).6 With explicit distributional assumptions on the disturbances,

we show that the selectivity bias is a multivariate inverse Mills ratio. The asymptotic theory is derived using

asymptotic inference under near-epoch dependence (NED) from Jenish and Prucha (2012). The results are

similar to the ones in Qu and Lee (2015). The second estimator we proposed uses a power series to approximate

selectivity bias term, in the spirit of Newey (2009). This is a two-stage semiparametric instrumental variable

estimator (2SSP IV). We also derive statistical properties for our estimator that is very easy to implement in

applied work.

The main aim of this paper is to show consistency and asymptotic normality of the 2SSP IV and the 2SP IV.

Lee (1982) proposes two-stage instrumental variable estimators for selection models with flexible correction

1Blume et al. (2014, forthcoming); Brock and Durlauf (2001a,b) discuss how selection correction mechanisms can be used to
overcome the reflection problem.

2The endogeneity of spatial weights has also been pointed out as an important future direction of spatial econometrics by
Pinkse and Slade (2010). They argue that many of the issues arising from this problem are still waiting for good solutions and
that the endogeneity problem “can admittedly be challenging.”

3This framework can be motivated from the behavior of utility maximization (McFadden et al., 1973).
4A simplified version of the model has been used by Fafchamps and Gubert (2007), Apicella et al. (2012), Attanasio et al.

(2012).
5Horrace et al. (2014, forthcoming) deal with the estimation of network production models where the working team (network)

is chosen by a manager. In their framework, teams are not overlapping and they can employ a polychotomous Heckman-type
selection correction.

6See Heckman and Robb (1985) and Vella (1998) for an overview of models and methods to address selection problems.
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terms. The theory presented in this paper allows for the functional form of the selectivity bias term to be

entirely unknown, with the number of approximating functions growing with the sample size to achieve
√
n−

consistency and asymptotic normality. Our main results show the NED properties of the random variables

and functions involved in the 2SSP IV estimator.

The rest of the paper is organized as follows. The next section introduces the econometric specification

of a network model with selectivity. We discuss different ways to correct for the selectivity bias. Section

3 proposes parametric and semiparametric estimation methods of our model. Consistency and asymptotic

normality of estimators from these methods are derived in Section 4. We evaluate finite sample performance

of our estimators in Section 5 using Monte Carlo simulations. Section 6 is conclusion. Appendix A contains

some basic properties of NED of random fields and power series. Appendix B includes the proofs of NED

properties of the key statistics of the estimators. Appendix C gives the proof of our main results.

2 A network model with selectivity

We consider n agents indexed by i = 1, . . . , n. Each agent is endowed with a predetermined location l(i).

Following Jenish and Prucha (2012) and Qu and Lee (2015), we consider spatial processes located on a

(possibly) unevenly spaced lattice D ⊂ Rd0 , d0 ≥ 1. From now on, we maintain the following assumption

concerning D.

Assumption 1. The Lattice D ⊂ Rd0 , d0 ≥ 1, is infinitely countable. The location l : {1, . . . , n} → Dn ⊂ D

is a mapping of agent i to its location l(i) ∈ Dn. All elements in D are located at distances of at least ρ0 > 0

from each other, i.e., for all l(i), l(j) ∈ D : ρij ≥ ρ0; w.l.o.g. we assume ρ0 = 1.

Physical distance plays a crucial role in our asymptotic methods. It ensures the growth of the sample size as

the sample regions Dn expand, see e.g. Conley (1999) and Jenish and Prucha (2009, 2012). This means the

asymptotic methods we employed are increasing domain asymptotics.

Agents in the sample regions may be connected. Let gij,n = 1 if agents i and j are connected and zero

otherwise. Connections may be equivalently referred to as a links, friendships, edges or arcs depending on

the context. Self-ties are rulled out so that gii,n = 0 for all i. The (i, j) pair is called a dyad. There are

Nd = n(n − 1) dyads in the sample. For a sample size of n agents, we observe the vector of outcomes

Yn = (y1,n, . . . , yn,n)′, the covariate matrix Xn with its element {xi,n; l(i) ∈ Dn, n ∈ N} being bounded in

absolute value for all i and n. Gn = {gij,n} is a binary matrix with zero diagonal.

Let {(vl(i),n, ul(i),n); l(i) ∈ Dn, n ∈ N} be a triangular double array of real random fields defined on a

probability space (Ω; F ; P ), where the index set Dn ⊂ D is a finite set and D satisfies Assumption 1. For

simplicity, we use the subscript i to indicate l(i), i.e. vl(i),n becomes vi,n.

Following Graham (2014), agents i and j form a link if the total surplus from doing so is positive

gij,n = I(Cij,nα+ βdρij + aini,n + aoutj,n − vij,n ≥ 0), (1)

where I(·) denotes the indicator function, {adiri,n ; l(i) ∈ Dn, n ∈ N}, with dir ∈ {in, out} (”in” stands for

indegree, ”out” for outdegree), are two agent-specific unobserved characteristics that capture the propensity of

having a indegree and a outdegree.7 The term inside the indicator function corresponds to the net link surplus.

Similar to Leung (2014), link surplus varies with observed dyad attributes {Cij,n; l(i) ∈ Dn, l(j) ∈ Dn, n ∈ N},
distances ρij , unobserved agent attributes (aini,n, a

out
j,n ), and an idiosyncratic component (vij,n). Model (1)

satisfies a no externalities condition. The net surplus associated with a link does not vary with the presence or

7Observe that model (1) is the Graham (2014) network formation model augmented for indegree and outdegree agent level
unobserved heterogeneity. It basically extend the model for a directed graph representation.
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absence of other links in the network. For example, the vector (Cij,n) does not include the number of friends

i and j have in common,
∑n
k=1 gik,ngjk,n.8

We assume that the outcome equation is a SAR model specified as

Yn = φGnYn +Xnβ + Un, (2)

where Un = (u1,n, . . . , un,n)′ is a vector of disturbances.9 In model (2), φ represents the level of the endogenous

effect, where an agent’s choice/outcome may depend on those of her peers on the same activity.10 11 β is a

k × 1 vector of coefficients.

2.1 The parametric approach

Let Cn = (C12, . . . , Cn,n−1)′ be the Nd × k matrix of dyad characteristics and An = (a1, . . . , an)′ the n × 2

vector of unobserved agent characteristics, where ai = [aini ; aouti ]. Following Graham (2014), we focus on the

case where vij,n is independently logistically distributed across dyads. Thus, the conditional probability of

forming a link (i, j) equals

Pr(gij,n = 1|Cn, An) =
exp(αCij,n + βdρij + aini,n + aoutj,n )

1 + exp(αCij,n + βdρij + aini,n + aoutj,n )
. (3)

Graham (2014) assumed that links form independently conditional on Cn and An. This assumption is appro-

priate in settings where no strategic decisions are involved. This is true in some types of friendship networks,

See Graham (2014) for further details.

2.1.1 The selectivity bias

In model (2) endogeneity of Gn may arise from the correlation between ui,n and vij,n, controlling for ai,n.

This means the shock on meeting opportunities vij,n, can be correlated with agents’ unobservables in the

outcome equation. The unobserved characteristic ai,n captures unobserved attributes of agent i that make

her a good/bad link partner. In a risk-sharing network, for example, trustworthy agents may have high values

for ai,n (Fafchamps and Gubert, 2007). Even we control the level of trustworthy in the village, meeting

opportunities (vij,n) could still correlate with the agent’s unobserved ability (ui,n) which affect the probability

of finding josb (yi,n). Formally, we make the following assumption.

Assumption 2. The error terms ui and v′i,n = {vlj}l=i,l 6=j have a joint distribution (ui,n, v
′
i,n) ∼ i.i.d.(0,Σuv),

where Σuv =

(
σ2
u σ′uv

σuv Σv

)
is positive definite, σ2

u is a scalar variance, σuv is a n− 1 vector of covariances

with constant elements across i and j, and Σv = σvIn−1 is a n− 1× n− 1 matrix. The supi,n ||v′i,n||4+δε and

supi,n |u′i,n|4+δε exist for some δε > 0. Furthermore, E(ui,n|v′i,n) = v′i,nγ and var(ui,n|vi,n) = σ2
ε .

8See Jackson and Wolinsky (1996), Jackson and Watts (2002) and Bala and Goyal (2000) for studies of network formation in the
presence of interdependent preferences. See Christakis et al. (2010), Mele (2010), Goldsmith-Pinkham and Imbens (2013), Sheng
(2014) and De Paula et al. (2014) for some recent attempts to study econometric models of network formation with interdependent
preferences.

9We consider here an aggregate model specification (i.e. G which multiplies y in model (2) is not row-normalized. Our
estimation method applies also to an average model (i.e. when G which multiplies y in model (2) is row-normalized) or to other
functions of the outcome of connected agents (like max, min, variance, etc.). Without loss of generality, contextual effects are not
included in equation (2). Contextual effects refer to characteristics of individual i’s peers, i.e the average level of peers’ exogenous
covariates (

∑
gij/gi·xj). Their inclusion would only make the notation heavier.

10 When the Gn matrix is predetermined the endogeneous effects is identified under conditions provided by Bramoullé et al.
(2009). See also Calvó-Armengol et al. (2009) and Lee (2007).

11See Ballester et al. (2006) and Calvó-Armengol et al. (2009) for a motivation of the use of the SAR model to study peer
effects.
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From the two conditional moments in Assumption 2 we have a n − 1 column vector γ = (Σ−1
v σuv)

′ and

the scalar σ2
ε = σ2

u − σ′uvΣ−1
v σuv. If σuv is zero, the adjacency matrix Gn might be treated as exogenously

given and we can apply conventional methodology for the estimation of SAR models. However, stochastic

dependence between ui,n and vij,n (selection on unobservables) and stochastic dependence between ui,n and

cij,n (selection on observables) may generate a nonzero σuv, thus Gn becomes an endogenous adjacency matrix.

Let Vn = (v′1,n, · · · v′n,n), given Assumption 2 we can decompose the error term in the outcome equation (2) in

the following way

Yn = φGnYn + βXn + γVn + εn︸ ︷︷ ︸
Un

, (4)

where εn = (ε1,n, . . . , εn,n), with εi,n independent to vi,n. Formally, the selectivity bias is equal to γVn.

Let us define Gi,n as the ith row of the matrix Gn. Under Assumption 2 we have

ψ′1,n = E(vi,n|Ai,n, Ci,n, Gi,n) = (5)

E(v′i,n|I(vi2,n ≥ −αCi2,n − ai,n − a2,n), . . . , I(vin,n ≥ −αCin,n − ai,n − an,n), An, Cn) =

(E(vi1,n|I(vi2,n ≥ −αCi1,n − ai,n − a1,n)), . . . , E(vin,n|I(vin,n ≥ −αCin,n − ai,n − an,n))′ = (6)

where in equation (6) we use the fact that vij are considered i.i.d. in the network formation model after

controlling for node-specific heterogeneity. Denote Ψn = (ψ′1,n, . . . , ψ
′
n,n)′ and ξi,n = γ(vi,n−ψi,n)+εi,n. The

selectivity corrected model (4) becomes

Yn = φGnYn + βXn + γΨn + ξn, (7)

where E(ξi,n|Gi,n, An, Cn) = 0 and E(ξ2
i,n|Gi,n, An, Cn) = σ2

ε ; and ξi,n’s are i.i.d. across i. Our asymptotic

analysis will mainly rely on equation (7), where ψ′i,n are functions to control for the endogeneity of Gn.

In the parametric case, in order to have a closed form expression for ψ′i,n, we need to characterize the joint

distribution of (ui,n, v
′
i,n). So far we have assumed that the marginal distribution of vij,n is logistic. Let us

assume that the marginal distribution of ui is normal. Lee (1982) suggests to transform the error vij,n using a

strictly increasing transformation, J . The conditional moments in Assumption 2 become E(ui,n|v∗i,n) = v∗
′

i,nγ,

where v∗ij,n = J(vij,n). The Lee’s approach provides a way to generate a large class of models with selectivity.

By specifying different transformations, we allow different distributions for u and thus any specific probability

choice model falls into our method of correcting the selectivity bias term. This approach is particularly useful

when the marginal distribution of the outcome error ui,n is assumed to be normal and the marginal of vij,n

is known but not normal. Thus, the joint distribution of ui,n and the transformed error v∗i,n can be set as a

bivariate normal and their dependence is captured by the correlation coefficient. The term in (5) becomes

ψ∗i,n = E(v∗
′

i,n|Gi,n, An, Cn) = (8)

(gi1,nE(v∗i1,n|I(v∗i1,n ≥ −J(αCi1,n + ai,n + a1,n))) + (1− gi1,n)E(v∗i1,n|I(v∗i1,n < −J(αCi1,n + ai,n + a1,n))), . . . ,

(gin,nE(v∗in,n|I(v∗in,n ≥ −J(αCin,n + ai,n + an,n)))′ + (1− gin,n)E(v∗in,n|I(v∗in,n < −J(αCin,n + ai,n + an,n)))′.

Let fJ(·) be the implied density function of v∗ij,n which is assumed to exist under the transformation J .

Let us denote the incomplete first moment of the r.v. v∗ij,n evaluated at J(αCij,n + ai,n + aj,n) as

5



µ+
ij = µ+(J(αCij,n + ai,n + aj,n)) =

∫ J(αCij,n+ai,n+aj,n)

J(−∞)

v∗ij,nfJ(v∗ij,n) dv∗ij,n, (9)

µ−ij = µ−(J(αCij,n + ai,n + aj,n)) =

∫ J(∞)

J(αCij,n+ai,n+aj,n)

v∗ij,nfJ(v∗ij,n) dv∗ij,n.

Let Fij = F (αCij,n + ai,n + aj,n) = Pr(vij,n < αCij,n + ai,n + aj,n) be the probability that the event gij = 0

occurs. The selectivity bias term ψ∗i,n equals to (gi1,nµ
−
i1/(1−Fi1)+(1−gi1,n)µ+

i1/Fi1 . . . , gin,nµ
−
in/(1−Fin)+

(1− gin,n)µ+
in/Fin). Conditional on the endogenous adjacency matrix, equation (7) becomes

Yn = φGnYn + βXn + γΨ∗n + ξn, (10)

where γ = [(1/σv∗)
2In−1σuv∗]

′ and ξi,n = γ(v∗i,n − ψ∗i,n) + εi,n.

2.2 The semiparametric approach

Model (2)-(1) can be reformulated using a multiple-index/partially-linear model specification. Let Li,n =

(Ci,n, ρi), with Ci,n = (ci1,n, . . . , cin,n) and ρi = (ρi2, . . . , ρin), and λ = (α, βd, An). Let us define mi =

m(λ, Li,n) as a known function that determines the selection probability. Following Newey (2009), we assume

a standard index sufficiency conditions (see, e.g. Powell, 1994)

Assumption 3. Let

ψ(mi) = E(ui,n|Gi,n, Xn) = E(ui,n|m(λ, Li,n), Gi,n), (11)

P (gij,n = 1|Ci,n) = π(m(λ, Li,n)), (12)

ψ(mi) = w(ψ(mi1,n), . . . , ψ(min,n)), (13)

where ψ(·) and π(·) are unknown functions and w(·) is known.

Thus, equation (11) means that conditional on selection the mean of the outcome disturbances depend only

on mi.
12 Using this assumption, we can rewrite equation (2) as

yi,n = φGi,nYn + βxi,n + ψ(mi) + εi,n. (14)

Under Assumption 2, if we characterize the distribution of the errors (ui,n, v
′
i,n), the function ψ(mi) becomes

the multivariate inverse Mills ratio in step 2 of Section 3.1. The term is a generalization of the correction term

considered by Heckman and Robb (1985). In this paper, we allow ψ(mi) to have an unknown functional form.

Equation (14) is an additive semiparametric regression like that considered by Jenish (2013) and Su (2012),

except that the variable m = m(λ, Ln) depends on unknown parameters.

3 Estimation methods

3.1 The two-stage parametric IV estimation

In practice, under Assumption 2 the parametric approach can be implemented as follows.

12This restriction is implied by the assumption of independence between disturbances and regressors.
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Step 1 : Estimate the dyadic network formation model (1) using Graham (2014) joint maximum likelihood

estimator, let α̂, β̂d and âini,n, â
out
i,n be the estimated parameters.

Step 2 : Using the estimated parameters from Step 1 to compute

ψ̂i,n = ((gi1µ̂
−
i1/(1− F̂i1) + (1− gi1)µ̂+

i1/F̂i1, . . . , ginµ̂
−
in/(1− F̂in) + (1− gin)µ̂+

in/F̂in)),

by assuming J = Φ−1(·), where Φ is the normal CDF and fj(·) is a normal density function. We also assume

that (ui, v
′
i∗) follows a joint normal distribution.

Step 3 : With the estimated Ψ̂n, we consider the feasible counterpart of equation (10)

Yn = φGnYn + βXn + γΨ̂n + ξ̂n, (15)

where ξ̂i is a zero mean normally distributed residual. Estimation of γ in equation (15) is made feasible

assuming a constant covariance between ui,n and vi,n across i and j.13 Thus, we can sum up all the selectivity

correction terms. A weaker version of Assumption 2 is often used in the literature concerned with the estimation

of polychotomous sample selection models (see Dahl, 2002; Schmertmann, 1994). We can relax this assumption,

by allowing a less restrictive covariance structure as long as the number of parameters in γ is small and do

not grow with n. We rewrite model (15) in a more compact form

Yn = (GnYn, Xn, Ψ̂n)κ+ ξ̂n, (16)

where ξ̂n = ξn + γ(Ψn − Ψ̂n) and κ = (φ, β′, γ′)′. For the estimation of equation (16), with the inclusion of

the control functions in Ψn, Gn can be treated as exogenous. However, GnYn remains endogenous and we can

use an IV estimation method in the spirit of Qu and Lee (2015). Let Qn be an n × n matrix of IVs, then a

2SIV estimator of κ (2SP IV) is

κ̂ = [(GnYn, Xn, Ψ̂n)′Qn(Q′nQn)−1 (17)

× Q′n(GnYn, Xn, Ψ̂n)]−1(GnYn, Xn, Ψ̂n)′

× Qn(Q′nQn)−1Q′nYn.

As the composite error ξin = γ(v∗i,n − ψin) + ε is heterosckedastic as its variance matrix is

σ2
ξ = var(ξin|Gi,n, An, Cn) = γ[E(v∗

′2
i,n |I(vi1,n ≥ −αCi1,n − ai,n − a1,n), . . . , I(vin,n ≥ −αCin,n − ai,n − an,n), An, Cn)

− E(v∗
′
i,n|I(vi1,n ≥ −αCi1,n − ai,n − a1,n), . . . , I(vin,n ≥ −αCin,n − ai,n − an,n), An, Cn)2]γ′

+ σ2
u + σ′uvΣ−1

v σuv ,

we may also consider a generalized 2SIV (G2SIV). In a SAR model with endogenous weights matrix, Qu and

Lee (2015) propose a G2SIV estimator. In our case its properties are the same as in Qu and Lee (2015).

13In practice, we also assumed that the covariance is constant between ui,n and vij,n, no matter whether the link is realized or
not (when gij = 1 or gij = 0).
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3.2 The two-stage semiparametric IV estimation

The asymptotic properties of the two-step estimator for semiparametric sample selection models have been

derived by Newey (2009). This estimator works as the theoretical basis for ours. A similar kind of models

has been studied also by Su (2012) and Jenish (2013), but in econometric frameworks without selectivity.14

Following Newey (2009), we can estimate this model in the following two-step procedure.

Step 1 : Let (α̂, β̂d, Â) and m̂i be the semiparametric estimates from the link formation model (1).15

Step 2 : The second step consists of a linear regression of Yn on GnYn, Xn and functions of m̂ that can

approximate ψ(m). Let us define τ(m, η) as a strictly monotonic transformation of each entry of the index m,

depending on parameter η. Let PK(τ) = (P1K(τ), . . . , PKK(τ))′ be a vector of functions with the properties

that for large value of K a linear combination of PK(τ) can approximate an unknown function of τ(·). Let

τ̂i = τ(m̂i, η̂) and p̂i = PK(τ̂i). Let us assume furthermore, that the approximating functions are power series

given by16

PkK(τ) = τk−1.

This power series can lead to several different types of selection correction, depending on the transformation

τ one implements. As in Newey (2009), we give three examples of monotonic transformation. A power series

approximates the index m̂ (linear), the inverse Mills ratio φ(·)
Φ(·) (as in the parametric case), or the normal CDF

Φ(·). In the last two examples, it may be appropriate to undo a location and scale transformation imposed in

most semiparametric estimators of m(Li, λ). Consider the third example of the normal CDF. To this end, let

η̂ be the coefficient from a probit estimation of Gi on m̂i. Then, the transformed observation for the third

example is τij = Φ(η̂ m̂ij).
17

Thus, we can write model (14) as

yi,n = φGiYn + βxi,n +

q∑
k=1

γkτ
k−1
i + εi,n. (18)

As in the parametric case, however, GnYn remains endogenous. Let us define Zn = [GnYn, Xn,Ψ(m)] is a

n×(q+1+k) matrix. Let HK be an n×n matrix of IVs. The feasible 2SIV estimator of µ = (φ, β)′ (2SSP IV)

for model (14) is

µ̂ = (Z ′1R̂K(I − Q̂K)R̂KZ1)−1Z ′1R̂
′
K(I − Q̂K)R̂KYn, (19)

where R̂K = Ĥn(Ĥ ′nĤn)−1Ĥ ′n and Z1 = [GnYn, Xn].

14An additional difference with their models consists in the approximating function, they use kernel-based method. As high-
lighted before, we suggest to use series estimator given their virtue of being easy to implement in our context.

15There are many distribution-free estimators that are available for the selection equation, including those of Manski (1975),
Cosslett (1983), Powell et al. (1989), Ichimura (1993), Klein and Spady (1993), Khan (2013) and Lei (2013) in a SAR model.

16Other approximating functions can be used. The asymptotic properties of 2SSP IV also hold with regression spline approxi-
mation by slightly changing the growth rate of the number of approximating functions. See, e.g. Newey (2009).

17Observe that we do not impose normality.
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4 Asymptotic Properties

4.1 Key Statistics

The 2SP IV

For the 2SP IV estimator κ̂

κ̂− κ0 = [(GnYn, Xn, Ψ̂n)′Qn(Q′nQn)−1 (20)

× Q′n(GnYn, Xn, Ψ̂n)]−1(GnYn, Xn, Ψ̂n)′

× Qn(Q′nQn)−1Q′nξ̂n.

where the subscript 0 on parameters denotes their true values. From the reduced form of the model (15) we

have

GnYn = Gn(I − φ0Gn)−1(β0Xn + γ0Ψn + ξn) = Sn(β0Xn + γ0Ψn + ξn),

where Sn = Gn(I − φ0Gn)−1 and Sn(φ) = Gn(I − φGn)−1. For the consistency and asymptotic distribution

of κ̂ terms we need to analyze are Q′nQn, Q′n(GnYn, Xn,Ψn), Q′n(ξn + γ(Ψn − Ψ̂n)). For the choice of the IV

matrix Qn, its column vector can be linear combinations of XnGnXn, G
2Xn, . . . , and columns in Ψ̂n. If for

example we set the instrument matrix as Qn = (SnXn, Xn, Ψ̂n, SnΨ̂n), then terms which need to be analyzed

for consistency via some law of large numbers (LLN) are

1

n
X ′nS

′
nSnXn,

1

n
X ′nS

′
nXn,

1

n
X ′nS

′
nΨ̂n,

1

n
X ′nS

′
nSnΨ̂n,

1

n
X ′nΨ̂n,

1

n
Ψ̂′nΨ̂n,

1

n
Ψ̂′nS

′
nSnΨ̂n,

1

n
Ψ̂′nS

′
nSnΨn,

1

n
X ′nS

′
nΨn,

1

n
X ′nS

′
nSnξn,

1

n
X ′nSnξn,

1

n
Ψ̂′nSnξn,

1

n
Ψ̂′nS

′
nSnξn,

1

n
X ′nS

′
nξ̂n,

1

n
X ′nξ̂n,

1

n
Ψ̂′nξ̂n, and

1

n
Ψ̂′nS

′
nξ̂n.

For the asymptotic distribution of the estimator, we need to consider the stochastic convergence in distribution

via central limit theorem (CLT) for some of those terms after proper rescaling.

The 2SSP IV

For the 2SSP IV estimator µ̂

µ̂− µ0 = [(GnYn, Xn)′Ĥn(Ĥ ′nĤn)−1 (21)

× Ĥ ′n(I − Q̂K)Ĥn(Ĥ ′nĤn)−1

× Ĥ ′n(GnYn, Xn)]−1(GnYn, Xn)′Ĥn(Ĥ ′nĤn)−1

× Ĥ ′n(I − Q̂K)Ĥn(Ĥ ′nĤn)−1Ĥ ′n(ε+ Ψ0(m)).

9



where the subscript 0 on parameters denotes their true values. From the reduced form of the model (15) we

have

GnYn = Gn(I − φ0Gn)−1(β0Xn + Ψ0(m) + ε) = Sn(β0Xn + Ψ0(m) + ε),

where Sn = Gn(I − φ0Gn)−1 and Sn(φ) = Gn(I − φGn)−1. For the consistency and asymptotic distribution

of µ̂ terms we need to analyze are H ′nHn, H ′n(GnYn, Xn), H ′nP̂ , P̂ ′P̂ , H ′n(ε + Ψ0(m)). For the choice of the

IV matrix Hn, its column vector can be linear combinations of XnGnXn, G
2Xn, . . . , and columns in P̂ . For

example, if we choose Ĥn = (GnXn, Xn, P̂ ), then the terms which be analyzed are

1

n
X ′nG

′
nSnXn,

1

n
X ′nG

′
nSnΨ0(m),

1

n
X ′nG

′
nSnε,

1

n
X ′nG

′
nXn,

1

n
P̂ ′SnXn,

1

n
P̂ ′SnΨ0(m),

1

n
P̂ ′Snε,

1

n
P̂ ′Xn,

1

n
X ′nSnXn,

1

n
X ′nSnΨ0(m),

1

n
X ′nSnε,

1

n
X ′nXn,

1

n
X ′nP̂ ,

1

n
P̂ ′P̂ ,

1

n
P̂Xn,

1

n
X ′nG

′
nGnXn,

1

n
X ′nSnΨ0(m),

1

n
X ′nSnε,

1

n
X ′nXn,

1

n
X ′nG

′
nε,

1

n
X ′nG

′
nΨ0(m),

1

n
X ′nε,

1

n
X ′nΨ0(m),

1

n
P̂ ′Ψ0(m), and

1

n
P̂ ′ε,

for consistency via LLN and some properly rescaled terms for the asymptotic distribution of the estimator via

CLT.

4.2 Assumptions

To analyze terms in the above key statistics, we need more topological structures and additional assumptions.

Most of the assumptions are used to prove the asymptotic properties of both estimators. However, the 2SSP IV

estimator, given its generality, needs additional assumptions (9-12).

Assumption 4. 1. 2SP IV supn||Gn||∞ = cg <∞.

2. 2SSP IV The elements gij,n = O(1/hn), uniformly in all i, j. The ratio hn
n → 0, as n goes to infinity.

hn is a divergent sequence.

Assumption 5. The parameter θ = (φ, β′d, β
′, A′, γ) ∈ Θ which is a compact set in the Euclidean space Rkθ .

The true parameter θ0 is contained in the interior of Θ. Furthermore, supφ∈Φ|φ|cg < 1, where Φ is the

parameter space for φ.

Assumption 6. The support of Xn and A is compact subset of RK and R respectively. Cn is a bounded

function of Xn.

Assumption 7. Let i = 1, . . . n index a random sample of agents from a population. (gij,n, xi,n, yi,n) are

observable.

Assumption 8. If ρij > ρc, then gij = 0, where ρc = lc − ε, and lc = sup
i,j∈Dn

ρij with ε→ 0.

The following assumptions are needed to analyze the terms of the key statistics for the 2SSP IV estimator.

Assumption 9. There exists z(L,G) such that for zi = z(Li, Gi),
√
n(λ̂ − λ) =

∑Nd
i=1 zi/

√
Nd + op(1),

E(zi) = 0 and E(ziz
′
i) exist and is non-singular.

Assumption 10. Ψ0(m) is continuously differentiable in m, of orders c ≥ 1.

10



Assumption 11. There is a η0 with
√
n(η̂−η0) = Op(1), the distribution of τ(m(L, λ0), η0) has an absolutely

continuous component with PDF bounded away from zero on its support, which is compact. Also, the first and

the second partial derivatives of m(L, λ) and τ(m, η) are bounded in a neighbourhood of λ0 and η0, respectively.

w.l.o.g. the function w is equal to τ and additive.

Assumption 12. K = Kn such that
√
nK−c+1 p→ 0 and pk(τ) is a power series with c ≥ 5, K7/n → 0 and

K1+2c/hn = O(1).

Assumptions 4 are standard assumptions in the spatial econometrics literature to limit the spatial corre-

lation of the errors. For the 2SP IV estimator the condition on the adjacency matrix is the same given in Qu

and Lee (2015). We require the row of the adjacency matrices to be uniformly bounded, which in turn requires

the number of direct links of each node in a network to be bounded. Intuitively, this assumption says, as the

sample size increases, the number of direct links of a node cannot go to infinity.

However, in the case of the 2SSP IV we need to impose a stronger assumption on the topology of the

adjacency matrix in order to have key statistics that are NED on the input process. In some empirical

applications, it is a practice to have Gn be row-normalized such that Gi = (gi1, . . . , gin/
∑n
j=1 gij). In this

case since gij is positive and uniformly bounded, if the
∑n
j=1 gij = O(hn) uniformly in i, then the resulting

Gn will have the property assigned to the Assumption 4 (see, e.g., Lee, 2004).

As in Qu and Lee (2015), the distance plays a crucial role in Assumption 8. In fact agents might be linked

to other agents in wide area, but once the geographic distance between two agents exceeds a threshold, the

two units are not spatially interacted. The second part of the assumption is needed to fit the sparseness

requirement of the SAR outcome equation with the network formation estimation as in Graham (2014).

Assumptions 9-12 are needed for the more general case of the 2SSP IV estimator. Most of the assumptions

directly follow from Newey (2009). Assumption 9 requires that λ̂ be asymptotically equivalent to a sample

average which is a function of L and G. It is satisfied by many semiparametric estimators of binary choice

models that are
√
n−consistent (see, e.g. Klein and Spady, 1993). Assumption 10 imposes smoothness condi-

tions on function m(·) to control the bias of the estimator. Assumption 11 imposes that the density of τi is

bounded away from zero. This assumption might be restrictive as observed by Newey (2009). Assumption 12

imposes growth rate restrictions for the number of approximating terms.

Our asymptotic analysis of the proposed estimator is based on inference under NED. The following notion

of NED for random field is closely related to Jenish and Prucha (2012).

Definition 1. For any random vector Z, ||Z||p = (E|Z|p)1/p denotes its Lp−norm where |·| denotes Eucledean

norm. Denote Fi,n(s) as a σ− field generated by the random vectors ζj,n’s located within the ball Bi(s), which

is a ball centered at the location l(i) with a radius s in a d−dimensional Euclidean space D.

Definition 2 (NED). Let T = {Ti,n; l(i) ∈ Dn, n ∈ N} and ζ = {ζi,n; l(i) ∈ Dn, n ∈ N} be random fields with

||Ti,n||p <∞, with p ≥ 1, where Dn ⊂ D and its cardinality |Dn| = n, and let d = {di,n; l(i) ∈ Dn, n ∈ N} be

an array of finite positive constants. Then the random field T is said to be Lp−near-epoch dependent on the

random field ζ if ||Ti,n −E(Ti,n|Fi,n(s))||p ≤ di,nϕ(s) for some sequence ϕ(s) ≥ 0 such that lims→∞ ϕ(s) = 0.

ϕ(s) and di,n are called respectively, the NED coefficient and the NED scaling factors. T is said to be Lp−NED

on ζ of size −α if ϕ(s) = O(s−µ) for some µ < α < 0. Furthermore when ϕ(s) = O(ρ), where 0 < ρ < 1 then

T is called geometrically Lp-NED on ζ. If supn supl(i)∈Dndi,n < ∞, then T is said to be uniformly Lp-NED

on ζ.

4.2.1 Asymptotic inference of the key statistics

Let ζ∗i,n be a vector valued function of the error term ζi,n = (v∗
′

i,n, ξi,n)′ and the observed Xn., i.e., ζ∗i,n =

fi(v
∗′
i,n, ξi,n, Xn, θ0). As Xn is deterministic, ζ∗i,n is purely determined by the location l(i), independent of the

11



error terms associated with any other places. Let Mn = A′nBn, where An and Bn are either Gm1
n or Sm2

n ,

with m1 and m2 being finite non-negative integers. The NED property of the statistics a′ζ∗
′

n Mnζ
∗
nb, for some

constant vectors a and b, and ζ∗n = (ζ∗1,n, . . . , ζ
∗
n,n)′ as the basis for the NED is established in Appendix B.

Then based on the asymptotic inference under NED, we have the following LLN.

Proposition 1. Under Assumptions 1,2, 4-8, suppose supi,n||ζ∗i,n||4 <∞ for the 2SP IV or Assumptions 4-8

hold for the 2SSP IV then 1
nE|a

′ζ∗
′
Mnζ

∗b| = O(1) and 1
n [a′ζ∗

′
Mnζ

∗b−E(a′ζ∗
′
Mnζ

∗b)] = op(1), where a and

b are conformable vectors of constants.

Furthermore, with the compactness of the parameter space of θ, we have the following ULLN.

Proposition 2. Under Assumptions 1,2, 4-8, suppose supi,n||ζ∗i,n||4 <∞ for the 2SP IV or Assumptions 4-8

hold for the 2SSP IV , then 1
na
′ζ∗
′
(θ)Mn(φ)ζ∗(θ)b is stochastic equicontinuous and

sup
θ∈Θ

1

n
|a′ζ∗

′
(θ)Mn(φ)ζ∗(θ)b− E(a′ζ∗

′
(θ)Mn(φ)ζ∗(θ)b)| = op(1),

where ζ∗i,n(θ)′ = fi(v
∗′
i,n, ξi,n, Xn, θ) and Mn(φ) = A′nBn, where An and Bn are either Gm1

n or Sm2
n (φ), with

m1 and m2 being finite non-negative integers.

Let us denote

Rn =

m∑
j=1

[a′jζ
∗′Mjnζ

∗bj − E(a′jζ
∗′Mjnζ

∗bj)] =

m∑
j=1

ri,n,

where each Mjn matrix can be expressed as Mjn = A′jnBjn, where Ajn and Bjn are either Gm1
n or Sm2

n .

Denote σ2
Rn

as the variance of Rn and ri,n =
∑m
j=1

∑n
k=1[a′jζ

∗′
i,nMjn(i, k)ζ∗k,nbj − E(a′jζ

∗′
i,nMjn(i, k)ζ∗k,nbj)].

From Qu and Lee (2015) we habe the following CLT for Rn.

Proposition 3. Under Assumptions 1,2, 4-8, suppose supi,n||ζ∗i,n||4+δε <∞, for some δε > 0 for the 2SP IV

or Assumptions 4-8 hold for the 2SSP IV ; and infn
1
nσ

2
Rn

> 0, then Rn
σ2
Rn

d→N(0, 1).

As in Qu and Lee (2015) these propositions provide essential tools for asymptotic analysis of the consistency

and asymptotic normality of the 2SP IV and the 2SSP IV estimators.

4.2.2 Consistency and asymptotic normality

To show consistency and asymptotic normality of the 2SIV, we need certain rank conditions on relevant limiting

matrices in addition to the convergence of each separated term.

The 2SP IV

Assumption 13. Column of Qn are from Mnqn and MnΨn, where qn is strictly exogeneous vector and Mn =

A′nBn in which An and Bnare either Gm1
n or Sm2

n being finite non-negative integers. Xn is a deterministic

uniform bounded variable.18

Assumption 14. limn→∞
1
nE(Q′nQn) exists and is nonsingular; limn→∞

1
nE[Q′n(Sn(β0Xn+γ0Ψn), Xn,Ψn)]

has full column rank.

Let us define λ = (α, β,A).

18This assumption could be replaced by stochastic regressors with certain finite moment condition. It is used in order to simplify
the derivations.
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Theorem 1. Under Assumption 1,2, 4-8, 13 and 14 the 2SIV estimator κ̂ is consistent. Furthermore,
√
n(κ̂−

κ0)
d→N(0,ΣIV ) where,

ΣIV = plimn→∞
1

n
(J ′nPqnJn)−1J ′nPqnΣPqnJn(J ′nPqnJn)−1,

with Jn = (Sn(β0Xn+γ0Ψn), Xn,Ψn), Pqn = Qn(Q′nQn)−1Q′n and with Σ = In−1σ
2
ξ+(γ ∂

∂λΨn)var(λ)( ∂
∂λΨ′nγ

′).

However, the estimator is not feasible because φ0 in Sn is not known. In practice, we may useXnGnXn, G
2Xn, . . . ,

to have an initial consistent estimate κ̂ by 2SP IV, and then using Sn(φ̂)Xn and Sn(φ̂)Ψ̂n to obtain the feasible

best 2SP IV estimator using Proposition 2. The two estimators has the same limiting distributions. For details

see Qu and Lee (2015).

The 2SSP IV

Let us denote Q⊥n = I −Qn.

Assumption 15. E(ε2|m,Gn) is bounded. Xn is a deterministic uniform bounded variable.

Assumption 16. Column of Hn are from Mnqn and column of Ψn, where qn is strictly exogeneous vector

and Mn = A′nBn in which An and Bn are either Gm1
n or Sm2

n being finite non-negative integers.

Assumption 17. limn→∞
1
nE(H ′nHn) exists and is nonsingular; limn→∞

1
nE[H ′n(Sn(β0Xn + Ψ0(m)), Xn)]

has full column rank, limn→∞
1
nE(H ′nQ

⊥
nHn) has full column rank and limn→∞

1
nE(Q′nQn) exists and is non-

singular.

Theorem 2. Under Assumptions 1-12, and 15 - 17, the 2SIV estimator κ̂ is consistent. Furthermore,
√
n(µ̂−

µ0)
d→N(0,ΣSPIV ) where,

ΣSPIV = plimn→∞
1

n
(J ′nFKnQ

⊥
nFKnJn)−1J ′nFKnQ

⊥
nFKnΣ2JnFKnQ

⊥
nFKn(J ′nFKnQ

⊥
nFKnJn)−1,

with Σ2 = In−1σ
2
ε + ( ∂

∂λΨ0)var(λ)( ∂
∂λΨ0)′.

4.3 Comparison of the estimation approaches

In this section, we discuss the pros and cons of each estimation approach. The parametric approach imposes

strong parametric assumptions on the multivariate distributions of the selection and outcome equation dis-

turbances, and it allows the selectivity bias to enter linearly in the outcome equation. The main advantage

of this approach is its efficiency when the parametric assumptions are correct. However, to avoid the curse of

dimensionality, one need to restrict cov(ui, vij) to be constant across i and j (Assumption 2). Even though this

restriction can be relaxed, it implies the computation of many multidimensional integrals, e.g. the multivariate

inverse Mills ratios in equation (15).

The semiparametric approach allows the functional form of the correction term to be completely unknown.

In order to include this unknown term one can use an approximating function. If the number of approxi-

mating functions grows with the sample size, the estimator is
√
n-consistent and asymptotic normal. In our

network model, where the number of terms in the approximating function is embedded in a growing number

of instruments (the spatial lags), the estimator precision may be poor if the sample size is low (see Section

2.2).
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5 Simulation experiments

In order to evaluate the finite sample performance of the proposed estimators, we conduct a Monte Carlo

simulation. The data generating process (DGP) is

Yn = (I − φGn)−1(βXn + Un), (22)

where Xn is an exogenous random variable normally distributed with mean zero and variance equal to σx = 1

and β = 1. u is generated from a normal distribution with mean equal to zero and variance equal to 8. Links

are formed according with the following rule

gij = I(g∗ij ≥ 0) = I(α+ γ(xi + xj) + ι|xi − xj |+ vij ≥ 0), (23)

where α = −1.5, γ = −0.1, and ι = −0.3.19 This DGP implies that we generate a direct graph, i.e. arcs

are not necessarily reciprocal. vij is a logistically distributed random variable with mean equal to zero and

var(vij) = σv = 1. To create endogeneity in the SAR outcome equation, we generate a bivariate normal random

variable (ui,n, v∗′i,n) ∼ i.i.d.(0,Σuv), where Σuv =

(
8 σuv

σuv In−1

)
, σuv is a n− 1 vector of covariances with

constant elements across i and j.

In the simulation, we compare the 2SLS estimator which is commonly used when network exogeneity is

assumed, with our parametric 2SP IV and semiparametric 2SSP IV estimators given in (17) and (19). We

refer to these three methods as 2SLS, 2SP IV, 2SSP IV in the tables. Our 2SP IV and 2SSP IV treat Gn

as endogenous, while the conventional 2SLS estimator estimates only the outcome equation and treats Gn as

exogenous.20 Our aim is to show the magnitude of the bias for the conventional method when links, in fact,

form endogenously. To generate different degree of endogeneity, we set the σuv = 0, 0.15 and 0.30. To test the

flexibility of the nonparametric correction terms, we use three different distributions of the bivariate random

variable (ui,n, v∗′i,n), namely student’s T with 1, 3, 5, and 7 degree of freedom, Beta and Weibull distributions.

All the distributions have the same mean and covariance matrix as the bivariate normal case.21 We also allow

the endogenous effects to be different setting φ = 0.07, 0.08, 0.09, and 0.1 to investigate how the endogenous

effects parameter affects estimates.

The setup of our simulations is as follows. The population numerosity is 50, 100 and 500 nodes. Each node

is allowed to have endogenous connections. We estimate 1,000 times model (2) with 2SLS, model (4) using

the 2SP IV and 2SSP IV estimators. The control variable Xn, the error terms and the network are randomly

generated for each replication.22

Table 1-3 reports the empirical mean (Avg Point Estimation), the empirical standard deviation (Standard

Deviation) and the mean squared errors (MSE) of each estimator. Tables 1-3 are given in Appendix D.

Table 1 reports on the performance of each estimator when we let φ and the sample size vary. The degree

of endogeneity is medium and fixed to σuv = 0.30. For each value of φ, we show the performance of each

estimator in small, medium and large samples (n=50, 100 and 500, respectively).

Table 2 reports on the performance of each estimator when φ and the degree of endogeneity changes. For

each value of φ we allow the degree of endogeneity to vary between exogeneity, e.g. σuv = 0, weak endogeneity,

19Node specific fixed effects are removed for the sake of simplicity because we focus on the estimation of the SAR outcome
equation in the case of endogenous adgacency matrix.

20Model (23) is estimated using logistic regression when the outcome equation estimator is 2SP IV. Model (23) is estimated
using the smoothed maximum score in the semiparametric case, see Horowitz (1992) for details.

21In order to keep the density of the network stable we changed the value of the constant of the model (23) for the different
bivariate distribution of the errors. See footnote of Table 3.

22Qualitative results are not sensitive to the parameters values held constant in Table 1. For the sake of brevity we do not show
the output of all simulations
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e.g. σuv = 0.15 and medium endogeneity e.g. σuv = 0.30.

Table 3 reports the perfomance of each estimator when we change the bivariate distribution of the errors.

Here, the values of φ and n are set to 0.1 and 100, respectively. The degree of endogeneity is medium

(σuv = 0.3).

The simulation results are summarized as follows.

1. For the biases of the parameter estimators, 2SP IV and 2SSP IV have very small biases in all cases. The

conventional 2SLS estimator is systematically upward biased. The magnitude of bias slightly decreases

as the value of φ increases. The biases of the endogenous effects φ̂ are in general much higher than those

for β̂.

2. The biases of conventional 2SLS estimator vary with the degree of endogeneity. The higher the degree

of endogeneity, i.e., the larger the covariance σuv, the larger the bias of estimators.

3. Comparing the empirical standard deviations of the estimators, the empirical standard deviation of the

conventional 2SLS is systematically greater than 2SP IV and 2SSP IV. It increases as the value of σuv

increases as can be seen from Table 2. The empirical standard deviations of 2SP IV and 2SSP IV are

similar.

4. From Table 1 the bias and the standard deviation of those estimators decreases as the sample size

increases.

5. From Table 3 the conventional 2SLS suffers severe upward bias, especially when the bivariate distribution

of the errors is Student’s T with 1 degree of freedom (more far from the normal distribution) or Weibull

or Beta. In the Weibull case the bias of the 2SLS exceeds 100%. 2SP IV performs slightly better than

conventional 2SLS, however, it still suffers a lot from the parametric assumption. 2SSP IV estimator

outperforms all others. This result confirms the criticism on the reliance of distributional assumptions

in the selectivity model (see, for example Vella, 1998).

6 Concluding remarks

Many applications of interaction models with network data are based on the assumption that links among

economic agents are exogenous. Recent papers, like Hsieh and Lee (2014) and Goldsmith-Pinkham and Imbens

(2013), propose a Bayesian approach to estimate network models with endogenous interactions. This paper

considers a frequentist approach. Graham (2014) proposed a maximum likelihhod estimator for the link

formation and derived the statistical properties. Building on his work, we consider two sets of equations:

one for the selection model (as in Graham, 2014) and the other for the SAR outcome. Endogeneity arises

when there are unobserved factors driving both link formation and outcome. We propose two estimation

methods: 2SP IV and 2SSP IV . The consistency and asymptotic normality of these estimators are proved

using the theory of asymptotic inference under near-epoch dependence. We provide Monte Carlo simulations

to investigate finite sample properties of our proposed estimators and compare their performances with those

under the exogenous weight matrix assumption.

The simulation results indicate that the commonly used estimators are upward biased when the network

formation process is endogenous. On the other hand, our estimators have good finite sample properties. As

the sample size increases our estimates quickly converge to the true parameters. As we expect, the 2SSP IV

outperforms 2SP IV when the distribution of the errors departs from normality. This result has also been

confirmed in the literature (see, for example Vella, 1998). The two advantages of our method comparing to a
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Bayesian approach are efficiency and generalization. Bayesian models are highly time demanding in terms of

computational time. Our method is easy to implement and fast to calculate. Second, Bayesian models highly

depends on their prior assumptions -while the semiparametric method does not impose any functional form to

the bivariate distribution of unobservables.
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Appendix A: Some basic properties of NED of random fields and

power series

NED of random fields

In the following proofs, we adopt asymptotic inference under NED on ζi,n = (v∗
′

i,n, ξi,n)′ as basis for the NED

process. The following claims are some basic results due to the topological structure in Assumption 1. These

basic properties are derived in Jenish and Prucha (2012) and Qu and Lee (2015).

Claim A.1. For any distance ρ, there are at most c1ρ
d
0 points in Bi(ρ), where c1 is a positive constant.

Claim A.1 derives from Jenish and Prucha (2012).

Claim A.2. For any random field T = {Ti,n; l(i) ∈ Dn, n ∈ N}, with ||Ti,n||p <∞, we have

||Ti,n(m)− E(Ti,n(m)|Fi,n(s))||p ≤ 2||Ti,n(m)||p.

The results follows from the Minkowsky and conditional Jensen’s inequalities.

Claim A.3. If ||t1i,n(m)−E(t1i,n(m)|Fi,n(s))||4 ≤ C1ϕ1(s) and ||t2i,n(m)−E(t2i,n(m)|Fi,n(s))||4 ≤ C2ϕ2(s),

with max(||t1i,n(m)||4, ||t2i,n(m)||4) ≤ C, then ||t1i,n(m)t2i,n(m) − E(t1i,n(m)t2i,n(m)|Fi,n(s))||2 ≤ C(C1 +

C2)ϕ(s), with ϕ(s) = max(ϕ1(s), ϕ1(s)).

The results follows from Qu and Lee (2015) Claim B.3.

The LLN and the CLT under NED inference follows directly from Jenish and Prucha (2012).

Claim A.4. Under Assumption 1, if the random field T = {Ti,n; l(i) ∈ Dn, n ∈ N} is L1 −NED, the base

ζi,n’s are i.i.d., and ||Ti,n||p <∞ uniformly, then 1
n

∑n
i=1(Ti,n − ETi,n)→L1

0.

Claim A.5. Let T = {Ti,n; l(i) ∈ Dn, n ∈ N} be a random field that is L2 −NED on the base ζi,n’s that is

i.i.d.. If assumption 1 and the following conditions are met:

1. ||Ti,n||2+δ <∞ uniformly, for some δ > 0,

2. infn 1/nσ2 > 0, where σ2 = var(
∑n
i=1 Ti,n),

3. NED coefficients satisfy
∑∞
r=1 r

d0−1ϕ(r) <∞

4. NED scaling factors satisfy supn,i∈Ddi,n <∞,

then 1/σ
∑n
i=1(Ti,n − ETi,n)

d→N(0, 1).

Power Series

The following claims are some basic results derived in Newey (2009).

Claim A.6. Under Assumptions 9 -11, we have that there is that a non-singular linear transformation of

p̃K(τ) of pK(τ) such that for Πc(K) = CK1+2c

E(p̃K(τi)p̃
K(τi)

′) = I

sup
|τ |≤1

∣∣∣∣∣∣∣∣∂cp̃K(τi)

∂τ c

∣∣∣∣∣∣∣∣ ≤ Πc(K)

Π1(K)K1/2/
√
n→ 0, Π1(K)K−c+1/

√
n→ 0.
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Following Newey (2009), we have that by ∂w(mi(Li,λ))
∂λ bounded and

√
n−consistency of λ̂, and by ∂τ(mi,η)

∂m

bounded, maxi |τ̂ − τ | = Op(1/
√
n). From location and scale transformation for power series, which will not

change the regression, it can be assumed that |τ̂ | ≤ 1. As in Newey (1997), from Assumption 12 follows that

there is a non-singular linear transformation of p̃K(τ) of pK(τ) such that for πc(K) = CK1+2c

E(p̃K(τi)p̃
K(τi)

′) = I

sup
|τ |≤1

∣∣∣∣∣∣∣∣∂cp̃K(τi)

∂τ c

∣∣∣∣∣∣∣∣ ≤ πc(K)

π1(K)K1/2/
√
n→ 0, π1(K)K−c+1/

√
n→ 0.

Since a non-singular transformation does not change µ̂, without loss of generality we can set p̃ = p.

Claim A.7. Under Assumptions 9 -12, it follows as in Newey (1997, 2009) that there is a γK such that for

ψK(τ) = pk(τ)′γK ,

sup
|τ |≤1

|ψ0(τ)− ψK(τ)| ≤ CK−c+1, sup
|τ |≤1

∣∣∣∣∂ψ0(τ)

∂τ
− ∂ψK(τ)

∂τ

∣∣∣∣ ≤ CK−c+1.

Appendix B: Proofs of NED properties for relevant statistics

In what follows ek,n = (0, . . . , 0, 1, . . . , 0)′ is the unit column vector with one in its kth entry and zeros in its

other entries and en = (1, . . . , 1)′ =
∑n
k=1 ek,n. Observe that In =

∑n
i=1 ei,ne

′
i,n.

2SP IV

Claim B.1. Under Assumptions 1, 4 and 8, for any positive integer m, supm||Gmn ||1 ≤ cgc1ρd0c .

Proof of Claim B.1. See Qu and Lee (2015) Claim C.2.1

Claim B.2. Under Assumptions 1, 4, 5 and 8, for any positive integer m, supφ∈Φ||Sn(φ)||1 ≤ ∞ and

supφ∈Φ||Sn(φ)||∞ ≤ ∞.

Proof of Claim B.2. By applying Claim B.1 see proof Qu and Lee (2015) Claim C.2.2

Claim B.3. Let ti,n(m) = ei,nG
m
n ζ
∗
i,na, where ζ∗i,n = fi(ζi,n, Xn) with ζi,n = (v∗

′

i,n, ξi,n)′ is a vector-valued func-

tion and a is any conformable vector of constants. Under Assumptions 1, 4 and 8, we have that supi,n||ti,n(m)||p <
Capm

d0cmg and supi,n||ti,n(m)−E(ti,n(m)|Fi,n(s))||p < Capmϕ(s) with Capm and Cap being positive constant;

ϕ(s) = 1 if s ≤ mρc and ϕ(s) = 0 if s > mρc.

Proof of Claim B.3. See proof Claim C.2.5 in Qu and Lee (2015).

Claim B.4. Let hi,n(m) = e′i,nS
m
n (φ)ζ∗na, where ζ∗i,n = fi(ζi,n, Xn) with ζi,n = (v∗

′

i,n, ξi,n)′ is a vector-valued

function and a is any conformable vector of constants. Under Assumptions 1, 4 and 8 suppose supi,n||ζ∗i,n||p <
∞, then supi,n||hi,n(m)||p < ∞ and supi,n||hi,n(m) − E(hi,n(m)|Fi,n(s))||p < Capmϕ(s) with Capm being

positive constant; ϕ(s) = 1 if s ≤ mρc and ϕ(s) = sd0+m−1|φcg|s/ρc if s > mρc.

Proof of Claim B.4. See proof Claim C.2.6 in Qu and Lee (2015).

2SSP IV

21



Claim B.5. Under Assumptions 1, 4 and 8, for any positive integer m, supn||Gmn ||1 = O(ρd0c /hn).

Proof of Claim B.5. Let us define en Consider the kth column sum of Gmn

e′i,nG
m
n ek,n =

∑
i

e′nG
m−1
n ei,ne

′
i,nGnek,n (24)

≤ ||Gm−1
n ||∞

∑
i

e′i,nGnek,n.

Under Assumption 4 and 8,
∑
i e
′
i,nGnek,n =

∑
i∈Bk(ρc)

gik,n = O(hn/hn)O(ρd0c ) = O(ρd0c ). Hence, e′i,nG
m
n ek,n =

O(hm−1
n /hmn )O(ρd0c ) = O(ρd0c /hn). This follows for any k and n, we have supn||Gmn ||1 = O(ρd0c /hn).

Claim B.6. If the i,jth element of Gmn is not zero, then ρij ≤ mρc

Proof of Claim B.6. See proof of Claim C.2.3 in Qu and Lee (2015).

Claim B.7. For any positive integer p and 0 < q < 1, if s ≥ p/(−lnq) + 1, then there exist a finite constant

c such that
∑
l=[S] l

pql < cspqs, where s is the largest integer less than or equal to s.

Proof of Claim B.7. See proof of Claim C.2.4 in Qu and Lee (2015).

Claim B.8. Let ti,n(m) = ei,nG
m
n ζ
∗
i,na, where ζ∗i,n = fi(ζi,n, P ) with ζi,n = (v∗

′

i,n, ξi,n)′ is a vector-valued

function and a is any conformable vector of constants. Under Assumptions 1, 4, 5, 8 - 12 we have that

supi,n||ti,n(m)||p < Cap and supi,n||ti,n(m)− E(ti,n(m)|Fi,n(s))||p < Capmϕ(s) with Capm being positive con-

stant; ϕ(s) = 1 if s ≤ mρc and ϕ(s) = 0 if s > mρc.

Proof of Claim B.8. From Claim B.6, e′i,nG
m
n ek,n = 0 if k /∈ Bi(mρc). Therefore,

|ti,n(m)| = |
∑
k

e′i,nG
m
n ek,ne

′
k,nζ

∗
i,na| (25)

= |
∑

k∈Bi(mρc)

e′i,nG
m
n ek,ne

′
k,nζ

∗
i,na|

≤ max
k,n
|e′i,nGmn ek,n|

∑
k∈Bi(mρc)

|ζ∗i,na|.

Thus, we have

||ti,n(m)||p ≤ c1
(mρc)

d0

hn

∑
k∈Bi(mρc)

||ζ∗i,na||p (26)

≤ c1
(mρc)

d0

hn
πc(K),

where supi,n||ζ∗i,na||p ≤ π0(K) and Cap = c1
(mρc)

d0

hn
πc(K). See claim A.6 for a definition of π(·). In this

case under Assumption 11 πc(K) = CK(1+2c) for power series, see Claim A.6.

Next we show the NED property. We have that all the chains of e′i,nG
m
n related to ti,n(m) are within the

ball Bi(mρc). Hence, when s > mρc, (ti,n(m)− E(ti,n(m))|Fi,n(s)) = 0. With s ≤ mρc,
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||ti,n(m)− E(ti,n(m)|Fi,n(s))||p ≤ 2||ti,n(m)||p ≤ 2Cap.

The NED property follows if we choose ϕ(s) = 1 for s ≤ mρc, and ϕ(s) = 0 otherwise.

Claim B.9. Let hi,n(m) = e′i,nS
m
n (φ)ζ∗na, where ζ∗i,n = fi(ζi,n, P ) with ζi,n = (v∗

′

i,n, ξi,n)′ is a vector-valued

function and a is any conformable vector of constants. Under Assumptions 1, 4, 5, 8 - 12 we have that

supi,n||hi,n(m)||p <∞ and supi,n||hi,n(m)− E(hi,n(m)|Fi,n(s))||p < Capmϕ(s) with Capm being positive con-

stant; ϕ(s) = 1 if s ≤ mρc and ϕ(s) = sd0+m−1|φcg|s/ρc if s > mρc.

Proof of Claim B.9. From the proof of Claim C.1.7 in Qu and Lee (2015), we have gi,n(m) =
∑∞
l=0 C

l+m−1
l φlti,n(l+

m), where Cl+m−1
l is a binomial coefficient. If φ = 0, then gi,n(m) = ti,n(m) and the claim follows from Claim

B.8. For φ 6= 0 by Claim B.8, for any i and n,

||gi,n(m)||p ≤ c1
(mρc)

d0

hn
πc(K)

∞∑
l=0

|φcg|l(l +m)d0+m−1,

which is finite under Assumption 11 and denoted as Cm. Thus, for s > 0,

||gi,n(m)− E(gi,n(m)|Fi,n(s))||p ≤ 2||gi,n(m)||p ≤ 2Cm.

Now consider the case, when s > mρc. Given such as s, from Claim B.8, ti,n(m+l)−E(ti,n(m+l)|Fi,n(s) = 0

for any nonnegative integer l such that s > (m + l)ρc. Such a set of l will be determined by l < (s/ρc −m).

Thus, when s > mρc

||gi,n(m)− E(gi,n(m)|Fi,n(s))||p = (27)

=

∣∣∣∣∣∣∣∣ ∞∑
l=[s/ρc−m]

(l +m)m−1|φ|l||ti,n(m+ l)

∣∣∣∣∣∣∣∣
p

≤ 2Capc
m
g

∞∑
l=[s/ρc−m]

(l +m)m−1+d0 |φcg|l.

The last inequality follows from Claim B.7. As s/ρc > m , we have

∞∑
l=[s/ρc−m]

(l +m)m−1+d0 |φcg|l/|φ|m =

∞∑
l=[s/ρc]

(l)m−1+d0 |φcg|l/|φ|m/|φ|m

= O(sm−1+d0 |φcg|s/ρc)

if s > mρc.

Appendix C: Proofs of main results

Proof of Proposition 1. Under Assumptions 1,2, 4-8, suppose supi,n||ζ∗i,n||4 < ∞ for the 2SP IV or As-

sumptions 4-8 hold for the 2SSP IV , Claims A.3, B.8 and B.9 the result follows from Claim A.4 and Proposition

1 in Qu and Lee (2015).

23



Proof of Proposition 2. From Proposition 1 we have that

1

n
|a′ζ∗

′
(θ)Mn(φ)ζ∗(θ)b− E(a′ζ∗

′
(θ)Mn(φ)ζ∗(θ)b)| = op(1).

For each θ ∈ Θ. To show ULLN as the parameter space of θ is compact, we only need to show stochastic

equicontinuity of 1
n |a
′ζ∗
′
(θ)Mn(φ)ζ∗(θ)b|. Let us define λ = (α, β′, A′) ⊂ Θ, we have three cases: (a) ζ∗

′
(θ) =

Ψ(λ); (b) ζ∗
′
(θ) 6= Ψ(λ); ζ∗(λ) = P (τ) .

(a) By the mean value theorem,

|a′Ψ(λ1)′Mn(φ1)Ψ(λ1)b− a′Ψ(λ2)′Mn(φ2)Ψ(λ2)b| (28)

= |(λ1 − λ2)a′(
∂

∂λ
Ψ′(λ̄)Mn(φ̄)Ψ(λ̄) + Ψ(λ̄)Mn(φ̄)

∂

∂λ
Ψ(λ̄))b

+ (φ1 − φ2)a′Ψ′
∂

∂φ
Mn(θ̄)Ψb|

≤ |λ1 − λ2||a′(
∂

∂λ
Ψ′(λ̄)Mn(φ̄)Ψ(λ̄))b|+ |a′(Ψ(λ̄)Mn(φ̄)

∂

∂λ
Ψ(λ̄))b|

+ |φ1 − φ2||a′Ψ′(λ̄)
∂

∂φ
Mn(φ̄)Ψ(λ̄)b|.

Let us focus on the first term |λ1 − λ2||a′( ∂
∂λΨ′(θ̄)Mn(φ̄)Ψ(θ̄))b|. We have

|λ1 − λ2||a′(
∂

∂λ
Ψ′(λ̄)′Mn(φ̄)Ψ(λ̄))b| ≤ |λ1 − λ2||(a′(

∂

∂λ
Ψ(λ̄))′(

∂

∂λ
Ψ(λ̄))a)1/2((b′Ψ(λ̄))′Mn(φ̄)′Mn(φ̄)Ψ(λ̄)b)1/2(29)

≤ |λ1 − λ2||(a′(
∂

∂λ
Ψ(λ̄))′(

∂

∂λ
Ψ(λ̄))a)1/2((b′Ψ(λ̄))′Ψ(λ̄)b)1/2

× [µmax(Mn(φ̄)′Mn(φ̄))]1/2

≤ |λ1 − λ2||(a′(
∂

∂λ
Ψ(λ̄))′(

∂

∂λ
Ψ(λ̄))a)1/2((b′Ψ(λ̄))′Ψ(λ̄)b)1/2

× [sup
φ∈Φ
||Mn(φ̄)′Mn(φ̄)||∞]1/2.

Where θ̄ = (λ̄, φ̄) lies on the segment line between λ and φ, and µmax is the largest eigenvalue of the ma-

trix inside. The first inequality is from the Cuachy-Schawarz inequality, the second inequality holds since

Mn(φ̄)′Mn(φ̄) is non-negative definite, and the last inequality is from the spectral radius theorem. From

Claim B.2, sup
φ∈Θ
||Sn(φ)||∞ < ∞ and sup

φ∈Θ
||Sn(φ)||1 < ∞. This implies sup

φ∈Φ
||Mn(φ̄)′Mn(φ̄)||∞ < ∞. As shown

in Amemiya (1975) ∂λFv∗ = fv∗λL and ∂
∂λfv∗ = 1

σv∗
λLfv∗L, with L = (Cij , ai, aj , ρij), given Assumption 6

the F is bounded away from zero and with the continuity of the density function this implies that the terms

are Op(1). It follows that (a′( ∂
∂λΨ(λ̄))′( ∂

∂λΨ(λ̄))a) = Op(1) and ((b′Ψ(λ̄))′Ψ(λ̄)b) = Op(1).

The second term of the summation, |a′(Ψ(λ̄)Mn(φ̄) ∂
∂λΨ(λ̄))b| is symmetric and therefore it obtains the

same bound in probability.

The last term is |φ1 − φ2||a′Ψ′(λ̄) ∂
∂φMn(φ̄)Ψ(λ̄)b|. Let us define Wn = ∂

∂φMn(φ), following the same

argument we have

|φ1 − φ2||a′Ψ′(λ̄)Wn(φ̄)Ψ(λ̄)b| < |φ1 − φ2||(a′Ψ(λ̄))′(Ψ(λ̄))a)1/2((b′Ψ(λ̄))′Ψ(λ̄)b)1/2[sup
φ∈Φ
||Wn(φ̄)′Wn(φ̄)||∞]1/2.
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Given that sup
φ∈Φ
||Mn(φ̄)||∞ <∞ and sup

φ∈Φ
||Mn(φ̄)||1 <∞ we have that sup

φ∈Φ
||Wn(φ̄)′Wn(φ̄)||∞ <∞.

Finally we can write

|a′Ψ(λ1)′Mn(φ1)Ψ(λ1)b− a′Ψ(λ2)′Mn(φ2)Ψ(λ2)b| ≤ |λ1 − λ2|[|a′(
∂

∂λ
Ψ′(λ̄)Mn(φ̄)Ψ(λ̄))b|+ |a′(Ψ(λ̄)Mn(φ̄)

∂

∂λ
Ψ(λ̄))b|]

+ |φ1 − φ2||a′Ψ′(λ̄)
∂

∂φ
Mn(φ̄)Ψ(λ̄)b|.

≤ |λ1 − λ2|Op(1)

+ |φ1 − φ2|Op(1).

sup
|φ1−φ2|<φ∗,|λ1−λ2|<λ∗

1
n |a
′Ψ(λ1)′Mn(φ1)Ψ(λ1)b−a′Ψ(λ2)′Mn(φ2)Ψ(λ2)b| = Op(max{|φ∗|, |λ∗|}), then ULLN

follows.

(b) when ζ∗
′
(θ) 6= Ψ(λ) we only have to show the stochastic equicontinuity of 1

n |a
′ζ∗
′
Mn(φ)ζ∗b|, because θ

enters ζ∗
′
(θ) polynomially and the parameter space is compact. The proof is simply a particular case of (a)

with the application of the mean-value theorem for one variable.

(c) We consider only the parameter τ as not constant. The case when φ is not constant is specular to the case

(a). by the mean value theorem,

|a′P (τ1)′MnP (τ1)b− a′P (τ2)′MnP (τ2)b| (30)

= |(τ1 − τ2)a′(
∂

∂τ
P ′(τ̄)MnP (τ̄) + P (τ̄)Mn

∂

∂τ
P (τ̄))b|

≤ |τ1 − τ2|(|a′(
∂

∂τ
P ′(τ̄)MnP (τ̄)b|+ |a′P (τ̄)Mn

∂

∂τ
P (τ̄))b|)

Let us focus on the first term |τ1 − τ2||a′( ∂
∂τ P

′(θ̄)MnP (θ̄))b|. We have

|τ1 − τ2||a′(
∂

∂τ
P ′(τ̄)′MnP (τ̄))b| ≤ |τ1 − τ2||(a′(

∂

∂τ
P (τ̄))′(

∂

∂τ
P (τ̄))a)1/2((b′P (τ̄))′M ′nMnP (τ̄)b)1/2 (31)

≤ |τ1 − τ2||(a′(
∂

∂τ
P (τ̄))′(

∂

∂τ
P (τ̄))a)1/2((b′P (τ̄))′P (τ̄)b)1/2

× [µmaxM
′
nMn]1/2

≤ |τ1 − τ2||(a′(
∂

∂τ
P (τ̄))′(

∂

∂τ
P (τ̄))a)1/2((b′P (τ̄))′P (τ̄)b)1/2

× [||M ′nMn||∞]1/2.

Where τ̄ lies between τ1 and τ2, and µmax is the largest eigenvalue of the matrix inside. The first inequality

is from the Cuachy-Schawarz inequality, the second inequality holds since M ′nMn is non-negative definite, and

the last inequality is from the spectral radius theorem. From Claim B.5, ||M ′nMn||∞ = O(ρd0c /hn). As shown

in Newey (2009) ∂
∂τ P = O(K3) for power series under Assumption 11. It follows that
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|a′P (τ1)′MnP (τ1)b− a′P (τ2)′MnP (τ2)b| ≤ |τ1 − τ2|((a′(
∂

∂τ
P (τ̄))′(

∂

∂τ
P (τ̄))a)1/2((b′P (τ̄))′P (τ̄)b))1/2(32)

× [||M ′nMn||∞]1/2.

≤ |τ1 − τ2||O(K4/hn).

Where the inequality follows from Claim A.6 and Claim B.8. Thus,

sup
|τ1−τ2|<δ∗

1

n
|a′P (τ1)′MnP (τ1)b− a′P (τ2)′MnP (τ2)b| = Op(δ

∗K4/hn).

By Assumption 12 K4/hn = O(1), then ULLN follows.

The second term of the summation, |a′P (τ̄)Mn
∂
∂τ P (τ̄))b| is symmetric and therefore it obtains the same

bound in probability.

Proof of Proposition 3. Under Assumptions 1,2, 4-8, suppose supi,n||ζ∗i,n||4+δε < ∞, for some δε > 0 for

the 2SP IV or Assumptions 4-8 hold for the 2SSP IV , Claims A.3, B.8 and B.9 the result follows from Claim

A.5 and Proposition 3 in Qu and Lee (2015).

Proof of Theorem 1. The estimator is

κ̂− κ0 = [(GnYn, Xn, Ψ̂n)′Q̂n(Q̂′nQ̂n)−1 (33)

× Q̂′n(GnYn, Xn, Ψ̂n)]−1(GnYn, Xn, Ψ̂n)′

× Q̂n(Q̂′nQ̂n)−1Q̂′nξ̂n.

Under Assumptions 1,2, 4-8, 13 and 14 , by applying Proposition 2 we have

1

n
Q̂′n(GnYn, Xn, Ψ̂n)− 1

n
Q′n(GnYn, Xn,Ψ) = op(1),

1

n
Q̂′nQ̂

′
n −

1

n
Q′nQ

′
n = op(1),

1

n
Q̂′nξ̂n.−

1

n
Q′nξn. = op(1).

By applying proposition 1, κ̂− κ0
p→ a limn→∞

1
nE(γ0Q

′
n(v∗n −Ψn) + a limn→∞

1
nE(Q′nεn), where

a =

(
A′q

[
limn→∞

(
E(Q′nQn)

n

)]−1

Aq

)−1

A′q

[
limn→∞

(
E(Q′nQn)

n

)]−1

,

with Aq = limn→∞
1
n [E(Q′nSn)β0Xn + E(Q′nSnΨn)γ0), E(Q′n)Xn, E(Q′nΨn))].

As E(Q′nε) = 0 and E(Q′nξn) = 0, we have κ̂ − κ0
p→ 0. Under given assumptions, since κ̂ − κ0 can be

written as a form of Rn in proposition 3,
√
n(κ̂− κ0)

d→N(0,ΣIV ). In particular,

(κ̂ − κ0) = plimn→∞
1
n (J ′nPqnJn)−1J ′nPqn(ξn + γ( ∂

∂λΨn))(λ̂ − λ), with Jn = (Sn(β0Xn + γ0Ψn), Xn,Ψn),
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Pqn = Qn(Q′nQn)−1Q′n and λ = (α, β,A). Thus,

ΣIV = plimn→∞
1

n
(J ′nPqnJn)−1J ′nPqnΣPqnJn(J ′nPqnJn)−1,

with Σ = In−1σ
2
ξ + (γ ∂

∂λΨn)var(λ)( ∂
∂λΨ′nγ

′).

Proof of Theorem 2. The estimator is

µ̂− µ0 = [(GnYn, Xn)′Ĥn(Ĥ ′nĤn)−1 (34)

× Ĥ ′n(I − Q̂K)Ĥn(Ĥ ′nĤn)−1

× Ĥ ′n(GnYn, Xn)]−1(GnYn, Xn)′Ĥn(Ĥ ′nĤn)−1

× Ĥ ′n(I − Q̂K)Ĥn(Ĥ ′nĤn)−1Ĥ ′n(εn + Ψ0(τ)).

Under Assumptions 1-12, and 15 - 17, by applying Proposition 2 we have

hn
n
Ĥ ′n(GnYn, Xn)− 1

n
H ′n(GnYn, Xn) = op(1),

hn
n
Ĥ ′nĤ

′
n −

1

n
H ′nH

′
n = op(1),

hn
n
Ĥ ′nQ̂nĤn.−

1

n
H ′nQnHn = op(1).

By applying proposition 1, κ̂− κ0
p→ a limn→∞

1
nE(H ′nεn) + a limn→∞

1
nE(H ′nΨ0), where

a =

(
A′K

[
limn→∞

(
E(H ′nHn)

n

)−1

BK limn→∞

(
E(H ′nHn)

n

)−1
]
AK

)−1

× AK

[
limn→∞

(
E(H ′nHn)

n

)−1

BK limn→∞

(
E(H ′nHn)

n

)]
,

withAK = limn→∞
1
n [E(H ′nSn)β0Xn), E(H ′nXn)], andBK = limn→∞

(
E(H′n(I−Q)Hn)

n

)
A′K

[
limn→∞

(
E(Q′nQn)

n

)]−1

.

As E(H ′nε) = 0 and E(H ′nΨ0) = 0, we have µ̂ − µ0
p→ 0. Under given assumptions, since µ̂ − µ0 can be

written as a form of Rn in proposition 3,
√
n(κ̂− κ0)

d→N(0,ΣSPIV ). In particular,

µ̂− µ0 = plimn→∞
1
n (J ′nFKnQ

⊥
nFKnJn)−1J ′nFKnQ

⊥
nFKn(εn + Ψ0), with Jn = (Sn(β0Xn + γ0Ψ0), Xn, P ),

FKn = Hn(H ′nHn)−1H ′n and Q⊥n = I −Qn.

Let ψ̃i = ψ0(τ̂i), ψi = ψ0(τi) , ψ̃Ki = ψK(τ̂i), ψKi = ψK(τi). Then

J ′nFKnQ
⊥
nFKnΨ0/

√
n = J ′nFKnQ

⊥
nFKn(Ψ− Ψ̃)/

√
n+ J ′nFKnQ

⊥
nFKn(Ψ̃− Ψ̃K)/

√
n.

This follows from FKnQ
⊥
nFKn = Q⊥nFKnQ

⊥
n , see also Newey (2009) p.S226.

Let us start with the second term J ′nFKnQ
⊥
nFKn(Ψ̃− Ψ̃K)/

√
n.

From Claims A.6 and A.7, by an expansion ψ0(τ̂i)− ψK(τ̂i) around τi we have
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||ψ̃ − ψ̃K − ψ + ψK || ≤
√
n sup
|τ |≤1

∣∣∣∣∂ψ0(τ)

∂τ
− ∂ψK(τ)

∂τ

∣∣∣∣max
i≤n
|τ̂i − τi| = Op(K

−s+1)
p→ 0.

Therefore, J ′nFKnQ
⊥
nFKn(Ψ̃− Ψ̃K)/

√
n = J ′nFKnQ

⊥
nFKn(Ψ−ΨK)/

√
n+ op(1).

From Claim A.7 we have J ′nFKnQ
⊥
nFKn(Ψ−ΨK)/

√
n = op(1). By triangular inequality we have

J ′nFKnQ
⊥
nFKnΨ̃/

√
n

p→ 0.

Let us focus on the first term J ′nFKnQ
⊥
nFKn(Ψ − Ψ̃)/

√
n. Let θ = (α, η′)′, τ(m, θ) = τ(m(λL), θ) and

ψθi = ∂ψ0(τ(m,θ0))
∂θ′ . Then, by a second-order expansion and

√
n−consistency of θ̂

J ′nFKnQ
⊥
nFKn(Ψ− Ψ̃)/

√
n = −[J ′nFKnQ

⊥
nFKnΨθ/n]

√
n(θ̂ − θ0)

= −[J ′nFKnQ
⊥
nFKn/n]Y

√
n(λ̂− λ0),

= −[J ′nFKnQ
⊥
nFKn/n]Y zi/

√
n+ op(1),

where Y = E(∂ψ0(mi)
∂mi

∂mi(Li,λ)
∂λ )

ΣSPIV = plimn→∞
1

n
(J ′nFKnQ

⊥
nFKnJn)−1J ′nFKnQ

⊥
nFKnΣ2JnFKnQ

⊥
nFKn(J ′nFKnQ

⊥
nFKnJn)−1,

with Σ2 = In−1σ
2
ε + ( ∂

∂λΨ)var(λ)( ∂
∂λΨ)′.
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Appendix D: Tables

Table 1: Estimates from adjacency matrix with medium endogeneity varying endoegenous effects or sample size

Replications: 1000

2SLS 2SP IV 2SSP IV

Parameter Avg Point Standard MSE Avg Point Standard MSE Avg Point Standard MSE

Estimation Deviation Estimation Deviation Estimation Deviation

n=50 φ̂ 0.099 0.182 0.184 0.074 0.127 0.127 0.083 0.135 0.135

β̂ 0.985 0.337 0.338 0.977 0.312 0.313 0.971 0.410 0.411

α̂ -1.461 0.068 0.079 -1.812 0.048 0.316

γ̂ -0.076 0.020 0.031 -0.093 0.003 0.008

ι̂ -0.285 0.050 0.053 -0.308 0.002 0.008

φ = 0.07 n=100 φ̂ 0.102 0.177 0.180 0.071 0.113 0.114 0.075 0.121 0.121

β̂ 0.994 0.353 0.353 1.010 0.336 0.336 1.001 0.441 0.441

α̂ -1.815 0.066 0.081 -1.453 0.048 0.319

γ̂ -0.093 0.022 0.032 -0.077 0.003 0.008

ι̂ -0.308 0.050 0.051 -0.289 0.002 0.009

n=500 φ̂ 0.086 0.058 0.060 0.070 0.032 0.034 0.068 0.047 0.047

β̂ 0.995 0.125 0.125 0.998 0.120 0.120 0.998 0.154 0.154

α̂ -1.999 0.010 0.010 -2.373 0.061 0.378

γ̂ -0.097 0.003 0.004 -0.091 0.002 0.009

ι̂ -0.296 0.008 0.009 -0.306 0.002 0.007

n=50 φ̂ 0.100 0.177 0.178 0.084 0.128 0.126 0.075 0.130 0.131

β̂ 0.994 0.358 0.358 0.994 0.341 0.339 0.998 0.446 0.448

α̂ -1.454 0.065 0.080 -1.811 0.049 0.315

γ̂ -0.079 0.021 0.030 -0.093 0.003 0.008

ι̂ -0.291 0.050 0.050 -0.308 0.002 0.008

φ = 0.08 n=100 φ̂ 0.114 0.182 0.185 0.077 0.117 0.119 0.082 0.129 0.130

β̂ 1.022 0.363 0.364 1.023 0.345 0.346 1.021 0.448 0.449

α̂ -1.456 0.065 0.078 -1.814 0.048 0.318

γ̂ -0.078 0.022 0.031 -0.093 0.003 0.008

ι̂ -0.288 0.049 0.050 -0.308 0.002 0.009

n=500 φ̂ 0.109 0.187 0.165 0.081 0.115 0.117 0.080 0.122 0.129

β̂ 1.011 0.321 0.325 1.016 0.346 0.316 1.017 0.419 0.449

α̂ -1.486 0.069 0.072 -1.414 0.041 0.318

γ̂ -0.088 0.025 0.029 -0.097 0.002 0.008

ι̂ -0.222 0.046 0.051 -0.308 0.002 0.008

n=50 φ̂ 0.105 0.182 0.183 0.095 0.125 0.125 0.082 0.138 0.140

β̂ 0.996 0.361 0.361 0.996 0.342 0.342 0.995 0.447 0.447

α̂ -1.456 0.067 0.080 -1.812 0.048 0.316

γ̂ -0.078 0.021 0.031 -0.093 0.003 0.008

ι̂ -0.289 0.051 0.052 -0.308 0.002 0.008

φ = 0.09 n=100 φ̂ 0.100 0.171 0.172 0.084 0.116 0.116 0.085 0.123 0.129

β̂ 0.991 0.345 0.345 0.985 0.324 0.324 0.994 0.426 0.426

α̂ -1.448 0.071 0.088 -1.814 0.048 0.317

γ̂ -0.078 0.021 0.030 -0.093 0.003 0.008

ι̂ -0.292 0.052 0.053 -0.308 0.002 0.009

n=500 φ̂ 0.117 0.171 0.142 0.089 0.115 0.117 0.086 0.122 0.124

β̂ 1.032 0.325 0.335 0.996 0.346 0.316 1.017 0.419 0.420

α̂ -1.486 0.071 0.065 -1.414 0.046 0.317

γ̂ -0.088 0.022 0.030 -0.096 0.002 0.007

ι̂ -0.292 0.052 0.052 -0.318 0.002 0.009

n=50 φ̂ 0.117 0.173 0.176 0.107 0.121 0.122 0.106 0.134 0.136

β̂ 1.032 0.344 0.345 1.018 0.328 0.328 1.019 0.419 0.423

α̂ -1.457 0.065 0.078 -1.813 0.048 0.317

γ̂ -0.078 0.021 0.030 -0.093 0.003 0.010

ι̂ -0.287 0.049 0.051 -0.308 0.002 0.009

φ = 0.10 n=100 φ̂ 0.115 0.178 0.185 0.105 0.114 0.113 0.095 0.123 0.129

β̂ 0.978 0.342 0.346 0.986 0.318 0.320 0.985 0.414 0.421

α̂ -1.450 0.066 0.083 -1.712 0.049 0.316

γ̂ -0.076 0.021 0.032 -0.093 0.003 0.008

ι̂ -0.290 0.050 0.051 -0.308 0.002 0.008

n=500 φ̂ 0.112 0.165 0.172 0.101 0.111 0.115 0.098 0.120 0.121

β̂ 0.958 0.323 0.335 0.985 0.312 0.346 1.019 0.413 0.419

α̂ -1.498 0.066 0.082 -1.652 0.045 0.313

γ̂ -0.087 0.019 0.030 -0.097 0.003 0.008

ι̂ -0.310 0.033 0.052 -0.318 0.002 0.007

Notes: β = 1.0, α = −1.5, γ = −0.1,and ι = −0.3. σuv = 0.3. The number of elements in the approximating functions in

2SSP IV is increasing in n.
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Table 2: Estimates from adjacency matrix with different degree of endogeneity varying endoegenous effects

Replications: 1000

2SLS 2SP IV 2SSP IV

Parameter Avg Point Standard MSE Avg Point Standard MSE Avg Point Standard MSE

Estimation Deviation Estimation Deviation Estimation Deviation

φ̂ 0.0731 0.1714 0.1720 0.0718 0.1340 0.1345 0.0724 0.1389 0.1393

β̂ 1.0024 0.3496 0.3496 0.9978 0.3445 0.3446 1.0023 0.4431 0.4432

σuv = 0.0 α̂ -1.4565 0.0702 0.0826 -1.8115 0.0487 0.3153

γ̂ -0.0763 0.0214 0.0319 -0.0927 0.0029 0.0078

ι̂ -0.2859 0.0534 0.0552 -0.3081 0.0024 0.0084

φ̂ 0.0865 0.1691 0.1692 0.0688 0.1370 0.1370 0.0696 0.1393 0.1397

β̂ 1.0203 0.3509 0.3515 1.0129 0.3455 0.3458 1.0081 0.4464 0.4465

φ = 0.07 σuv = 0.15 α̂ -1.4562 0.0631 0.0768 -1.8122 0.0485 0.3159

γ̂ -0.0791 0.0203 0.0291 -0.0926 0.0031 0.0080

ι̂ -0.2881 0.0498 0.0512 -0.3081 0.0024 0.0085

φ̂ 0.0990 0.1817 0.1840 0.0705 0.1268 0.1273 0.0677 0.1347 0.1352

β̂ 0.9854 0.3374 0.3377 0.9766 0.3119 0.3127 0.9708 0.4102 0.4112

σuv = 0.30 α̂ -1.4606 0.0684 0.0789 -1.8123 0.0485 0.3160

γ̂ -0.0761 0.0203 0.0314 -0.0925 0.0032 0.0081

ι̂ -0.2846 0.0504 0.0527 -0.3081 0.0024 0.0085

φ̂ 0.0821 0.1432 0.1437 0.0837 0.1228 0.1230 0.0763 0.1258 0.1259

β̂ 0.9933 0.3409 0.3410 0.9961 0.3421 0.3421 0.9994 0.4516 0.4516

σuv = 0.0 α̂ -1.4533 0.0662 0.0810 -1.8137 0.0481 0.3174

γ̂ -0.0777 0.0212 0.0308 -0.0928 0.0030 0.0078

ι̂ -0.2912 0.0514 0.0522 -0.3082 0.0024 0.0085

φ̂ 0.0870 0.1536 0.1537 0.0825 0.1171 0.1173 0.0798 0.1305 0.1309

β̂ 0.9935 0.3483 0.3483 0.9899 0.3448 0.3449 0.9950 0.4476 0.4476

φ = 0.08 σuv = 0.15 α̂ -1.4588 0.0657 0.0776 -1.8148 0.0478 0.3184

γ̂ -0.0774 0.0204 0.0305 -0.0928 0.0030 0.0078

ι̂ -0.2866 0.0499 0.0517 -0.3082 0.0024 0.0086

φ̂ 0.1000 0.1772 0.1783 0.0816 0.1256 0.1262 0.0765 0.1290 0.1295

β̂ 0.9936 0.3584 0.3585 0.9941 0.3394 0.3394 0.9982 0.4459 0.4459

σuv = 0.30 α̂ -1.4539 0.0648 0.0796 -1.8115 0.0487 0.3153

γ̂ -0.0788 0.0211 0.0299 -0.0927 0.0030 0.0079

ι̂ -0.2907 0.0496 0.0504 -0.3081 0.0024 0.0084

φ̂ 0.0965 0.1432 0.1433 0.0916 0.1185 0.1186 0.0863 0.1229 0.1237

β̂ 0.9892 0.3370 0.3372 0.9884 0.3367 0.3369 0.9937 0.4393 0.4393

σuv = 0.0 α̂ -1.4615 0.0673 0.0775 -1.8132 0.0483 0.3169

γ̂ -0.0776 0.0201 0.0301 -0.0927 0.0031 0.0079

ι̂ -0.2817 0.0495 0.0528 -0.3082 0.0024 0.0085

φ̂ 0.1120 0.1560 0.1575 0.0912 0.1175 0.1183 0.0849 0.1262 0.1263

β̂ 0.9945 0.3573 0.3573 1.0001 0.3493 0.3493 1.0007 0.4445 0.4445

φ = 0.09 σuv = 0.15 α̂ -1.4567 0.0631 0.0765 -1.8112 0.0488 0.3150

γ̂ -0.0756 0.0210 0.0322 -0.0925 0.0031 0.0081

ι̂ -0.2865 0.0480 0.0499 -0.3081 0.0024 0.0084

φ̂ 0.1153 0.1821 0.1838 0.0897 0.1247 0.1249 0.0895 0.1383 0.1384

β̂ 0.9965 0.3612 0.3612 0.9961 0.3415 0.3415 0.9953 0.4469 0.4469

σuv = 0.30 α̂ -1.4559 0.0671 0.0804 -1.8123 0.0485 0.3160

γ̂ -0.0778 0.0209 0.0305 -0.0927 0.0030 0.0079

ι̂ -0.2892 0.0508 0.0520 -0.3081 0.0024 0.0085

φ̂ 0.1001 0.1397 0.1397 0.1022 0.1145 0.1148 0.0997 0.1195 0.1198

β̂ 1.0118 0.3515 0.3517 1.0087 0.3551 0.3552 1.0093 0.4655 0.4656

σuv = 0.0 α̂ -1.4577 0.0664 0.0787 -1.8150 0.0477 0.3186

γ̂ -0.0778 0.0204 0.0301 -0.0927 0.0031 0.0079

ι̂ -0.2869 0.0513 0.0530 -0.3083 0.0024 0.0086

φ̂ 0.1092 0.1542 0.1549 0.1011 0.1082 0.1084 0.1015 0.1204 0.1208

β̂ 1.0117 0.3434 0.3436 1.0126 0.3347 0.3349 1.0046 0.4299 0.4299

φ = 0.10 σuv = 0.15 α̂ -1.4537 0.0654 0.0801 -1.8125 0.0484 0.3162

γ̂ -0.0784 0.0210 0.0301 -0.0927 0.0030 0.0079

ι̂ -0.2901 0.0487 0.0497 -0.3081 0.0024 0.0085

φ̂ 0.1167 0.1730 0.1738 0.1025 0.1213 0.1218 0.1009 0.1343 0.1343

β̂ 1.0319 0.3439 0.3453 1.0176 0.3278 0.3282 1.0192 0.4189 0.4193

σuv = 0.30 α̂ -1.4573 0.0652 0.0779 -1.8129 0.0483 0.3166

γ̂ -0.0780 0.0209 0.0304 -0.0927 0.0031 0.0079

ι̂ -0.2866 0.0495 0.0513 -0.3081 0.0024 0.0085

Notes: β = 1.0, α = −1.5, γ = −0.1,and ι = −0.3. n = 100. The number of elements in the approximating functions in

2SSP IV is 3 (K=3).
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