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a b s t r a c t

We consider a production function that transforms inputs into outputs through peer effect networks.
The distinguishing features of this model are that the network is formal and observable through worker
scheduling, and selection into the network is done by a manager. We discuss identification and suggest
several estimation techniques. We tackle endogeneity arising from selection into groups and exposure to
common group factors by employing a polychotomous Heckman-type selection correction. We illustrate
our method using data from the Syracuse University Men’s Basketball team, where at any time the coach
selects a lineup and players interact strategically to win games.
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1. Introduction

Endogeneity in production function estimation is not a new is-
sue. Endogeneity of inputs can arise for a variety of reasons: input
measurement error, simultaneity of unobservables and inputs, and
endogeneity of ‘‘explanatory’’ outputs in multiple-output distance
function analysis (to name a few). In service industries, these prob-
lems are exacerbated in obviousways. However, one could imagine
that the main challenge in estimating a service production func-
tion is the specification of the function itself. In particular, the way
that labor is transformed into output may be unclear. Production
in a service industry is typically not ‘‘serial’’ as it might be on a
manufacturing assembly line, where productivity of worker Amay
only affect the productivity of worker B, who (in turn) only affects
worker C .1 Service industries may be characterized by teams of
workers whose individual productivities are interrelated in com-
plex ways and (in particular) through networks. Consider an ar-
chitectural firm which simultaneously produces design plans for a
variety of projects with teams of architects and draftsmen, who

∗ Corresponding author. Tel.: +1 315 443 9061; fax: +1 315 4431081.
E-mail address:whorrace@maxwell.syr.edu (W.C. Horrace).

1 This is not to suggest that a manufacturing process could not be more
complicated, but the traditional assembly line process possesses this feature.
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may work across multiple projects in a given workday. In this set-
ting worker interrelatedness may be determined by networks es-
tablished by a singlemanager, who assignsworkers to teams based
on both observable and unobservable characteristics of workers.
This implies formal and measurable time-varying networks which
may be endogenous due to selectivity.2Understanding network ef-
fects in production may be important for worker scheduling and
design of worker incentive schemes.

The purpose of this paper is to specify an econometric model
that incorporates peer effects on worker productivity (output).3
That is, a worker’s productivity is a function of the productivities
of the co-workers on her team, where teams are assigned by man-
agers. Individual team members interact through time-varying
interaction schemes which serve as proxies for the managerial
decision and which function as the mechanism for group forma-
tion and individual interrelatedness. Inmost econometric network
models, selection into groups is as much an individual choice as is

2 There may also be informal networks, but they are not the focus here. Informal
networks may arise through a principal–agent problem of imperfect monitoring. A
manager may order a worker to split her time evenly on the two projects, but she
may not, in practice. An alternative way to conceptualize this phenomenon is that
the formal network is measured with error.
3 Peer effects have been indicated as one of the main empirical determinants of

several important social phenomena (see Jackson and Zenou, 2013, part III, for a
collection of recent studies).
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the behavior that stems from a given network structure. In this set-
ting endogeneity problemsmay arise if themodel does not account
for unobserved individual characteristics driving both network for-
mation and behavior over networks.

We consider the unique situation where a manager selects
workers into teams (networks) to produce output, and we call this
model a Network Production Function Model. In the model, network
connections are captured by a binary adjacency matrix, where ad-
jacency is specified as a binary indicator of teammembership. The
salient feature of this model is that team membership is perfectly
observable.4 In this model, the manager’s selection decisions de-
pend on the combination of individual characteristics at the team
level, rather than individual-level characteristics. Such team-level
factors contribute to the so called ‘‘correlated effects’’ (Manski,
1993), which could be confounded with peer effects and lead to
identification problems.

We use a polychotomous Heckman-type correction to address
this problem in the context of production networks. In team
projects, the probability of selecting a worker for the project is not
independent across workers. We exploit this interdependency for
the identification and estimation of peer effects in network pro-
duction functions. This is the main contribution of the paper.

More specifically, we consider productivity of a single project,
involving a two-stage process. First, the manager chooses a team
(lineup) of m workers (m is predetermined) from a population of
n workers to work on the project of interest. Residual workers are
assigned to other projects.5 Next, workers work on the project to
produce output for a given time period. For the population of n
workers, the n×n adjacencymatrix across all projects is potentially
endogenous. By focusing on a single project of interest, we have an
m×m submatrix of the adjacency matrix which is exogenous con-
ditional on selection into the specific project. Thus, the network en-
dogeneity is reduced to a selectivity bias, which can be corrected
using a fixed effect estimator or a polychotomous Heckman-type
bias correction procedure due to Lee (1983) and Dahl (2002).6

The resulting selectivity bias term is an inverse mills ratio (in
the case of Lee’s parametric estimate) or a single index (in the
case of Dahl’s semi-parametric estimate), varies across lineups and
time, and can be interpreted in two interesting ways. First, it can
be thought of as a fixed effect that represents the correlated effect,
‘‘wherein individuals in the same group tend to behave similarly
because they have similar individual characteristics or face simi-
lar institutional environments’’ (Manski, 1993, page 533). In this
case the group is the observed lineup, and the ‘‘institutional envi-
ronment’’ is the manager’s selection of the lineup into the project
of interest. In this sense we use Heckman (1979) to solve Manski’s
correlated effects problem. In fact, in terms of estimation, we em-
ploy a fixed effect estimator in the style of Lee (2007) that differ-
ences out the correlated effect. Second, the selectivity bias term is
loosely interpretable as managerial competence or efficiency. That
is, all things being equal and averaging out luck, it is the manager’s
lineup selection that produces any unobserved team effect and,

4 It is also possible for adjacency to be measured as cumulative time that
individuals worked together on a project. This would be directly measurable from
time-cards, but we do not explore it here.
5 We note that, in any period the n − m residual workers are assigned to other

projects, and lags of the output from these projects (aswell as the project of interest)
are treated as explanatory variables in the output and selection equations. In this
sense our specification is not unlike the multiple-output distance function (Färe
and Primont, 1990) where a single output is modeled as functions of the remaining
outputs.
6 It is also interesting to note that the word ‘‘lineup’’ evokes an image of workers

standing in a line. Our notion of lineup allows us to abstract from the complicated
endogenous network for all the workers to a simple, fixed and complete network of
workers in a project.
hence, variability of worker output. This is similar to the notion of
inefficiency in the stochastic frontier literature (Aigner et al., 1977;
Meeusen and van den Broeck, 1977), so our selectivity bias term
can be thought of as efficiency if it increases output and as inef-
ficiency if it lowers it. Also, insofar as our bias term may be esti-
mated from a first-stage selection equation, it is interpretable as x-
efficiency in the stochastic frontier literature Alvarez et al. (2006).7

Our empirical example is the network production function for
college basketball. While this may only loosely represent a service
industry production process, it is sufficient for the purpose of illus-
tration. In this setting there are n players on a team engaged in two
projects at any given period of time: five players interact to pro-
duce offense and defense, and n−5 players sit on the bench to pro-
duce rest (which is inversely correlated with fatigue).8 Our mea-
sure of active player productivity is player efficiency, which aggre-
gates time-averaged performance statistics on points, rebounds,
blocks, steals, misses, assists, and other measures of offensive and
defensive activity for each player. We include a measure of lagged
fatigue as an explanatory variable to control for the productivity of
benched players. Our data are all player substitutions during the
regular 2011–2012 season of the Syracuse University men’s col-
lege basketball team. We find statistically significant positive pro-
duction spillovers across players in the same category (guards or
forwards), but insignificant effects across players in different cate-
gories. When selectivity bias is taken into account, our estimate of
peer effects in productivity is 0.0534. That is, a one unit increase in
the average efficiency of the other active guards (forwards) induces
a 0.0534 increase in the efficiency of an individual guard (forward)
once selectivity bias is taken into consideration.

The rest of the paper is organized as follows. The next section
reviews the related literature, while highlighting the contribution
of our paper. Section 3 introduces the econometric specification of
a network production model, while Section 4 considers the speci-
fication and estimation of a network production model with selec-
tivity. Section 5 provides an empirical example, using data from the
2011–2012 Syracuse University Men’s basketball team. Section 6
concludes.

2. Related literature

Our paper lies at the intersection of different literatures. We
briefly review them below, while highlighting our contribution.

2.1. Econometric network models

A number of papers have dealt with the identification and es-
timation of peer effects with network data (see Blume et al., 2011
for an excellent survey). There are two main methodological ap-
proaches.

(i) The network is assumed exogenous once potential unob-
served factors responsible for network endogeneity are treated by
network fixed effects. Identification relies on network topology
and estimation is performed using 2SLS or GMM (see, e.g., Lee,
2007; Bramoullé et al., 2009; Calvó-Armengol et al., 2009; Dav-
ezies et al., 2009; Lee et al., 2010; Liu and Lee, 2010). Network
fixed effects can be interpreted as originating from a two-step link
formation process, where individuals self-select into different net-
works in the first step based on network-specific characteristics
and, then, in the second step, link formation takes place within

7 More generally, it is interpretable as another source of heterogeneity. However,
it is still interesting to speculate on the ways it may embody (in)efficiency.
8 We take the managerial decisions and performance of the opposing team as

exogenous. In this sense our notion of strategic equilibrium is only partial.
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networks based on individual characteristics. Network fixed ef-
fects serve as a remedy for the bias that originates from the possi-
ble sorting of individuals into networks based on network-specific,
unobservable characteristics. However, consistent estimators must
account for both potential sources of bias in the link formation pro-
cess. Therefore, network fixed effect estimators will be biased if
link formation (within networks) depends on important unobserv-
able individual characteristics. Consequently, network fixed effect
estimators are generally only a partial solution to the endogenous
network problem.

(ii) Link formation is explicitly modeled based on individual
decisions. The link formation process introduces an individual-
level selectivity bias into the outcome equation that accounts for
the possible endogeneity of the adjacency matrix. In Goldsmith-
Pinkham and Imbens (2013) and Hsieh and Lee (2013), the joint
probability of the outcome and network links are derived and, due
to the computational difficulty of themaximum likelihood estima-
tion, Bayesian MCMC methods are used to obtain draws from the
posterior distribution of the parameters given the data.

Our model is different from the above approaches as the sort-
ing of individuals into networks is a group-level decision made by
a social planner (manager), and no (formal) link formation occurs
within networks.9 Therefore, a group-level selectivity bias correc-
tion is sufficient to control for the potential network endogene-
ity in our case.10 More specifically, the selectivity bias can be cor-
rected by a polychotomous Heckman-type bias correction proce-
dure in a manner similar to Lee (1983) and Dahl (2002), or it can
be treated as the network fixed effect, which is demeaned from the
model in the style of Lee (2007), Davezies et al. (2009), Lee et al.
(2010), and Liu and Lee (2010). However, when the selectivity bias
is treated as the network fixed effect, similar to Lee (2007) andDav-
ezies et al. (2009), the model is not identified if all networks are
of the same size. In this case, we propose an alternative specifica-
tion to achieve identification using variability over heterogeneous
subgroups. This may be particularly relevant in network produc-
tion functions where teams consist of workers with differing spe-
cialized skills. Furthermore, our setup allows us to give a struc-
tural interpretation to the selectivity bias correction term that links
the model and its treatment to the productive efficiency litera-
ture in that the bias can viewed as ‘‘managerial (in)competence’’ or
(in)efficiency, depending on the sign of the estimate.

Ours is not the first paper that studies the selectivity bias in
social interaction models. Brock and Durlauf (2001) show that
self-selection corrections can induce exclusion restrictions or non-
linearities which can be used to overcome the reflection prob-
lem (Manski, 1993) in linear-in-means model. Brock and Durlauf
(2006) generalize the multinomial-choice model with social inter-
actions proposed in Brock and Durlauf (2002) and suggest to use
multinomial control functions for self-selection corrections. While
in our model selectivity is modeled differently as a social planner’s
problem, the conceptual foundations for it can be traced to this se-
ries of papers by Brock and Durlauf.

2.2. Peer effects in productivity

There is a limited literature on peer effects in productivity.
Guryan et al. (2009) consider performance of professional golfing
pairs, but their parings are randomly assigned and the pairings

9 That is, all networks are complete. All individuals are connectedwith each other
in a network.
10 As discussed in Angrist (2013), one of the ‘‘perils’’ of peer effects is the fact that
they may capture a group-specific effect rather than social effects. Our approach
addresses this problem by controlling for (and modeling) group specific effects
using the selection term.
are competitors not teammates. Also, Falk and Ichino (2006) con-
duct a productivity experimentwith randomassignment ofworker
pairs. However, it is difficult to draw direct comparison of these
two papers to ours,which is specifically concernedwith estimating
production functions when there is explicit selection into teams.
Bandiera et al. (2009) investigate how social connections between
workers and managers affect the productivities of fruit pickers
in the United Kingdom. Their measure of social connectedness is
based on similarities of worker/manager characteristics (e.g., na-
tionality), and there are multiple managers whose worker assign-
ments change daily. This is in contrast to our setting where there
is a single manager selecting teams, and where worker/manager
similarities are not explicitly modeled as a channel for peer effects
in worker productivity. In fact, insofar as there is a single social
planner making daily assignments of workers to (multiple) man-
agers in their setting, their managers can actually be considered a
heterogeneous subgroup of workers within our model. They also
conduct a field experiment where they exogenously vary manager
compensation schemes, allowing them to perform amore nuanced
analysis of the effect of worker/manager connectedness on worker
productivity. Our model is developed and identified without this
additional source of variability. Mas and Moretti (2009) consider
peer effects in the performance of supermarket cashiers, but do not
specifically employ teams or networks in their analysis, and their
pairing of peers is assumed to be exogenous. Exogeneity allows
them to disentangle the causes of peer-effects in a way that our
study cannot. In particular, they are able to differentiate the effect
of co-worker productivity on worker productivity from the effect
of social pressure on worker productivity. Hamilton et al. (2003)
analyze the effect of teams on clothing manufacturing, but do not
exploit team composition in a network framework.Moreover, they
consider and explicitly model individual self-selection into teams,
while in our network production function team selection is not an
individual choice. Finally, Gould and Kaplan (2011) consider the
effects of a Major league Baseball player’s steroid use on the pro-
ductivity of his teammates. However, they are teasing out the ef-
fects of a single player (and not a network of players) and, there-
fore, ignore all the problems associated with modeling and esti-
mating peer-effects that Manski (1993), Angrist (2013), and others
have highlighted. In all these studies, when production networks
or pairings are employed, they are assumed exogenous. Here, we
specify a model where endogeneity is assured but corrected with
group-level selectivity bias, which can be corrected using a fixed
effect estimator or a polychotomousHeckman-type bias correction
procedure.11

2.3. Spatial production functions

Our focus is a single firm where the unit of observation is the
worker who is observed over time. This is in contrast to the spatial
production function work of Druska and Horrace (2004) or Glass
et al. (2014), where the unit of observation is the firm, and ex-
ogenous networks are conceptualized as output/input spillovers
across firms (or countries) measured as geographic distances or
contiguity in a spatial estimation framework, and where consis-
tency arguments are for large numbers of firms (or countries). In
these papers it is not easy to conceptualize the network (spillover)
mechanism or to argue that the adjacency matrix is the correct

11 There is a large literature that exploits random allocation of individuals into
groups to assess the existence of peer effects in other (non-productivity) contexts
(e.g., Sacerdote, 2001; Angrist and Lang, 2004; Kling et al., 2007; Chetty et al.,
2011; Duflo et al., 2011; Carrell et al., 2013). By contrast, our model considers a
production environment,where allocation ofworkers into teamswill almost always
be strategic and, hence, non-random.
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proxy for the mechanism.12 In our case (the single firm) the net-
work mechanism is clearly based on labor force peer-effects (e.g.,
Kandel and Lazear, 1992), and the adjacency matrix, based on the
manager’s assignments, would seem to be an excellent proxy for
thismechanism.13 The downside to our approach is that employee-
level data (administrative data) may not be available to the econo-
metrician. However, the methods considered herein could be used
by managers, and the data available to them on employee and
project characteristics would be quite detailed. Fortunately for us,
the econometric model is also suited for estimation of peer ef-
fects in sports teams, where all networks (the coach’s decisions)
are observed andwhere performance is directlymeasurable by the
econometrician. Therefore,we illustrate ourmodel using data from
the Syracuse University Men’s College Basketball team.

3. A general network production model

Consider a firm with n workers and a manager that allocates
workers to various projects (peer groups) in each time period t =

1, . . . , T . The number and composition of projects are unimpor-
tant to the econometric specification, but they may have impli-
cations for identification and estimation. When the manager allo-
catesworkers to projects she explicitly specifies an n×n adjacency
matrix which determines the interrelatedness of the workers’ pro-
ductivity. Let the adjacency matrix be denoted by Ao

t = [aoij,t ],
where aoij,t = 1 if workers i and j are assigned to the same project
in period t and aoij,t = 0 otherwise. We set aoii,t = 0. Let the row-
normalized Ao

t be At = [aij,t ], where aij,t = aoij,t/
n

k=1 a
o
ik,t .

14 Then
productivity of the worker i in period t is given by

yit = ρ

n
j=1

aij,tyjt + xitβ + uit . (1)

In this model, the dependent variable yit is the productivity of
worker i in period t . The term

n
j=1 aij,tyjt is the average produc-

tivity of worker i’s co-workers assigned to the same project as i
in period t , with its coefficient ρ capturing the peer effect. xit is a
1 × kx vector of exogenous variables including non-labor inputs.
uit is the regression disturbance. In this setting, the marginal prod-
uct across workers in period t is ρaij,t when the workers are on the
same project and 0 otherwise.15

In matrix form, (1) can be written as

Yt = ρAtYt + Xtβ + Ut , (2)

where Yt = (y1t , . . . , ynt)′, Xt = (x′

1t , . . . , x
′
nt)

′, and Ut =

(u1t , . . . , unt)
′. If |ρ| < 1, then (I − ρAt) is nonsingular and (2)

has a unique Nash equilibrium in pure strategies given by

Yt = (I − ρAt)
−1(Xtβ + Ut). (3)

12 In their defense Druska and Horrace’s distance and contiguity networks are a
proxy for infrastructure (roads and bridges) on the island of Java. They find strong
output spillovers across rice farms in the dry season andweak spillovers in the rainy
season, when travel between villages on the island may be difficult.
13 Manski (1993) argues that the spatial correlation model ‘‘makes sense in
studies of small-group interactions, where the sample is composed of clusters of
friends, co-workers, or household members... But it does not make sense in studies
of neighborhood and other large-group effects, where the sample members are
randomly chosen individuals’’.
14 For simplicity, we assume that no worker is assigned to a project alone so thatn

k=1 a
o
ik,t > 0 for all i.

15 Our network production function is related to the ‘‘Network Data Envelope
Analysis’’ literature in operations research. An excellent survey of Network DEA is
provided by Färe et al. (2007).
To better understand the network production function, we con-
sider a simple case that every worker receives a homogeneous in-
put so that xitβ + uit = c , where c is a positive constant. Then,
Xtβ+Ut = c1n, where 1n is an n×1 vector of ones, and (3) becomes

Yt = (I − ρAt)
−1c1n =

c
1 − ρ

1n. (4)

In this case, the production function is quasi-concave if |ρ| < 1,
which is the same condition that ensures the existence of a unique
equilibrium. Furthermore, the production functionhas constant re-
turns to scale (in the input c) if ρ = 0, increasing returns to scale
if 0 < ρ < 1, and decreasing returns to scale if −1 < ρ < 0.

If we assume that At is exogenous so that E(Ut |At , Xt) = 0,
then model (2) can be estimated using spatial panel data methods
(see Lee andYu, 2010 for a recent survey). However, it is reasonable
to believe that the manager may have some information about Ut ,
and her choices of how to allocate workers to projects may be
correlated with Ut . If this is the case, then E(Ut |At , Xt) ≠ 0 and
At is endogenous.

To find a remedy for the problem of endogenous adjacency ma-
trix, we focus on the workers allocated to a specific project. Let dit
be an indicator variable such that dit = 1 if worker is assigned to
the project in period t and dit = 0 otherwise. Suppose mt work-
ers are allocated to the project. Then, for worker i assigned to the
project (i.e. dit = 1), (1) can be written as

yit = ρ
1
mt

n
j=1,j≠i

djtyjt + xitβ + E(uit |Dt) + u∗

it , (5)

where Dt = (d1t , . . . , dnt)′ and u∗

it = uit − E(uit |Dt). By construc-
tion, E(u∗

it |Dt) = 0 and, thus, the weights djt in the peer effect re-
gressor can be considered exogenous. We refer to E(uit |Dt) as the
selectivity bias.

Note, as mt is often predetermined (e.g., in sports games, the
number of active playersmt is fixed), dit is not independent across
i. Hence, in our econometric model, instead ofmodeling the proba-
bility that a certainworker is assigned to a project (i.e. Pr(dit = 1)),
we consider the probability of a set ofworkers (a lineup) is assigned
to a project.

4. A network model with selectivity

4.1. The econometric model

In time period t , the manager allocates a lineup of mt workers
from a set of nworkers to a project.16 Suppose there are qt possible
lineups, with a lineup denoted by Ls for s = 1, . . . , qt . Then, the
manager allocates lineup Ls to the project in period t if and only if
d∗
st > maxr≠s d∗

rt , where

d∗

st = πst + ξst , for s = 1, . . . , qt . (6)

In (6), πst is the deterministic component of d∗
st and ξst is a scalar

random innovation with zero mean and unit variance. Let dst be
a dummy variable such that dst = 1 if the lineup Ls is chosen to
play in period t and dst = 0 otherwise. Then, dst = 1 if and only if
ϵst < 0 where ϵst = maxr≠s d∗

rt − d∗
st .

The productivity of lineup Ls in period t is given by the following
model

Yst = ρWtYst + Xstβ + Ust . (7)

In (7), Yst = [yit ]i∈Ls is an mt × 1 vector of observations on the
dependent variable of the workers in lineup Ls in period t . Wt is a

16 mt is assumed to be predetermined.
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constant weighting matrix given by Wt =
1

mt−1 (1mt1
′
mt

− Imt ).
17

WtYst measures the average productivity of a worker’s co-workers
in lineup Ls in period t , with its coefficient ρ capturing the peer
effect. Xst = [xit ]i∈Ls is an mt × kx matrix of observations on kx
exogenous variables of the workers in lineup Ls in period t . Ust
is an mt × 1 vector of regression disturbances such that Ust ∼

i.i.d.(0, Σ). We allow for possible correlation between Ust and
ξt = (ξ1t , . . . , ξqt ,t) such that

E(Ust |dst = 1, πt) = λs(πt)1mt , (8)

where πt = (π1t , . . . , πqt ,t).
A possible specification of Ust that leads to (8) is given by

Ust = αst1mt + Vst , (9)

where αst is an i.i.d. time-varying lineup-specific error component
with mean zero and variance σ 2

α , and Vst is an mt × 1 vector of
i.i.d. random innovations with mean zero and variance σ 2

v . The
error component αst can be interpreted as a random shock in
period t that may affect different lineups differently. Suppose the
manager has some information about the realization of αst but no
information about that of Vst when she chooses a lineup. Then,

E(Ust |dst = 1, πt) = E(αst |ϵst < 0, πt)1mt

=

  0

−∞

αstgst(αst , ϵst |πt)

Pr(ϵst < 0|πt)
dϵstdαst1mt

= λs(πt)1mt ,

where gst(αst , ϵst |πt) is the conditional joint density ofαst and ϵst .18
Let U∗

st = Ust − λs(πt)1mt . (7) can be written as

Yst = ρWtYst + Xstβ + λs(πt)1mt + U∗

st . (10)

The selectivity bias λs(πt) introduces a group correlated ef-
fect (Manski, 1993) to the model. As pointed out by Dahl (2002),
semi-parametric estimation of ρ and β along with the unknown
function λs(·) would face the ‘‘the curse of dimensionality’’ due to
the presence of a large number of alternatives. To make the esti-
mation feasible, restrictions need to be imposed on λs(·). In the
following subsections, we consider three different approaches for
estimation of (10).

4.2. The parametric selection correction approach

Let Fst(·|πt) denote the conditional distribution function of
ϵst ≡ maxr≠s d∗

rt − d∗
st . Let Φ(·) and φ(·) denote the standard

normal distribution and density respectively. Lee (1983) suggests
using the transformation Jst(·) ≡ Φ−1(Fst(·|πt)) to reduce the
dimensionality of the selectivity bias. In terms of Jst(ϵst), the
selectivity bias is given by E(Ust |dst = 1, πt) = E[Ust | Jst(ϵst) <
Jst(0), πt ]. Note, by construction, Jst(ϵst) is a standard normal
random variable and its marginal distribution does not depend
on πt . However, the joint distribution of Ust and Jst(ϵst) may still
depend on πt . As pointed out by Dahl (2002) and Bourguignon
et al. (2007), the following assumption is implicitly imposed in Lee
(1983).

Assumption 1. The joint distribution of Ust and Jst(ϵst) does not
depend on πt .

Assumption 1 implies that E[Ust | Jst(ϵst) < Jst(0), πt ] =

E[Ust | Jst(ϵst) < Jst(0)]. Furthermore, to obtain an explicit
functional form of the selectivity bias, we make the following
assumption that is widely used in empirical studies.

17 This specific weighting matrix represents the ‘‘complete’’ network.
18 The specification given by (9) is merely an example tomotivate the assumption
(8). The validity of the proposed estimators does not rely on this specification.
Assumption 2. Ust and Jst(ϵst) are i.i.d. with a joint normal
distribution given by19

Ust
Jst(ϵst)


∼ N


0
0


,


Σ σ121mt

σ121′

mt
1


. (11)

Given Assumption 2, the selectivity bias is given by

E(Ust |dst = 1, πt) = −σ12
φ(Jst(0))
Fst(0|πt)

1mt . (12)

Let Pst = Pr(dst = 1|πt) be the probability of choosing lineup Ls
in period t given πt . As E(Ust |dst = 1, πt) = λs(πt)1mt , Jst(0) =

Φ−1(Fst(0|πt)) and Pst = Fst(0|πt), it follows from (12) that

λs(πt) = −σ12
φ(Φ−1(Pst))

Pst
. (13)

The transformation using Jst(·) greatly reduces the dimensionality
of the multiple index function λs(πt) because it allows λs(πt) to
depend on πt only through Pst with a single unknown parameter
σ12. Substitution of (13) into (10) gives

Yst = ρWtYst + Xstβ − σ12
φ(Φ−1(Pst))

Pst
1mt + U∗

st . (14)

For the network model, Lee’s approach can be implemented as
follows.

Step 1: Let πst = zstγ , where zit is a 1 × kz vector of exogenous
variables. Then, γ can be estimated by maximizing the likelihood
function

ln L =

T
t=1

qt
s=1

dst ln Pst . (15)

It proves convenient to assume that ξst is independently and identi-
cally Gumbel distributed so that Pst = exp(zstγ )/

qt
r=1 exp(zrtγ )

(McFadden, 1974). Then, γ can be estimated by a conditional logit
estimator γ̂ .

Step 2: With the predicted probabilities P̂st = exp(zst γ̂ )/
qt

r=1
exp(zrt γ̂ ) obtained in the first step, we consider the feasible
counterpart of (14)

Yst = ρWtYst + Xstβ − σ12
φ(Φ−1(P̂st))

P̂st
1mt + U∗∗

st , (16)

and estimate (ρ, β ′, σ12)
′ by the two-stage least squares (2SLS)

estimator with linearly independent columns in WtXst as instru-
ments for WtYst . The correct asymptotic covariance matrix of the
2SLS estimator can be derived in a similarway as in Lee et al. (1980)
with appropriate modifications.

4.3. The semi-parametric selection correction approach

Dahl (2002) proposes an alternative selection correction ap-
proach based on the index sufficiency assumption that the joint
distribution of Ust and ϵst depends on πt only through Pst =

Pr(dst = 1|πt). Based on this idea, we impose the following as-
sumption to reduce the dimensionality of the selectivity bias.

Assumption 3. λs(πt) = µ(Pst).

19 The likelihood function of themodel based on the joint normal distribution (11)
is given in Appendix A.
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Assumption 3 implies that the multiple index selectivity bias
E(Ust |dst = 1, πt) depends on πt only through Pst , and, thus, Eq.
(10) becomes

Yst = ρWtYst + Xstβ + µ(Pst)1mt + U∗

st . (17)

For the parametric approach, Assumption 2 implies that the func-
tional form of µ(·) is given by µ(Pst) = −σ12φ(Φ−1(Pst))/Pst . For
the semi-parametric approach, we approximate µ(Pst) by series
expansions (see, Andrews, 1991; Newey, 1997) without imposing
functional form assumptions on µ(·).

Thus, the semi-parametric selection correction approach can be
implemented in a similar two-step procedure as the parametric
approach.

Step 1: We obtain the predicted probabilities P̂st from, say, a
conditional logit regression.

Step 2: We replace µ(Pst) in (17) by its (feasible) series
approximation

K
k=1 κkbk(P̂st), where the functions bk(·) are

referred to as the basis functions,20 and estimate (ρ, β ′)′ together
with the series expansion coefficientsκk by the 2SLS estimatorwith
linearly independent columns inWtXst as instruments forWtYst .21

4.4. The fixed-effect approach

From a different perspective, the selectivity bias λs(πt) in (10)
can be considered as a time-varying lineup-specific fixed effect.
To avoid estimating the unknown function λs(·), we can apply a
within transformation to eliminate this term from (10).

Suppose Xst = [X1,st , 1mt x2,st ], where X1,st is an mt × k1 matrix
of observations on k1 individual-varying exogenous variables and
x2,st is a 1 × k2 vector of individual-invariant exogenous variables
(k1 + k2 = kx). Then, Eq. (10) can be written as

Yst = ρWtYst + X1,stβ1 + 1mt x2,stβ2 + λs(πt)1mt + U∗

st . (18)

Let Qt = Imt −
1
mt

1mt1
′
mt

denote the within-transformation
projector. Then, as Qt1mt = 0 and QtU∗

st = QtUst , pre-
multiplication of (10) by Qt gives

QtYst = ρQtWtYst + QtX1,stβ1 + QtUst . (19)

Then, ρ and β1 can be estimated from thewithinmodel (19) by the
conditional maximum likelihood (CML) approach in Lee (2007).

The fixed-effect approach does not impose any restrictions
on λs(πt). However, given the special structure of the weighting
matrix Wt , the workers in the chosen lineup form a complete
network. The within transformation may cause an identification
problem similar to the one studied in Lee (2007). This can be seen
from the reduced form equation of (19). Suppose |ρ| < 1, then
(Imt − ρWt) is nonsingular and it follows from (7) that

Yst = (Imt − ρWt)
−1X1,stβ1 + (Imt − ρWt)

−1Ust . (20)

For Wt =
1

mt−1 (1mt1
′
mt

− Imt ), we have Qt(Imt − ρWt)
−1

=

mt−1
mt−1+ρ

Qt . Therefore, pre-multiplication of (20) by Qt gives

QtYst =
mt − 1

mt − 1 + ρ
QtX1,stβ1 +

mt − 1
mt − 1 + ρ

QtUst . (21)

From (21), we can see that the within model (19) can be identified
if mt varies over t . On the other hand, if mt = m for all t , then

20 Dahl (2002) finds similar results in his application using either polynomial or
Fourier series as basis functions.
21 For consistency and asymptotic normality, the number of basis functions should
increase with the sample size (see, Andrews, 1991; Newey, 1997). In practice, the
number of basis functions is chosen by the researcher.
we can only identify m−1
m−1+ρ

β1 from (21). In other words, the peer
effect coefficient ρ cannot be identified from β1 after the within
transformation.

To identify the peer effect when mt = m for all t , we need
to introduce some exclusion restrictions. One possibility is to
introduce heterogeneous peer effects. Let W o

1s = [wo
ij,1s] be an

adjacency matrix with wo
ij,1s = 1 if the ith and jth workers in

the lineup s are of the same type and wo
ij,1s = 0 otherwise. Let

W o
2s = [wo

ij,2s] be an adjacency matrix with wo
ij,2s = 1 if the ith and

jth workers in the lineup s are of different types and wo
ij,2s = 0. By

construction, 1
m−1 (W

o
1s + W o

2s) = W ≡
1

m−1 (1m1′
m − Im). Let W1s

and W2s be row-normalized W o
1s and W o

2s respectively, such that
W1s1m = W2s1m = 1m.22 Then, (18) can be generalized to a model
with heterogeneous peer effects given by

Yst = ρ1W1sYst + ρ2W2sYst + X1,stβ1 + 1mt x2,stβ2

+ λs(πt)1mt + U∗

st , (22)

where ρ1 captures the within-type peer effect and ρ2 captures the
cross-type peer effect. Pre-multiplying (22) by Q = Im −

1
m1m1′

m,
we have

QYst = ρ1QW1sYst + ρ2QW2sYst + QX1,stβ1 + QUst . (23)

As (Im − ρ1W1s − ρ2W2s)
−1

= ρ1W1s(Im − ρ1W1s − ρ2W2s)
−1

+

ρ2W2s(Im − ρ1W1s − ρ2W2s)
−1

+ Im, it follows from the reduced
form equation of (22) that

QYst = Q (Im − ρ1W1s − ρ2W2s)
−1X1,stβ1

+Q (Im1 − ρ1W1s − ρ2W2s)
−1U∗

st

= ρ1QW1s(Im − ρ1W1s − ρ2W2s)
−1X1,stβ1

+ ρ2QW2s(Im − ρ1W1s − ρ2W2s)
−1X1,stβ1

+QX1,stβ1 + Q (Im1 − ρ1W1s − ρ2W2s)
−1U∗

st

= ρ1E(QW1sYst |Xst , dst) + ρ2E(QW2sYst |Xst , dst) + QX1,stβ1

+Q (Im1 − ρ1W1s − ρ2W2s)
−1U∗

st . (24)

Therefore, (ρ1, ρ2, β
′

1) canbe separately identified if E(QW1sYst |Xst ,
dst), E(QW2sYst |Xst , dst), and columns inQX1,st are linearly indepen-
dent for some t .

To better understand this identification condition, we consider
a special case that ρ1 = ρ2 = 0 in the data generating process.
In this case, it follows from the reduced form equation of (22)
that E(QW1sYst |Xst , dst) = QW1sX1,stβ1 and E(QW2sYst |Xst , dst) =

QW2sX1,stβ1. Thus, a necessary condition for E(QW1sYst |Xst , dst),
E(QW2sYst |Xst , dst), and QX1,st to be linearly independent is that
QW1s, QW2s and Q are linearly independent. Although QW 0

1s +

QW 0
2s = (m − 1)QW = −Q , for the row normalized adjacency

matrices W1s and W2s, QW1s, QW2s and Q can still be linearly
independent in general. Therefore, model (23) can be identified.
The CML estimator in Lee et al. (2010) can be easily generalized to
estimate (23).

To summarize, for model (18), the fixed-effect approach can be
implemented by the following steps.

Step 1: We estimate the within Eq. (19) by the CML estimator
in Lee (2007).

22 Sometimes, W 0
s1 (or W 0

s2) may have a row of zeros. For example, if worker i
has no co-worker of the same type in a lineup, then wo

ij,1s = 0 for all j. Then,
the corresponding row of Ws1 (or Ws2) is also zero. As a result, Ws11mt ≠ 1mt (or
Ws21mt ≠ 1mt ), and the likelihood function cannot be derived for the transformed
dependent variableQtYst (see Liu and Lee, 2010). In this case, themodel after within
transformation given by (23) can be estimated by the GMM approach in Liu and Lee
(2010).
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Step 2: We obtain the predicted probabilities P̂st from, say, a
conditional logit regression.

Step 3: Let r̂st =
1
m1′

m(Yst − ρ̂WtYst − X1,st β̂1), where ρ̂ and β̂1
are the first-step estimates. We consider the regression

r̂st = x2,stβ2 + µ(P̂st) + ζst , (25)

where the selectivity biasµ(P̂st) is either givenby−σ12φ(Φ−1(P̂st))
/P̂st in the parametric approach or approximated by

K
k=1 κk

bk(P̂st) in the semi-parametric approach, and ζst is the error term.
We estimate β2 together with the unknown parameters in µ(P̂st)
by the OLS estimator.

4.5. Comparison of the estimation approaches

Like other Heckman-type two-step selectivity bias correction
procedures, the two approaches proposed in Sections 4.2 and 4.3
have the advantage of computational simplicity. However, both ap-
proaches impose strong restrictions on the selectivity biasλs(πt) to
reduce its dimensionality. Furthermore, because of the endogene-
ity of the peer effect regressor, the model needs to be estimated by
the 2SLS estimator that relies on the existence of valid and relevant
instruments. This may be quite challenging in empirical applica-
tions. In our empirical example, for instance, we experiment with
several sets of instruments and find the valid instruments are quite
weak. Therefore, the 2SLS estimates may not be reliable.

On the other hand, the fixed effect approach proposed in Sec-
tion 4.4 does not impose any restrictions on the selectivity bias
λs(πt). After we eliminate the selectivity bias using the within
transformation, we can use the CML or GMM estimator to esti-
mate the peer effect. The CML and GMM exploit both linear and
quadratic moment conditions, and, thus, may outperform the 2SLS
estimator that only uses linear moment conditions, when the lin-
ear moment conditions are weak (see, Lee et al., 2010; Liu and Lee,
2010). However, as shown in Section 4.4, the within transforma-
tion makes the identification of the peer effect more challenging
because the workers in the chosen lineup form a complete net-
work. In particular, we show that the within equation is not iden-
tified if mt does not vary over time. In this case identification can
be achieved by imposing exclusion restrictions through heteroge-
neous peer effects.

5. An empirical illustration

As an empirical illustration, we estimate a network production
function for a basketball team, where a coach selects lineups of
players over the course of a game. As the valid instruments turn out
to be quite weak in the empirical example, with the first stage F-
statistic lower than 5 Stock and Yogo (2005), estimators that lever-
age 2SLS may not be reliable for this data. Hence, we use the fixed
effect estimation approach. As the number of active players is con-
stant over time (i.e., mt = m), we split players into two types,
guards and forwards, to identify the peer effects. We detail the
fixed effect estimator for the specification considered in the em-
pirical example in Appendix B.

5.1. Data

Our data are for the Syracuse University Men’s Basketball team
over the 2011–2012 season. The team played 33 games during the
regular season (we exclude March Madness games). We define a
time period as the time interval between two consecutive substi-
tutions.23 We removed overtime periods from the data, since the

23 Our time periods have irregular length.
manager’s allocation strategy may be different in overtime. We re-
moved time periods of less than 30 s, since there might not be
enough observations on players’ productivities in those extremely
short periods. We thus observe 79 different lineups (of 5 active
players) over 448 time periods, in total 2240 observations.24

There are two outputs in a basketball game: the production of
offense/defense (some measure related to the ‘‘on court’’ produc-
tivity of active players) and rest (players sitting on the bench).25
Since the empirical goal is illustration of our approach, to simplify
the analysis we take the opposing team’s strategy as exogenous,
using only a measure of the team’s Rating Percentage Index (RPI)
from the previous year which we describe below.

5.2. Variable definition

The dependent variable Yst of Eq. (22) is measured using the
efficiency statistic EFFit :

EFFit = (PTit + REBit + ASTit + STLit + BLKit − MFGit

−MFTit − TOit)/Minsit

where PTit is points, REBit is rebounds, ASTit is assists, STLit is steals,
BLKit is blocks, MFGit is missed field goals, MFTit is missed free
throws, TOit is turn overs, and Minsit is minutes played for player i
in period t .26 These are period-by-period statistics and not season-
long aggregates. Over the course of the entire season and across
players the average efficiency is 0.37 with a standard deviation of
1.07, a minimum of −3.75, and a maximum of 8.28. This is not
calculated when a player is on the bench.

The individual-varying exogenous variables in the main equa-
tion (the X1,st ’s) are Experienceit and Fatigueit . Experienceit is min-
utes played from the start of the game to the end of period t − 1.
It has an average of 9.91 min, a standard deviation of 7.81, a mini-
mum of 0, and a maximum of 37.58 min. For active player i in pe-
riod t − 1, Fatigueit is minutes continuously played until the end of
period t − 1; for inactive players in period t − 1, fatigue is 0. The
average fatigue across the entire season is 3.78 min with a stan-
dard deviation of 5.09min. The high variance is due to the fact that
there are players who almost always continuously play and those
who almost never play.

The exogenous variables that do not vary over i in the main
equation (the x2,st ’s) are the opposing team’s Rating Percentage
Index (RPIt ); Homet , a dummy variable equal to 1 if the game is
played in the Syracuse University Carrier Dome (two-thirds of the
games were played at home in the 2011–2012 season); and 2nd-
Halft , a dummy variable equal to 1 if the current period is in the
second half of the game. The rating percentage index is one of the
systems used to rank NCAA teams and is based on a team’s wins,
losses and its strength of schedule. This system has been in use in
college basketball since 1981 to aid in the selecting and seeding
of teams appearing in the 68-team men’s tournament (March
Madness). The index is based on a team’s winning percentage, its
opponents’ winning percentages, and the winning percentages of

24 An important problem, which is common to most existing empirical studies, is
a possible misspecification of the network structure. Themain threats are sampling
issues due to the fact that only a subset of connections are observed (see, e.g.,
Chandrasekhar and Lewis, 2011; Liu, 2013; Liu et al., 2013). In our case, the coach
selects lineups to produce output, so that networks are accurately measured.
25 It could be argued that there are multiple offensive outputs (points, rebounds,
assists, etc.) andmultiple defensive outputs (steals, blocks, rebounds, etc.). However
our purpose is to illustrate the econometric contribution, and not to perform a
comprehensive empirical analysis.
26 This assumes equal weights for each individual’s productive activities. Other
weighting schemes could be considered, but a similar efficiency measure is
employed by the National Basketball Association to rank player productivity, so we
use it as a matter of convenience.
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Table 1
Description of data.

Label Variable definition Mean SD Min Max

y Efficiency Current period efficiency score that is given by
(points+rebounds+assists+steals+blocks−misses−turnovers)/minutes.

0.37 1.07 −3.75 8.28

x1 Experience Minutes played from the start of the game until the end of period t − 1. 9.91 7.81 0 37.58

Fatigue Minutes continuously played at the end of period t − 1. 3.78 5.09 0 37.58

x2 RPI The previous year RPI of the opposing team. 0.55 0.08 0.38 0.66

Home A dummy variable taking value one if it is a home game. 0.67 0.47 0 1

2nd Half A dummy variable taking value one if it is the second half. 0.41 0.49 0 1

z Lineup efficiency The total efficiency score of the players in the lineup from the start of the game
until the end of period t − 1.

1.63 1.22 −2.65 5.04

Lineup experience The total minutes played by the players in the lineup from the start of the game
until the end of period t − 1.

49.57 34.03 0 152.78

Lineup fatigue The total minutes continuously played by the players in the lineup at the end of
period t − 1.

18.92 14.06 0 91.70

Lineup fouls The total number of fouls of the players in the lineup at the end of period t − 1. 3.13 2.77 0 15

One-substitution A dummy variable taking value one if it takes one substitution from the lineup
in period t − 1 to achieve this lineup.

0.68 0.46 0 1

Two-substitution A dummy variable taking value one if it takes two substitutions from the lineup
in period t − 1 to achieve this lineup.

0.22 0.42 0 1

Number of observations: 2240; number of periods: 448; ‘‘RPI’’ is ‘‘Rating Percentage Index’’.
those opponents’ opponents. For the teams in our data the average
RPI from the 2010–2011 season is 0.55 with a standard deviation
of 0.08.

The exogenous variables in the selection equation are lineup-
level aggregations of variables from the main equation. Lineup-
Efficiencyst is the total efficiency score of the lineup s from the start
of the game until the end of period t − 1. It has an average of 1.63
and a standard deviation of 1.22. Lineup-Experiencest is the total
minutes played by the lineup at the end of period t − 1. It has
an average of 49.57 min and a standard deviation of 34.03 min.
Lineup-Fatiguest is the total minutes continuously played by the
lineup at the end of period t − 1. It has an average of 18.92 min
and a standard deviation of 14.06 min. Lineup-Foulsst is the total
fouls by the lineup at the end of period t − 1. It has an average of
3.13 fouls and a standard deviation of 2.77 fouls. One-substitutiont
is a dummy variable equal to 1, if one player was substituted to
achieve the lineup at time t . It has an average of 0.68 and a standard
deviation of 0.46. Two-substitutiont is a dummy variable equal to 1,
if two players were substituted to achieve the lineup at time t . It
has an average of 0.22 and a standard deviation of 0.42. The omitted
category is three or more players were substituted. Variable
definitions and descriptive statistics are summarized in Table 1.

5.3. Estimation results

5.3.1. Results without selectivity bias correction
We start by presenting the ML estimation results without ac-

counting for selectivity bias (Lee, 2004). As the number of time pe-
riods (T = 448) is much larger than the number of players in the
Syracuse University Men’s Basketball team (n = 19), we can use
player dummies to control for unobserved player-specific charac-
teristics. Results are contained in Table 2.

Model 1 considers the benchmark outcome Eq. (7) with homo-
geneous peer effects.27 The estimation results are reported in col-
umn 1 of Table 2. In line with expectations, it appears that player’s
experience is positively correlatedwithhis productivity (0.0154 ef-
ficiency units per minute played), and the effect of fatigue is neg-
ative (−0.0083 efficiency units per minute continuously played),

27 We assume normality of the error distribution so that Ust ∼ i.i.d.N(0, σ 2Im).
Table 2
ML estimation of the outcome equation without selectivity bias correction.

Dep. var.: player efficiency Model 1 Model 2 Model 3

Peer effects 0.0841***
(0.0279)

Same-type peer effects 0.0638*** 0.0651***
(0.0175) (0.0175)

Cross-type peer effects 0.0345
(0.0216)

Experience 0.0154*** 0.0154*** 0.0156***
(0.0053) (0.0053) (0.0053)

Fatigue −0.0083 −0.0084 −0.0083
(0.0059) (0.0058) (0.0058)

RPI −1.1677*** −1.1538*** −1.1914***
(0.3043) (0.3035) (0.3028)

Home −0.0030 −0.0034 −0.0031
(0.0490) (0.0489) (0.0489)

2nd Half −0.2159*** −0.2142*** −0.2197***
(0.0683) (0.0681) (0.0680)

Player dummies Yes Yes Yes

Log likelihood −3294.83 −3291.17 −3292.47
Sample size 2240 2240 2240

Model 1: the outcome equation with homogeneous peer effects.
Model 2: the outcome equation with both same-type and cross-type peer effects.
Model 3: the outcome equation with only cross-type peer effects.
Standard errors in parentheses.
Statistical significance: ∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.

although it is not statistically significant. The quality of the op-
posing team plays a strong role in decreasing player’s produc-
tivity (statistically significant −1.1677), and the second-half of a
game seems to be less productive than the first half (significant
−0.2159). Peer effects in productivity appear positive and statis-
tically significant. In terms of magnitude, a unit increase in the av-
erage efficiency of teammates induces a 0.0841 unit increase in the
efficiency of the individual player.

Model 2 of Table 2 considers heterogeneous peer effects. We
split players into two types, guards and forwards (no differentia-
tion of centers from forwards), and distinguish between peer ef-
fects arising from ‘‘same-type’’ teammates and peer effects aris-
ing from ‘‘different-type’’ teammates. The estimation results are
reported in column 2 of Table 2. It appears that the peer effects
are mostly due to interactions between players of the same type.
The same-type peer effect is 0.0638 (significant) and the cross-type
peer effect is 0.0345 (insignificant). Thismeans that oncewe condi-
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Table 3
Fixed effect ML estimation of the outcome equation.

Dep. var.: player efficiency Model 2 Model 3

Same-type peer effects 0.1432 0.0534***
(0.1000) (0.0220)

Cross-type peer effects 0.1532
(0.1655)

Experience 0.0337*** 0.0316***
(0.0098) (0.0091)

Fatigue −0.0198*** −0.0186***
(0.0075) (0.0070)

Player dummies Yes Yes
Log likelihood −2590.55 −2591.03
Sample size 2240 2240

Model 2: the outcome equation with both same-type and cross-type peer effects.
Model 3: the outcome equation with only same-type peer effects.
Standard errors in parentheses.
Statistical significance: ∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.

tion on observed and unobserved player characteristics, there are
no endogenous effects at work between players of different type.

Model 3 of Table 2 is the restricted heterogeneous peer effects
where we only consider the same-type peer effect. The estimation
results reported in column 3 of Table 2 remain roughly unchanged
from Model 2.

5.3.2. Results with selectivity bias correction
As explained in Section 4.4 and detailed in Appendix B, the

fixed-effect approach can be implemented in three steps. First, we
use a within transformation to eliminate selectivity bias and es-
timate the transformed outcome equation by the CML approach
(detailed in Appendix B.2). Covariates that do not vary at the indi-
vidual level (RPI ,Home and 2nd-Half ) are eliminated by the within
group transformation. As the number of active players is constant
over time (i.e. mt = m), the transformed outcome equation is not
identified for Model 1. Hence, we have to exploit heterogeneous
peer effects to achieve identification. The fixed-effect CML estima-
tion results are reported in Table 3.

With both same-type and cross-type peer effects in Model 2,
the peer effects are not significant due tomulticollinearity of those
two effects in our data.Whenwe only consider the same-type peer
effect in Model 3, the peer effect is positive and statistically sig-
nificant, but lower in magnitude than the corresponding estimate
in Table 2 without selectivity bias correction. In line with the esti-
mates in Table 2, a player’s experience is positively associatedwith
his performance. The effect of fatigue is negative and becomes sta-
tistically significant once selectivity bias is corrected. Furthermore,
the likelihood ratio test (test statistic is 0.96) fails to reject the re-
striction that the cross-type peer effect is zero at conventional sig-
nificance levels.

Table 4 reports the second step: conditional logit estimation of
the selection equation.28 The estimates reveal the factors that are
important when the coach selects the lineup. In particular, the past
productivity, fatigue and number of fouls of the players in a lineup
play important roles in the coach’s lineup choices.

Table 5 reports the third step, where the effects of the
individual-invariant regressors are recovered and the selectivity
bias is estimated. The estimation procedure is detailed in Ap-
pendix B.3. For the parametric approach, the joint normality as-
sumption (11) implies that the selectivity bias has a specific func-
tional form (13) with a single unknown parameter σ12. For the
semiparametric approach, the selectivity bias is approximated by
a series expansion. For the parametric approach, the estimate of

28 To reduce the total number of alternatives,we restrict the set of possible lineups
to the lineups that are actually employed by the coach in a game.
Table 4
Conditional logit estimation of the selection equation.

Dep. var.: probability of lineup selection

Lineup efficiency 0.1565*
(0.0829)

Lineup experience −0.0268***
(0.0071)

Lineup fatigue −0.0766***
(0.0129)

Lineup fouls −0.1199***
(0.0512)

One-substitution 4.4993***
(0.2712)

Two-substitution 2.2187***
(0.2439)

Player dummies Yes
Log likelihood −755.94
Sample size 448

Standard errors in parentheses.
Statistical significance: ∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01.

σ12 is insignificant. When parametric restrictions are removed, the
Wald test suggests that the coefficients of the series expansion are
jointly significant and hence selection does play a role in the out-
come equation. The estimated effects of the individual-invariant
regressors are in line with the estimates in Table 2.

6. Conclusion

This paper makes contributions to both the network and pro-
duction function literatures. The proposed network production
function mitigates traditional problems in the identification and
estimation of peer effects, including endogenous network for-
mation and network topology misspecification. In our proposed
model, the network is (and peer groups are) well-defined, and se-
lection into groups is not an individual choice but the decision of
a manager (social planner) who has historical information on the
observable and unobservable characteristics of the workers. This
allows selection into a single project to be at the team-level, and
allows the network structure to be fixed by the manager (prede-
termined for the workers), who selects teams (lineups) into the set
structure. The selection process can bemodeled in aHeckman-type
framework (Heckman, 1979). Being at the team level, the selection
correction term captures the ‘‘correlated effects’’ of Manski (1993).
Thus, our approach tackles in a single step the selection and the
correlated effects problems in the network literature. The solution
comes at a cost of the need for administrative data on eachworker’s
history which may not be readily available.

Regarding the production function literature, our analysis con-
siders issues related to the estimation of managerial efficiency
(themanagerial selectivity bias correction term), the determinants
of efficiency through the selection equation, and multi-output
(project) distance functions.

Our empirical example suggests that peer effects exist among
players in a basketball game and that a selectivity bias correction
matters.
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Appendix A. The likelihood function under joint normality

If Ust ∼ N(0, Σ), the density function of Yst is

f (Yst ) = (2π)−mt /2|Σ |
−1/2

|I − ρWt |

× exp


−
1
2
(Yst − ρWtYst − Xstβ)′Σ−1(Yst − ρWtYst − Xstβ)


.
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Table 5
OLS estimation of individual-invariant regressors in the outcome equation.

Dep. var.: lineup-averaged Model 2 Model 3
Estimation residuals from Table 3 Parametric Series Parametric Series

RPI −1.0734*** −1.0157*** −1.3081*** −1.2369***
(0.2339) (0.2331) (0.3100) (0.3094)

Home 0.0080 0.0151 0.0067 0.0157
(0.0388) (0.0386) (0.0515) (0.0512)

2nd Half −0.3526*** −0.3557*** −0.3570*** −0.3597***
(0.0360) (0.0362) (0.0477) (0.0480)

σ12 −0.0325 −0.0234
(0.0324) (0.0429)

Wald test for selectivity bias 11.1764** 9.1486*
[0.0247] [0.0575]

Sample size 448 448 448 448

Model 2: the outcome equation with both same-type and cross-type peer effects.
Model 3: the outcome equation with only same-type peer effects.
Standard errors in parentheses; p values in brackets.
Statistical significance: ∗ p<0.1, ∗∗ p<0.05, ∗∗∗ p<0.01
Furthermore, if Ust and Jst(ϵst) are i.i.d. with a joint normal
distribution given by (11), the conditional distribution of Jst(ϵst)
given Yst is Jst(ϵst)|Yst ∼ N(σ121′

mΣ−1(Yst − ρWtYst − Xstβ), 1 −

σ 2
121

′
mΣ−11m). Then, the log-likelihood function of Eqs. (6) and (7)

is given by

ln L =

T
t=1

pt
s=1

dst [ln f (Jst (ϵst )|Yst ) + ln f (Yst )]

=

T
t=1

pt
s=1

dst

lnΦ

 Jst (zstγ ) − σ121′
mΣ−1(Yst − ρWtYst − Xstβ)

1 − σ 2
121′

mΣ−11m


−

mt

2
ln 2π −

1
2
ln |Σ | + ln |Imt − ρWt |

−
1
2
(Yst − ρWtYst − Xstβ)′Σ−1(Yst − ρWtYst − Xstβ)

 .

Appendix B. The empiricalmodel and the fixed effect estimator

In this appendix, we detail the fixed effect estimator for the
specification considered in the empirical example.

B.1. The empirical model

In the empirical application, we assume that the manager
chooses lineup s in period t (i.e., dst = 1), if d∗

st > maxr≠s d∗
rt , where

d∗
st = zstγ + ξst , for s = 1, . . . , qt . We assume ξst is independently

and identically Gumbel distributed so that Pst = Pr(dst = 1) =

exp(zstγ )/
qt

r=1 exp(zrtγ ).
The outcome equation of the chosen lineup s in period t is given

by

Yst = ρ1W1sYst + ρ2W2sYst + X1,stβ1 + 1mx2,stβ2 + Ust , (26)

where Ust = αst1m + Vst with αst ∼ N(0, σ 2
α ) and Vst ∼

N(0, σ 2
v Im). We assume that, when the manager chooses a lineup,

she has no information about the realization of individual random
innovations Vst but may have some information about the random
shock αst . Thus, E(Ust |dst = 1, πt) = E(αst |dst = 1, πt)1m =

λs(πt)1m, where πt = (π1t , . . . , πqt ,t) and πst = zstγ . Then, the
selectivity bias corrected outcome equation is

Yst = ρ1W1sYst + ρ2W2sYst + X1,stβ1 + 1mx2,stβ2

+ λs(πt)1m + U∗

st ,

where U∗
st = Ust − λs(πt)1m. By construction, E(U∗

st |dst = 1, πt) =

0.
B.2. Estimation of the peer effect

To estimate the peer effect coefficients (ρ1, ρ2), we first
eliminate the selectivity bias using a within transformation.
Premultiplying (26) by Q = Im −

1
m1m1′

m, we have

QYst = ρ1QW1sYst + ρ2QW2sYst + QX1,stβ1 + QVst . (27)

To estimate (27), we generalize the CML approach in Lee et al.
(2010). The transformed disturbances QVst in (27) are linearly
dependent because its variance matrix σ 2Q is singular. Following
Lee et al. (2010), we consider an equivalent but more effective
transformation. Let the orthonormal matrix of Q be [P, 1m/

√
m].

The columns in P are eigenvectors of Q corresponding to the
eigenvalue one, such that P ′1m = 0, P ′P = Im−1 and PP ′

= Q .
Therefore, premultiplying (26) by P ′ gives

P ′Yst = ρ1P ′W1sYst + ρ2P ′W2sYst + P ′X1,stβ1 + P ′Vst . (28)

Let Ȳst = P ′Yst , X̄1,st = P ′X1,st , V̄st = P ′Vst , W̄1s = P ′W1sP , and
W̄2s = P ′W2sP . As P ′W1s = W̄1sP ′ and P ′W2s = W̄2sP ′, (28) can be
rewritten as

Ȳst = ρ1W̄1sȲst + ρ2W̄2sȲst + X̄1,stβ1 + V̄st , (29)

where V̄st ∼ N(0, σ 2
v Im−1). Hence, (ρ1, ρ2, β

′

1, σ
2
v ) can be

estimated by maximizing the conditional likelihood function is
given by

ln L =

T
t=1

qt
s=1

dst


−

m − 1
2

ln(2πσ 2
v ) + ln |Im−1 − ρ1W̄1s

− ρ2W̄2s| −
1

2σ 2
v

(Ȳst − ρ1W̄1sȲst − ρ2W̄2sȲst − X̄1,stβ1)
′

× (Ȳst − ρ1W̄1sȲst − ρ2W̄2sȲst − X̄1,stβ1)


.

B.3. Estimation of the selectivity bias

Let rst =
1
m1′

m(Yst − ρ1W1sYst − ρ2W2sYst − X1,stβ1). Then,

rst = x2,stβ2 + λs(πt) + ζst , (30)

where ζst = −λs(πt) + αst +
1
m1′

mVst . Then, β2 and unknown
parameters in λs(πt) can be estimated from (30) with rst replaced
by r̂st =

1
m1′

m(Yst − ρ̂1W1sYst − ρ̂2W2sYst − X1,st β̂1), where
(ρ̂1, ρ̂2, β̂

′

1) are the CML estimates. In this Appendix, we give the
asymptotic covariance of the OLS estimator for the parametric
selection-bias correction approach. The asymptotic covariance of
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the semiparametric estimator can be derived in a similar way with
appropriate modifications (see Dahl, 2002, footnote 24).

Under the joint normality assumption
αst

Jst(ϵst)


∼ N


0
0


,


σ 2

α σ12
σ12 1


,

we have λs(πt) = E(αst |dst = 1, πt) = E(αst |Jst(ϵst) < Jst(0)) =

−σ12ϕ(Jst(0)) = −σ12ϕ(Φ−1(Pst)), where ϕ(·) = φ(·)/Φ(·).
Hence, (30) can be written as rst = x2,stβ2 − σ12ϕ(Φ−1(Pst)) + ζst .
Let ϕst = ϕ(Φ−1(Pst)) and ϕ̂st = ϕ(Φ−1(P̂st)), where P̂st =

exp(zst γ̂ )/
qt

r=1 exp(zrt γ̂ ) and γ̂ is the conditional logit estimator.
The (infeasible) OLS estimator of δ = (β ′

2, σ12)
′ is given by

δ̃ =


T

t=1

ĥ′

t ĥt

−1 T
t=1

ĥ′

t

qt
s=1

dst rst

= δ +


T

t=1

ĥ′

t ĥt

−1 T
t=1

ĥ′

t

qt
s=1

dst [ζst + σ12(ϕ̂st − ϕst)],

where ĥt =
qt

s=1 dst(x2,st , −ϕ̂st). Let Ast = Φ−1(Pst)ϕst + ϕ2
st and

Γt =
qt

s=1 dst
∂ϕ(Φ−1(Pst ))

∂γ ′ = −
qt

s=1 dstAst
1

φ(Φ−1(Pst ))
(Pst − P2

st)zst .
Let A = diag{

qt
s=1 dstAst}t=1,...,T , H = (h′

1, . . . , h
′

T )
′, and Γ =

(Γ ′

1, . . . , Γ ′

T )
′. We have

√
T (δ̃ − δ)

d
→N(0, plim( 1

T H
′H)−1Ω( 1

T H
′

H)−1), where Ω =
1
T H

′(σ 2
ζ IT − σ 2

12A + σ 2
12Γ Σγ Γ ′)H , with Σγ =

[
T

t=1
qt

s=1 Pst(zst −
qt

s=1 Prtzrt)
′(zst −

qt
s=1 Prtzrt)]

−1.29 Further-
more, under certain regularity conditions, we can show that the
feasible OLS estimator δ̂ = (

T
t=1 ĥ

′
t ĥt)

−1T
t=1 ĥ

′
t
qt

s=1 dst r̂st is
asymptotically equivalent to δ̃.
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