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Abstract

We present a core-periphery model of trading in the overnight interbank market. We

model periods of crises as an increase in the number of periphery banks that lose access

to core dealers, resulting in segmentation between core and periphery markets. Our model

implies that such an increase in segmentation raises (i) the bargaining power of periphery

banks connected to the core, (ii) the dispersion of prices in the interbank market, and (iii)

inefficient resort to the central bank standing facilities. We argue that these implications

are consistent with stylised facts and we use the model to study how optimal monetary

implementation should respond to increased segmentation of interbank markets.
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1 Introduction

Overnight interbank markets play an important role in the economy. They serve as a mechanism

to reallocate reserves from banks with an excess of reserve balances to banks with a deficit of re-

serve balances. The interest rates at which transactions take place in this market determine short

term interest rates, and thus indirectly all interest rates in the economy. They also increasingly

serve for indexing interest rates derivatives.1 Hence, central banks often intervene in overnight

interbank markets to implement their monetary policy (see, for instance, Bindseil (2005)). As a

result, understanding how prices are formed in these markets is of considerable interest.

Virtually all interbank markets are organized as over the counter (OTC) markets. The terms

of trade are arranged bilaterally between lenders and borrowers and reflect their respective bar-

gaining power. The literature on OTC markets emphasizes the importance of search frictions to

understand price formation in these markets (see, for instance, Duffie, Garleanu, and Pedersen

(2005) or Afonso and Lagos (2015)). In this paper, we focus on another type of frictions: the

extent to which smaller (periphery) traders (banks) are connected to larger (core) traders, and

we study how the implementation of monetary policy should depend on the level of segmentation

between the periphery and the core markets.

Our analysis is motivated by a series of stylised facts about interbank markets. First, there

is increasing evidence that these markets have a tiered (“core-periphery”) structure (see, for

instance, Bech and Atalay (2010), Craig and von Peter (2014), or Finger, Fricke, and Lux (2013)).

The core is populated by a few large dealer banks that trade very frequently among each other,

while the periphery is composed of smaller banks with less frequent trading activity.2 As a

1For instance, the periodic floating payments of overnight indexed swaps (OIS) swaps is computed using rates
for overnight unsecured lending between banks, such as the FED fund rates for U.S. dollars or the Eonia for the
Euros. The spread between the OIS and LIBOR rates is also considered as a measure of the fragility of the banking
system and stress in money markets. Thus, understanding the way overnight rates are determined is key since it
is a possible cause of fluctuation in the LIBOR-OIS spread.

2Existing studies (e.g. Cocco, Gomes, and Martins (2009), Brauning and Fecht (2012), Afonso, Kovner, and
Schoar (2011)) show that the interbank network is very sparse, and that most banks rely on a limited set of
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result, few banks (the core) trade with many counterparties (the periphery), who themselves

have relatively few trading options. This structure closely resembles that of many other OTC

markets, e.g., for municipal bonds (Li and Schuerhoff (2014)), European sovereign bonds (Dunne,

Hau, and Moore (2015)), and Credit Default Swaps (Peltonen, Scheicher, and Vuillemey (2014)).

Importantly, the structure of the interbank market is subject to variations over time. In

particular, there is evidence that peripheral banks tend to lose access to the core during crisis

episodes.3 Figure 1 illustrates this fact for the Euro area. It plots kernel density estimates for the

distribution of the number of counterparties for across 271 Euro area banks (aggregated at the

group level). The blue line refers to June 2008 (i.e., before the Lehman bankruptcy), while the red

line corresponds to data for November 2011 (at the height of the sovereign debt crisis and before

the ECB’s 3-year long-term refinancing operation in December 2011). Two observations can be

made. First, the market is generally very concentrated (in both periods), as most banks trade

with relatively few counterparties. Second, the interbank network has thinned out throughout

the sovereign debt crisis, so that banks have to rely on fewer counterparties for their trading

needs (the distribution has shifted to the left over time).

A second observation is that this segmentation of the euro area interbank market during the

crisis also coincided with an increase in the dispersion of interest rates at which transactions

take place in the interbank market (Figure ??) and the likelihood that banks resort to the ECB

lending and borrowing facilities (Figure 3). The ECB operates a so-called corridor system, which

allows banks with excess reserve balances to deposit them at the central bank and earn interest

on them, while banks with a deficit of reserves can borrow from the ECB at a penalty rate.4

counterparties.
3There is considerable evidence that the global financial crisis and the European sovereign debt crisis profoundly

affected the structure of interbank markets. For example, Afonso, Kovner, and Schoar (2011) show a decline in
borrowing volumes and the number of counterparties directly following the Lehman bankruptcy. In turn, access to
the Fed’s discount window increased significantly. Similarly, Garcia de Andoain, Hoffmann, and Manganelli (2014)
document that market access was limited for banks from peripheral countries throughout the sovereign debt crisis.

4Modern central banks implement their monetary policy through steering the overnight interest rate. Many
rely on a corridor system (e.g., the Bank of England, the Bank of Canada, and to some extent the US Federal
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Figure 3 shows that the volume of transactions at the ECB lending and borrowing facilities was

close to zero until October 2008 and has then considerably increased.

A natural question is whether these facts are related and how monetary policy should respond

to segmentation in interbank markets. To address this question, we develop a core-periphery

model of trading in the overnight interbank market. In the periphery market, only a fraction

(1 − λ) of banks are connected (i.e., can trade with) to core banks (the “core”). Thus, when λ

increases, the periphery market becomes more segmented from the core market.

As is standard in the literature (e.g., Poole (1968), Bech and Monnet (2015) or Afonso and

Lagos (2015)), core and periphery banks are hit by liquidity shocks (random shocks to their

reserves balances). These shocks generate gains from trade between banks with a shortage of

reserves (“borrowers”) and banks with an excess of reserves (“lenders”).

In our model, banks trade in three steps: (i) Periphery banks first trade together, (ii) periphery

banks that do not find a trading partner in the periphery market trade with core banks if they

are connected to them, and with the central bank otherwise, and (iii) core banks resort to the

central bank’s standing facilities if necessary (that is, if they end up with a shortage or an excess

of reserve balances). Thus, core banks effectively act as dealers for periphery banks and the

central bank acts as a liquidity provider of last resort for all banks. The central bank chooses

the rates at which it lends or remunerates reserves (the difference between these rates defines

the width of the corridor). In equilibrium, the rate in the core market is such that core banks’

demand for reserves is just equal to the supply of reserves to core banks by periphery banks and

the central bank. Thus, core banks’ marginal valuations given their equilibrium reserves holdings

Reserve since October 2008), whereby banks can borrow at a rate RP and deposit at a rate RD, with RP > RD,
thus giving a lower and upper bound on the rates at which banks trade with each other. The central bank steers
their supply of reserves via open market operations in order to smoothen out aggregate liquidity shocks. Banks
need to fulfil their reserve requirements with the central bank over a specific time period, and they trade with each
other in the interbank market in order to neutralize idiosyncratic shocks. See Bindseil (2005) for a more detailed
description.
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is just equal to the equilibrium core rate, very much as in Poole (1968).5

As in other models of interbank markets (e.g., Bech and Monnet (2015) or Afonso and Lagos

(2015)), the bargaining power of lenders relative to borrowers declines with aggregate excess

reserves of periphery banks. Thus, equilibrium rates decrease with the aggregate reserves of

periphery banks and the amount of liquidity injected by the central bank. The new effects in our

model stem from (i) the distinction between core and periphery banks and (ii) the segmentation

of the core and periphery markets.

In the benchmark case, all periphery banks are connected to the core (λ = 0). In this case

the equilibrium in our model is identical to that in Poole (1968): all trades (in the core and the

periphery market) take place at the same rate (no price dispersion). Moreover, the equilibrium

outcome is efficient: all mutually beneficial trades take place and core banks need to resort to the

central bank only when, in aggregate, there is an excess or a shortage of liquidity in the system.

Instead, when there is segmentation between the core and the periphery market (λ > 0), the

equilibrium outcome is different because periphery banks connected to the core have a more at-

tractive outside option than unconnected banks. Thus, in the periphery market, connected banks

have more bargaining power than unconnected ones. This feature generates price dispersion: in

equilibrium, trades in the periphery market take place at different rates across different trading

partners. For instance, when, in aggregate, periphery banks are short of reserves, periphery banks

with excess reserve balances lend their reserves at a markup relative to core dealers’ rate and

this markup is larger for connected banks.6 Moreover, uncertainty on whether a trading partner

5The determination of the core market equilibrium rate is also related to the determination of equilibrium
prices in so called inventory models of dealership markets in market microstructure (see Foucault, Pagano, and
Roell (2013), Ch.3 and 4).

6A significant share of the empirical literature examines the dispersion in borrowing rates across different types of
banks and relates it to variations in bargaining power (see, for instance, Furfine (2001), Ashcraft and Duffie (2007),
Bech and Klee (2011), Allen, Chapman, Echenique, and Shum (2012)). For instance, Ashcraft and Duffie (2007)
document that lenders with a higher trading activity charge higher interest rates to borrowers with little trading
activity, in line with an important role of traders’ positioning inside the interbank network and the associated
trading opportunities. Similarly, they show that bank’s eagerness to trade (i.e. their relative level of reserves) is
an important pricing factor.
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is connected or not can lead periphery banks to ask “too much” in the negotiation (i.e., ask

for rates such that connected banks prefer to trade with core dealers). When this happens, the

equilibrium is inefficient in the sense that mutually profitable trades between periphery banks

do not take place.7 This has two related consequences: (i) the volume of trading in the core

market increases, (ii) the frequency at which unconnected periphery banks resort to central bank

facilities increases as well (relative to the benchmark case). Holding the parameters of monetary

policy (e.g., the amount of liquidity injected by the central bank or the width of the corridor)

constant, the equilibrium outcome is more likely to be inefficient when more periphery banks are

lacking access to the core.8

Overall, these implications accord well with the stylised facts documented in Figures 1 to

3. Moreover, our model predicts that inefficient outcomes should be more frequent when fewer

banks are connected to the core and/or injections of central bank reserves with core banks are

larger. This is consistent with the empirical findings in Allen, Chapman, Echenique, and Shum

(2012) for the Canadian overnight interbank market. Indeed, they find that inefficient outcomes

in this market are more frequent after the onset of the financial crisis (which we associate with

an increase in segmentation between the periphery and the core) and are positively correlated

with injections of cash balances by the Bank of Canada.9

In the last part of the paper, we use our model to study the optimal implementation of

monetary policy by the central bank. We show that when all banks are linked to the core, or in

7Our definition of efficiency is related to that used by Allen, Chapman, Echenique, and Shum (2012) in their
study of the canadian interbank market.

8Acharya, Gromb, and Yorulmazer (2012) develop a model of interbank loans that also generates a suboptimal
equilibrium due to the market power of surplus banks. Their model features two banks bargaining over a loan with
a long maturity. In contrast, we study a market for overnight loans with a continuum of banks, and the inefficiency
is due to the combination of asymmetric information and OTC trading. Heider, Hoerova, and Holthausen (2015)
show how counterparty risk, which is absent in our model, can also generate inefficient equilibria in interbank
markets.

9Garcia de Andoain, Hoffmann, and Manganelli (2014) analyze the European interbank market throughout
the sovereign debt crisis. They document that banks from peripheral countries are charged significantly higher
borrowing rates, and increasingly fail to satisfy their liquidity needs in the private market, forcing them to resort
to the ECB’s liquidity operations.
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“normal times”, the central bank optimally uses liquidity injections (e.g., through open market

operations) to offset expected liquidity imbalances, and sets the rates of its two standing facilities

symmetrically around the target rate. This is a “corridor system”, typical of monetary policy

implementation of many central banks before the crisis.

When many banks lose access to the core, or in “crisis times”, such a policy leads to deviations

from the target rate because different types of banks face different rates. To reach the target,

it is possible to inject large amounts of liquidity, and set the rate of the deposit facility equal

to the target rate. Many central banks have actually responded to the crisis by moving to such

a “floor system”. However, our framework highlights two limitations. First, such a system can

work only if the central bank can give more liquidity to both periphery banks and core banks. In

normal times, this is not necessary because all periphery banks have access to the core and are

thus indirectly affected by liquidity injections.10 Second, if allowing the central bank to expand

its balance sheet a lot has long-run costs, there is a trade-off between interest rate targeting and

balance sheet expansion. Our model allows us to study this trade-off and can shed light on the

optimal mix between injecting liquidity and manipulating the rates of the standing facilities.

The paper is organized as follows. In Section 2, we describe the model and derive its equilib-

rium. In Section 3, we discuss the testable implications of the model and in Section 4, we analyze

its implications for the implementation of monetary policy. Section 5 concludes. Proofs of the

main results are in the appendix.

10In line with this result, we observe that several central banks eased access to liquidity by creating new liquidity-
providing facilities, enlarged the set of eligible participants for regular and ad-hoc operations, and widened the pool
of eligible collateral. Examples for new facilities include programmes for foreign currency swaps, and long-term
refinancing operations. See, e.g., Ben Bernanke’s speech “The Crisis and the Policy Response”, January 13, 2009,
Jean-Claude Trichet’s speech “The ECB’s response to the crisis”, 20 February, 2009, and Paul Tucker’s speech
“The Repertoire of Official Sector Interventions in the Financial System: Last Resort Lending, Market-Making,
and Capital”, 28 May, 2009.
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2 A core-periphery model of the overnight interbank market

In this section we describe the model of trading in the interbank market that we use to analyze

monetary policy implementation by the central bank. As explained later, although the model is

highly stylised, it delivers many of the empirical facts mentioned in the previous section.

2.1 Assumptions

2.1.1 Market participants and timing

We consider an interbank market with three types of participants: (i) a continuum of “periphery”

banks, (ii) a continuum of “core” banks, and (iii) the central bank. All banks can borrow reserves

from the central bank, using its marginal lending facility, at rate RP or deposit reserves at the

central bank, using themarginal deposit facility, at rate RD (in the paper, rates are gross rates:

one plus the rate of return). Thus, RP and RD define the corridor set by the central bank.

Gains from trade exist in the interbank market because RP > RD. Indeed, a bank with a

deficit of reserves at the end of the game pays a cost of RP to the central bank, while a bank with

a surplus of reserves earns RD. Hence, a trade in which banks with a surplus of reserves lend

reserves to banks with a deficit of reserves, at a rate within the corridor [RD, RP ], is mutually

beneficial. Thus, a natural measure of the inefficiency of the interbank market is the fraction of

trades that eventually take place with the central bank.

The timing of the model and the set of possible actions for market participants at each date,

t are as follows.

- Date t = −1: The central bank sets its corridor rates, RP and RD and chooses m =

mco + mpe, the amount of liquidity provided (m > 0) or withdrawn (m < 0) in the interbank

market, through open market operations. Parameters mco and mpe denote the resulting changes
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in reserves for core and periphery banks.11 We endogenize mco, mpe, RP , RD in Section 4.

- Date t = 0: Periphery banks are hit by an aggregate liquidity shock ape ↪→ N (āpe, σ
2
pe),

observed by all banks. We denote Φpe(·) the c.d.f. of ape, and φpe(·) the pdf. Following this

shock, the aggregate amount of excess reserves for periphery banks is equal to θ(ape + mpe) =

ape +mpe.12 For brevity, we will often denote θ(ape +mpe) simply by θ.

A mass πL(θ) of periphery banks (lenders) has a net excess reserve equal to l(|θ|) > 0 and a

mass πB(θ) of banks (borrowers) has a net excess reserve of −l(|θ|), with πL(θ) + πB(θ) = 1. As,

by definition, the amount of excess reserves for periphery banks, l(|θ|)(πL(θ) − πB(θ)), must be

equal to θ, we set:

πL(θ) =
θ

2l(|θ|)
+

1

2
. (1)

We assume the function l(.) to be such that the ratio |θ|
l(|θ|) is increasing in |θ|, is strictly lower

than 1 and converges to 1 as |θ| goes to infinity.13 These assumptions imply that both πL and πB

are less than 1, that πL(θ) = πB(−θ), and that πL increases with θ. Moreover, πL converges to 1

when θ goes to +∞, and πB converges to 1 when θ goes to −∞. If θ > 0 (i.e., periphery banks

have strictly positive net excess reserves in aggregate) then the mass of lenders among periphery

banks exceeds the mass of borrowers (πL(θ) > πB(θ)) and vice versa if θ < 0. If θ = 0, the mass

of lenders is just equal to the mass of borrowers.

- Date t = 1: Trading takes place between periphery banks (see below).

- Date t = 2: Trading between core banks and high types periphery banks that have not

found a trading partner at date t = 1 takes place at rate Rco.

- Date t = 3: Core banks receive a final shock on their excess reserves aco ↪→ N (āco, σ
2
co).

11In practice, some central banks control the set of banks that are eligible for its monetary policy operations (see
Kraenzlin and Nellen (2015)), which allows for differences in mco and mpe. If the central bank cannot discriminate
between core and periphery banks then mco=mpe = m/2.

12We normalize the required reserve balances for banks to zero. Thus, banks with negative reserves must borrow
reserves to reach the required level of reserves and banks with positive reserves have excess reserves.

13For instance, one can assume l(|θ|) = 1 + |θ|.
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We denote by Φco(.) the c.d.f of aco, and φco(·) the pdf.14

- Date t = 4 : Banks with a surplus of reserves deposit them at rate RD at the central bank

while banks with a deficit of reserves borrow at rate RP from the central bank.

This timing captures the fact that the core market acts as a market of “last resort” for

periphery banks. This assumption is consistent with evidence on OTC markets with a core-

periphery structure (see, for instance, Li and Schuerhoff (2014)). We assume that a fraction

λ ≤ 1
2 of periphery banks are not connected to core dealers. Thus, if these banks do not find

a trading partner at date 1, they have to trade with the central bank at date 4. We refer to

periphery banks that are connected to the core as “high type” banks and to banks that are not

as “low type” banks.

The main goal of the paper is to study how the equilibrium of the interbank market depends

on λ. This parameter captures the fact that, in reality, some periphery banks cannot trade

with large dealer banks and that, in crisis periods, more periphery banks are in this situation.

Thus, as λ increases, the market becomes more segmented: fewer periphery banks can trade with

core banks. This segmentation is one source of friction in the model that prevents banks from

efficiently realizing gains from trade in the interbank market. Another source of friction is the

fact that trading in the periphery market is organized in a less efficient way than trading in the

core market, as explained in the next subsection.

2.1.2 Market structure

The periphery market. The periphery market is a decentralized market where banks arrange

trade bilaterally. Periphery banks arrive sequentially. Upon arrival, bank j can either make

a take-or-leave it offer (a rate) for lending or borrowing l(|θ|) units of reserves (depending on

14The possibility of a last liquidity shock after trading in the interbank market is a standard asumption in the
literature on interbank market (see Poole (1968) and Bindseil (2005)). If σ2

co = 0 (no shock), the equilibrium rate
in the core market is necessarily RP or RD (see Section 2.3). This is a special case of the model.
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whether it is a borrower or a lender) to its successor, j + 1, or accept the offer (if it exists) of

its predecessor, j − 1.15 A bank automatically rejects the offer of its predessor if it has the same

trading need (e.g., both banks are borrowers). Otherwise, it rejects this offer if it expects to

obtain a better rate with another trading partner (see below).

If bank j is a lender, its successor is a borrower with probability β(θ) (or a lender with

probability (1 − β(θ))). If bank j is a borrower then its successor is a lender with probability

α(θ). If two periphery banks trade together, they exit the market. If bank j makes an offer and

this offer is rejected then bank j can trade in the core market at date t = 2 if it is connected to

this market (its type is high). Otherwise, it trades at the central bank standing facilities at date

t = 4.16

Thus, β(θ) and α(θ) denote the transition probabilities from a lender to a borrower and

a borrower to a lender in the “chain” of periphery banks. For consistency, these transition

probabilities must be such that the stationary probability that bank j is a lender (resp., borrower)

is πL (resp., πB). This imposes: α(θ)
β(θ) = πL(θ)

πB(θ) . A simple specification for α(θ) and β(θ) that

satisfies this requirement is:

α(θ) = min

(
1− πB(θ)

πB(θ)
, 1

)
, (2)

β(θ) = min

(
1− πL(θ)

πL(θ)
, 1

)
. (3)

Observe that α(θ) weakly increases with θ while β(θ) weakly decreases with θ. Moreover, when

there are more lenders than borrowers (i.e., θ > 0 so that πB(θ) < 1/2 and πL(θ) > 1/2)

15For tractability, we assume that all trades between periphery banks are for exactly |l(θ)| units of reserves so
that if banks trade together, their excess reserves after trading are just equal to zero. This assumption is natural
since, by assumption, periphery banks have excess reserves of the same size (|l(θ)|). Trading exactly this size
removes exposure of periphery banks involved a trade to the risk of having to resort to the central bank at date
t = 3.

16Trading with a core bank dominates, at least weakly, resorting to the central bank facility since RD ≤ Rco ≤
RP .
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then α(θ) = 1 while β(θ) < 1. In this case, borrowers are sure to be matched with a lender

while lenders might not find a borrower in the periphery market since liquidity is plentiful. The

opposite obtains when there are more borrowers than lenders. Thus, our model captures, in a

simple way, the idea that finding a counterparty is more difficult for lenders (resp., borrowers)

when, in aggregate, there is an excess (resp., deficit) of liquidity in the interbank market.

The core market. The core market operates like a centralized Walrasian market. Namely,

each core dealer i submits a demand function qi(R
co) that specifies the amount of reserves that

core dealer i demands (i.e., borrows if qi(R
co) > 0) at rate Rco. Periphery banks that trade in the

core market just place an order to buy or sell l(|θ|) units of reserves depending on the direction

of their excess reserve.17 Thus, core banks effectively act as dealers for periphery banks since

they absorb their net excess reserves. The equilibrium rate in the core market is such that the

demand of reserves by core banks is equal to the supply of reserves (see Section 2.3).

2.2 Equilibrium in the periphery

In this section, we characterize the equilibrium actions of periphery banks in the periphery

market. Periphery banks know their type but do not observe the types of other banks. Moreover,

they form rational expectations on the rate in the core market. There is no uncertainty on the

realization of this rate because, as we shall see in the next section, it is uniquely determined by

mco and θ, which are known to all banks at date 1.

Our first step is to formally define periphery banks’ strategies and the equilibrium concept.

Consider a high type borrower who has just received an offer Rl from a lender. The borrower first

decides whether to accept the offer or not. If he rejects the offer, he may either go to the core

market, or make a new offer in the periphery market. In the latter case, he decides on the interest

17As we shall see, Rco is known once θ is known and is within the corridor in equilibrium. As periphery banks
are price takers in the core market and face no additional reserve shocks, it is optimal for them to unload their
reserves to core dealers.
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rate he wants to offer. These decisions can be characterized by a triplet SHb = {dHb , qb, ρHb }, where:

(i) dHb (.) is a function of Rl that takes a value 1 if the borrower accepts an offer at rate Rl, and 0

otherwise; (ii) qb is the probability that the borrower makes a new offer in the periphery market,

rather than go to the core market, if he does not accept a previous offer; (iii) ρHb is a mixed

strategy profile over the interest rates the borrower might offer to the next bank, with support

R+. A particular case is of course a pure strategy, which simply specifies the rate offered by

the borrower. The case of a low-type borrower is similar, except that a low-type bank does not

have access to the core market. A low-type borrower’s strategy is thus characterized by a pair

SLb = {dLb , ρLb }.

Symmetrically, a high type lender’s strategy is characterized by SHl = {dHl , ql, ρHl }, where

dHl (Rb) takes a value 1 if the lender accepts an offer at rate Rb, ql is the probability that if the

lender does not accept a previous offer he makes a new offer in the periphery market, and ρHl is

a mixed strategy profile over the interest rates the lender can offer to the next bank. A low type

lender’s strategy is described by SLb = {dLl , ρLl }.

We focus on Markov strategies (i.e., strategies chosen by banks in a given pair do not depend

on the history of the trading game until they are matched) because trading in the interbank OTC

market is opaque, which precludes the observation of the history of trades. A bank’s strategy

is not contingent on the type of the bank with which it is matched. This reflects the fact that

banks do not know the type of other banks.18

Let ϕl(Rl) be the likelihood that an offer Rl made by a lender is accepted. The expected

return of a high type lender who receives an offer Rb from a borrower (i.e., an offer to borrow

18Trading in OTC markets is usually not anonymous. Non anonymity however does not imply that a bank knows
with certainty the current economic conditions of its trading partner, e.g., whether it has access or not to core
dealers. Thus, λ can be interpreted as a the likelihood that a given trading partner does not have access to the
core market.
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cash from the lender at Rb), follows strategy SHl with a new offer at rate Rl is:

V H
l (Rb, S

H
l ) = dHl (Rb)Rb + (1− dHl (Rb))[qlϕl(Rl)Rl + (1− qlϕ(Rl))R

co]. (4)

That is, if the lender accepts the borrower’s offer, he gets a return Rb on his loan. If instead

he turns down this offer, with probability ql he makes a new offer at Rl, which is accepted with

probability ϕl(Rl). With probability 1 − qlϕl(Rl), either he does not make a new offer in the

periphery, or his offer is rejected, and in both cases the lender obtain a return RC by trading in

the core market.

The situation for a low-type lender is similar, with the difference that he cannot choose to

trade in the core, and has to lend at the deposit facility at rate RD if his offer is rejected:

V L
l (Rb, S

L
l ) = dLl (Rb)Rb + (1− dLl (Rb))[ϕl(Rl)Rl + (1− ϕ(Rl))R

D]. (5)

Denoting ϕb(Rb) the probability that an offer at rate Rb is accepted by a lender, we obtain

symmetric expressions for borrowers:

V H
b (Rl, S

H
b ) = −dHb (Rl)Rl − (1− dHb (Rl))[qbϕb(Rb)Rb + (1− qbϕ(Rb))R

co] (6)

V L
l (Rb, S

L
l ) = −dLb (Rl)Rl − (1− dLb (Rl))[ϕb(Rb)Rb + (1− ϕ(Rb))R

P ]. (7)

Conditional on the offer it receives, a bank chooses the strategy that maximizes its expected

payoff (hence, a borrower seeks to minimize his funding cost).

Definition 1. A Markov-perfect equilibrium of the periphery market is a set of strategies {SH∗l , SL∗l , SH∗b , SL∗b }

such that (i) Si∗l maximizes the expected return of a lender of type i ∈ {H,L} given that other

banks behave according to strategies {SH∗l , SL∗l , SH∗b , SL∗b } and (ii) Si∗b minimizes the expected
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funding cost of a borrower of type i ∈ {H,L} given that other banks behave according to strategies

{SH∗l , SL∗l , SH∗b , SL∗b }.

We denote by V i∗
l and V i∗

b the expected equilibrium payoffs of a lender and a borrower of

type i, respectively, after rejecting an offer (i.e., in the continuation game that starts just after

a bank rejects an offer). The following observations help to characterize basic properties of any

equilibrium of the periphery market:

1. A bank accepts an offer if and only if it is as good as the average rate it could obtain

by rejecting it. Hence, in equilibrium we have: dib(Rl) = 1 if Rl ≤ −V i∗
b , and 0 otherwise.

Symmetrically, we have dil(Rb) = 1 if Rb ≥ V i∗
l , and 0 otherwise.

2. High-type banks can always play the same strategy as a low-type bank (the opposite is

not true). Thus, V H∗
l ≥ V L∗

l and V H∗
b ≥ V L∗

b .19 Hence, any lender optimally chooses one of

two rates when he makes an offer: (i) a relatively low rate Rl = −V H∗
b that is accepted by

all borrowers or (ii) a relatively high rate Rl = −V L∗
b that is accepted by low-type borrowers

only. Symmetrically, borrowers optimally announces one of two rates when they make an offer:

Rb = V H∗
l , or Rb = V L∗

l .

3. High-type banks can borrow or lend at rate Rco in the core market. Thus, in the periph-

ery market, a high type lender cannot obtain a rate less than Rco while a high type borrower

cannot obtain a rate greater than Rco. As V H∗
l ≥ Rco and V H∗

b ≥ −Rco, this means that a high

type lender always makes offers at Rl = −V L∗
b , while a high-type borrower always makes offers

at Rb = V L∗
l . Consequently, there is no transaction between high type banks in the periphery

market.

From these observations, we deduce that all equilibria, including equilibria in mixed strategies,

19Observe that V H∗
b and V L∗

b are negative because they represent the expected cost of funding for borrowers.
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can be characterized as follows:

Lemma 1. An equilibrium is fully characterized by the 4-tuple (pl, pb, ql, qb), and the equilibrium

behavior of banks is as follows:

- A high-type lender accepts any offer at rate Rb ≥ V H∗
l . If he does not accept an offer, with

probability ql he makes a new offer at rate Rl = −V L∗
b , and with probability 1− ql he directly goes

to the core market.

- A low-type lender accepts any offer at rate Rb ≥ V L∗
l . If he does not accept an offer, he

makes an offer at rate Rl = −V H∗
b with probability pl, and an offer at rate Rl = −V L∗

b with

probability 1− pl.

- A high-type borrower accepts any offer at rate Rl ≤ −V H∗
b . If he does not accept an offer,

with probability qb he makes a new offer at rate Rb = V L∗
l , and with probability 1− qb he directly

goes to the core market.

- A low-type borrower accepts any offer at rate Rl ≤ −V L∗
b . If he does not accept an offer,

he makes an offer at rate Rb = V H∗
l with probability pb, and an offer at rate Rb = V L∗

l with

probability 1− pb.

To further characterize the equilibrium of the periphery market, we need to derive equilibrium

rates and the probabilities (pl, pb, ql, qb) with which these rates are offered by banks. It turns out

that all equilibria belong to one four possible categories that we describe below:

- Core-Periphery balanced: pl = pb = ql = qb = 1. Low type lenders make offers that are

accepted by all borrowers, and low type borrowers make offers that are accepted by all lenders.

High-type banks’ offers are only accepted by low-type banks on the other side. When they do

not accept an offer, high-type banks always choose to make a new offer in the periphery.

- Glut in the periphery: pl = qb = 1, pb = ql = 0. Low type borrowers make offers that

are only accepted by low type lenders (pb = ql = 0), while low type lenders make offers that are
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accepted by all borrowers (qb = pl = 1). High-type borrowers make offers that are accepted by

low-type lenders only, while high-type lenders do not make an offer in the periphery market.

- Shortage in the periphery: pb = ql = 1, pl = qb = 0. Low type lenders make offers that

are only accepted by low type borrowers (qb = pl = 0), while low type borrowers make offers that

are accepted by all lenders (pb = ql = 1). High-type lenders make offers that are accepted by

low-type borrowers only, while high-type borrowers do not make an offer in the periphery market.

- Mixed: In this equilibrium, either: (i) pl = qb = 1 and either pb or ql is not in {0, 1} or (ii)

pb = ql = 1 and either pl or qb is not in {0, 1}.

As we shall see (see Proposition 3), the first type of equilibrium obtains if the liquidity

conditions are similar for core and periphery banks (e.g., both types of banks have an excess of

liquidity). This is the reason why we refer to this equilibrium as “core-periphery balanced”. In

contrast, when periphery banks have a shortage of reserves while core banks enjoy an excess of

reserves, one is more likely to obtain the third type of equilibrium. Hence we call this equilibrium

“Shortage in the periphery.” The “Glut in the periphery” equilibrium is symmetric (core banks

have a deficit of reserves and periphery banks an excess). The mixed equilibrium is obtained for

intermediate areas in which the differences in trading needs between core and periphery banks

are large but not too large.

We now derive conditions under which a core-periphery balanced equilibrium obtains, taking

Rco as given. This is useful for two reasons. First, it shows how we solve for equilibrium rates.

Second, these conditions are a necessary step to identify parameter values for which each type of

equilibrium is obtained (see Proposition 3).

Denote Ri∗l the interest rate offered by type i lenders, and Ri∗b the interest rate offered by

type i borrowers. A high-type lender’s offer is accepted if and only if the lender is matched with
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a low type borrower. This event has probability λβ, so that:

V H∗
l = λβRH∗l + (1− λβ)Rco. (8)

Symmetrically, a high-type borrower’s offer being accepted with probability λα, we have:

V H∗
b = −λαRH∗b − (1− λα)Rco. (9)

In a core-periphery balanced equilibrium, a low type lender’s offer is accepted if and only if the

lender is matched with a borrower, of any type, which gives:

V L∗
l = βRL∗l + (1− β)RD. (10)

And, symmetrically:

V L∗
b = −αRL∗b − (1− α)RP . (11)

Since low-type borrowers accept any offer with a rate Rl ≤ −V L∗
b , it has to be the case that

RH∗l = −V L∗
b , otherwise the offers of high-type lenders would not be optimal. Symmetrically,

RH∗b = V L∗
l in equilibrium. Conversely, since high-type borrowers accept offer Rl as long as Rl ≤

−V H∗
b , we necessarily have RL∗l = −V H∗

b . Symmetrically, RL∗b = V H∗
l . These four conditions

combined with (8), (9), (10), and (11) form a linear system of 8 equations and 8 unknowns, the

solution of which is:

RL∗
b = V H∗

l =
(1− βλ)Rco + βλ(1− α)RP

1− αβλ
, RH∗

b = V L∗
l =

(1− β)RD + β(1− αλ)Rco

1− αβλ
(12)

RL∗
l = −V H∗

b =
(1− αλ)Rco + αλ(1− β)RD

1− αβλ
, RH∗

l = −V L∗
b =

(1− α)RP + α(1− βλ)Rco

1− αβλ
. (13)

Equations (12) and (38) yield equilibrium rates in a core-periphery balanced equilibrium. It
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remains to derive the conditions under which banks have no incentive to deviate from their

prescribed behavior in a core-periphery balance equilibrium. First, observe that we have RH∗b ≤

Rco and RH∗l ≥ Rco. Hence, ql = qb = 1 is optimal for high type banks if they expect other banks

to behave as in core-periphery balanced equilibrium. Second, we have RL∗b ≤ RP and RL∗l ≥ RD:

low-type banks are better off making an offer in the periphery than going to the central bank.

Last, we need to check that pl = pb = 1 is optimal for low type banks, that is, they must be

better off making offers at RL∗i , that are accepted by all types of banks, rather than offers at RH∗i

that are accepted only by low type banks. Consider a low-type lender. In equilibrium, he obtains

an expected profit of V L∗
l when he makes an offer at RL∗l (the equilibrium offer). As explained

previously, his most profitable deviation is to choose an offer at RH∗l = −V L∗
b , which is accepted

only by low-type borrowers, i.e., with probability βλ. Thus, this deviation is unprofitable if and

only if:

V L∗
l ≥ (1− βλ)RD − βλV L∗

b . (14)

Symmetrically, low-type borrowers do not deviate to targeting low-type lenders if and only if:

V L∗
b ≥ −(1− αλ)RP − αλV L∗

l . (15)

Using (12) and (38), conditions (14) and (15) can be rewritten as:

RP −Rco

RP −RD
>

λ(1− β)

1− βλ(2− αλ)
(16)

Rco −RD

RP −RD
>

λ(1− α)

1− αλ(2− βλ)
(17)

When θ = 0, the core-periphery balanced equilibrium exists for all parameter values and is

the unique equilibrium. Moreover, in this particular case, all transactions take place at Rco (see

Eq.(12) and (38)). For other realizations of θ, at least one of these two conditions is satisfied
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because either α = 1 (when θ > 0) or β = 1 (when θ < 0).

Now consider the case in which periphery banks have an excess of reserves, i.e., θ > 0 (the

case θ < 0 is symmetric). In this case, Condition (16) is satisfied because α = 1. Condition

(17) will be satisfied as well if Rco is close enough to RD (so that the L.H.S of (16) is close to

one). In this case, low type borrowers find attractive to make offers that attract high type lenders

because high type lenders are willing to accept low rates (since anyway the rate they can obtain

in the core market is low). As Rco increases however, it becomes increasingly costly for low type

borrowers to make offers that attract both high and low type lenders and their incentive to switch

to offers that only attract low type lenders increase. In the Appendix (Section B.1), we show

that when Rco is such that Condition (16) holds as an equality, they are just indifferent and a

mixed equilibrium is obtained and that when Rco is even higher, so that Condition (16) does not

hold, then an equilibrium with glut in the periphery is obtained.

The next proposition summarizes these results and proves that for each set of parameter

values, the equilibrium is unique.

Proposition 1. The balanced equilibrium always obtains when θ = 0. When θ > 0, the balanced

equilibrium obtains if and only if:

RP −Rco

RP −RD
>

λ(1− β)

1− βλ(2− λ)
. (18)

A mixed equilibrium with pl = qb = 1 and any (pb, ql) ∈ [0, 1]2 obtains if there is equality in (18).

Otherwise the equilibrium with glut in the periphery obtains.

When θ < 0, the balanced equilibrium obtains if and only if:

Rco −RD

RP −RD
>

λ(1− α)

1− αλ(2− αλ)
. (19)
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A mixed equilibrium with pb = ql = 1 and any (pl, qb) ∈ [0, 1]2 obtains if there is equality in (19).

Otherwise the equilibrium with shortage in the periphery obtains.

The existence conditions for the various possible equilibria and equilibrium rates depend, inter

alia, on Rco, the rate at which high type periphery banks expect to trade in the core market.

As this rate is endogenous and depends on other parameters of the model (e.g., λ), we postpone

the complete description of the conditions under which the various equilibria are obtained and

the expressions of equilibrium rates in terms of the exogenous parameters to Section 2.3 (see

Propositions 3 and 4).

At the end of date 1, some periphery banks have not found a trading partner in the periphery

market, either because they have been matched with a bank that has the same trading need or

because their offer has been rejected. We denote by µu∗kl (θ, λ) and µu∗kb (θ, λ), the masses of lenders

and borrowers of type k ∈ {L,H} that remain unmatched in the periphery market. These masses

are derived in Appendix B. They depend on which equilibrium is obtained but they do not depend

on Rco.

Let ∆1(θ, λ) = l(θ)[µu∗Hl − µu∗Hb] be the aggregate excess reserves of high type banks that have

not been matched at the end of date 1. This variable is important as it determines the amount

of reserves that core banks will have to lend to or borrow from high type periphery banks at date

2. Thus, it will play a role in the determination of the rate in the core market.

Lemma 2. In equilibrium, the aggregate excess reserves ∆1(θ, λ) of high type periphery banks at

the end of date 1 are positive if θ > 0 and negative if θ < 0. Their size |∆1(θ, λ)| is equal to zero

if θ = 0 and increases with |θ|.

These properties are intuitive. If θ > 0, there are more lenders than borrowers in the interbank

market. Thus, high type borrowers are more likely to find a counterparty in the periphery market

than high type lenders. As a result, the imbalance of reserves between periphery lenders and
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borrowers that trade in the core market has the same sign as the imbalance at the start of the

periphery market.

2.3 Equilibrium in the Core Market

In this section, to close the model, we derive the equilibrium rate in the core market at date 2.

Remember that qi(R
co) denotes the demand of reserves of core bank i at rate Rco and that each

core dealer can be hit by a shock aco at date 3. Thus, the expected profit of core dealer i is:

E(Πi) = RDE(qi + aco |qi + aco > 0) +RPE(qi + aco |qi + aco < 0)−Rcoqi. (20)

Core dealers determine their demand for excess reserves to maximize their expected profit. Using

Leibniz rule and the fact the c.d.f of shock aco is Φco, the first order condition to this problem

imposes:20

RD(1− Φco(−q∗i )) +RPΦco(−q∗i ) = Rco. (21)

To understand this condition, observe that Φco(−q∗i ) is the probability that core dealer i will be

short of reserves at date t = 4 if its position in reserves at the end of date 2 is q∗i . In this case, the

bank will have to borrow at the central bank borrowing facility at RP . Otherwise, core dealer

i will have a surplus of reserves that it will deposit at rate RD. Thus, the L.H.S of Condition

(21) is the rate at which core dealer i expects to trade at date 4 if its position at the end of date

t = 2 is q∗i . That is, it gives the marginal valuation of dealer i for reserves when it takes position

q∗i . Hence, Condition (21) states that each core bank determines its demand for reserves so as

to equalize its marginal valuation for reserves to the rate at which trades take place in the core

market. Condition (21) must hold for all core banks. Thus, in equilibrium, all core banks have

the same demand function q∗(Rco).

20The second order condition for a maximum is always satisfied because RD < RP .
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Aggregate excess reserves owned by banks participating to the core market at date 2 have

two components: (i) core banks excess reserves, mco, and (ii) high type periphery banks who

choose to trade in the core, ∆1(θ, λ). Thus, the aggregate supply of reserves in the core market

is Sco(mco, θ, λ) = mco+ ∆1(θ, λ). The equilibrium rate in the core market, Rco∗, is set such that

the demand of core dealers for excess reserves is equal to the supply of excess reserves:

q∗(Rco∗) = Sco(mco, θ, λ). (22)

Hence, using eq. (21), we obtain the following result.

Proposition 2. The equilibrium rate in the core market is:

Rco∗ = (1− Φco(−Sco))RD + Φco(−Sco)RP , (23)

It decreases with the amount of excess reserves of banks trading in the core market (Sco) and is

equal to the mid-point of the corridor (R
P +RD

2 ) if and only Sco = −āco. Thus, the equilibrium

rate in the core market decreases with the amount of monetary injection, mco or mpe, and the

aggregate liquidity shock of periphery banks, ape.

As a benchmark, consider first the case in which λ = 0. In this case, all periphery banks have

a high type and they all choose to trade in the core market. The amount of excess reserves owned

by periphery banks is ∆1(θ, 0) = l(|θ|)(2πL−1) = ape+mpe. Thus, Sco = mco+∆1(θ, 0) = m+ape.

In equilibrium, core dealers end up with a position in reserves equal to Sco: they “buy” (borrow)

reserves if Sco > 0 and “sell” (lend) reserves if Sco < 0. The likelihood that after receiving their

final liquidity shock, they end up with a long (resp., short) position is (1 − Φco(−Sco)) (resp.,

Φco(−Sco)). Thus, as in Poole (1968), Rco∗ is the expected rate at which core dealers expect to

unwind their final inventories of reserves with the central bank given their position at the end of
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date t = 2. It decreases with Sco because when Sco is higher, it becomes more likely that core

dealers will have at date 4 a long position in reserves that they will deposit at rate RD.

The same logic applies when λ > 0. In this case, however, the level of segmentation between

core banks and periphery banks (λ) becomes an additional determinant of the equilibrium rate

in the core market. The reason is that an increase in λ reduces the size of excess reserves of high

type periphery banks after trading at date 2 (Lemma 2). Thus, in absolute value, the supply

of excess reserves in the core market becomes smaller when λ becomes larger. As a result, Rco∗

becomes closer to RP +RD

2 . For instance, suppose that θ > 0 and m = 0. In this case, Sco =

∆1(θ, λ) > 0. Thus, Rco∗ > RP +RD

2 . If λ increases then ∆1(θ, λ) and therefore Sco decreases.

As a result, Rco∗ gets closer to the mid point of the corridor. Symmetric effects are obtained if

θ < 0.

Using the expression (23) for the equilibrium rate in the core market, we can now rewrite the

conditions of existence for the various type of equilibria (given in Proposition 1) in terms of the

exogenous parameters of the model (θ, λ, and mco) only.

Suppose first that θ > 0, so that a core-periphery balanced equilibrium obtains if and only f

Condition (18) holds. As RP − Rco = (RP − RD)(1 − Φco(−Sco)), Condition (18) is equivalent

to:

mco > −Φ −1
co

(
(1− λ)(1− λβ)

1− λβ(2− λ)

)
−∆1(θ, λ). (24)

Thus, when periphery banks have an excess of reserves (θ > 0), a core-periphery balanced equi-

librium obtains if and only if the reserves of core banks (mco) are large enough. Intuitively, this

condition guarantees that Rco∗ is small enough so that low type borrowers find attractive to make

offers large enough to attract high type lenders, even though low type lenders would be willing

to accept lower offers.

Now, let m+
b be the smallest value of mco such that Condition (24) holds as an equality. In
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this case one can build a mixed strategy equilibrium. When mco passes below m+
b , one can build

mixed equilibria such that Condition (24) holds as an equality as long as mco is larger than a

threshold m+
g . Intuitively, the mixing probabilities ql and pb affect ∆1(θ, λ) and can be chosen

so that Condition (24) holds as an equality for a range of value for mco. These mixed equilibria

are ranked in terms of aggregate welfare, and we select the most efficient one. Finally, when

mco ≤ m+
g , Condition (24) cannnot be satisfied (even as an equality) and one obtains the glut in

the periphery equilibrium.

The case in which θ < 0 is symmetric. In sum we obtain the following result.

Proposition 3. For any θ > 0, there exist three thresholds m+
g < m+

1 < m+
b , and two functions

q∗(.), p̄n(.) such that a balanced equilibrium obtains for mco ≥ m+
b and an equilibrium with glut

in the periphery obtains for mco ≤ m+
g . For mco ∈ [m+

1 ,m
+
b ) we have a mixed equilibrium with

pl = 1, qb = q∗(1) ∈ (0, 1), and for mco ∈ (m+
g ,m

+
1 ] a mixed equilibrium with pl = p̄n(mco), qb = 0.

For any θ < 0, there exist three thresholds m−s < m−1 < m−b such that a balanced equilibrium

obtains for mco ≤ m−b and an equilibrium with shortage in the periphery obtains for mco ≥ m−s .

For mco ∈ (m−b ,m
−
1 ] we have a mixed equilibrium with pb = 1, ql = q∗(1) ∈ (0, 1), and for

mco ∈ (m−1 ,m
−
s ] a mixed equilibrium with pb = p̄n(mco), ql = 0.

If µco = 0, we have m−s = −m+
g ,m

−
1 = −m+

1 , and m−b = −m+
b .

Figure 4 illustrates Proposition 3.21 When both θ and mco have the same sign, we obtain a

balanced equilibrium. If they have opposite signs and large enough in absolute values, we obtain

either an equilibrium with glut in the periphery or an equilibrium with shortage in the periphery,

depending on the sign of θ. Mixed equilibria are obtained in the regions between the balanced

equilibrium and the corresponding glut/shortage equilibrium, but these regions are too small to

be visualized.

21We set `(|θ|) = 1 + |θ|, λ = 0.4, σco = 1.

24



Proposition 3 implies that monetary policy (the choice of mco) affects the efficiency of the

outcome obtained in the periphery market. Massive injection of liquidity in the core market when

periphery banks have a deficit of reserve balance increases the likelihood of obtaining a liquidity

shortage equilibrium in the periphery market and therefore the likelihood that periphery banks

will use the borrowing facility.

The next proposition provides the rate obtained in each possible equilibrium type in the

periphery market. Let ωLl (λ, θ,mco) = (1−λ)Φco(−Sco)
1−β(θ)λ , ωHl (λ, θ,mco) = 1 − α(θ)(1−λ)(1−Φco(−Sco))

1−α(θ)λ ,

ωHb (λ, θ,mco) = 1− β(θ)(1−λ)Φco(−Sco)
1−β(θ)λ , and ωLb (λ, θ,mco) = (1−λ)(1−Φco(−Sco))

1−α(θ)λ .

Proposition 4. In a core-periphery balanced equilibrium, low type lenders make offers at RL∗l (θ, λ,mco) =

(1−ωLl )RD +ωLl R
P and high type lenders make offers at RH∗l (θ, λ,mco) = (1−ωHl )RD +ωHl R

P .

Moreover, low type borrowers make offers at RL∗b (θ, λ,mco) = ωLb R
D + (1−ωLb )RP and high type

borrowers make offers at RH∗b (θ, λ,mco) = ωHb R
D + (1− ωHb )RP . In a shortage in the periphery

equilibrium, rates are identical except that low type lenders make offers at RH∗l (θ, λ). In a glut

in the periphery equilibrium, rates are identical except that low type borrowers make offers at

RH∗b (θ, λ)

Each transaction in the periphery market involves a borrower and a lender and gains from

trade are equal to RP − RD. The weights ωkl (λ, θ,mco) are equal to the fraction of gains from

trade earned by a lender of type k ∈ {H,L} when the lender makes an offer. Symmetrically, the

weights ωkb (λ, θ,mco) are the fraction of gains from trade earned by a borrower of type k ∈ {H,L}

when the borrower makes an offer. Thus, ωkl (λ, θ,mco) measures the bargaining power of a lender

of type k and ωkb (λ, θ,mco) measures the bargaining power of a borrower of type k.

3 Implications

In this section, we describe various testable implications of the model.
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3.1 Equilibrium Rates and Bargaining Power

We first study how periphery banks’ aggregate reserves and open market operations (mco and

mpe) affects banks’ bargaining power and equilibrium rates. The next corollary describes how

the rates offered by lenders and borrowers vary with θ.

Corollary 1. In equilibrium, periphery lenders’ bargaining power decreases with θ and mco while

periphery borrowers’ bargaining power increases with θ and mco. Thus, equilibrium rates in the

periphery market decreases with θ and mco. When θ = 0 and mco = 0, the bargaining power of

lenders is equal to the bargaining power of borrowers. In this case all transactions in the periphery

market and in the core market take place at the same rate: Rco∗.

Consider the effect of an increase in θ when θ > 0, so that β < 1 and α = 1. This increase

reduces lenders’ bargaining power for two reasons. First, periphery banks expect Rco∗ to be

smaller. Hence high type lenders have a less attractive outside option. Second, lenders are less

likely to find a counterparty in the periphery market if they reject an offer (β decreases with θ

for θ > 0). This allows borrowers to extract more surplus from each transaction. When θ < 0,

the first effect is not changed, but the second is. Indeed, β = 1 and α < 1. Thus, an increase

in θ does not affect lenders’ chance of finding a counterparty. However, it increases borrowers’

likelihood of finding a counterparty if they reject an offer (α increases with θ). This effect forces

lenders to make more attractive offers to borrowers.

Corollary 2. In a core-periphery balanced equilibrium, low type banks’ bargaining power is strictly

less than high type banks’. Thus, low type lenders receive lower rates than high type lenders

and low type borrowers pay higher rates than high type borrowers. In a glut in the periphery

equilibrium, low type borrowers’ bargaining power is equal to that of high type lenders’ bargaining

power, while in a shortage in the periphery equilibrium, low type lenders’ bargaining power is

equal to that of high type lenders’ bargaining power.
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In Afonso and Lagos (2015), the bargaining power of lenders and borrowers is determined by

whether the measure of banks with excess reserve balances exceeds the measure of banks with a

shortage of reserve balances. The effects of θ and mco on lenders and borrowers’ bargaining power

in our model (Corollary 1) is reminiscent of this result. Corollary 2 however is specific to our

model. Combined with Proposition 3, it implies that for low values of mco, low type borrowers’

bargaining power should be higher than for relatively high values of mco and vice versa for low

type lenders. Moreover, the differences in bargaining power between high type and low type

banks should be higher for intermediate values of mco. To test these predictions, one could build

implied estimates of high types and low types banks’ bargaining power using the same method

as in Bech and Klee (2011).

Figures 5 and 6 illustrate Corollary 1. Figure 5 shows the evolution of lenders’ bargaining

power (Panel A) and borrowers’ bargaining power (Panel B) for two different levels of monetary

injections in core banks: mco = 0 (black lines) and mco = 3 (red lines). Parameter values are such

that a balanced equilibrium always obtain. The dashed lines depict high type banks’ bargaining

power while the plain lines depict low type banks’ bargaining power. Figure 6 shows equilibrium

rates. The black lines are the rates offered by lenders and the red lines are the rates offered by

borrowers. Plain lines are the rates offered by high type banks while dashed lines are the rates

offered by low type banks. The green line is the rate in the core market.

Observe that in the balanced equilibrium, there are always three possible rates observed in

the periphery market. The reason is that when θ > 0, high type and low type lenders offer the

same rate equal to Rco∗ while when θ < 0, high type and low type borrowers offer the same rate

equal to Rco∗. Thus, in equilibrium, rates vary from transaction to another holding θ constant.

That is, the model features rate dispersion (cross-sectional dispersion of rates across transactions

in the same trading session) as observed empirically.
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3.2 Distribution of rates in the interbank market

Figure ?? shows that the increase in segmentation between periphery and core banks in the euro

area interbank market coincides with an increase in the dispersion of the rates in the interbank

market. Moreover, the distribution of these rates move from being unimodal before the onset of

the crisis to being bi-modal during the crisis (see Figure ??). In this section, we show that the

model can explain these stylised facts.

When λ = 0, all transactions take place at Rco∗ in the model. Variations in this rate then

stems only from variations in shocks to periphery banks’ reserves (θ = ape + mpe). In contrast

when λ > 0, there is dispersion in rates at which trading takes place between banks for each

realization of θ, as explained in Section 3.1. In this case, the probability distribution of rates

within the corridor is determined by (i) the frequency at which various rates are offered in the

periphery market, (ii) the mass of periphery banks that choose to trade with core dealers, and

(iii) θ.

Figure 7 shows this distribution for specific parameter values of the model. It is obtained

as follows. We draw randomly 100,000 realizations of the shock to periphery banks’ aggregate

reserves, ape, from a normal distribution with mean zero and standard deviation 0.5. Then for

each draw, we compute equilibrium rates and record the likelihood that these rates are observed

in a transaction in equilibrium (using the expressions for the stationary probability distributions

derived in Appendix B.2). For the equilibrium rate in the core market, this likelihood is given by

the mass of periphery banks that trade with core banks. We then divide the interval between RD

and RP in 1,000 bins and report the sum of all likelihoods for rates observed in each bin. Thus,

by construction, if all transactions were taking place at a single rate for all values of θ, Figure 7

would show a vertical line peaking at 100,000 at this rate.

In all simulations, we assume that core banks have zero excess reserves on average (i.e.,
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aco = 0). Panel A of Figure 7 shows the distribution of the interest rate in the benchmark case,

i.e., when λ = 0 and mpe = mco = 0. In this benchmark, all transactions take place at rate

Rco∗. Variations in this rate arise only because periphery banks experience random shocks to

their reserves, as in the Poole (1968)’s model. However, the distribution of rates is unimodal and

centered on the mid-point of the corridor.

In panel B we still assume that λ = 0 but we set mpe = −2 and mco = 3. In this case,

all transactions still take place at the same rate Rco∗ but, in aggregate, banks have an excess

of reserves (m = mpe + mco = 1). This excess of liquidity shifts the distribution of Rco∗ to the

left relative to the mid-point of the corridor, as one would expect. The distribution of the rates

however remains unimodal (it peaks at the value of Rco∗ obtained for ape = 0, i.e., the mean

value of the shock to periphery banks’ aggregate reserves).

In panel C, we introduce segmentation and assume that λ = 0.4 (that is 40% of all periphery

banks lose access to the core market) and we assume that mpe = mco = 0. The latter assumption

implies that the equilibrium is always of the core-periphery balance type. In contrast to the

benchmark case, for a given realization of θ = ape, there is now dispersion of rates in the periphery

market. In particular, we show the distribution of each possible rates (RHl , RLl , RHb , R
L
b ). Rates

offered by lenders are skewed to the left while rates offered by borrowers are skewed to the right.

The resulting distribution of all rates however remains similar to that in the benchmark case

(Panel A).

Finally in panel D, we assume that λ = 0.4 and mpe = −2 and mco = 3. In this case,

depending on the realization of ape, the equilibrium can be core-periphery balance, or mixed, or

with a shortage in the periphery. In this case, the distribution of rates is significantly different

than that obtained in the benchmark case. In particular, it becomes clearly bimodal, as observed

empirically during the European sovereign debt market. The first mode is below the mid point of
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the corridor. It simply reflects the fact that (i) many transactions take place in the core market

(especially because some connected periphery banks fail to trade in the periphery) and (ii) the

rate in the core market is skewed to the left due to the excess of reserves for core banks (mco = 3).

The second hump is above the mid point of the corridor. It stems from the fact that, in aggregate,

periphery banks have a shortage of liquidity. This shortage tends to push up the rates at which

transactions take place in the periphery market. In particular, relatively many transactions take

place at rates offered by low type borrowers, RHb .

Overall, this numerical simulation shows that the combination of (i) the loss of access to the

core market for some periphery banks and (ii) the imbalance in terms of liquidity needs between

periphery and core banks is a possible explanation for the bimodal distribution of interbank rates

observed in the data (Figure ??).

3.3 Inefficiency

To be written.

4 Central bank policy

In this section, we define an objective function for the central bank, which trades off achieving

interest rates close to its target with inflating its balance sheet. We then study the optimal policy

of the central bank in normal times (λ = 0), and show that this policy becomes suboptimal in

crisis times (λ > 0).

4.1 Objectives

Interest rate targeting. The first objective of the central bank is to achieve a target interest

rate RT . For given ape,mpe,mco, we know the type of equilibrium that obtains and the different
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interest rates offered by market participants. Denote νki the frequency at which the interest rate

Rk∗i is obtained on the market, with i ∈ {b, l} and k ∈ {H,L}. Denote νco the frequency at

which banks trade at Rco∗. The central bank wants to minimize the squared error E between the

realized interest rates and its target:

E = E[(R−RT )2] =

∫ +∞

−∞
ε(a)φpe(a)da (25)

with ε(a) =
∑
i=b,l

∑
j=H,L

νji (R
j∗
i −R

T )2 + νco(Rco∗ −RT )2

ε(a) measures the dispersion of interest rates in the cross-sectional dimension, i.e., the rates

offered by different types of banks for a given shock ape. E additionally takes into account that

the same type of bank will face a different interest rate depending on the shock ape. It thus

includes volatility in the time dimension. The central bank should try to minimize E and thus

have rates close to its target. Due to the square, the central bank cares not only about the

average interest rate, but also about the expected difference to the mean.

Central bank’s costs. Many central banks have reacted to the financial crisis by injecting

large amounts of liquidity and thereby increasing the size of their balance sheets. Such a policy

has costs: for instance, a central bank that buys bonds to loosens monetary policy and sells

them when it tightens monetary policy will typically sell at a lower price than it purchased the

bonds. While the central bank’s objective is not to make a profit per se, ultimately losses have

to be covered either by fiscal transfers or by inflation.22 To take this phenomenon into account,

we assume that the central bank faces a cost C(|m|) that depends on the magnitude |m| of its

liquidity injection/absorption, where C(.) is increasing, convex, and C(0) = 0.

We also take into account that the central bank makes intermediation profits. If banks

22For more on these issues, see for instance Cochrane (2011) and Berentsen, Marchesiani, and Waller (2014).

31



deposit a volume TD at rate RD and borrow a volume TP at rate RP , the central bank earns

TPRP −TDRD. Finally, the central bank earns an interest on the liquidity it lends to the system.

We model this by assuming that the central bank earns RT ×m, or loses this amount if m < 0.

The central bank’s costs minus revenues are thus:

C = C(|m|)−RT ×m− E[TPRP − TDRD]. (26)

Comparative inefficiency of the central bank. The central bank could in principle

entirely replace interbank trading by setting RP = RD. It would take deposits from all lenders,

and lend to all borrowers. There are several reasons why central banks seem reluctant to pursue

such a policy. Two reasons in particular are frequently mentioned: (i) Information: an active

interbank market gives the central bank important information about liquidity shocks, as well

as about the health of the banking system; (ii) Efficiency: the central bank faces operating costs

when trading with banks, such as monitoring or risk management. If banks already perform

these activities for other reasons (e.g., extending long term interbank credit), this is a wasteful

duplication of resources.23 We parsimoniously model these costs by assuming that all trades with

the central bank have a social cost c and define:

Γ = E[TD + TP ]× c. (27)

Objective function. Putting the different pieces together, the central bank’s objective can

be written as follows:

min
RP ,RD,m

E + ψ1C + ψ2Γ, (28)

where ψ1 and ψ2 measure the importance relative to rate targeting of reducing costs and ineffi-

23See Bindseil (2005) for a longer discussion.
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ciencies, respectively.

4.2 Monetary policy in normal times

We first consider the case of “normal times”, with λ = 0 and thus no market segmentation. A

balanced equilibrium obtains in which all periphery banks trade in the core, so that all trades

take place at Rco. There is no dispersion of interest rates for a given shock ape, but there is still

variation over time. Using Proposition 2, (25) reduces to:

E =

∫ +∞

−∞
[Φco(−a−m)RP + (1− Φco(−a−m))RD −RT ]2φpe(a)da. (29)

The number of trades with the central bank only depends on the aggregate liquidity in the system

aco + ape + mco + mpe. If this quantity is positive then TD > 0 and TP = 0, if it is negative we

have the opposite. aco + ape follows a normal distribution N (āpe + āco, σ
2
pe + σ2

co), whose pdf we

denote φtot. In expectation, we have:

E(TP ) = −
∫ −m
−∞

(m+ a)φtot(a)da, E(TD) =

∫ +∞

−m
(m+ a)φtot(a)da. (30)

Based on these equations, we have the following:

Proposition 5. When λ = 0 and central bank’s costs are negligible (ψ1 = 0), an optimal policy

is to: (i) Offset the average liquidity shock with a liquidity injection m = −(āco + āpe); (ii) Set a

symmetric corridor around RT , RP +RD

2 = RT .

This is the typical policy pursued by many central banks before the crisis. The optimality,

which is proven in the Appendix, comes from the symmetry of the problem: rates are too low

when aco + ape > 0, but it is impossible to lower them without having too high rates when

aco + ape < 0. Interestingly, only the total quantity m matters, not the breakdown between
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mco and mpe. This comes from the absence of fragmentation, which implies that only the total

amount of liquidity matters for determining the interest rates.

The proposition assumes that the central bank neglects the costs of its policy, in line with

the idea that these costs are negligible in normal times, when the required amount of liquidity

injection is small. Although deriving a closed-form optimum in the case ψ1 > 0 is difficult, the

direction in which this changes the optimal policy compared to the case of Proposition 5 is clear.

Assume for instance that āco + āpe << 0. Proposition 5 dictates to inject a large amount of

liquidity. However, this is now costly for the central bank. It will thus choose m > 0 but lower

than −(āco + āpe). As a result, when the average shocks ape and aco realize, the interest rate Rco

is strictly above RP +RD

2 . This justifies a so-called “asymmetric” corridor, with RP +RD

2 < RT . In

other words, RT is closer to RD than to RP .

4.3 Monetary policy in crisis times

Interest rate targeting only. Monetary policy becomes more complex in crisis times, when

λ > 0 and the market is fragmented. As a result, for a given shock ape, banks trade at different

rates in the core and in the periphery. Moreover, the equilibrium is not necessarily balanced,

so that banks can trade too much with the central bank, which increases the inefficiency Γ. In

particular, we can simultaneously have TD > 0 and TP > 0. Even with fragmentation, the

central bank can still achieve its interest-rate targeting objective:

Proposition 6. If the central bank focuses only on interest-rate targeting, ψ1 = ψ2 = 0, the

following three policies achieve a perfect targeting: (i) Inject mco → +∞,mpe → +∞ and set

RD = RT ; (ii) Absorb mco → −∞,mpe → −∞, and set RP = RT ; (iii) Set RP = RD = RT .

If the central bank cannot control mpe, injecting or absorbing an infinite amount of liquidity

in the core only does not achieve perfect targeting.
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Policy (i) is sometimes called a “floor policy”: the banking system is awash with liquidity,

all banks ultimately make a deposit at the central bank, and any interbank transactions have to

take place at close to RD. This can be seen as an extreme version of how the Fed and the ECB

responded to the crisis. Clearly, the cost of such a policy is a rapid growth of the central bank’s

balance sheet. (ii) is the symmetric case of a “ceiling policy”, which has historical precedents (see

Bindseil (2005)). (iii) is always a solution if ψ2 = 0 and the term Γ can be neglected. Of course,

such an extreme policy effectively suppresses the interbank market. Still, in line with the idea

that a narrower corridor can help reduce the dispersion and volatility of market interest rates,

the ECB for instance announced on 8 October 2008 a reduction of the corridor width from 200

to 100 bps.

An interesting difference with normal times is that the central bank needs to inject liquidity

both in the core and in the periphery. To see why, assume that we have θ < 0 and mco → +∞.

Then indeed the rate Rco is equal to RD. However, according to Proposition 3, we obtain an

equilibrium with shortage in the periphery, and low type banks will trade at rates higher than

RD. In particular, if θ → −∞, we can simultaneously have banks trading at RD in the core and

at RP in the periphery. In the United States, open market operations are traditionally limited

to primary dealers, so that liquidity cannot be transmitted through this channel to banks that

are not linked to the dealers. Accordingly, the Federal Reserve put in place additional facilities

to provide liquidity to the banking system. In the Euro area, all banks can access the ECB

marginal refinancing operations, but banks hit by the crisis may lack collateral to participate in

these operations. In line with the idea that the central bank needs to increase mpe when āpe < 0,

the ECB repeatedly widened the set of assets it accepts as collateral in periods of market stress.

General case. To be written.
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5 Conclusion

Our model offers a theory of OTC trading in interbank markets in crisis times, that also nests the

traditional model of Poole (1968) as a special, “normal times” case. We show that when some

banks lose access to the group of “core” banks, liquidity imbalances between core and periphery

banks can give rise to inefficient equilibria and a significant dispersion of the rates at which banks

trade with each other. For instance, if there is a liquidity shortage in the periphery and an excess

in the core, the lenders in the periphery try to exploit the fact that some borrowers cannot benefit

from the low interest rate offered by core banks. As a result, some periphery banks can trade at

very high rates even if the market as a whole benefits from excess liquidity.

This segmentation between core and periphery banks poses significant challenges to central

banks. The central bank should fight the dispersion of interest rates, as it implies that the average

rate no longer properly reflects the borrowing conditions of banks. This typically requires to move

to a “floor system”, in which the central bank injects a lot of liquidity. However, this system can

be efficient only if the central bank can allocate liquidity both to core and to periphery banks,

which can be challenging. Moreover, large liquidity injections can be costly, in which case the

optimal policy trades off interest rate targeting with costs and uses both excess liquidity and the

rates of the two standing facilities.
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Figure 1: Distribution of the number of bank counterparties, both in normal times and crisis
times.
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Figure 3: Recourse to the central bank’s standing facilities.

Figure 4: Equilibrium type as a function of θ and mco.
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Figure 5: Periphery banks’ bargaining power.
Parameter values: λ = 0.3, σco = 5. Black lines: mco = 0; Red line: mco = 3. In all cases a
balanced equilibrium obtains. The dashed lines represent low type banks’ bargaining power

while plain lines represent high type banks’ bargaining power.
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Figure 6: Equilibrium interest rates, as a function of θ.
Parameter values: λ = 0.3, σco = 5. Black lines: mco = 0; Red line: mco = 3. RP = 100bps and
RD = 50bps. In all cases a balanced equilibrium obtains. The dashed curves represent rates
offered by high type banks while the plain lines are rates offer by low type banks. The black
lines are rates offered offered by borrowers while red lines are rates offered by lenders. The

green line is the equilibrium rate in the core market.
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Figure 7: Distribution of equilibrium interest rates

Panel A: No segmentation. Balanced liquidity conditions.

Parameters: λ = 0, mco = mpe = 0, āco = āpe = 0, σco = 8, σpe = 0.5, `(|θ|) = 1 + |θ|. All banks trade at Rco.
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Panel B: No segmentation. Excess liquidity in the core, shortage in the periphery.

Parameters: λ = 0, mco = 3,mpe = −2, āco = āpe = 0, σco = 8, σpe = 0.5, `(|θ|) = 1 + |θ|. All banks trade at Rco.
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Panel C: Segmentation. Balanced liquidity conditions.

Parameters: λ = 0.4, mco = mpe = 0, āco = āpe = 0, σco = 8, σpe = 0.5, `(|θ|) = 1 + |θ|. We report the distribution

of all interest rates pooled together, as well as the distribution of each type of rates.
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Panel D: Segmentation. Excess liquidity in the core, shortage in the periphery.

Parameters: λ = 0.4, mco = 3,mpe = −2, āco = āpe = 0, σco = 8, σpe = 0.5, `(|θ|) = 1 + |θ|. We report the

distribution of all interest rates pooled together, as well as the distribution of each type of rates.
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B Proofs

B.1 Proof of Proposition 1

We study the other types of equilibria.

Equilibrium 2 - Glut in the periphery. High-type borrowers still make offers that are

accepted by low-type lenders only. However, high-type lenders now go directly to the core market,

so that we have:

V H∗
l = Rco (31)

V H∗
b = −λαRH∗b − (1− λα)Rco. (32)

(33)

Low-type lenders still make offers that are accepted by all borrowers, whereas low-type borrowers

now make offers that are accepted by low-type lenders only, hence with probability αλ. This

gives us:

V L∗
l = βRL∗l + (1− β)RD (34)

V L∗
b = −(1− αλ)RP − αλRL∗b . (35)

(36)

In such an equilibrium, we have RH∗b = V L∗
l , RL∗l = −V H∗

b , and RL∗b = V L∗
l . This gives us a

system of 7 equations and 7 unknowns, the solution of which is:

RL∗b = RH∗b = V L∗
l =

(1− αλ)βRC + (1− β)RD

1− λαβ
, V L∗

b = −λαβ(1−αλ)RC+αλ(1−β)RD

1−λαβ − (1− αλ)RP(37)

RL∗l = −V H∗
b =

(1− αλ)RC + αλ(1− β)RD

1− λαβ
, V H∗

l = RC . (38)
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We now need to check that no type of bank has an incentive to deviate from this equilibrium. First,

we have V H
b ≥ −RC , so that high-type borrowers do no want to go directly to the core market.

Conversely, if high-type lenders would make an offer they would target low-type borrowers and

obtain −V L
b , which is lower than RC . Hence, they make no offer and go to the core market

directly. For low-type borrowers, we need to check that they do not prefer to target high-type

lenders:

V L
b ≥ −(1− α)RP − αV H

l . (39)

If β = 1, this inequality is equivalent to RC ≥ RP , and is thus wrong. This type of equilibrium

is thus only possible when θ > 0 and α = 1, β < 1. In that case, (39) can be rewritten as:

RP −RC

RP −RD
≤ λ(1− β)

1− λβ(2− λ)
. (40)

Finally, we need to check that low-type lenders do not prefer to target low-type borrowers:

V L
l ≥ (1− βλ)RD − βλV L

b

RP −RC

RP −RD
≤ 1− λ

1− λ2β
. (41)

When λ < 1/2, condition (41) is implied by (40), so that θ > 0 and (40) are necessary and

sufficient conditions for such an equilibrium to obtain.

Equilibrium 3 - Shortage in the periphery. This equilibrium is entirely symmetric to

the previous one: the roles of borrowers and lenders are inverted, as well as RP and RD. We

obtain that this equilibrium obtains if and only if θ < 0 and:

RC −RD

RP −RD
≤ λ(1− α)

1− λα(2− λ)
. (42)
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Equilibrium 4 - Mixed equilibrium. If θ > 0 and there is equality in (40), then low-type

borrowers are indifferent between targeting high-type or low-type lenders. Moreover, we also have

−V L
b = RC , so that high-type lenders are exactly indifferent between making an offer and going

to the core market. As a result, we have an equilibrium with pl = qb = 1 and any (pb, ql) ∈ [0, 1]2.

Symmetrically, when θ < 0 and there is equality in (42), we have an equilibrium with pb = ql = 1

and any (pl, qb) ∈ [0, 1]2.

B.2 Stationary measures

In this section, we derive the stationary probabilities of the various types of events that can occur

when a new bank arrives during the periphery market session. Each time a new periphery bank

arrives, eight possible events can happen: (i) A high-type lender makes an offer; (ii) A high-type

lender accepts an offer; (iii) A low-type lender makes an offer; (iv) A low-type lender accepts an

offer; (v) A high-type borrower makes an offer; (vi) A high-type borrower accepts an offer; (vii)

A low-type borrower makes an offer; (viii) A low-type borrower accepts an offer.

We denote by µ∗i the stationary probabilities of event i ∈ {1, 2, 3, 4, 5, 6, 7, 8} in equilibrium

and let M∗ = (π∗i,j) be the transition matrix from event i to event j, where π∗i,j is the likelihood

that event i is followed by event j given banks’ equilibrium actions and the arrival process for

borrowers and lenders. Let µ∗ be the vector column vector of the µs. It solves

µ∗ = M∗µ∗ and 1tµ∗ = 1, (43)

where 1t = (1, 1, ..., 1).

Consider the case θ > 0, so that we necessarily have pl = qb = 1 for any equilibrium type.
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The equilibrium actions are such that:

M∗ =

 A(β, λ) C(β, λ, 1, ql)

C(α, λ, pb, 1) A(α, λ)

 ,

where A(x, λ) and C(x, λ) are two matrixes defined as:

A(x, λ) = (1− x)



(1− λ) 0 λ 0

(1− λ) 0 λ 0

(1− λ) 0 λ 0

(1− λ) 0 λ 0


,

and

C(x, λ, p, q) = x



(1− λ) 0 λ(1− q) λq

(1− λ) 0 λ 0

(1− λ)(1− p) (1− λ)p 0 λ

(1− λ) 0 λ 0


Solving eq.(43), we obtain the stationary measures. Moreover, the reasoning is entirely symmetric
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for the case θ < 0. Define:

µ1a(x, p, q) = (1− λ)[1− xλ(1 + (1− λ)p)]/M(x, p, q)

µ2a(x, p, q) = x(1− λ)2λp[1− q(1− xλ(1− λ))]/M(x, p, q)

µ3a(x, p, q) = λ[1− x+ xλ(1− λ)q(1− p(1− x(1− λ)))]/M(x, p, q)

µ4a(x, p, q) = xλ(1− λ)[1− λq(1 + xp(1− λ)2)]/M(x, p, q)

µ1b(x, p, q) = x(1− λ)2[1− xλq(p+ (1− p)λ)]/M(x, p, q)

µ2b(x, p, q) = xλ(1− λ)[1− x+ xλ(1− λ)q(1− p(1− x(1− λ)))]/M(x, p, q)

µ3b(x, p, q) = xλ(1− λ)[1− q(1− xλ(1− λ))]/M(x, p, q)

µ4b(x, p, q) = xλ[λ− xλ+ (1− λ)q(1− xλp)(1− λx(1− λ))]/M(x, p, q)

M(x, p, q) = (1 + x)[1 + xλ(1− pq(1− λ)(1− λx(1− λ)))]

When θ > 0, we have µ∗i = µia(β, pb, ql) for i ≤ 4 and µ∗i = µib(β, pb, ql) for i > 4. When θ < 0,

we have µ∗i = µib(α, pl, qb) for i ≤ 4 and µ∗i = µia(α, pl, qb) for i > 4.

B.3 Proof of Lemma 2

Using the results of B.2, when θ > 0, for any type of equilibrium we have:

∆1(θ, λ) = l(|θ|)[µ∗1(1− βλql)− µ5(1− λ)] = l(|θ|)N(β(θ), λ)

D(β(θ), λ)

with N(β, λ) = (1− λ)[1− β + βλ[(1− λ)(1− pb)− ql] + qlλβ
2[λ(1− pb)(1− λ)2 + λ+ pb(1− λ)]]

D(β, λ) = (1 + β)[1 + βλ− βλpbql(1− λ)(1− βλ(1− λ))]

Simple computations show that ∆1(0, λ) = 0. Moreover, in θ = 0 a balanced equilibrium obtains.

Then, differentiating the right-hand side of (18) shows that it is decreasing in β, and hence
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increasing in θ. Thus, there exists a threshold θg such that a balanced equilibrium with pb = ql = 1

obtains for θ ∈ [0, θg), a mixed equilibrium obtains for θ = θg, and an equilibrium with glut in the

periphery and pb = ql = 0 obtains for θ > θg. For given values of pb and ql, N(β, λ) is decreasing

in β and D(β, λ) is increasing in β. Moreover, l(|θ|) is increasing in θ. ∆1 is thus increasing in θ

for θ ∈ [0, θg) and for θ > θg. Around θg, ∆1(θ, λ) is larger for pb = ql = 0 than for pb = ql = 1.

Hence, ∆1 increases discontinuously in θ = θg, regardless of the values of pb and ql selected in

the mixed equilibrium. This reasoning also shows that ∆1 > 0 when θ > 0. The reasoning for

the case θ < 0 is entirely symmetric.

B.4 Proof of Proposition 2

Equation (23) follows directly from eq.(22) and (21). Moreover, using eq.(23), we obtain:

∂Rco∗

∂Sco
= −(RP −RD)

∂Φco(−Sco)
∂Sco

< 0,

since Φco(x) increases with x. As Sco = mco+ ∆1(θ, λ) and ∆1(θ, λ) increases with θ = mpe+ape

(see Lemma 2), we deduce the last part of the proposition. Moreover, Φco(āco) = 1/2 since Φco(.)

is the cumulative probability distribution of a normally distributed variable with mean āco. Thus,

using eq.(23), if Sco = −āco, Rco∗ = (RP +RD)/2.

B.5 Proof of Proposition 3

We focus on the case θ > 0, the other case being symmetric. For a given θ positive, ∆1 depends

on the equilibrium strategies ql and pb. Write ∆1(pb, ql) = [µ1(pb, ql)(1−βλql)−µ5(pb, ql)(1−λ)]`,

with µ1(pb, ql) = µia(β(θ), pb, ql) and µ5(pb, ql) = µib(β(θ), pb, ql). It will be more convenient to

work on the following monotonic transformation of mco (note that it does not depend on pb and
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ql):

η(mco) =
−1

`
×
(
mco + Φ−1

co

(
(1− λ)(1− λβ)

1− λβ(2− λ)

))
. (44)

Using Condition (24) and Proposition 1, we see that a balanced equilibrium obtains for η(mco) ≤

ηb = ∆1(1, 1)/`(θ), and an equilibrium with glut in the periphery obtains for η(mco) ≥ ηg =

∆1(0, 0)/`(θ). This defines m+
b = η−1(ηb) and m+

g = η−1(ηg).

We now focus on η ∈ [ηb, ηg], a region in which only mixed equilibria can be obtained. We

know from Proposition 1 that such an equilibrium can be obtained only if there is equality in

condition 18, which is equivalent to:

∆1(pb, ql) = `(θ)× η. (45)

Solving for a mixed equilibrium with an endogenous Rco corresponds to finding pb and ql in [0, 1]

that solve (45). As we have two unknowns and one equation, we actually need to characterize a

continuum of possible equilibria. In order to do this, we first take p as given and solve (45) in q.

This gives us:

q∗(p) =
N(p)

D(p)
=

(a1 + b1η) + c1p

a2 + (c2 + d2η)p
(46)
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With the following quantities:

a1 = (1− λ)(1− β(1− λ(1− λ)))

b1 = −(1 + β)(1− βλ)

c1 = −βλ(1− λ)2

a2 = βλ(1− λ)[1− λβ(2− λ(2− λ))]

c2 = −(β(1− λ))2λ[1− λ(1− λ)]

d2 = −βλ(1− λ)(1 + β)[1− λβ(1− λ)]

Our method is to first check that q ∈ [0, 1]. This will typically determine a range of values for

p. If the intersection of this range with [0, 1] is non-empty, then we have a mixed equilibrium, or

more often a set of equilibria. The analysis is complicated by the fact that the numerator N(p)

and the denominator D(p) of q∗(p) need not be positive, depending on the value of η. Define:

η1 = −a1 + c1

b1

η2 = −a2 + c2

d2

η3 =
a2 − a1

b1

η4 =
c1 − c2

d2

ηb =
a2 + c2 − c1 − a1

b1 − d2

ηe =
−a1

b1

p̄n(η) = −a1 + b1η

c1

p̄d(η) = − a2

c2 + d2η

p̄q(η) =
a1 + b1η − a2

c2 − c1 + d2η
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We obtain the following Lemma, proven at the end of this section:

Lemma 3. For θ > 0 and λ < 1/2, all the equilibria of the game are characterized as follows:

• For η < ηb, the balanced equilibrium obtains.

• For η ∈ (ηb,min(η1, η3)], a mixed equilibrium obtains with any p ∈ [p̄q, 1] and q = q∗(p).

• For η ∈ [η1, η3], if this interval exists, a mixed equilibrium obtains with any p ∈ [p̄q, p̄n] and

q = q∗(p).

• For η ∈ [η3, η1], if this interval exists, a mixed equilibrium obtains with any p ∈ [0, 1] and

q = q∗(p).

• For η ∈ [max(η1, η3), ηg), a mixed equilibrium obtains with any p ∈ [0, p̄n] and q = q∗(p).

• For η > ηg, the excess liquidity equilibrium obtains.

In case of multiplicity, we then select the most efficient equilibrium. We use the following

Lemma, proven at the end of this section:

Lemma 4. For a given θ > 0 and λ < 1/2, if there is a range of mixed equilibria with p ∈ [p, p̄]

and q = q∗(p), then the equilibrium with p = p̄ and q = q∗(p̄) is the most efficient one.

Combining Lemmas 3 and 4 gives us the following result:

Proposition 7. For λ < 1/2 and θ > 0, if the most efficient equilibrium is always selected, we

have the following equilibrium:

• A balanced equilibrium for η < ηb.

• A mixed equilibrium with p = 1 and q = q∗(p) ∈ (0, 1) for η ∈ [ηb, η1].

• A mixed equilibrium with p = p̄n(η) and q = 0 for η ∈ [η1, ηg].
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• An excess equilibrium for η > ηg.

Rewriting this proposition in terms of mco instead of η proves Proposition 3.�

Proof of Lemma 3. Let us first see where the different threshold values for η come from.

We first want to have q∗(p) = N(p)/D(p) ≥ 0. If η ≤ η1 then N(p) is positive for any p. If

η > η1, then N(p) is positive if and only if p ≤ p̄n(η). Similarly, if η ≤ η2 then D(p) is positive

for any p. If η > η2, then D(p) is positive if and only if p ≤ p̄d(η).

Assume that both N(p) and D(p) are positive. We further want q∗(p) ≤ 1, which we can

rewrite as:

a1 − a2 + b1η ≤ (c2 − c1 + d2η)p. (47)

The left-hand side is positive if and only if η ≤ η3, and the right-hand side is positive if and only

if η ≤ η4.

We will use several inequalities on the various thresholds: (i) When λ < 1/2, we have η1 ∈

(ηb, ηg) and η3 ∈ (ηb, ηg). Moreover, we have η1 < η2 and η4 > max(η1, η3); (ii) When η > η1, we

have p̄d(η) > p̄n(η); (iii) When η > η4, we have p̄q(η) > 1 > p̄n(η); (iv) When η < η3, we have

p̄q(η) < p̄d(η).

Assume first that η ≤ η1. Since η1 ≤ η2 we have N(p) and D(p) positive for any p, hence

q∗(p) is positive for any p. In order to have q∗(p) ≤ 1, we also need to satisfy (47). If η ≤ η3,

both sides of the inequality are positive and (47) is equivalent to p ≥ p̄q. Hence we can select

any p ∈ [p̄q, 1] and the associated q∗(p) to obtain an equilibrium. If η > η3, then the left-hand

side of (47) is negative and the right-hand side positive, so that the inequality is satisfied for any

p. We can thus select any p ∈ [0, 1] and the associated q∗(p) to obtain an equilibrium.

Assume now that η > η1. Since pd(η) > pn(η), in order to have q∗(p) ≥ 0 we need to have

either p ≤ p̄n(η) so that N(p) and D(p) are positive, or p ≥ p̄d(η) so that both quantities are
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negative. p ≥ p̄d(η) is possible only if η > η2.

Case p ≤ p̄n(η): again we need to satisfy (47). If η ≤ η3 we must select p ≥ p̄q, so that an

equilibrium obtains for p ∈ [p̄q, p̄n] and the associated q∗(p). If η > η3 then the left-hand side of

(47) is negative. If η < η4 then the right-hand side is positive and p ≤ p̄n(η) is thus enough to

have an equilibrium. If η ≥ η4 then the right-hand side is also negative and we need p ≤ p̄q. But

since pq(η) > pn(η), having p ≤ p̄n(η) is again sufficient to have an equilibrium.

Case p ≥ p̄d(η): We have both N(p) ≤ 0 and D(p) ≤ 0. In order to have q∗(p) ≤ 1 we need to

contradict (47). If η < η3 both sides of the inequality are positive and we must have p ≤ p̄q. We

then need p̄q ≥ p̄d, which is false. If η ∈ [η3, η4] the left-hand side of (47 is always negative and

the right-hand side positive, hence it is impossible to contradict. Finally, if η > η4 both sides are

negative and we need p ≥ p̄q but p̄q > 1, so this is impossible. To conclude, it is never possible

to obtain an equilibrium with p ≥ p̄d(η).

This analysis covers all the possible cases for the position of η relative to the different thresh-

olds, the proof is thus concluded.�

Proof of Lemma 4. We want to select the most efficient equilibrium. Denote TD the

number of trades with the central bank at rate RD, and TP the number of trades at rate RP . In

a centralized market, we would have min(TP , TD) = 0, as all banks are matched together and

there are trades with the central bank only in the presence of an aggregate surplus or shortage.

This is not necessarily the case when the market is decentralized. The quantity min(TP , TD) is

then positive and gives us a natural measure of inefficiency. Still considering the case θ > 0, the

55



(expected number) of transactions with the central bank is:

TP (p, q) = `µ3(p, q)(1− β) + Sc

TD(p, q) = `µ7(p, q)(1− p)(1− λ)

We want to study how both vary when we change p and q for a given θ. Notice that for a given

θ the quantity Sc is pinned down independently of p and q in a mixed equilibrium, so that we

do not need to take Sc into account. We observe that q∗(p) is decreasing in p for η ∈ (ηb, ηg).

Moreover, TP is decreasing in p and increasing in q, while TD is decreasing both in p and in q.

If TP < TD, then TP is the relevant quantity to do welfare comparisons. Since q∗(p) decreases

in p, we have that TP (p, q∗(p)) is necessarily decreasing in p. Hence a higher p always increases

welfare in this case. The situation is more complicated when TD < TP . First, remember that p

and q need to be set such that ∆1(p, q) is equal to a certain constant. Using implicit differentiation,

we have:

q∗′(p) =
−∂∆1/∂p

∂∆1/∂q
.

The total derivative of TD(p, q∗(p)) with respect to p is thus:

dTD(p, q∗(p))

dp
=
∂TD

∂p
+
∂TD

∂q
× q∗′(p).

And we have the following:

dTD(p, q∗(p))

dp
≤ 0⇔ ∂TD/∂p

∂TD/∂q
≥ ∂∆1/∂p

∂∆1/∂q
. (48)

In other words, the impact of an increase in p accompanied by a decrease in q so as to keep a

mixed equilibrium depends on how p and q relatively affect both TD and ∆1. As it turns out,
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condition (48) is satisfied for any p, q, β and λ. This shows that an increase of p accompanied by

a decrease in q diminishes our measure of inefficiency. �

B.6 Proof of Proposition 5

Denote L = E + ψ1C + ψ2Γ the function that the central bank wants to minimize, and assume

that ψ1 = 0. Differentiating with respect to m,RP , RD, we obtain:

∂L
∂m

= −2

∫ +∞

−∞
[Rco(a)−RT ]φco(−a−m)φpe(a)da+ ψ2c

[∫ +∞

−m
φtot(a)da−

∫ −m
−∞

φtot(a)da

]
(49)

∂L
∂RP

= 2

∫ +∞

−∞
[Rco(a)−RT ]Φco(−a−m)φpe(a)da (50)

∂L
∂RD

= 2

∫ +∞

−∞
[Rco(a)−RT ](1− Φco(−a−m))φpe(a)da (51)

We check that these three derivatives are null at the proposed solution. In equation (49), when

a = āpe we have Rco = Φco(−āpe − m)RP + (1 − Φco(−āpe − m))RD. Since −āpe − m = āco,

we obtain Rco(āpe) = RT . The first integral is symmetric around this point, and is thus equal

to zero. The term in ψ2 is also null, because φtot is symmetric around āpe + āco = −m. The

derivatives with respect to RP and RD are null for the same reason that the integral in (49) null.
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