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Abstract

We study optimal savings policies when there is a dual concern about under-saving for re-

tirement and income inequality. Agents differ in time preferences and earnings ability, both

unobservable to a planner with paternalistic and redistributive motives. We characterize the

solution to this two-dimensional screening problem and provide a decentralization using re-

alistic policy instruments: forced savings at low incomes—similar to Social Security—but a

choice between savings accounts with different subsidies and caps at high incomes—like 401(k)

and IRA accounts in the US. Offering more choice in savings at higher incomes facilitates re-

distribution. Relative to the current US retirement system, we find large welfare gains from

increasing mandatory savings and limiting savings choice at low incomes.
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1 Introduction

A shared feature of many modern welfare states is limited choice in savings for retirement.1 These

systems commonly force contributions toward old-age benefits on the basis of a paternalistic mo-

tive to induce adequate savings for retirement, particularly among low-income groups (Diamond,

1977; Kotlikoff et al., 1982; Feldstein, 1985). Rationales for the paternalistic motive derive both

from the behavioral sciences and also from a purely neoclassical economics tradition. On one

hand, individuals may make mistakes when choosing under incomplete information and uncer-

tainty (Tversky and Kahneman, 1974), or they may suffer from time-inconsistent decision making

over the life-cycle (Laibson, 1997). On the other hand, altruism and lack of government commit-

ment give rise to an externality problem labeled the Samaritan’s Dilemma, leading individuals to

rationally under-save in anticipation of free-riding on public funds during retirement (Buchanan,

1975; Prescott, 2004; Sleet and Yeltekin, 2006). In both environments, individuals’ preferences are

characterized by present bias and paternalistic savings policies may be welfare-improving.

We study optimal retirement savings policies when there is a paternalistic motive to overcome

individuals’ present bias problems. The central question we ask is: how much choice in savings

should be optimally offered throughout the income distribution? To address this question, we

integrate a paternalistic savings motive into an optimal taxation framework, allowing us to study

the problem of savings adequacy jointly with the issue of income inequality. Our key insight is

that there exists a trade-off between paternalism and redistribution. As a result, the optimal policy

enforces high savings rates at low incomes but offers a choice between various subsidized savings

options at high incomes. Qualitatively, the optimal policies in our framework resemble many

real-world retirement savings systems, including Social Security and various subsidized savings

accounts in the US. Quantitatively, however, we find large welfare gains relative to current US

policies from increasing mandatory savings and limiting savings choice at low incomes.

In our theoretical framework, the interaction between two ingredients gives rise to a novel

trade-off in optimal savings policy design. The first ingredient, motivated by recent experimental

evidence (Montiel Olea and Strzalecki, 2014), is heterogeneity in individuals’ present bias. The

1Government-mandated old-age benefits were administered in ancient Rome to prevent revolts by impoverished
army veterans (Choi, 2015). In the modern world, German chancellor Otto von Bismarck instituted the Old Age and
Disability Insurance Law of 1889 to guarantee adequate incomes for retired workers (Kotlikoff, 1996). The US Old-
Age, Survivors, and Disability Insurance program, or Social Security in short, signed into law in 1935 under President
Roosevelt to ameliorate the extent of poverty among retirees, is nowadays the nation’s largest federal government social
policy, with 884 billion US dollars in transfers to 60 million beneficiaries in 2016 (Social Security Administration, 2017).
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second ingredient is heterogeneity in earnings ability as in Mirrlees (1971), Diamond (1998), and

Saez (2001). A paternalistic and redistributive planner defines the efficient savings rate accord-

ing to a single time preference and attaches different welfare weights across ability types.2 The

planner picks a consumption and labor allocation to maximize welfare subject to incentive com-

patibility and a resource constraint. The theoretical analysis of this problem is complex since, as

is well known, multi-dimensional screening problems lead to failure of the first-order approach

that the optimal taxation literature usually relies on (Golosov et al., 2003, 2016). We exploit the

paternalistic formulation to provide a partial characterization of this problem under weak regu-

larity conditions. Our main theoretical result highlights the trade-off between paternalism and

redistribution in the second-best economy: low-ability agents are bunched at an inefficiently high

savings rate, while high-ability agents are separated by time preferences at lower savings rates.

Intuitively, the planner offers choice in savings as a carrot and stick to incentivize work effort at

high ability levels, thereby facilitating redistribution.

This theoretical characterization is useful because the optimal allocation can be decentralized

as a competitive equilibrium given three realistic policy instruments: first, mandated old-age ben-

efits as a function of income; second, a finite number of retirement accounts with different income-

dependent subsidy rates and contribution limits; and third, a non-linear labor income tax. Intu-

itively, for high enough forced savings, low-income as well as impatient high-income agents will

be constrained and rely only on mandated old-age benefits, whereas more patient high-income

agents choose to sequentially exhaust the limits on subsidized retirement accounts. Qualitatively,

this set of policy instruments resembles real-world retirement savings systems, such as Social Se-

curity plus 401(k) and various individual retirement arrangement (IRA) accounts in the US.

We apply this framework to quantitatively study the current US retirement savings and tax-

transfer system vis-à-vis optimal policies in our model. This is a non-trivial task because failure

of the linear independence constraint qualification in multi-dimensional screening problems ren-

ders numerical optimization routines unstable (Judd and Su, 2006). To overcome this problem,

we develop a broadly applicable algorithm that efficiently solves high-dimensional non-linear op-

timization problems by finding the smallest set of binding constraints at the optimum. We first

calibrate a positive version of our model to infer the joint distribution of time preferences and earn-

2That the planner respects a single time preference can be motivated by adopting an individual’s perspective before
the realization of a present bias shock, as in Amador et al. (2006). That welfare weights depend only on ability reflects
a desire for income redistribution or insurance across ability types independent from the present bias shock.
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ings ability using microdata on life-cycle income and wealth accumulation from the Health and

Retirement Study (HRS) and the Current Population Survey (CPS). Identification of individual

preference heterogeneity comes from differences in wealth at retirement conditional on life-time

income. We then use our algorithm to solve the normative model and recover social preferences

by extending the inverse-optimum approach (Bourguignon and Spadaro, 2012) to our setting. Fi-

nally, we combine the normative model with the inferred worker type distribution and social

preferences in order to analyze optimal savings policies and quantify welfare gains from reforms

to the current US system.

We present three main results from our quantitative analysis. First, we find substantial em-

pirical heterogeneity in present bias and hence in implied optimal savings rates throughout the

income distribution. Our calibration recovers annualized discount rates ranging from 0.905 to

0.999 between the 10th and the 90th percentile of the distribution, and a mild positive correlation

of 0.10 between discount rates and income. In spite of this heterogeneity, the optimal savings rate

at the bottom of the income distribution is uniformly set to 20 percent, even though the first-best

rate is around to 16.5 percent. In contrast, savings rates for individuals earning USD 200,000 vary

substantially between 15 and 21 percent.

Second, we discuss welfare implications of reforms to the current US savings and tax system as

we uncover a tension between its two components. On one hand, the US tax-transfer system is best

justified through welfare weights that are less redistributive than utilitarian (i.e. put more weight

on high ability levels). On the other hand, our model rationalizes the large dispersion in savings

rates at high incomes in the US as welfare weights that are more redistributive than utilitarian (i.e.

put more weight on low ability levels). This is because the only reason a planner offers choice in

savings is to facilitate redistribution. Hence, the current system is off the Pareto frontier, with 17.5

percent of consumption-equivalent welfare gains available from increasing mandatory savings

and limiting savings choice, particularly at low incomes.

Third, we discuss implications for optimal savings instruments in our decentralization. Opti-

mal contribution limits on retirement accounts are approximately affine in earnings. Individuals

with annual incomes up to USD 65,000 receive only Social Security payments. Above that thresh-

old, optimal savings vehicles include a “subsidized account” with a contribution limit of 1.8 per-

cent of income, and a “tax-preferred account” with a limit of 3.7 percent. Further accounts have

caps close to zero. Hence, a small number of accounts is sufficient to approximate the optimal
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savings schedule. Optimal subsidy rates on retirement accounts in our decentralization are pro-

gressive. The “subsidized account” features a 30 percent subsidy that phases out to zero at around

USD 15,000 in annual income before steadily increasing to a 25 percent tax rate at USD 200,000 in

earnings. The second “tax-preferred account” is taxed at a rate that increases from 20 to 40 percent

over the same income range. Finally, the tax on a regular savings account without cap is optimally

set to approximately 45 percent.

Our main insight is more general than the application to savings policies. We characterize

optimal choice architecture across income groups when private and social preferences disagree

and tax revenues are valued. This formulation nests many behavioral and neoclassical problems.

We discuss implications for Pigouvian taxation and quantity restrictions in their context.

Related literature. This paper contributes to three strands of the literature.3 The first strand is

concerned with the optimal taxation of capital. The classical result by Atkinson and Stiglitz (1972)

implies that with agreement in preferences between the planner and agents only income, but not

savings, should be distorted for redistributive purposes. Also relying on preference agreement is

the zero long-run capital taxation proposition by Judd (1985) and Chamley (1986), subsequently

revisited by Atkeson et al. (1999), Lansing (1999), Phelan and Stacchetti (2001), Hassler et al. (2008),

Saez (2013), and Straub and Werning (2014). In our framework, paternalism provides an alterna-

tive motive for capital taxes or subsidies. Closely related to our work, Saez (2002), Diamond and

Spinnewijn (2011), and Golosov et al. (2013) consider heterogeneous time preferences without pa-

ternalism and show that the correlation between discount factors and earnings ability matters for

the optimal degree of capital taxation. Hosseini and Shourideh (2017) study optimal retirement

policy reforms with heterogeneous mortality rates and time preferences. Relative to their work,

a novel aspect of our paper is to consider the interaction between paternalism and redistribution

with heterogeneity in both time preferences and earnings ability. In this setting, we find that the

optimal dispersion of marginal capital tax rates is larger at high incomes.

The second literature that we relate to is the field of behavioral public finance, much of which

has focused on optimal taxation without heterogeneity in behavioral biases and redistribution.

For instance, O’Donoghue and Rabin (2003, 2006) and Gruber and Köszegi (2004) consider the in-

cidence of linear consumption taxes when certain goods are either over-consumed (e.g. cigarettes)

3In Section 2.4, we further discuss our theoretical findings in light of some of the most related results in the literature.
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or under-consumed (e.g. retirement savings). Farhi and Werning (2007, 2010), Pavoni and Yazici

(2016), and Phelan and Rustichini (2016) study optimal estate taxation in a model with a single

level of present bias. Lockwood and Taubinsky (2017) allow for non-linear labor earnings taxes

and a linear tax on the “sin good.” Amador et al. (2006) study an optimal delegation problem with

a common level of present bias and find a minimum savings rule to be optimal.4 In related work,

Chetty et al. (2009), Beshears et al. (2015), and Farhi and Gabaix (2015) consider optimal policy

design in the presence of behavioral agents but without redistribution. By allowing for transfers

in such an environment, we highlight a novel trade-off due to the interaction between paternalism

and redistribution. As a result, the optimal policy features over-saving at low incomes and dif-

ferentially distorted savings decisions at high incomes. Our paper also complements recent work

by Yu (2016) and Lockwood (2016), who focus on implications of present bias for income taxation

under a redistributive motive. In contrast, our focus is on characterizing optimal savings policies.

The third strand of related work studies multi-dimensional screening problems. Rochet (1987),

McAfee and McMillan (1988), Armstrong (1996), Rochet and Choné (1998), and Armstrong and

Rochet (1999) emphasize challenges in the analysis of optimal contracts with higher-dimensional

unobserved heterogeneity. Some important contributions in the public finance have made further

progress in this field. Kleven et al. (2009) analyze the optimal taxation of couples, while Rothschild

and Scheuer (2013, 2015, 2016) characterize optimal income taxes under multi-dimensional skill

heterogeneity. We contribute to this literature in two ways. First, we provide a partial characteriza-

tion of the solution to a two-dimensional screening problem under the assumption of paternalism.

Second, we develop a numerical algorithm that efficiently solves more general two-dimensional

screening problems, making it potentially useful in a variety of other applications.

Outline. The paper is organized as follows. Section 2 characterizes the optimal savings problem

with two-dimensional unobserved heterogeneity. Section 3 provides a decentralization of the opti-

mal allocation using realistic policy instruments. Section 4 describes the numerical algorithm used

to solve the model and calibrates it to US microdata in order to evaluate current retirement sav-

ings and tax policies. Section 5 generalizes our main theoretical result and discusses applications

to behavioral and neoclassical problems. Finally, Section 6 concludes.

4Similar setups have been studied in the context of monetary policy (Athey et al., 2005), sovereign debt dynamics
(Aguiar and Amador, 2011), fiscal rules (Halac and Yared, 2014), the market for commitment devices (Galperti, 2015),
and parent-child relations (Doepke and Zilibotti, 2017).
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2 Characterizing optimal paternalistic savings policies

2.1 Model setup

This section presents our benchmark model for the analysis of optimal savings policies when

there is a dual concern about under-saving for retirement and income inequality. We present a

two-period life-cycle model with two-dimensional unobserved heterogeneity in present bias and

earnings ability.5 Following the optimal taxation literature, we characterize the second-best alloca-

tion of resources in a mechanism design formulation of the problem without restricting ourselves

to a any specific policy instruments.

A unit mass of agents live for two periods indexed by t, work and retirement, with common

discount rate δ. Agents differ in two unobservable attributes. The first attribute is earnings ability,

denoted θ ∈ Θ = {θ1, . . . , θN}, where 0 ≤ θ1 < . . . < θN < +∞. The second attribute is the degree

of present bias, denoted β ∈ B = {β1, . . . , βM} where 0 < β1 < . . . < βM = 1.6 We understand β as

a reduced-form placeholder for the disagreement between the planner and agents at the time of

the savings decision, which may arise from a behavioral bias (Laibson, 1997) or from an externality

problem absent government commitment (Sleet and Yeltekin, 2006). We do not impose restrictions

on the distribution over agents’ types, π (θ, β), other than assuming full support. In particular, our

analysis does not rely on any particular correlation between θ and β.

Utility is defined over consumption ct for t = 1, 2 and income y. The planner evaluates experi-

enced utility of type (θ, β) according to

V (c1, c2, y; θ) = u (c1)−
v (y)

θ
+ δu (c2)

where u′ (·) > 0, u′ (0) = +∞, u′′ (·) < 0 and v (0) = 0, v′ (0) = 0, v′ (·) , v′′ (·) > 0 for c1, c2, y ≥ 0.

Note that V (c1, c2, y; ·) does not directly depend on β. At the time of choosing their savings,

however, agents evaluate decision utility according to

U (c1, c2, y; θ, β) = u (c1)−
v (y)

θ
+ βδu (c2)

5The essence of our theory is conveyed in a simple two-period model. In Appendix B, we characterize a multi-period
life-cycle model with heterogeneity in hyperbolic discount factors.

6In our quantitative analysis in Section 4, we relax the assumption of β ≤ 1 when estimating the distribution of
present bias from microdata on life-time income and wealth accumulation. Furthermore, Section 5 presents a general-
ized model that allows for both excessive and insufficient action-taking.
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Our preferred interpretation of this setup is that agents and the planner share a common evalua-

tion of utility at time 0, but disagreement arises at time 1 due to heterogeneous degrees of present

bias captured by the additional discount factor β (Amador et al., 2006). Finally, a storage technol-

ogy transfers resources between periods at gross rate of return R.

Following Mirrlees (1971), we assume that the planner observes consumption and labor in-

come but not agents’ types directly, and designs the game to be played by agents in the econ-

omy. Although this game could take an arbitrary form, the Revelation Principle guarantees that

it is sufficient to consider incentive compatible direct mechanisms, in which agents’ payoffs de-

pend only on their reported type. We call such this assignment rule an allocation and denote it

A = {c1 (θ, β) , c2 (θ, β) , y (θ, β)}(θ,β)∈Θ×B. We characterize properties of the optimal allocation

before showing how it can be decentralized using a set of realistic policy instruments.

An allocation satisfies incentive compatibility (IC) if using agents’ decision utility we have

(θ, β) = arg max
(θ′,β′)

U
(
c1
(
θ′, β′

)
, c2
(
θ′, β′

)
, y
(
θ′, β′

)
; θ, β

)
∀ (θ, β) ∈ Θ× B (1)

An incentive compatible allocation can be implemented with agents truthfully reporting their

types as an equilibrium strategy in the direct mechanism. An allocation is feasible if it satisfies

∑
(θ,β)∈Θ×B

π (θ, β)

[
y (θ, β)− c1 (θ, β)− c2 (θ, β)

R

]
≥ 0 (2)

A feasible allocation allows for transfers across types but restricts the planner’s net budget balance

to be weakly positive. We define welfare as agents’ experienced utilities aggregated as

W
(
{c1 (θ, β) , c2 (θ, β) , y (θ, β)}(θ,β)∈Θ×B

)
= ∑

(θ,β)∈Θ×B
π (θ, β) λ (θ)V (θ, β) (3)

where λ (θ) ≥ 0 are Pareto weights, normalized such that ∑θ,β π (θ, β) λ (θ) = 1. Consistent with

our interpretation of paternalism, we assume welfare weights depend only on θ but not on β. In

this environment, we define efficiency with respect to the planner’s preference.

Definition 1. Given Pareto weights {λ (θ)}θ∈Θ, the planner’s problem is to choose a second-best

or constrained efficient allocationA∗∗ that maximizes welfare (3) subject to IC (1) and feasibility (2).

We say an allocation A∗ is first-best or efficient if it maximizes welfare (3) subject to feasibility (2).
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2.2 Example with 2× 2 types

It is instructive to illustrate the model mechanics in a simple environment. Assume for now two

levels of earnings ability and two levels of present bias. For simplicity, let β ∈ {βL, βH} with

βL < βH = 1, let θ ∈ {θL, θH} with 0 = θL < θH, set Rδ = 1, and suppose the planner is weakly

more redistributive than utilitarian, λ (θL) ≥ λ (θH).7 Clearly, the first-best allocation features

savings at a rate satisfying the planner’s Euler equation, which implies c1 = c2, independent of β.

We proceed step-wise in providing a full characterization of the second-best allocation.

Bunching at low ability. Because present bias levels do not enter the planner’s objective, the

first-best allocation treats identically agents with common θ but different β. As u′ (0) = +∞ and

high-ability agents can work while low-ability individuals cannot, only the former has strictly

positive labor income. Since income is observable, low-ability agents cannot pretend to work

and hence the relevant IC constraints in θ-space are the ones from high ability to low ability:

u (c1 (θH, β))− v (y1 (θH, β)) /θH + βδu (c2 (θH, β)) ≥ u (c1 (θL, β′)) + βδu (c2 (θL, β′)) for levels of

present bias β, β′ ∈ {βL, βH}. Assigning average utilities to low-ability agents trivially preserves

IC among them. Because the the previous IC constraint is linear in utility levels u (c1 (θL, β′))

and u (c2 (θL, β′)) on the right-hand side, this also preserves IC between high and low ability lev-

els: u (c1 (θH, β))− v (y1 (θH, β)) /θH + βδu (c2 (θH, β)) ≥ ū1 (θL) + βδū2 (θL) for β, β′ ∈ {βL, βH},

where ūt (θL) = ∑β′ π (β′| θL) u (ct (θL, β′)). Therefore, it is incentive compatible for the planner to

allocate c̄t (θL) = u−1 (ūt (θL)) to all low-ability agents. Furthermore, this perturbation leaves wel-

fare unchanged. However, strict concavity of u implies that such an allocation is strictly less costly,

c̄1 (θL) + c̄2 (θL) /R < ∑β′ π (β′| θL) [c1 (θL, β′) + c2 (θL, β′) /R] whenever ct (θL, βL) 6= ct (θL, βH)

for some t ∈ {0, 1}.

In summary, offering the same allocation to low-ability types preserves IC, leaves welfare un-

changed, but saves resources. We conclude that the planner optimally bunches low-ability agents:

(c1 (θL, β) , c2 (θL, β)) = (c1 (θL) , c2 (θL)) for β ∈ {βL, βH}.

Separation at high ability. Should high-ability agents also be bunched? By way of contradiction,

suppose that (c1 (θH, β) , c2 (θH, β) , y (θH, β)) = (c1 (θH) , c2 (θH) , y (θH)) for β ∈ {βL, βH}. There

are two cases to consider.
7With θL = 0 we mean the limiting case of low-ability agents not working, yL = 0, and their disutility from work

being v (0) /0 = 0 by L’Hôpital’s rule.
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In the first case, high-ability agents are bunched with c1 (θH) > c2 (θH), illustrated as point A in

Figure 1(a). At this point, the indifference curve of βL-types is steeper as impatient types require

relatively more period 2 consumption to compensate a given change in period 1 consumption.

While continuing to offer allocation A, the planner can target patient agents by offering allocation

B. Since points on the 45-degree-line minimize the cost of providing a given utility level, alloca-

tion B lies in the interior of the budget set. At high ability, βH-types are indifferent between the

allocations, while βL-types strictly prefer A over B. In summary, offering allocation B in addition

to allocation A preserves IC, leaves welfare unchanged, but saves resources—a contradiction.

In the second case, high-ability agents are bunched with c2 (θH) ≥ c1 (θH). Clearly, allocations

with c2 (θH) > c1 (θH) are dominated by one with c2 (θH) = c1 (θH), illustrated as point D in

Figure 1(b). By offering an additional allocation E with higher period 1 consumption, the planner

can target impatient agents. Moving them toward this allocation, their IC constraints become slack

and welfare decreases. In the second-best solution, the planner can then make (θH, βL)-types work

more and use those extra resources for redistribution while preserving IC. The first-order welfare

gain from transfers to θL-types strictly exceeds the second-order welfare loss from allowing the

deviation by (θH, βL)-types whenever allocations D and E are close enough. In summary, this

perturbation improves welfare while preserving IC and feasibility—a contradiction.

Combining both cases, we conclude that high-ability types are optimally separated by present

bias: (c1 (θH, βL) , c2 (θH, βL)) 6= (c1 (θH, βH) , c2 (θH, βH)).8

Implied savings rates. Low-ability agents must be bunched such that c2 (θL) ≥ c1 (θL), or else

moving them from point A to B in Figure 1(a) would leave welfare unchanged, preserve IC, but

save resources. Suppose now that c2 (θL) = c1 (θL), shown as point F in Figure 1(c). A similar

argument as before shows that moving low-ability types in the direction of point G induces a

second-order welfare loss but relaxes the IC constraint of (θH, βL)-types to a first order, enabling

net welfare gains from increased redistribution. It follows that the second-best solution to the

planner’s problem features c2 (θL) > c1 (θL).

Inspection of Figure 1(a) also establishes that c2 (θH, βH) ≥ c1 (θH, βH) must be optimal. Fur-

8All θH-types optimally have the same earnings. To see this, by way of contradiction and without loss of generality
suppose that y (θH , βL) < y (θH , βH). Then one could offer y (θH) = ∑β′ π ( β′| θL) u (ct (θH , β′)) to both θH-types,
keeping resources constant. Due to convexity of v, (θH , βL)-types can be compensated for working more by transferring
resources to them from (θH , βH)-types in a way to keep her welfare at the previous level, while saving resources—a
contradiction. Hence, high-ability types share the same income: y (θH , β) = y (θH , β) = y (θH) for β ∈ {βL, βH}.
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thermore, the only reason the planner would distort savings of (θH, βH)-types is if their allocation

were envied by (θH, βL)-types. In Appendix A.1, we show that this cannot be the case and dis-

cuss relevant IC constraints at the solution to this problem. We conclude that savings of patient

high-ability agents are optimally undistorted, c1 (θH, βH) = c2 (θH, βH). Together with our ear-

lier result on separation at high ability, this implies that (θH, βL)-types in period 1 are allowed to

over-consume, c1 (θH, βL) > c2 (θH, βL).

Summary. Intuitively, the planner offers choice as a screening device to identify high-ability

types. At low ability, enforcing uniform savings is costless and setting the rate above the efficient

level deters deviations by impatient high-ability types pretending to have low ability. At high

ability, the cost of enforcing a given savings rate varies with individual levels of present bias.

Consequently, savings by patient high-ability types are optimally left undistorted, while impatient

high-ability types are allowed to over-consume in period 1.

Figure 1. Consumption perturbations

(a) Separation at high ability, case 1 (b) Separation at high ability, case 2 (c) Over-saving at low ability

2.3 General results

We now turn back to our benchmark model with more general heterogeneity in earnings ability

and present bias. The usual approach in one-dimensional screening problems is to rely on the

Spence-Mirrlees single-crossing condition and a monotonicity property of allocations in types to

reduce the set of relevant IC constraints to only local constraints between bordering types. It is

well-known that this approach does not extend to problems with multi-dimensional types (Rochet
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and Stole, 2003; Battaglini and Lamba, 2015). We exploit the paternalistic formulation to provide

a partial characterization of this problem for the top and bottom of the ability distribution.9

Bunching and separation. Our main result characterizes the extent to which the optimal alloca-

tion differentiates between different β-types throughout the ability distribution given a utilitarian

or more redistributive planner.

Theorem 1. Assume λ′ (θ) ≤ 0 and fix {θ2, . . . , θN−1}. Then there exist scalars θ > 0 and θ < +∞ such

that at the solution to the planner’s problem:

1. If θ1 < θ, then all types {(θ1, β) : β ∈ B} are bunched, i.e. for t = 1, 2 and all β ∈ B:

(ct (θ1, β) , y (θ1, β)) = (ct (θ1) , y (θ1))

2. If θN > θ, then types {(θN , β) : β ∈ B} are separated in their consumption, i.e. for some β, β′ ∈ B:

(c1 (θN , β) , c2 (θN , β)) 6=
(
c1
(
θN , β′

)
, c2
(
θN , β′

))

Proof. See Appendix A.2.3.

Intuitively, there is non-trivial interaction between heterogeneity in present bias and the redis-

tributive motive. On one hand, the planner wants agents to save at a uniform rate given by the

planner’s Euler equation, u′ (c1 (θ, β)) = Rδu′ (c2 (θ, β)). On the other hand, the planner wants

to tailor consumption and labor allocations to each high-ability type separately so as to maximize

redistribution toward lower ability types, which is valued under a redistributive motive.

The first part of Theorem 1 states that the planner finds it optimal to bunch the lowest-ability

types regardless of their present bias level β. Clearly, such bunching is a feature of the first-

best allocation. What we show is that at low enough ability levels it is approximately costless to

enforce this feature, as the disutility of labor makes it costly for these agents to deviate toward

higher ability levels. Since low-ability types are net transfer recipients the planner can enforce

9The assumption of a paternalistic planner reduces the dimensionality of the objective function—but not of the IC
and feasibility constraints—and allows for a partial characterization of the solution to the planner’s problem. Using
numerical methods, we confirm in section 4 that those properties extend to the interior of the ability distribution.
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an arbitrary savings level as long as this preserves higher ability types’ downward-binding IC

constraints. Consequently, bunching is optimal at the bottom of the ability distribution.10

The second part of Theorem 1 states that the highest-ability types are optimally separated

across present bias levels β. From the agents’ points of view, disagreement in time preferences be-

tween each other and with the planner imply differential distortions given any one allocation for

those types. Although the planner would like them to adhere to the same consumption-savings

schedule, at high ability levels the welfare gain from enforcing uniform savings is outweighed

by the resource cost from lower output as a result of savings distortions. Instead, the planner

can extract more resources from the highest-ability types when their downward-binding IC con-

straints are relaxed by offering savings options tailored to their individual levels of present bias.

Given that Pareto weights are decreasing in ability, this can improve welfare by transferring ex-

tra resources toward lower ability types. As a result, the planner optimally allows for different

allocations among the highest-ability types to facilitate redistribution.

Optimal savings distortions. We now characterize the nature of optimal savings distortions. To

this end, it is useful to define two wedges that represent distortions at the solution to the planner’s

problem. First, we define the decision wedge to capture distortions in agents’ view:

τD (θ, β) = 1− u′ (c1 (θ, β))

Rβδu′ (c2 (θ, β))

The decision wedge captures deviations from agents’ Euler equations relating consumption be-

tween periods 1 and 2. Under laissez-faire, agents would choose their preferred savings rate and

τD (θ, β) = 0. A negative decision wedge is akin to a positive implied tax on current consumption,

which is associated with a higher savings rate than agents would pick in laissez-faire. Note that

for any given allocation, the decision wedge differs across β-types.

Second, we define the efficiency wedge to capture distortions in the planner’s view:

τE (θ, β) = 1− u′ (c1 (θ, β))

Rδu′ (c2 (θ, β))

The efficiency wedge measures deviations from the planner’s Euler equation and thus the wel-

10In Appendix B, we present an interpretation of β as a hyperbolic discount factor in a dynamic environment and
show that the planner optimally provides full insurance to lowest-ability types against their future time inconsistency.
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fare losses relative to the efficient marginal rate of substitution. The first-best economy features

τE (θ, β) = 0 for all types. A positive efficiency wedge means that agents over-consume in period

1 relative to period 2 when compared to the first-best savings rate. The decision wedge coincides

with the efficiency wedge for β = 1. For all other β-types we have τD (θ, β) < τE (θ, β), indicating

that the planner wants agents to save at a higher rate for all β < 1.

By signing decision wedges and efficiency wedges across types at the solution to the planner’s

problem, we learn about the nature of distortions and inefficiencies that characterize the second-

best allocation. The following result provides such a characterization given a utilitarian or more

redistributive planner.

Theorem 2. Assume λ′ (θ) ≤ 0 and fix {θ2, . . . , θN−1}. Then there exist scalars θ > 0 and θ < +∞ such

that at the solution to the planner’s problem:

1. If θ1 < θ, then:

• τD (θ1, β) < 0 for β < 1 and τD (θ1, βM) ≤ 0;

• τE (θ1, β) = τE (θ1) ≤ 0 for all β;

2. If θN > θ, then:

• τD (θN , βM) = τE (θN , βM) ≤ 0;

• τE (θN , β1) > 0.

Proof. See Appendix A.2.4.

Intuitively, Theorem 2 shows that savings distortions optimally vary throughout the income

distribution. The interaction between paternalism and redistribution is again key to understand-

ing this result. Dispersion in savings distortions is optimally used as an additional screening

device when there is present bias heterogeneity. While the planner would like to correct sav-

ings throughout the ability distribution, a given savings distortion is more costly at higher ability

levels. Thus the trade-off between paternalism and redistribution determines optimal decision

wedges and efficiency wedges throughout ability distribution.

The first part of Theorem 2 states that the lowest-ability types experience an implied savings

subsidy that is strictly positive for all β-types except for the most patient type whose subsidy
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is weakly positive.11 Furthermore, these implied savings subsidies are strong enough to move

the lowest-ability types weakly above the first-best savings rate. As in our example with 2× 2

types, the planner optimally uses high savings at the bottom as a screening device to encourage

work effort at higher ability levels. This is optimal because the associated welfare costs from

such distortions are of second-order while they relax downward-binding IC constraints to a first

order. Furthermore, at low enough ability levels, the welfare gains from enforcing a high savings

rate outweigh the resource cost of discouraging work effort at these levels. Consequently, a high

savings rate is optimal among low-ability types.

The second part of Theorem 2 shows that top-ability types’ savings rates vary between the

planner’s and agents’ preferred rates. Agents with β < 1 face a strictly positive implied savings

subsidy, while the implied subsidy for the most patient type is weakly positive. Along our previ-

ous intuition, the planner cares about correcting all agents’ savings decisions, hence induces them

to save more than they would in laissez-faire. But bringing their savings up to the efficient level

is too costly, hence a strictly positive efficiency wedge remains for all but the most patient agent,

whose efficiency wedge is weakly positive. For high ability levels, welfare losses due to inefficient

savings are outweighed by the additional resources extracted from them as their IC constraints

with respect to low ability types are relaxed. As a result, the planner optimally allows some of the

top-ability types to save less than the first-best rate, though more than their preferred rate.

2.4 Comparison to most related results in the literature

We have argued that our main theoretical results arise from the interaction between present bias

heterogeneity and the redistributive motive. To understand the forces in our model, it is instruc-

tive to relate our model to three influential results in the literature.

First, the intermediate goods taxation result of Atkinson and Stiglitz (1972) states that in a

static environment without preference disagreement, intertemporal consumption decisions op-

timally remain undistorted even in the presence of a redistributive motive. Their result can be

illustrated in our simple example with 2× 2 types and β = 1 for all agents. In that model, the

only dimension of heterogeneity is the level of earnings ability θ ∈ {θL, θH} where θL = 0 < θH.

The only relevant IC constraint is then u (c1 (θH))− v (y (θH)) /θH + δu (c2 (θH)) ≥ u (c1 (θL)) +

11In numerical simulations, we find a strictly positive decision wedge for (θ1, βM)-types and a strictly positive effi-
ciency wedge for all (θ1, β)-types to be robust features of the solution to the planner’s problem.
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δu (c2 (θL)). Since everyone agrees on the value of consumption over time, we can rewrite the

planner’s problem in its dual form as a resource cost minimization problem for each ability type:

minc1,c2

{
c1 +

1
R c2
}

s.t. u (c1) + δu (c2) = Ū (θ), where Ū (θ) depends on the optimal transfers

across ability types taking into account IC. Taking first-order conditions of the above problem, we

get u′ (c1 (θ)) = Rδu′ (c1 (θ)) and therefore τD (θL) = τD (θH) = τE (θL) = τE (θH) = 0. Hence,

redistribution without paternalism leads to undistorted savings.12

The second related result is that of Farhi and Werning (2010) who find the optimal efficiency

wedge is monotonically increasing in ability under redistribution and a constant level of present

bias. Their environment resembles our example with βL = βH = β < 1 and θ ∈ {θL, θH} where

θL = 0 < θH. The IC constraint is then u (c1 (θH))− v (y (θH)) /θH + βδu (c2 (θH)) ≥ u (c1 (θL)) +

βδu (c2 (θL)). Given λ (θL) ≥ λ (θH) and 0 = y (θL) < y (θH), the IC constraint must bind at

the solution, so the planner would like to redistribute more toward θL-types. The planner can

improve upon the efficient savings rate by increasing θL-types’ savings rate and decreasing type

θH-types’ savings rate. Both perturbations incur a second-order welfare loss but strictly relax the

IC constraint, which facilitates redistribution and leads to a first-order net welfare gain. As a

result, at the optimum, θL-type agents strictly over-save, τE (θL) < 0, while θH-type agents strictly

under-save, τE (θH) > 0. Hence, the interaction between redistribution and a constant degree of

paternalism gives rise to efficiency wedges that are strictly increasing in ability.

Third, the result in Amador et al. (2006) in a model without redistribution but with hetero-

geneity in present bias is also relevant to our analysis. They find that the optimal policy in this

environment takes the form of a minimum savings threshold, which leaves patient agents’ savings

undistorted. Although for different reasons, the optimal policy emerging from our framework

also entails greater dispersion in savings at higher ability levels. A unique feature of our environ-

ment relative to theirs is that at low ability bunching occurs above the first-best savings rate, while

implied savings rates are differentially distorted at high ability.

Our model combines the two ingredients of redistribution and present bias heterogeneity. The

forces in Atkinson and Stiglitz (1972), Farhi and Werning (2010), and Amador et al. (2006) are

also present in our model and partially characterized by Theorems 1 and 2. As in Atkinson and

12Savings may of course be distorted for other reasons not present in our benchmark model, such as insurance in an
incomplete markets environment with uninsurable income risk (Golosov et al., 2007). In Appendix B, we consider such
a dynamic environment and extend our main results to this setting. The main insight emerging from this analysis is
that the planner’s inverse Euler equation replaces the static Euler equation in our formulation above.
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Stiglitz (1972), the savings of (θN , βM)-types are undistorted. As in Farhi and Werning (2010),

the efficiency wedge is decreasing in ability. And as in Amador et al. (2006), low-ability types

are optimally bunched regardless of present bias levels. Our model bridges these seminal results

in the optimal taxation literature and brings to bear additional richness due to the interaction

between redistribution and heterogeneity in present bias. In choosing the menu of allocations,

the planner optimally offers a degenerate choice set to low-ability agents, but a tailored menu of

differentially distorted choices to high-ability agents (Theorem 1), with lower savings distortions

toward higher ability levels (Theorem 2).

3 Decentralization using realistic retirement savings policies

The previous section characterized features of the optimal allocation in an environment with

present bias heterogeneity and redistribution. Next, we study the implications of these findings

for the design of realistic policies. To this end, we equip a government with three instruments that

resemble many real-world retirement savings systems.

The first instrument is a tax-financed old-age transfers as a function of life-time income, which

agents cannot borrow against, such as Social Security in the US.13 The second instrument is com-

prised of a finite set of retirement savings accounts with subsidies and contribution limits that

depend on income. We interpret one of these accounts as a regular savings account with no cap.

Mapping this into the real-world policies, we have in mind the multitude of direct contribution

plans such as 401(k) and IRA accounts that feature a combination of tax-incentivized employer

matching, tax-preferred treatment, and contribution limits that depend on income, in addition to

a personal investment account. The third instrument is a non-linear income tax that depends on

the set of retirement savings account used by the agent.

Given their earnings ability θ and one of M present bias levels β, agents take as given the

savings and tax system and decide on how much to work, y, as well as the division of their net

income between consumption and the set of available retirement savings accounts. They receive

mandated old-age benefits b (y), which we think of as their first (forced) savings account. In

13Indeed, the use of Social Security payment streams as collateral on loans is prohibited by federal law under Title
II of the Social Security Act, Sec. 207. [42 USC. 407] (a). See also Feldstein and Liebman (2002) for a discussion of
theoretical and empirical issues related to the Social Security program.
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addition, they may save in retirement savings accounts indexed by m = 2, . . . , M with net rates

of return (1− τm (y)) R and contribution limits am (y).14 Retirement savings accounts are sorted

in the generosity of their subsidy rates, 1 − τ2 (y) ≥ . . . ≥ 1 − τM (y) ≥ 1, so that agents use

account m only after exhausting contribution limits on the more generous accounts 2, . . . , m− 1.

While working, agents face a non-linear income tax TM0 (y), where M0 denotes the least generous

retirement savings account used by the agent.15 The problem that an agent of type (θ, β) solves is

summarized as follows:

max
c1,c2,y,M0

u (c1)− θv (y) + βδu (c2) (4)

s.t. c1 +
M0

∑
m=2

am = y− TM0 (y)

c2 = b (y) + R
M0

∑
m=2

(1− τm (y)) am

0 ≤ am ≤ am (y)

M0 = 1 +
M

∑
m=2

1 [am > 0]

Definition 2. A competitive equilibrium with retirement savings policies is a feasible allocation A =

{c1 (θ, β) , c2 (θ, β) , y (θ, β)}(θ,β)∈Θ×B that, given a set of retirement savings and tax-transfer poli-

cies
(
{ām (·)}M

m=2 , {τm (·)}M
m=2 , {Tm (·)}M

m=1 , b (·)
)

, solves agents’ problem (4).

In the spirit of Ramsey (1927), the planner takes as given agents’ maximizing behavior and

picks parameters on retirement savings and tax-transfer policies that yields the maximum wel-

fare given social preferences δ and {λ (θ)}θ∈Θ. Such retirement savings policy instruments with

realistic features are sufficient to implement the optimal allocation from the planner’s problem.

Proposition 1. The solution to the planner’s problem can be decentralized as a competitive equilibrium

with retirement savings policies. Assume λ′ (θ) ≤ 0 and fix {θ2, . . . , θN−1}. Then there exist scalars

θ > 0 and θ < +∞ such that if θ1 < θ and θN > θ then the decentralization satisfies:
14We could extend our model by allowing for βM > 1, which would require an additional minimum participation

threshold for retirement savings accounts. Indeed, low-income individuals in the US are less likely to have access to
401(k) accounts with employer-matched contributions (Financial Engines, 2015).

15That income taxes depend on savings accounts use is not an unrealistic feature, given that contributions to 401(k) or
IRA accounts, both Roth and regular, have differential tax treatments in the US. The ability to condition income taxes on
savings account usage is a qualitatively important feature of the optimal policy at high incomes, as the planner wants
to levy higher taxes on present-biased high-ability agents relative to more patient agents at the same ability level.
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1. Types θ1 receive only old-age benefits and use none of the optional retirement savings accounts;

2. Types θN use retirement savings accounts in addition to receiving old-age benefits.

Proof. Follows directly from the proofs of Theorems 1 and 2.

The intuition behind the decentralization described above is straight-forward. The two key

features that the optimal policy toolset needs to replicate are: first, bunching of low-income agents

at a uniform, high savings rate; and second, strict separation in savings rates at higher incomes.

The planner must replicate these features by picking policy parameters appropriately. The old-age

benefits schedule must be generous enough relative to low incomes so as to constrain agents to

be at a corner in their savings decision, unwilling to put additional funds in any of the retirement

savings accounts. Old-age benefits must also be small enough relative to high incomes so as to

allow those agents to self-select into the available retirement savings accounts. Agents with high θ

will progressively exhaust the contribution limits on the retirement savings account, starting with

the most generous account and using the account with the next most generous subsidy rate after

that.

We conclude that the optimal policy tools qualitatively resemble many real-world retirement

savings systems, which feature forced savings at low incomes and a choice between multiple

subsidized savings accounts toward higher income levels.

4 Quantitative exercise

This section evaluates through the lens of our normative model current US retirement savings

policies in four steps. First, we develop a broadly applicable computational algorithm that allows

us to numerically solve our framework with general two-dimensional heterogeneity. Second, we

use a positive version of our consumption-savings model to recover the joint distribution of earn-

ings ability and time preferences from microdata on life-time income and wealth accumulation

under current US policies. Third, we adapt the inverse-optimum approach (Bourguignon and

Spadaro, 2012) to select social preferences that most closely rationalize current US savings and tax

policies. Finally, we use the calibrated normative framework to describe optimal savings policies

and quantify welfare gains from reforms to the current system.
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4.1 Numerical algorithm for solving multidimensional screening problems

Finding numerical solutions to two-dimensional screening problems has been recognized to be

a difficult task (Rochet and Choné, 1998). This is partly because many of the techniques that

one-dimensional optimization problems commonly rely on fail in a multi-dimensional context.

Specifically, the first-order approach (Rogerson et al., 1985) does not extend seamlessly to multi-

dimensional settings and thus global IC constraints may bind. This is not just a question of com-

putational intensity. As Judd and Su (2006) point out, when the number of binding IC constraints

at the optimum exceeds the number of choice variables then the linear independence constraint

qualification (LICQ) fails, rendering Karush-Kuhn-Tucker conditions and other Lagrangian op-

timization routines unstable.16 In a two-period environment with N = Nθ × Nβ types, which

implies N2− N global IC constraints and 3N choice variables, failure of the LICQ may occur with

as few as N = 6 types and in practice occurs commonly for larger N. Consequently, standard

optimization routines such as fsolve or fmincon in MATLAB fail to deliver reliable solutions.

We contribute to this literature a stable and computationally efficient numerical algorithm to

solve a general class of multidimensional nonlinear optimization problems.17 Our algorithm finds

the smallest set of IC constraints sufficient to solve the global program. To this end, we first “con-

vexify” our problem in utility space. We then initiate the algorithm by selecting a small set of

IC constraints in addition to feasibility, which allows us to efficiently solve a relaxed program.

Subsequently, we check global IC before iteratively adding and dropping constraints according to

a stochastic rule based on the ranking of violations for excluded constraints, and Lagrange mul-

tipliers for included constraints at the solution to the relaxed program. Once we find a solution

that satisfies global IC and feasibility, convexity of the problem guarantees that this be the globally

unique solution. In theory, our algorithm converges to the global optimum with probability one,

although convergence take finite but arbitrarily long time. In practice, we find that the algorithm

converges quickly even for large-scale problems.18 Appendix C gives further details of the com-

16Formally, the LICQ states that the gradients of the binding constraints at the solution are linearly independent. The
LICQ is a sufficient condition for convergence in many numerical optimization algorithms and in many applications
necessary for convergence or at least reasonable speed thereof.

17Our algorithm relies neither on the paternalistic nor the redistributive formulation of our problem and can be
readily extended to more general settings.

18In all parameterizations of our problem, we find that a small fraction of all global constraints bind at the solution,
allowing us to solve the problem using optimization routines that are robust to mild LICQ failures. The same solution
may not obtain efficiently when attempting to solve the problem subject to the complete set of global IC constraints.
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putational algorithm and demonstrates its application to a large-scale variant of our problem with

6×1,000 types, 18,000 choice variables, and 35,994,001 constraints.

4.2 Calibrating the joint distribution of earnings ability and time preferences

4.2.1 Calibration strategy

Identification. A key ingredient in our quantitative analysis of optimal savings policies is the

joint distribution of earnings ability and time preferences. To identify this, we use data on retire-

ment savings rates, defined as the ratio of wealth at retirement to life-time earnings, reported in

Engen et al. (2005) using the University of Michigan Health and Retirement Study (HRS). As will

become clear shortly, through the lens of our model, this statistic is informative about an individ-

ual’s propensity to save conditional on an earnings history.

The data show considerable heterogeneity in retirement savings rates both within and between

life-time earnings groups. Figure 2 plots retirement savings rates as a function of savings rate per-

centiles (x-axis) and life-time earnings quartiles (colored lines). Three points are noteworthy. First,

across income groups a substantial share of the population accumulate negligible net financial as-

sets throughout their working life, with over one quarter of individuals entering retirement with

less than five percent of life-time earnings. Second, there is substantial variation in retirement

savings rates within income groups, ranging from close to zero to over 40 percent between the

fifth and 95th percentiles of the savings rate distribution. Third, retirement savings rates show

a mildly positive covariance with life-time earnings quartiles. For example, less than 20 percent

of the highest earnings quartile individuals show at most a five percent retirement savings rate,

while the same fraction is around 50 percent for the lowest earnings quartile.

It should be noted that our identification of time preferences is not free from potential criticism.

For example, Aguiar and Hurst (2005) note that mismeasurement of home production can explain

parts of the observed consumption drop upon retirement. A level shift in retirement wealth is not

per se a problem for our analysis as our focus lies on heterogeneity. Potentially more problematic

is dispersion in the reliance on unmeasured home production, which would tend to lead us to

overestimate the variation in present bias conditional on earnings ability. However, we can allow

for sizable degrees of measurement error in retirement wealth without changing our main conclu-
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Figure 2. Distribution of retirement savings rates by income quartiles
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Note: Each line represents the distribution of retirement savings rates within one life-time earnings quartile. Retirement
savings rates are defined as the ratio of non-Social Security wealth at retirement to life-time earnings. Life-time earnings
are computed given reported earnings history and estimates from Khitatrakun et al. (2000). Non-Social Security wealth
includes all liquid wealth, deposits in retirement accounts, defined benefit plans, business equity, other real estate
equity, and half of the primary home value. Source: Engen et al. (2005) using the 1992 HRS sample of households.

sions. Observed variation in retirement savings rates may also be due to efficient motives outside

of our model, such as heterogeneous longevity risk (Pijoan-Mas and Ríos-Rull, 2014), long-term

care risk (Ameriks et al., 2015), or dynastic precautionary savings (Boar, 2017). We can address this

issue in two ways. First, the richness of the HRS data allows us to partially alleviate such concerns

by controlling for a myriad of covariates including spousal characteristics, health status, inheri-

tance values, retirement age, life expectancy, and degrees of risk aversion. Second, it would be

straight-forward to extend the model to explicitly incorporate other dimensions of heterogeneity

such as differences in life expectancy as a deterministic function of (θ, β).

In support of our interpretation of retirement savings rates as reflecting present bias, the HRS

data show that households with below-median retirement savings rates are 73 percent more likely

to have thought “hardly at all” about retirement and 25 percent less likely to have thought “a lot”

about retirement. Hence the nature of the decision process differs across savings groups, in line

with findings in the psychological science literature linking hyperbolic time discounting to lower

cognitive skills (Burks et al., 2009).
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Parameters. How does our model target the joint distribution of earnings ability and present

bias? To this end, we parameterize household preferences by

U (c1, c2, y; θ, β) =
c1−1/σ

1 − 1
1− 1/σ

− `1+1/γ

1 + 1/γ
+ ψ

c1−1/σ
2 − 1
1− 1/σ

where labor supply is ` = y/θ. We adopt as exogenous parameters a standard value for the

intertemporal elasticity of substitution, σ = 0.5, and a Frisch elasticity of labor supply of γ = 1,

which falls in the middle of macro- and micro-estimates in the literature (Rogerson, 1988; Chetty,

2012). As alluded to above, the effective discount factor ψ = βδ is identified off heterogeneity in

empirical retirement savings rates conditional on life-time earnings. While β and δ are hard to

identify separately in the data, in the next subsection we infer a value of δ as the discount factor

embedded in current US retirement savings policies. In line with Amador et al. (2006), we view β

in the two-period model as standing in for present bias in the fully dynamic model.

Before calibrating key model parameters, we approximate current US tax-transfer and retire-

ment savings policies in our model. To this end, we model the current US tax-transfer system

using a parsimonious approximation proposed by Feldstein (1969) and used in related work by

Persson (1983), Benabou (2000), Heathcote et al. (2014), and Heathcote and Tsujiyama (2015). In

this formulation, net transfers T depend on taxable income Y according to

T (Y; λ, τ) = Y− λY1−τ (5)

We adopt Heathcote et al. (2014)’s estimates of the level parameter λ and the progressivity param-

eter τ in equation (5) using Panel Study of Income Dynamics (PSID) data for 2002–2006. They find

that τ = 0.151 provides the best fit to the current US tax-transfer system, and λ = 0.836 balances

the government budget. Furthermore, we model the current retirement savings system as a com-

bination of old-age benefits and a number of savings vehicle subject to different income-specific

subsidy rates and contribution limits. We model Social Security taxes and transfers using the 2014

income tax rate, a USD 118,500 earnings exemption threshold, and a replacement rate schedule of

old-age transfers as a function of life-time income. We also integrate three different savings ac-

counts: first, a 401(k) account allowing voluntary tax-deferred contributions up to $18,000 plus 50
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percent employer-sponsored contribution matching (Financial Engines, 2015); second, an IRA ac-

count allowing for voluntary tax-deferred contributions up to $5,500; and third, a regular savings

account with a real annual rate of return of R− 1 = 3.44% (Gourinchas and Parker, 2002).

Taking current policies as given, we calibrate the joint distribution of (θ, ψ) to match the joint

distribution of earnings and retirement savings rates in the data. Specifically, we first map per-

centiles of the distribution of average life-time earnings between age 25 to 65 from the 2013

March Current Population Survey (CPS), denoted {ỹi}i, into the model earnings ability distri-

bution. The distribution of life-time earnings in the CPS broadly conforms with that in the HRS

but provides us with more precise estimates of earnings percentiles. We pick the distribution of

earnings ability {θi}i to approximate the earnings distribution by setting θi = ỹ1+1/γ
i . We then

map empirical retirement savings rates from the HRS data into model savings rates {si}i, where

si = (c2,i/R) / (c1,i + c2,i/R). To match retirement savings rates across income groups, we let the

marginal distribution of effective discount factors be ψ ∼ Beta (a, b) with shape parameters a > 0

and b > 0 over ten discrete grid points. The Beta distribution is convenient for our purposes as

it allows for asymmetry and it is bounded in [0, 1]. Importantly, we allow in our calibration for

the possibility that β > 1, implying that agents are more patient than the planner.19 We then de-

fine the joint distribution of earnings ability and present bias as the Gaussian copula between the

marginal distributions of θ and ψ with correlation parameter ω. In practice, our calibration targets

the 25th, 50th, and 75th percentiles of the distribution of retirement savings rates across quartiles

of the lifetime earnings distribution, yielding a total of 12 targets.

4.2.2 Calibration results

Table 1 shows the results from our calibration exercise. Ability parameters {θi}i match an earnings

distribution with mean 56,164, while the 10th and 90th percentiles are 13,521 and 112,170, respec-

tively, all reported in 2013 US dollars. The mean effective discount factor is ψannual = 0.985.20

Our calibration also points to considerable heterogeneity in discount factors, but with 90 per-

cent of mass between 0.905 and 0.999 in annualized terms. Finally, the Gaussian copula correla-

19The proposition that government is more myopic than its citizens is a common tenet in the political economy and
international finance literatures (Aguiar and Amador, 2011; Halac and Yared, 2015).

20We annualize the discount factor ψannual assuming 40 periods of working life and 20 periods of retirement such
that ψ = ψ40

annual
(
1− ψ21

annual
)

/
(
1− ψ41

annual
)
. Our estimate corresponds to a mean compound private discount factor

of ψ = 0.322 between work and retirement periods.
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tion parameter between discount factors and earnings ability is estimated to be slightly negative,

ω = −0.107. But importantly this leads to a mildly positive correlation of 0.100 between dis-

count factors and earnings, as individuals with a higher discount factor endogenously supply

more labor. Overall, our present bias estimates fall within a range of empirically plausible esti-

mates, suggesting that this parameter choice provides a reasonable basis for our optimal policy

analysis.21

Table 1. Calibration results for joint distribution of earnings ability and discount factors

Description Values
PANEL A. CALIBRATED PARAMETERS

{θi}i CPS earnings percentiles
a 0.855
b 1.795
ω -0.107

PANEL B. IMPLIED MOMENTS

Earnings y, mean 56,164
Earnings y, 10th percentile 13,521
Earnings y, 90th percentile 112,170
Annualized discount factor ψannual , mean 0.985
Annualized discount factor ψannual , 10th percentile 0.905
Annualized discount factor ψannual , 90th percentile 0.999
Corr (y, ψannual) 0.100

Note: The ability distribution {θi}i is picked to match CPS earnings percentiles, reported in 2013 US dollars. Discount
factors are distributed ψ ∼ Beta (a, b) and reported as an annualized discount factor ψannual , assuming 40 periods of
working life and 20 periods of retirement, where ψ = ψ40

annual
(
1− ψ21

annual
)

/
(
1− ψ41

annual
)
. The joint distribution is a

Gaussian copula between marginal distributions of ability and discount factors with correlation parameter ω.

Table 2 reports the model fit vis-à-vis the data. Because we tie our hands with a sparse param-

eterization, the model cannot perfectly match the empirical discount factor distribution, although

its overall shape is captured well. In our model as in the data, there are large differences in savings

rates within life-time earnings quartiles, which our model generates through dispersion in present

bias conditional on earnings ability. Our calibrated model also matches the positive gradient of

savings rates across life-time earnings quartiles, captured by the correlation parameter ω. The

21While reduced form in nature, our estimates broadly conform with findings from a range of different settings. See
Augenblick et al. (2015) and Beshears et al. (2015) for laboratory experiments; Ashraf et al. (2006), Tanaka et al. (2010),
Jones and Mahajan (2015), and Kaur et al. (2015) for field experiments; and Laibson et al. (1998, 2017) for natural field
data estimates of present bias. The positive gradient of estimated discount factors in income we find is in line with
empirical correlations between life-time income and savings rates (Dynan et al., 2004) as well as with present bias
estimates in Paserman (2008), Meier and Sprenger (2015), and Lockwood (2016). See also De Nardi and Fella (2017) for
a comprehensive overview of dynamic quantitative models linking wealth heterogeneity to preference heterogeneity.
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large amount of dispersion in empirical retirement savings rates leads us to estimate significant

heterogeneity in present bias, both within and across income groups.

Table 2. Calibration fit to retirement savings rates by life-time earnings quartile

Q1 (lowest) Q2 Q3 Q4 (highest)
Savings rate percentile Data Model Data Model Data Model Data Model
25 0.0165 0.0163 0.0398 0.0367 0.0590 0.0451 0.0593 0.0653
50 0.0554 0.0899 0.0860 0.1021 0.1024 0.1083 0.1248 0.1254
75 0.1322 0.1431 0.1664 0.1712 0.1726 0.1765 0.2211 0.1839

Note: Objective in calibration is to minimize L2 norm between model and data statistics. Retirement savings rates are
defined as the ratio of non-Social Security wealth at retirement to life-time earnings. Life-time earnings are computed
given reported earnings history and estimates from Khitatrakun et al. (2000). Non-Social Security wealth includes all
liquid wealth, deposits in retirement accounts, defined benefit plans, business equity, other real estate equity, and half
of the primary home value. Source: Engen et al. (2005) using the 1992 HRS sample of households.

4.3 Inferring social preferences using the inverse-optimum approach

In this subsection, we compare current US retirement savings and tax policies with optimal poli-

cies arising from our normative model. In theory, we could feed any social preferences, consisting

of a set of Pareto weights {λ (θi)}i and discount factor δ, into our model for this policy analysis.

In practice, a growing strand of the public finance literature uses the inverse optimum approach

(Bourguignon and Spadaro, 2012; Heathcote and Tsujiyama, 2015; Lockwood and Weinzierl, 2016),

which selects social preferences that most closely rationalize current real-world policies, as a nat-

ural starting point.22 In line with this approach, we measure the distance of current policies from

the Pareto frontier implied by our normative model, thus minimizing the welfare gains available

from reforms to the current system. In a separate exercise, we repeat our analysis through the lens

of a utilitarian planner, thus providing another popular benchmark in the literature.

Following Heathcote and Tsujiyama (2015), we parameterize Pareto weights across ability lev-

els as λ (θ) = exp (−αθ) /
(

∑θ′,β′ π (θ′, β′) exp (−αθ′)
)

, where α ∈ R indexes the government’s

redistributive motive. If α = 0 then the government is utilitarian, while higher α imply a greater

taste for redistribution. We estimate social preferences (α, δ) by solving our normative model over

a grid of such duplets and then picking the combination that minimizes the L2 norm between

22See Stantcheva (2016) for a discussion of some of the strengths and drawbacks of this approach.
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allocations in the normative and positive versions of our model:23

(α, δ) = arg min
(α̃,δ̃)

∑
θ,β

π (θ, β)

[(
cn

1
(
θ, β; α̃, δ̃

)
− cp

1 (θ, β)
)2

+
(

cn
2
(
θ, β; α̃, δ̃

)
− cp

2 (θ, β)
)2

+
(
yn (θ, β; α̃, δ̃

)
− yp (θ, β)

)2
]

where superscript n denotes our normative model’s optimal allocation as a function of
(
α̃, δ̃
)
, and

superscript p denotes allocations from our calibrated positive model given current US policies.

Table 3 summarizes our estimation results. We find that α = −0.601 and δannual = 0.974, with

associated compound discount factor δ = 0.224 between working life and retirement, lead the

optimal allocation from our normative model to best approximate the allocation given current

policies in our calibrated positive model. Together with our calibration for ψ this implies that

the level of present bias, βannual = ψannual/δannual , has mean E [βannual ] = 1.011, corresponding

to a compound mean present bias level of E [β] = 1.436 between two periods. Consistent with

recent experimental evidence by Montiel Olea and Strzalecki (2014), we allow for some agents to

be overly patient at the time of their savings decision and our estimates imply that these agents

make up 57 percent of the population. At the same time, 43 percent of the population discount the

future at a higher rate than the planner, indicating that these agents would save less than they do

under current policies.

Table 3. Social preferences estimated using inverse optimum approach

Description Values
PANEL A. ESTIMATED PARAMETERS

Pareto weight curvature α -0.601
Social discount factor δ 0.224

PANEL B. IMPLIED MOMENTS

Pareto weight λ (θ), mean of θ 1.000
Pareto weight λ (θ), 10th percentile of θ 0.836
Pareto weight λ (θ), 90th percentile of θ 1.762
Present bias β, mean 1.436
Present bias β, 10th percentile 0.073
Present bias β, 90th percentile 2.219

Note: The redistributive parameter α guides the gradient of Pareto weights across ability levels according to λ (θ) =

exp (−αθ) /
(

∑θ′ ,β′ π (θ′, β′) exp (−αθ′)
)

, normalized such that λ (Eθ) = 1.000. The discount factor used to calculate
social welfare V (·) is given by δ.

23As a robustness check we also searched for social preferences that minimize the consumption-equivalent welfare
gain associated with moving from current to optimal policies, yielding qualitatively similar results.
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4.4 Optimal policies and reforms to the current system

In this section, we use the calibrated normative model to compare optimal savings policies versus

the current US retirement savings system.

Redistributive motive and optimal dispersion in savings rates. How much choice in savings

is optimally offered throughout the income distribution? Figure 3(a) plots as a function of in-

come (x-axis) and present bias levels (colored lines) the optimal retirement savings rate, s =

(c2/R) / (c1 + c2/R), from our calibrated normative model. As in Theorem 1 of our theoreti-

cal characterization, low earnings feature a uniform savings rate, while at high earnings optimal

savings rates vary widely across present bias levels. As in Theorem 2, at incomes close to zero

individuals optimally save at a 20 percent rate, which significantly exceeds percent the first-best

savings rate of 16.6 percent. In contrast, savings rates for individuals earning USD 200,000 vary

substantially across types, between 15 and 21 percent. Compared to the empirical savings rates in

Figure 2, which span a wide array of savings rates in each income quartile, the optimal savings

rates are uniformly higher and less dispersed, particularly at low incomes.

How is this pattern influenced by the planner’s redistributive preferences? Figure 3(b) plots

optimal retirement savings rates for a planner with utilitarian (i.e. more redistributive) preferences

than in the benchmark while keeping all other parameters fixed. At low earnings, the level and

dispersion of optimal retirement savings rates is similar to our benchmark calibration. At high

earnings, however, greater taste for redistribution implies considerably more dispersion in opti-

mal savings rates. For example, the range of optimal savings rate at high incomes increases sub-

stantially, varying between 10 and 25 percent. The planner uses flexibility in savings rates at high

earnings to extract more resources for redistribution toward the bottom. Conversely, the more the

planner cares about low-ability individuals, the lower the welfare losses from high-ability types

deviating from the preferred savings rate. As a result, the optimal dispersion of savings rates at

higher incomes is increasing in the planner’s redistributive taste α. For higher α, the optimal sav-

ings rates more closely approximate empirical savings rates at high incomes, although low-income

individuals still save too little relative to the social optimum.
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Figure 3. Optimal retirement savings rates fan out under more redistributive welfare function
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(b) Utilitarian planner
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Note: Proportion of retirement consumption is defined as s = (c2/R) / (c1 + c2/R). The horizontal axis shows annu-
alized earnings during working life, while the vertical axis shows the optimal proportion of retirement consumption.
Each line represent the allocation of agents with a given level of β. Benchmark is the main calibration described in the
text, using less redistributive than utilitarian welfare weights. Utilitarian is attaching equal weights across ability types
and using the same calibrated discount factor δ as in the benchmark calibration.

Quantitative analysis of optimal savings accounts. What are the quantitative features of opti-

mal savings accounts, and how do they compare to the current US retirement savings system?

Figure 4 plots the caps on retirement savings accounts arising from the benchmark normative

model. Individuals with annual incomes up to USD 65,000 receive only Social Security payments.

Above that threshold, optimal savings vehicles include a “subsidized account” with a contribu-

tion limit of around 1.8 percent of income, and a “tax-preferred account” with a limit of around 3.7

percent. Further accounts have caps close to zero. Hence, a small number of accounts is sufficient

to approximate the optimal savings schedule.

Figure 5 plots optimal tax (if positive, or subsidy if negative) rates on savings across retirement

savings accounts in the decentralization. Optimal subsidy rates are progressive (i.e. lower subsi-

dies, or higher taxes, at higher incomes). The “subsidized account” features a 30 percent subsidy

that phases out to zero around USD 15,000 in annual income before steadily increasing to a 25 per-

cent tax rate at USD 200,000 in earnings. The second “tax-preferred account” is taxed at a rate that

increases from 20 to 40 percent over the same income range. Finally, the tax on a regular savings

account is optimally set around 45 percent. The presence of taxes on savings indicates that the

planner in our benchmark normative model thinks that some individuals want to save too much.
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Figure 4. Optimal contribution limits on retirement savings accounts
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Note: Contribution limits are defined as upper bounds on savings accounts in the decentralization. The horizontal
axis shows annualized earnings during working life, while the vertical axis shows contribution limits for each of three
different retirement savings accounts. Each line represents one of three retirement savings accounts.

Figure 5. Optimal savings taxes on retirement savings accounts
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Note: Savings tax (if positive) or subsidy (if negative) rates on retirement savings accounts. The horizontal axis shows
annualized earnings during working life, while the vertical axis shows the savings tax rate. Each line represents one of
the three retirement savings accounts and the regular savings account.
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We now turn to the analysis of Social Security old-age benefits. Figure 6 compares current US

Social Security old-age benefits (orange dashed line) as a function of annualized earnings (x-axis)

with the normative model implications under the benchmark social preferences (α = −0.601, solid

blue line) and under utilitarian social preferences (α = 0, dashed blue line). In our benchmark cal-

ibration, the planner cares relatively more about high-ability individuals and consequently would

like them to save at much higher levels than currently embedded in the current Social Security

benefits schedule. This is because under this parameterization there is little desire for transfers to-

ward lower income levels and since lower incomes themselves generate relatively few resources

that could be transferred upward, the planner’s objective is primarily to get high-income indi-

viduals to save adequately for retirement. Utilitarian social preferences approximate the shape

of old-age benefits reasonably well, but call for uniformly higher old-age benefits, that is a lower

planner’s discount factor.24

Figure 6. Fit of normative model versus positive model: old-age benefits as a function of income
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Note: Annualized Social Security old-age benefits (y-axis) by annualized labor earnings level (x-axis). Each line rep-
resents the retirement benefits in a different system: current US Social Security old-age benefits (orange dashed line),
normative model with benchmark social preferences (α = −0.601 , solid blue line), and normative model with utilitar-
ian social preferences (α = 0, dashed blue line). US Social Security old-age benefits are approximated using the Social
Security Administration’s Quick Calculator, taking into account contribution limits and decreasing replacement rates
at higher earnings levels.

24Our estimated social discount factor of δ = 0.224 was picked to approximate the consumption-savings allocation
given real-world policies, not to match specific aspects of the current system.
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Welfare gains from reforms. Our framework lends itself to analyzing jointly the current US re-

tirement savings and tax-transfer system. We find large welfare gains from reforms to the current

system as we uncover a tension between its two components. This tension arises because there

exist no social preferences (α, δ) that jointly rationalize both systems.

On one hand, the US tax-transfer system is best justified through welfare weights that are less

redistributive than utilitarian, i.e. put more weight on high ability levels. Indeed, Heathcote and

Tsujiyama (2015) find that the US tax-transfer system is best rationalized by a value of θ = −0.566,

which is more redistributive than a laissez-faire planner (θ = −1) but less redistributive than the

utilitarian benchmark (θ = 0). Those authors also show that the optimal system approximates

well the current US tax-transfer system, with small welfare gains available from reforms.

On the other hand, an evaluation of the US retirement savings system through the lens of our

model requires more redistributive than utilitarian welfare weights in order to match the shape of

the Social Security benefits schedule (Figure 6), and the vast amount of choice in savings offered

to high-income individuals (Figures 2 and 3(a)). To illustrate this divergence, we re-estimate social

preferences to match the current US retirement savings system. We find that a more redistributive

than utilitarian planner (α = 0.150) with low social discount factor (δ = 0.067, or δannual = 0.940)

closely approximates the current system of Social Security and retirement savings accounts on its

own.25 Again, the intuition for this result is that the only reason a planner would offer choice in

savings is to facilitate redistribution of resources toward lower incomes.

Hence, independent of social preferences, the current system is off the Pareto frontier. Our

welfare calculations should be taken with a grain of salt, as they measure the divergence between

the planner’s and agents’ preferences over and above the classical measures in welfare analysis

(Lucas, Jr., 1987; Krusell and Smith, 1999; Krusell et al., 2009), making our estimates not directly

comparable to those calculations. With this qualification in mind, we find large divergence be-

tween allocations under the current policy system and optimal allocations from the calibrated

normative model, amounting to 17.5 percent consumption-equivalent welfare gains in our bench-

mark calibration.26 This welfare distance metric is even larger when adopting social preferences

25Relative to Figure 6, these social preferences shift down the Social Security old-age benefits scheduled plotted by
the blue dashed line. Relative to Figure 3(b), these social preferences result in slightly higher dispersion in savings rates
at top incomes, comparable to the empirical savings rates across income groups shown in Figure 2.

26We compute consumption-equivalent welfare gains as a uniform change in consumption during working life and
retirement, holding fixed labor supply.
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to match either one of the retirement savings or tax-transfer systems individually. Hence, there

is a tension in reconciling the current US system through the lens of our model that allows us to

jointly evaluate existing retirement savings and tax-transfer policies.

How much does a planner value simple reforms to the current system? To answer this ques-

tion, we consider the following realistic policy instruments: a tax-transfer schedule with parame-

ters λ and τ as in equation (5); uncapped social security contributions and benefits with a constant

replacement rate γ > 0 at all earnings levels; a single retirement savings account with a minimum

earnings eligibility threshold ymin ≥ 0, a contribution limit as a share of labor income amax (y) = ay

for a ∈ [0, 1], and a government-sponsored matching rate of 50 percent; and a regular savings ac-

count subject to regular income taxes. Given our benchmark social preferences, we then solve the

Ramsey problem of a planner equipped with these simple policy instruments.

We find that with these simple instruments the government is able to obtain sizable consumption-

equivalent welfare gains of 7.0 percent, or 40 percent of the full optimum. In this exercise, the op-

timal policy involves significantly higher social security benefits (γ = 1.94) funded by more pro-

gressive income taxation (λ = 0.74 and τ = 0.41). Individuals with incomes above ymin =34,775

US dollars start using the retirement savings account, which is capped at 0.6 percent of income. In

essence, given our estimated Pareto weights, the government should increase old-age consump-

tion and reduce savings choice throughout the earnings distribution, relative to the current US

retirement system.

5 Generalization to other behavioral and neoclassical problems

Our main insights extend naturally into a variety of behavioral and neoclassical environments

featuring two key ingredients. The first ingredient is heterogeneous disagreement between agents

and the planner. Following Mullainathan et al. (2012), we summarize this as preference wedges

between agents’ and the planner’s evaluations of the returns to some action. In a behavioral con-

text, preference wedges may arise due to harm that agents inflect on themselves when they suffer

from psychological biases leading to deviations from the rational choice paradigm. In a purely

neoclassical context, preference wedges may arise when externalities lead one agent’s actions to

have unpriced effects on others. While both environments share the presence of a paternalistic
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motive, the extent of disagreement between agents and the planner varies due to differences in

the strength of behavioral biases, or due to differences in the extent to which economic context

shapes individuals’ incentives to engage in the production of externalities.

The second ingredient is the desire of the planner to collect revenues. In this context, the

classical motive stressed by the public finance literature is redistribution. But proceeds from tax

collection may also be used to finance public spending that is valued in the government’s utility

function. We will discuss below the case of redistribution, although our insights extend directly

to other motives for revenue generation.

In a general environment combining these two ingredients, there is a trade-off between pater-

nalism and redistribution. Our general result is that optimal policies involve a quantity restric-

tions at low earnings, whereas at high earnings individuals are given a choice between distorted

options.

5.1 General environment

A continuum of consumers are characterized by earnings ability θ ∈ Θ = {θ1, . . . , θN} ⊆ R+ and

their strength of temptation α ∈ A = {α1, . . . , αM} ⊆ R with 0 ∈ A. They take an action a = [0, 1]

with associated unit cost p and income-equivalent benefit b that depends on a such that b′ (a) > 0

and b′′ (a) < 0. We impose b′ (0) > p and b′ (1) < p to guarantee an interior solution.

A planner evaluates welfare according to agents experienced utility, which depends on con-

sumption c and earnings y according to

U E (θ) = u (c)− v (y)
θ

where u′ (·) > 0, u′′ (·) < 0, v′ (·) > 0,v′′ (·) > 0, and limy→0 v′ (y) = 0. Note that experienced

utility depends on the action a only through its effect on consumption. Meanwhile, agents act

according to their decision utility

UD (θ, α) = u (c) + αε (a)− v (y)
θ

which depends on consumption c, earnings y and the payoff to a generic action a. Here, αε (a)

is a preference wedge that consists of two elements: first, the strength of temptation α, which we
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allow to vary across individuals and be either be positive (leading to excessive action taking) or

negative (leading to insufficient action taking); and second, the temptation utility ε (a) such that

ε′ (·) > 0, ε′′ (·) ≤ 0 and b
(
ε−1 (·)

)
is weakly concave.

For α = 0 we have U E = UD and there is agreement between the government and the agents.

For α 6= 0, an agent’s private cost (or gain) from action a differs from the social cost (or gain) from

that action. We assume agents types are unobservable and distributed according to π (θ, α) with

full support. An allocation {a (θ, α) , c (θ, α) , y (θ, α)}(θ,α)∈Θ×A is resource compatible if

∑
θ,α

π (θ, α) [y (θ, α)− c (θ, α)− pa (θ, α) + b (a (θ, α))] ≥ 0

In this abstract formulation, the first-best level of the action a is given by, a∗ = b′−1 (p) ∈ (0, 1),

which does not vary with agents’ type and is independent of redistribution.27

Consider first the laissez-faire economy without government intervention. Agents then choose

(a, c, y) to maximize UD (θ, α) subject to the budget constraint y− c− pa + b (a) ≥ 0. Then agents

with α 6= 0 will choose a laissez-faire level of action aLF (θ, α) 6= a∗ and aLF (θ, α) 6= aLF (θ, α′)

for α 6= α′. Next, we consider optimal government intervention, starting with the case of no

redistribution. In this case, it is straight-forward to show that the socially optimal policy is a

quantity restriction of a (θ, α) = a∗, allowing agents to choose income y and consumption c to

satisfy y (θ, α)− c (θ, α)− pa∗ + b (a∗) ≥ 0. In this case, since the government’s preferred action

is that of the laissez-faire economy with zero preference wedges, then the first best-level of the

action does not depend on agent’s types.

Finally, we consider the general case with redistribution under utilitarian or more redistribu-

tive welfare weights.

Theorem 3. Assume λ′ (θ) ≤ 0 and fix {θ2, . . . , θN−1}. Then there exist scalars θ > 0 and θ < +∞ such

that at the solution to the planner’s problem:

1. If θ1 < θ, then all types {(θ1, α) : α ∈ A} are bunched, i.e. for all α ∈ B:

(a (θ1, α) , c (θ1, α) , y (θ1, α)) = (a (θ1) , c (θ1) , y (θ1))

27In the context of our two-period savings model in Section 2, the action corresponded to picking a savings rate
s = (c2/R) / (c1 + c2/R).
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2. If θN > θ, then types {(θN , α) : α ∈ A} are separated in their action and consumption, i.e. for some

α, α′ ∈ A:

(a (θN , α) , c (θN , α)) 6=
(
a
(
θN , α′

)
, c
(
θN , α′

))
Proof. See Appendix D.

Theorem 3 extends our previous result on bunching and separation in the optimal savings

problem (Theorem 1) to this general framework with preference wedges. Specifically, our main

result extends to the case when there is temptation to take insufficient action (α < 0), or temp-

tation to take excessive action (α > 0), or both at once.28 As a corollary, a simple Pigouvian tax

cannot achieve the social optimum. Instead, the efficient policy requires differential distortions

throughout the income distribution, with a menu of choices offered at high income levels.

5.2 Applications to behavioral and neoclassical environments

We briefly discuss give applications of this general framework to both behavioral and neoclassical

environments. In all of the following setups, we consider the problem of a planner with both

paternalistic and redistributive preferences.

Example 1: Inattention and sales taxes (Chetty et al., 2009; Goldin and Homonoff, 2013; Goldin,

2015). Agents may purchase a units of a good with benefit b (a) = a1−γ/ (1− γ) for some γ > 0.

The unit cost p + t consists of the gross price p plus sales tax t. But, to varying degrees, agents are

inattentive to the sales tax, acting as if the net price of the good were p + (1− α) t for α ∈ [0, 1].

Then aB (α) > a∗ for all α > 0 and ε (a) = at is the behavioral wedge.

Our theoretical result above implies that such inattention should be directly addressed for low-

income shoppers (e.g. in basic grocery stores) but to a lesser extent for high-income shoppers (e.g.

in luxury goods stores).

Example 2: Overconfidence and financial regulations (Malmendier and Tate, 2005; Scheinkman

and Xiong, 2003). Let b (a) = E [aX] − Var [aX] be the mean-variance utility of an individual

investing in a units of a risky asset X with unit price p. The true population parameters guiding

the random return X are E [X] = µ and Var [X] = σ2. But individuals with varying degrees

28Note that the distortions we characterized for the savings framework in Theorem 2 depend on details of the envi-
ronment in the generic preference wedge formulation.
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overconfidence underestimate the riskiness of returns according to VarB [X] = (1− α) σ2 for α ∈

[0, 1]. The preference wedge associated with overconfidence is then ε (a) = −a2σ2.

Suppose the government levies a financial transaction tax and uses the proceeds for public

spending. An application of our result to this setting implies that the government wants to correct

investment decisions of low-ability agents but differentially distort those of high-ability types.

Example 3: Habit formation and corrective policies (Bernheim and Rangel, 2004; Guo and

Krause, 2011; Koehne and Kuhn, 2015). Let b (a) = a1−γ/ (1− γ) with γ > 0 be the true utility

from taking action a today. Behavioral agents experience additional disutility α
(
a− aR)2 /2, with

the heterogeneous habit formation parameter α indexing the strength of the penalty from taking

an action today that differs from the reference point aR ∈ [0, 1). Agents choose a to maximize

κaγ − α
(
a− aR)2 /2. If the unit price of the action is p > 1, then the socially optimal action is

given by a∗ = p−1/γ, while behavioral agents with α > 0 would pick aB (α, θ) < a∗ in laissez-faire.

The behavioral wedge in this environment is defined as ε (a) = −
(
a− aR)2 /2.

Given both paternalistic and redistributive motives, low-ability types optimally take a uniform

action a above the first-best level, while high-ability agents deviate toward their habit to varying

degrees. In particular, it is never optimal to completely correct habits of high-ability types.

Example 4: Smoking and drug policies (Gruber and Köszegi, 2004; O’Donoghue and Rabin,

2006). Agents’ action a ∈ [0, 1] represents cigarette consumption, associated with unit price p >

0 and social benefit b (a) = 0 so that from the government’s perspective, the optimal level of

consumption is a∗ = 0. However, some individuals would like to consume cigarettes as they

experience immediate gratification from smoking according to α
√

a. Here, the preference wedges

is simply ε (a) =
√

a and α ≥ 0 guides agents’ strength of their temptation.

The optimal drug policy is more restrictive towards smokers at lower earnings levels. Such a

policy can be implemented by introducing a voucher-based system for drug usage with voucher

cost assignments decreasing with individual earnings and high enough unit costs so that low-

income individuals effectively do not smoke.

Example 5: Fuel efficiency and environmental policies (Sallee, 2011; Allcott et al., 2014; Golosov

et al., 2014). In the context of environmental policies, let agents’ action a ∈ [0, 1] represent the fuel

efficiency of a purchased purchase. Let the socially optimal level of energy efficiency be a∗ ∈ [0, 1].
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Suppose the cost of a vehicle with energy efficiency a ∈ [0, 1] is pa. The social benefit a vehicle

of type a is b (a), which represents monetary benefits from economic activity net of pollution

costs. Agents differ in their willingness to damage the environment, indexed by α ∈ [0, α], where

0 < α < +∞. The private benefit from purchasing a vehicle of type a is (1 + α) b (a). Not all

agents fully internalize the effects of pollution when purchasing a vehicle so that α > 0 for some

agents. The preference wedge in this environment is ε (a) = αb (a).

Without redistribution, a simple quantity restriction of a (θ, α) = a∗ for all individuals is so-

cially optimal. In contrast, with redistribution, optimal dispersion in fuel efficiency varies along

the income spectrum. At low earnings levels, the optimal policy induces agents to purchase the

same energy efficiency level. Such a policy can be implemented with income tax rebates on vehicle

purchases that depend both on the desired level of energy efficiency of the car and on individual

earnings. At higher earnings levels, the government allows agents to enjoy energy inefficient ve-

hicles in exchange for lower tax rebates. Hence, the government is willing to trade-off a higher

level of externalities from high earnings agents in exchange for increased redistribution.

6 Conclusion

In this paper, we develop a normative theory of paternalistic policies. Our main insight is that

the optimal policy restricts choice at low incomes but offers various distorted choices at higher

incomes. Intuitively, the planner offers choice as a carrot and stick to incentivize work effort

among high-ability individuals, thereby facilitating redistribution. We apply this insight to the

study of optimal retirement savings systems. The optimal policy can be implemented through

forced savings at low incomes—similar to Social Security—but a choice between savings accounts

with different subsidies and caps at high incomes—like 401(k) and IRA accounts in the US.

Quantitatively, our calibrated model implies significant variation in the mean level as well

as the dispersion of optimal savings rates throughout the income distribution. Relative to the

current US retirement savings and tax-transfer system, we find large welfare gains from increasing

mandatory savings and limiting savings choice, particularly at low incomes. We find this is due to

a tension between redistributive preferences embedded in the current retirement savings system

versus tax-transfer policies in the US. A small number of realistic retirement savings accounts with

progressive subsidies and linear caps in income approximate well the optimal policy.
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The theoretical insights and numerical solution method we develop in this paper open up

the door to studying a wide class of multi-dimensional screening problems used in public finance,

contract theory, and industrial organization. Our work points to two interesting avenues for future

research. First, it would be interesting to explore to what extent other instances of fiscal, monetary,

and social policies can be rationalized with a paternalistic motive. Second, while our current paper

explores the implications of a given degree of paternalism for optimal policy design, future work

could employ our framework to back out the implied degree of paternalism embedded in different

policies within and across countries.
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Appendix

Outline. The Appendix is organized as follows. Appendix A presents proofs for the two-period

model including our main theoretical results. Appendix B extends our main results to a multi-

period life-cycle model. Appendix C describes details of the numerical solution algorithm. Finally,

Appendix D contains the proof characterizing the generalized problem.

A Proofs for two-period model

A.1 Relevant IC constraints in a simple model with 2× 2 types

In this section, we analyze which IC constraints bind in the simple model with 2× 2 types pre-

sented in Section 2.2. We first show that the IC constraint of type (θH, βL) with respect to low-

ability types is binding. Assume by way of contradiction that the IC constraint of type (θH, βL)

with respect to low-ability agents’ allocation does not bind. Then there is no reason to distort

savings among low-ability types, and thus c1 (θL) = c2 (θL) at the solution. We have already

shown that c2 (θH, βH) ≥ c1 (θH, βH), therefore c2 (θH, βH) ≥ c2 (θL) to preserve IC between the

patient high-ability type and low-ability types. Together with the fact that the IC constraint of

type (θH, βH) with respect to low-ability types must bind in the second-best, this implies that

u (c1 (θL)) + βLδu (c2 (θL)) ≥ u (c1 (θH, βH))−
v (y1 (θH, βH))

θH
+ βLδu (c2 (θH, βH))

Consequently, all IC constraints for type (θH, βL) are strictly slack—a contradiction. We conclude

that the IC constraint of type (θH, βL) must be binding with respect to θL-type agents.

Next, we show that the IC constraint of type (θH, βL) is slack with respect to type (θH, βH).

Assume by way of contradiction that it binds. Since the IC constraint of type (θH, βL) with respect

to the θL-types’ allocation is binding, we would have

u (c1 (θH, βH))−
v (y1 (θH, βH))

θH
+ βLδu (c2 (θH, βH)) = u (c1 (θL)) + βLδu (c2 (θL))

The solution has c2 (θH, βH) > c2 (θL) or else c2 (θL) ≥ c2 (θH, βH) > c2 (θH, βL), which cannot be
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optimal with no IC constraints binding from low to high ability levels. Then we would have

u (c1 (θH, βH))−
v (y1 (θH, βH))

θH
+ δu (c2 (θH, βH)) > u (c1 (θL)) + δu (c2 (θL))

But we know c2 (θH, βH) > c2 (θH, βL) from strict separation of high-ability types, and therefore

all IC constraints of type (θH, βH) agents are strictly slack. This can not be optimal, as a transfer

from type (θH, βH) to low ability would improve welfare—a contradiction. We conclude that the

IC constraint of type (θH, βL) is slack with respect to type (θH, βH).

Finally, the pattern of binding IC constraints for type (θH, βH) depends on fundamentals. For

βL ≈ 1, by continuity of the allocation in its primitives we have c2 (θH, βL) > c2 (θL), which

combined with the fact that the IC constraint of type (θH, βL) binds with respect to θL-types yields

u (c1 (θH, βL))−
v (y1 (θH, βL))

θH
+ δu (c2 (θH, βL)) > u (c1 (θL)) + δu (c2 (θL))

In this case, the IC constraint of type (θH, βH) with respect to low-ability types is slack. On the

other hand, if βL ≈ 0 then for low enough λ (θH) we get c2 (θH, βL) ≈ 0 < c2 (θL), and the IC

constraint of type (θH, βH) with respect to low-ability types binds. Hence, the bindingness of

(θH, βH)-types’ IC constraints is a function of model parameters.

It is worth noting that the indeterminacy of which IC constraints bind is precisely what renders

solutions to multi-dimensional screening problems elusive Armstrong (1996); Rochet and Choné

(1998). Therefore, a complete theoretical characterizations of the solution to the class of problems

that we study is infeasible. Conveniently, our characterization of savings rates throughout the

income distribution does not depend on this particular feature of the solution.

A.2 Proofs of general two-period results

A.2.1 Problem reformulation

It is useful to restate the planner’s problem in terms of utility levels by defining ut (θ, β) =

u (ct (θ, β)) for t = 1, 2, and v (θ, β) = v (y (θ, β)). Let ct (θ, β) = C (ut (θ, β)) where C = u−1,
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and y (θ, β) = Y (v (θ, β)) where Y = v−1. Then the planner’s problem can be stated as

min
u1,u2,v

−∑
θ,β

π (θ, β) λ (θ)

[
u1 (θ, β)− v (θ, β)

θ
+ δu2 (θ, β)

]
(6)

s.t.
[

u1
(
θ′, β′

)
− v (θ′, β′)

θ
+ βδu2

(
θ′, β′

)]
−
[

u1 (θ, β)− v (θ, β)

θ
+ βδu2 (θ, β)

]
≤ 0 ∀ (θ, β) ,

(
θ′, β′

)
−∑

θ,β
π (θ, β)

[
Y (v (θ, β))− C (u1 (θ, β))− C (u2 (θ, β))

R

]
≤ 0

Clearly, the objective and IC constraints are linear. Since u (·) is increasing and strictly concave and

v (·) is increasing and strictly convex, then C (·) is strictly convex and Y (·) is strictly concave, so

the feasibility constraint is strictly convex. Hence, the planner’s problem (6) is a convex problem.

This will be useful for the following proofs and also for our numerical solution algorithm.

A.2.2 Precursory results

We begin by proving three Lemmas that will be useful in the proofs of the main results. Define

the utility of individuals as U (θ, β) = u1 (θ, β) − v (θ, β) /θ + βδu2 (θ, β) and the utility of the

government as V (θ, β) = u1 (θ, β) − v (θ, β) /θ + δu2 (θ, β). The first Lemma shows that if the

lowest labor earnings ability is sufficiently low, then agents with lowest earnings ability will have

all their IC constraints with respect to higher ability types strictly slack.

Lemma 1. Assume λ′ (θ) ≤ 0. Given {θ2, . . . , θN}, there is θ > 0 such that if θ1 < θ, then at the solution

to the planner’s problem we have

u1 (θ1, β)− v (θ1, β)

θ1
+ βδu2 (θ1, β) > u1

(
θ′, β′

)
− v (θ′, β′)

θ1
+ βδu2

(
θ′, β′

)
for θ′ ∈ {θ2, . . . , θN}.

Proof. Consider the case of θ1 = 0. Then for any v1 (θ1, β) > 0 we would have V (θ1, β) = −∞.

Since π (·) has full support and λ (·) is weakly decreasing, hence nonzero at θ1, then π (θ1, β) λ (θ1) >

0 and this cannot be optimal. Therefore v (θ1, β) = 0, so θ1-types optimally do not work at the so-

lution to the planner’s problem. Next, we show that all types θ′ > 0 work positive amounts.

Assume by way of contradiction that v(θ′, β′) = 0 for some θ′ > 0 and β′ ∈ {β1, . . . , βM}. Since

Y′ (0) = +∞ then this agent could work an infinitesimal amount and produce enough resources
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to make all agents strictly better off—a contradiction.29 Therefore v (θ′, β′) > 0 and hence a de-

viation by θ1-types into (θ′, β′)-types’ allocation is not possible since u1 (θ
′, β′) − v (θ′, β′) /θ1 +

βδu2 (θ′, β′) = −∞. Hence, Lemma 1 holds for θ1 = 0.

By the Theorem of the Maximum, as we increase θ1 the solution to the planner’s problem is

continuous in θ1 and the above properties are preserved. Hence, there exists θ > 0 such that for

all θ1 < θ and for all (θ′, β′) with θ′ > θ1 and β′ ∈ B the solution to the planner’s problem satisfies

the desired property.

Lemma 1 will be useful because for low enough ability types we need not worry about IC

constraints binding upward in the ability dimension. The second Lemma uses a similar argument

to show that if the highest ability type is sufficiently high, then IC constraints of all other agents

with respect to that type are strictly slack.

Lemma 2. Assume λ′ (θ) ≤ 0. Given {θ1, . . . , θN−1}, there exists θ < +∞ such that if θN > θ then at

the solution to the planner’s problem we have

u1
(
θ′, β′

)
− v (θ′, β′)

θ′
+ β′δu2

(
θ′, β′

)
> u1 (θN , β)− v (θN , β)

θ′
+ β′δu2 (θN , β)

and

v (θN , β) > v
(
θ′, β′

)
for all θ′ ∈ {θ1, . . . , θN−1} and for all β, β′ ∈ {β1, . . . , βM}.

Proof. We use an analogous argument to that presented in the proof of Lemma 1. As θ → +∞,

then v (θN , β)− v (θ′, β′) → +∞, since the relative social value from making θN-types work more

tends to infinity, and hence upward-binding IC constraints are strictly slack for all θ′ < θN . By

a limiting argument and using continuity of the solution to the planner’s problem, there exists

θ < +∞ that satisfies the desired properties.

Lemma 2 will be useful because we can ignore IC constraints of lower ability types with respect

to the highest ability types. The third Lemma shows that the most present-biased high-ability

types are compensated for their higher work effort with higher consumption in either period.
29Formally, consider a perturbation to all agents such that ṽ (θ, β) = v (θ, β) + ε and u1 (θ, β) = u1 (θ, β) + ν for

ε, ν > 0. Since the original allocation satisfies IC and the perturbation is uniform, the perturbation also satisfies IC. The
implied resource cost is dE = ∑θ,β π (θ, β) [C′ (u1 (θ, β)) ν−Y′ (v (θ, β)) ε]. Since C′ (u1 (θ, β)) < ∞, then for any ε > 0
we have dE = −∞ as Y′ (0) = +∞. Welfare changes by dW = ∑θ,β π (θ, β) λ (θ) (ν− ε) = ν− ε. For ν > ε and small
enough ν and ε, this perturbation is also feasible and increases welfare, a contradiction.
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Lemma 3. Assume λ′ (θ) ≤ 0. Given {θ1, . . . , θN−1}, there exists θ < +∞ such that if θN > θ then at

the solution to the planner’s problem we have either u1 (θN , β) > u1 (θ
′, β′) or u2 (θN , β) > u2 (θ′, β′) for

all θ′ ∈ {θ1, . . . , θN−1} and β, β′ ∈ B.

Proof. By IC for θN-types we have

u1 (θN , β)− 1
θN

[
v (θN , β)− v

(
θ′, β′

)]
+ βδu2 (θN , β) ≥ u1

(
θ′, β′

)
+ βδu2

(
θ′, β′

)
From Lemma 2, there exists θ < +∞ such that v (θN , β) > v (θ′, β′) and hence

u1 (θN , β) + βδu2 (θN , β) > u1
(
θ′, β′

)
+ βδu2

(
θ′, β′

)
Therefore, the desired property holds.

A.2.3 Proof of Theorem 1

Part 1.

Proof. From Lemma 1 we know that there exists θ > 0 such that

u1 (θ1, β)− v (θ1, β)

θ1
+ βδu2 (θ1, β) > u1

(
θ′, β′

)
− v (θ′, β′)

θ1
+ βδu2

(
θ′, β′

)
for all β, β′ ∈ {β1, . . . , βM} and θ′ ∈ {θ2, . . . , θN}. Assume by way of contradiction that types

(θ1, β) 6= (θ1, β′) receive different allocations. If (u1 (θ1, β) , u2 (θ1, β)) = (u1 (θ1) , u2 (θ1)) for all

β ∈ B then we must have y (θ1, β) = y (θ1) by IC among θ1-types. Hence the relevant case features

(u1 (θ1, β) , u2 (θ1, β)) 6= (u1 (θ1, β′) , u2 (θ1, β′)) for some β, β′ ∈ B. Then consider a perturbation

ũt (θ1, β) = ũt (θ1) = ∑
β

(
π (θ1, β)

∑β′ π (θ1, β′)

)
ut (θ1, β)

ṽ (θ1, β) = ṽ (θ1) = ∑
β

(
π (θ1, β)

∑β′ π (θ1, β′)

)
v (θ1, β)

and keep all other allocations the same. Since all IC constraints are linear in ut and v, a convex

combination of their arguments preserves IC. Since the allocation for (θ1, β) was initially differ-

ent from that for (θ1, β′), and since C (·) is strictly convex and Y (·) is strictly concave, the new

allocation saves a strictly positive amount of resources while maintaining a constant welfare level.

49



But then the planner could improve welfare by distributing the extra resources uniformly across

agents—a contradiction. Hence, agents of type (θ1, β) for all β ∈ {β1, . . . , βM} are bunched.

Part 2.

Proof. Assume by way of contradiction that all agents with types (θN , β) for β ∈ B receive the

same allocation, (u1 (θN) , u2 (θN) , v (θN)). This implies that for some constant κ > 0:

RδC′ (u1 (θN))

C′ (u2 (θN))
= κ

For κ < 1 (over-saving), consider the following perturbation, which keeps welfare constant:

ũ1 (θN) = u1 (θN) + δε

ũ2 (θN) = u2 (θN)− ε

Agents with a present bias level β will perceive this perturbation as a decision utility change of

dU (θN , β) = (1− β) δε

Whenever ε > 0 this perturbation is incentive compatible. Its marginal resource cost is

dE =
∑β π (θN , β)C′ (u2 (θN))

R
(κ − 1) ε

If we had κ < 1 then this perturbation would generate extra resources for the government—a

contradiction. Then it must be the case that κ ≥ 1.

For κ > 1 (under-saving), consider a perturbation to the allocation offered to (θN , βM)-types:

ũ1 (θN , βM) = u1 (θN)− δε

ũ2 (θN , βM) = u2 (θN) + ε

This perturbation keeps welfare constant and preserves IC since agents with type β < 1 dislike

the new allocation as long as ε > 0. The marginal resource cost is

dE =
π (θN , βM)C′ (u2 (θN))

R
(1− κ) ε
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Hence for ε > 0 we have dE < 0 since κ > 1, meaning that the planner generates extra resources

while preserving IC and keeping welfare constant—a contradiction. We conclude that κ = 1.

Now consider the case when κ = 1 (saving at efficient rate). From Lemma 3 we have that either

u1 (θN) > u1 (θ, β) or u2 (θN) > u2 (θ, β) for all θ ∈ {θ1, . . . , θN−1} and all β ∈ B. We prove the

Theorem for the first case, as the second case is analogous. Consider the following perturbation:

ũ1 (θN , β1) = u1 (θN) + β1δε + ν

ũ2 (θN , β1) = u2 (θN)− ε

where ε > 0 and ν > 0. While keeping all else unchanged, for (θ, β) 6= (θN , β1) we set

ũ1 (θ, β) = ũ1 (θ, β) + ν

It is easy to check this preserves IC. The marginal resource cost of this perturbation is

dE = π (θN , β1) (β1 − 1)
C′ (u2 (θN))

R
ε + ∑

θ,β
π (θ, β)C′ (u1 (θ, β)) ν

By setting dE = 0 we get

ν = π (θN , β1) (1− β1) δ
C′ (u1 (θN))

∑θ,β π (θ, β)C′ (u1 (θ, β))
ε

The implied welfare change is then

dW = π (θN , β1) (1− β1) δ

[
C′ (u1 (θN))

∑θ,β π (θ, β)C′ (u1 (θ, β))
− λ (θN)

]
ε

Since ∑θ,β π (θ, β) λ (θ) = 1 and λ′ (·) ≤ 1 we have λ (θN) ≤ 1, which together with the fact that

u1 (θN) > u1 (θ, β) for all θ < θN and β ∈ B by Lemma 3 implies dW > 0. Hence this perturbation

increases welfare, preserves IC, and is cost-neutral—a contradiction.

We conclude that not all agents with types (θN , β) for β ∈ B receive the same allocation.

A.2.4 Proof of Theorem 2

Part 1.
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Proof. We begin by proving the results for θ1-types. By Lemma 1, given {θ2, . . . , θN}, there exists

θ > 0 such that for θ1 < θ the IC constraints of type (θ1, β) are strictly slack with respect to (θ′, β′)-

types’ allocations for θ′ > θ1. By Theorem 1, agents with type (θ1, β) receive the same allocation

for all β ∈ B, so for some constant κ > 0:

RδC′ (u1 (θ1))

C′ (u2 (θ1))
= κ

Then consider the following perturbation to θ1-types’ allocation, which keeps the welfare constant:

ũ1 (θ1) = u1 (θ1)− δε

ũ2 (θ1) = u2 (θ1) + ε

For ε > 0 sufficiently small, this perturbation is incentive compatible because IC constraints of

types θ1 were slack to begin with and all agents find the new allocation provides (weakly) lower

utility than the old allocation. The marginal resource cost of this perturbation is

dE = ∑
β

π (θ1, β)

[
C′ (u2 (θ1))

R
− δC′ (u1 (θ1))

]
ε

= ∑
β

π (θ1, β) (1− κ)
C′ (u2 (θ1))

R
ε

If κ > 1 then for ε > 0 we have dE < 0, so that the perturbation generates extra resources—a

contradiction. Hence κ ≤ 1. Recalling the definition of C (·), we have C′ (·) = 1/u′ (C (·)) and

thus τE (θ1) ≤ 0. It follows that τD (θ1, β) < 0 for β < 1 and τD (θ1, βM) ≤ 0.

Part 2.

Proof. We now turn to the results for θN-types. We first show that (θN , βM)-types face a weakly

negative decision wedge. Assume by way of contradiction that

RδC′ (u1 (θN , βM))

C′ (u2 (θN , βM))
> 1
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Consider the following perturbation to the allocation of (θN , βM), while leaving all else unchanged:

ũ1 (θN , βM) = u1 (θN , βM)− δε

ũ2 (θN , βM) = u2 (θN , βM) + ε

This perturbation is incentive compatible as agents with βM = 1 are left indifferent, while agents

with β < 1 prefer the original allocation. But this perturbation generates extra resources as

dE = π (θN , βM)

(
1− RδC′ (u1 (θN , βM))

C′ (u2 (θN , βM))

)
ε

so for ε > 0 we have dE < 0 so the perturbation saves resources—a contradiction. Hence

τD (θN , βM) = τE (θN , βM) ≤ 0.

To show that τE (θN , β1) > 0 we proceed analogously to the proof for Part 2 of Theorem 1.

B Characterization of a multi-period life-cycle model

B.1 Model setup

In this section, we present a multi-period life-cycle model with stochastic earnings ability and self-

control shocks. We characterize the efficient dynamic provision of insurance and commitment

in this environment. Extending our results from the 2-period model, we show that a trade-off

between providing insurance and providing commitment arises for agents who experience high

income shocks, but not for agents with low income shocks. As a result, commitment is optimally

provided only at low income levels.

In the following setup, we assume hyperbolic preferences shocks over the life cycle. While re-

lated work uses off-equilibrium path allocations to separate different degrees of time-inconsistency

(Esteban and Miyagawa, 2004; Galperti, 2015; Yu, 2016), we effectively sidestep these intricacies

by introducing stochastic time inconsistency levels. While studying a model with constant present

bias is of great theoretical interest, our setup simplifies the analysis significantly and has two fur-

ther advantages. First, our setup allows for changes in individuals’ present bias over the life cycle,

such as myopia that decreases with age. Second, our setup is robust to small stochastic perturba-

tions in the hyperbolic discount factor, which the other setup abstracts from in order to generate
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perfectly persistent private information.

The economy is composed of a measure one of agents whose life cycle consists of T ≥ 3

periods, divided into Tw periods of working life and T − Tw periods of retirement.30 At each

t = 1, . . . , Tw, agents face an earnings ability shock θt ∈ Θ = {θ1, . . . , θN}, where θ1 < . . . < θN ,

with transition probabilities ρt+1 (θt+1|θt). We allow transition probabilities to vary over the life-

cycle and and assume full support over Θ at all t and for all θt ∈ Θ. We also assume that ρt+1 is

stochastically ordered so that higher levels of θt imply a distribution that first order stochastically

dominates a distribution for lower levels of θt. With a slight abuse of notation, we denote by

ρ1 (θ1) the probability distribution over the initial earnings ability θ1 and assume that it also has

full support.

Furthermore, At each period t = 1, . . . , T − 1 each agent faces a hyperbolic self-control shock

βt ∈ B = {β1, . . . , βM}, where β1 < . . . < βM, which we assume to be independently distributed

both over time and from earnings ability shocks. We allow the probability distribution of self-

control shocks at period t, denoted γt (βt), to vary over the life-cycle as long as there is full support.

We denote an agent’s joint type by ht = (βt, θt) ∈ Ht and its distribution at time t by πt. We

mark by superscript t the history of types realized until period t, so that ht = (h1, . . . , ht) ∈ Ht.

We let πt denote the probability distribution over Ht.

The period payoff during working life periods t = 1, . . . , Tw over consumption and obtained

earnings is given by uW (ct, yt; ht) = u (ct)− v (yt) /θt, where we assume u′ > 0, u′′ < 0, v′ > 0,

v′ (0) = 0, v′′ > 0, and v (0) = 0. During retirement periods t = Tw + 1, . . . , T, the agent is

retired and consumes without working (yt = 0), with period payoff given by uR (ct) = u (ct). The

generalized period payoff function is then

ut (ct, yt; ht) =


uW (ct, yt; ht) for t ≤ Tw

uR (ct) for t > Tw

A planner cannot directly observe agents’ types but designs an incentive compatible and feasi-

ble mechanism that maximizes social welfare. As previously, we apply the Revelation Principle to

characterize implementable allocations in this environment.31 In this environment, an allocation

30We implicitly assume that retirement lasts for at least one period.
31We show in Appendix B.3 that it suffices to consider mechanisms in which at each period agent report their current

type instead of their whole history of types. This result follows from our assumption that hyperbolic preference shocks
are independent over time, and differs from the approach taken in Galperti (2015) and Yu (2016).
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can be written as a sequence of functions (ct, yt) : Ht → R2
+ for each t. We define an allocation

as A = (c, y), where c and y denote the entire set of history-dependent consumption and labor

allocations. The planner evaluates welfare according to the period 0 preferences, or experienced

utility, of agents in the economy:

Wt (c, y) =
T

∑
s=1

δs−1 ∑
hs

πs (hs) us (cs (hs) , ys (hs) ; hs) (7)

Following a large strand in the behavioral public finance literature, we interpret this as the prob-

lem of an agent at period 0 seeking the optimal level of insurance for earnings ability shocks and

a commitment device for self-control shocks over the life-cycle. Therefore, the efficient allocation

could be implemented either by the government or by competitive private insurance companies,

as long as both are able to enforce the contract.

Agents, once they reach the decision stage, have a present-biased evaluation of life-time utility,

leading them to evaluate decision utility at time t as

Ut (c, y; hτ) =ut
(
ct
(
ht) , yt

(
ht) ; θt

)
+ βτ

T

∑
s=t+1

δs−t ∑
hs

πs (hs) us (cs (hs) , ys (hs) ; θs)

where we assume agents to be sophisticated in that they expect their future selves to be subject

to some degree of present bias. Hence, there is dynamic disagreement between different period

selves of the same (β, θ)-type as in Laibson (1997). A contract satisfies IC at time t if

ht = arg max
h′t

Ut
(
c, y; h′t

)
(8)

We assume that there is a fixed gross rate of return R per period. A contract is feasible at time t if

T

∑
s=t

1
Rs−1 ∑

hs

π (hs) [ys (hs)− cs (hs)] ≥ 0 (9)

An allocation is implementable if it satisfies both IC (8) and feasibility (9) in all periods t.

Definition 3. The planner’s problem is to choose a second-best or constrained efficient allocationA∗∗

that maximizes welfare (7) subject to being implementable. We say an allocation A∗ is first-best or

efficient if it maximizes welfare (7) subject to feasibility (9) at all t.
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B.2 General results

We now characterize properties of the planner’s problem solution, which provides the efficient

balance of insurance against earnings ability shocks and self-control shocks. By insurance of self-

control shocks we mean that in any period t agents with lack of self-control (βt < 1) and agents

with self control (βt = 1) are assigned the same allocation conditional on the whole history of

earnings ability shocks they reported. Therefore, it is natural to interpret insurance of self-control

shocks as provision of commitment by the planner.

Bunching and separation. Our first main result extends Theorem 1 to this dynamic economy,

showing that full commitment is provided only to parts of the population.

Theorem 4. Fix {θ2, . . . , θN−1} and {β2, . . . , βM}. Then there exist scalars θ > 0, θ < +∞, and β > 0

such that at the solution to the planner’s problem:

1. If θ1 < θ, then for any t = 1, . . . , T− 1 and history ht−1 agents with types
{(

ht−1, (θ1, β)
)

: β ∈ B
}

are all assigned the same level of consumption and earnings in period t and are assigned the same

continuation allocation for all future periods:

ct

(
ht−1, (θ1, β)

)
= ct

(
ht−1,

(
θ1, β′

))
yt

(
ht−1, (θ1, β)

)
= yt

(
ht−1,

(
θ1, β′

))
ct+s

(
ht−1, (θ1, β) , (ht+1, . . . , ht+s)

)
= ct+s

(
ht−1,

(
θ1, β′

)
, (ht+1, . . . , ht+s)

)
yt+s

(
ht−1, (θ1, β) , (ht+1, . . . , ht+s)

)
= yt+s

(
ht−1,

(
θ1, β′

)
, (ht+1, . . . , ht+s)

)
for all β, β′ ∈ B and for all s ≥ 1;

2. If θN > θ and β1 ≤ β, then for any t = 1, . . . , T − 1 and history ht−1 not all agents with types{(
ht−1, (θN , β)

)
: β ∈ B

}
are assigned the same current allocation and continuation allocations.

Proof. See Appendix B.3.3.

The planner values insurance against both earnings ability shocks and self-control shocks. The-

orem (4) shows that it is efficient to provide perfect commitment at low earnings but not at high
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earnings. This result is due to the interaction between the planner’s two motives. Agents value

flexibility after the realization of a self-control shock, demanding more immediate gratification

than their prior selves’ plans. Without an insurance motive, the planner would provide no such

flexibility and instead provide commitment to all agents.32 However, the planner also pursues

the motive of consumption insurance, which in the presence of asymmetric information will be

imperfectly provided. Therefore, the planner can charge high-ability agents for flexibility and use

the proceeds to improve insurance against labor earnings shocks accrued to lower-ability agents.

At low earnings, such a trade is feasible but not optimal since low-ability agents are unable to

compensate the planner for the welfare loss associated with flexibility.

Optimal savings distortions. Our second result characterizes the distortions of time-inconsistent

agents in this dynamic environment. A natural measure of distortions is the wedge relative to a

path of time-consistent intertemporal consumption decisions. Without self-control shocks (β = 1),

efficient insurance implies that intertemporal choices satisfy an inverse Euler equation:33

∑
θt+1∈Θt+1

ρt+1 (θt+1|θt)
u′
(
ct
(
θt))

δRu′ (ct+1 (θt, θt+1))
= 1

Whenever this intertemporal condition holds, the detrimental effects of time-inconsistency have

been completely dealt with. We can define the time inconsistency wedge in our economy for agents

with history ht as

τ
(
ht) = ∑

ht+1∈Ht+1

πt+1
(
ht+1|ht) u′

(
ct
(
ht))

δRu′ (ct+1 (ht, ht+1))
− 1

If agents face self-control problems when left on their own absent commitment devices, this would

be represented as a negative time consistency wedge. Our second main result extends Theorem 2

to our dynamic economy.

Theorem 5. Fix {θ2, . . . , θN−1} and {β2, . . . , βM}. Then there exist scalars θ > 0, θ < +∞, and β > 0

such that at the solution to the planner’s problem:

1. If θ1 ≤ θ, then for any t = 1, . . . , T − 1 and history ht−1 : τ
(
ht−1, (θ1, β)

)
≥ 0 for all β ∈ B;

32For example, this is the case when θt = θ0 for all agents in the economy at all histories.
33For applications in the context of optimal taxation see Diamond and Mirrlees (1977), Golosov et al. (2003), Golosov

and Tsyvinski (2006), Farhi and Werning (2012), Farhi and Werning (2013), Stantcheva (2015), and Golosov et al. (2016).
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2. If θN > θ and β1 ≤ β, then for any t = 1, . . . , T − 1 and history ht−1:

• τ
(
ht−1, (θN , βM)

)
≥ 0;

• τ
(
ht−1, (θN , β1)

)
< 0.

Proof. See Appendix B.3.4.

Analogous to the intuition behind Theorem 2, savings distortions optimally vary throughout

the income distribution. For low enough productivity types, the planner fully undoes low-ability

types’ self-control problem, and at times may induce savings above the first-best rate (τ
(
ht) = 0)

as a screening device. On the other hand, high-ability types are differentially distorted, with the

most patient agents (βM = 1) weakly over-saving, but the lowest ability types strictly under-

saving relative to the efficient level. Thus, not only does the planner provide imperfect commit-

ment at higher ability levels, but it is also optimal to offer greater choice in savings for this part of

the population.

B.3 Proofs of general results in multi-period life-cycle model

B.3.1 Problem reformulation

Types are unobservable and we rely on the Revelation Principle to characterize implementable

allocations. To this end, we define an allocation as a pair of functions (ct, yt) : H1 × · · · × Ht−1 ×

Ht → R2
+ for each period t that assigns a consumption level and an earnings level for any reported

history ht ∈ Ht at period t and any past reported history r̂t−1 =
(
h1, . . . , ht−1) ∈ H1 × · · · × Ht−1.

A strategy for an agent is a sequence of reporting strategies σt : H1 × · · · × Ht−1 × Ht → Ht.

The overall payoff after history ht, previous reports r̂t−1 =
(
r1, . . . , rt−1) ∈ H1 × · · · × Ht−1 and

following a strategy (σs)
T
s=t from period t on is given by

Ut

(
r̂t−1, ht, (σs)

T
s=t

)
=u
(

ct

(
r̂t−1, σt

(
r̂t−1, ht

)))
−

v
(
yt
(
r̂t−1, σt

(
r̂t−1, ht)))

θt

+ βt

T

∑
s=t+1

δs−t ∑
hs�ht

πs (hs|θt)

[
u
(

cs

(
σs

(
r̂s−1, hs

)))
−

v
(
ys
(
σs
(
r̂s−1, hs)))

θs

]

Note that preferences are hyperbolic with quasi-geometric discount factor βt in period t.34

34We denote by hs � ht the continuation histories at times s > t that are consistent with ht.
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We assume that agents are sophisticated in that they take into account their present bias prob-

lems in the future. Define the truth-telling strategy as σTruth
t

(
r̂t−1, ht) = ht. An allocation satisfies

IC if truth-telling is a sub-game perfect equilibrium of the game played between the selves in dif-

ferent periods, so that after any history of reports r̂t−1 ∈ H1 × · · · × Ht−1 and any realized type

ht−1 truth-telling is the optimal one-shot deviation:

σTruth
t ∈ arg max

σ′t
Ut

(
r̂t−1, ht,

(
σ′t ,
(

σTruth
s

)T

s=t+1

))

Taking into account that future selves will consider it optimal to report the truth, reporting the

truth in period t after history ht is optimal given any reports history r̂t−1. Since this is a Bayesian

game with positive probabilities at all nodes of the game, the Revelation Principle guarantees that

the outcome of any mechanism can be obtained using the allocations defined above.

Our assumptions of full support over types, the Markovian nature of the stochastic process

over types and the planner’s objective allow us to further simplify IC constraints in this environ-

ment. The Markovian structure implies that, conditional on r̂t−1, the preferences after any history

h̃t ∈ Ht with ht = h̃t have the same ordering as the preferences after history ht. As we will

show below, the planner’s objective function is strictly concave, which implies that the optimal

allocation in period t treats agents of type h̃t and ht identically. Hence we can write

ct+s

(
r̂t−1, ht, . . . , hs

)
= ct+s

(
r̂t−1, ht, . . . , hs

)
yt+s

(
r̂t−1, ht, . . . , hs

)
= yt+s

(
r̂t−1, ht, . . . , hs

)
Using this argument recursively for all periods s > t we obtain

ct+s

(
r̂t−1, ht, . . . , hs

)
= ct+s (r̂1, . . . , r̂t−1, ht, . . . , hs)

yt+s

(
r̂t−1, ht, . . . , hs

)
= yt+s (r̂1, . . . , r̂t−1, ht, . . . , hs)

where we used that r̂1, . . . , r̂t are optimal reports for an agent with that history of types. Therefore

it is without loss of generality that the mechanism requires only reporting of the current period

type and not of the full history of types.35

35This characterization implies that only equilibrium path allocations are important for IC (Fernandes and Phelan,
2000; Kapička, 2013). This argument can break down in problems with perfectly correlated types, demonstrated by
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From here onward, we denote by
(
ut
(
ht) , vt

(
ht)) the intra-period allocation in utility space.

B.3.2 Precursory results

The following result is the extension of Lemma 1 to the dynamic economy.

Lemma 4. Given {θ2, . . . , θN}, there is θ > 0 such that if θ1 < θ then at the solution to the planner’s

problem we have

Ut

(
ht−1, (β, θ1)

)
︸ ︷︷ ︸

truthful report

≥ Ut

((
β′, θ1

)
|ht−1, (β, θ1)

)
︸ ︷︷ ︸

deviation in β

> Ut

((
β′, θ′

)
|ht−1, (β, θ1)

)
︸ ︷︷ ︸

deviation in θ

and

vt

(
ht−1,

(
β′, θ′

))
> vt

(
ht−1, (β, θ1)

)
for all θ′ > θ1, for all β′ 6= β, for all ht−1, and for all t = 1, . . . , T.

Proof. If θ1 = 0, then yt
(
ht−1, (β, θ1)

)
= 0 for all β ∈ B and all ht−1. For any θ′ > 0, then

yt
(
ht−1, (β′, θ′)

)
> 0, therefore

Ut

((
β′, θ′

)
|ht−1, (β, θ1)

)
= −∞

which proves the second, strict inequality. The first, weak inequality is required by IC. Continuity

of the solution to the planner’s problem then implies that for fixed {θ2, θ3, . . . , θN} there is θ > 0

such that for all θ1 ≤ θ the desired sequence of inequalities holds.

Lemma 5. Given {θ1, . . . , θN−1}, there exists θ < +∞ such that if θN > θ then at the solution to the

planner’s problem we have

Ut

(
ht−1,

(
β′, θ′

))
> Ut

(
(β, θN) |ht−1,

(
β′, θ′

))
and

vt

(
ht−1, (β, θN)

)
> vt

(
ht−1,

(
β′, θ′

))
for all ht−1 , for all θ′ ∈ {θ1, . . . , θN−1}, and for all β, β′ ∈ B.

an example in Battaglini and Lamba (2015). The assumption of full support of βt for all t and histories is crucial for
this characterization to be valid. If there is no full support in βt, then it is possible to design a mechanism in which
off-equilibrium path allocations relax incentive constraints on the equilibrium path, as in Galperti (2015) and Yu (2016).
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Proof. The proof is analogous to that of Lemma 2, extended to the dynamic setting.

Lemma 6. Given {θ1, . . . , θN−1} and {β2, . . . , βM}, there exists θ < +∞ and β > 0 such that if θN > θ

and β1 < β then at the solution to the planner’s problem we have ut
(
ht−1, (β1, θN)

)
> ut

(
ht−1, (β, θ)

)
for all ht−1, for all θ ∈ {θ1, . . . , θN−1}, for all β ∈ B and for all t = 1, . . . , T − 1.

Proof. From Lemma 5, we know that vt
(
ht−1, (β1, θN)

)
> vt

(
ht−1, (β, θ)

)
. Note that if β1 = 0,

IC requires ut
(
ht−1, (β1, θN)

)
> ut

(
ht−1, (β, θ)

)
. By continuity of the solution to the planner’s

problem, there exists β
t
> 0 such that this inequality continues to be strict for all β1 < β

t
. Since

T < ∞ we can pick a uniform level of β = mint

{
β

t

}
> 0 that satisfies the desired property.

B.3.3 Proof of Theorem 4

Part 1.

Proof. Consider the problem in terms of utility levels from consumption and disutility levels from

working as in Appendix A.2.1. Assume by way of contradiction that for a fixed t < T and fixed

history ht−1 ∈ Ht−1 and for β, β′ ∈ Bt the solution to the planner’s problem features

ut

(
ht−1, (β, θ1)

)
> ut

(
ht−1,

(
β′, θ1

))
Consider a new allocation that is a convex combination between between

(
ht−1, (β∗, θ1)

)
-types’

allocations for all β∗ ∈ B and that is offered after history ht−1:

ũt

(
ht−1, (β∗, θ1) , ht+1, . . . , hT

)
= ∑

b∈B

πt
(
(b, θ1) |ht−1)

∑b′∈B πt ((b′, θ1) |ht−1)
ut

(
ht−1, (b, θ1) , ht+1, . . . , ht+s

)
ṽt

(
ht−1, (β∗, θ1) , ht+1, . . . , hT

)
= ∑

b∈B

πt
(
(b, θ1) |ht−1)

∑b′∈B πt ((b′, θ1) |ht−1)
vt

(
ht−1, (b, θ1) , ht+1, . . . , ht+s

)

By Lemma (4), there exists θ > 0 such that for θ1 < θ we have

Ut

(
ht−1, (β, θ1)

)
≥ Ut

(
(b, θ1) |ht−1, (β, θ1)

)
> Ut

((
β′′, θ′

)
|ht−1, (β, θ1)

)
for all θ′ > θ1 and for all β′′ ∈ B. Therefore, IC constraints at nodes

(
ht−1, (b, θ1)

)
are satisfied

for all b ∈ B. From linearity of the objective function, IC constraints of
(
ht−1, (b, θ)

)
-types are

also satisfied for all θ > θ1 and all b ∈ B. Therefore this perturbation preserves IC at period

61



t. Furthermore, from the planner’s point of view the perturbation continuation utility at ht−1

remains unchanged. Therefore welfare is unchanged, while for agents with hyperbolic preferences

all IC constraints for period s ≤ t− 1 are satisfied. For histories hs � ht−1 for s > t, taking a convex

combination leaves incentives unchanged because the objective is linear. But C (u) = u−1 (u)

is strictly convex, so for ut
(
ht−1, (β, θ1)

)
> ut

(
ht−1, (β′, θ1)

)
and πt (·) having full support this

perturbation saves a strictly positive amount of resources—a contradiction. Hence, agents with

types
{(

ht−1, (θ1, β)
)

: β ∈ B
}

are bunched.

Part 2.

Proof. Assume by way of contradiction that for some ht−1 we have that
(
ht−1, (βt, θN)

)
-types for

all βt ∈ Bt share the same allocation. Then

Et

[
C′
(
ut+1

(
ht−1, (βt, θN) , (βt+1, θt+1)

))
δRtC′ (ut (ht−1, (βt, θN)))

|θN

]
= κ

for some constant κ > 0. Recalling that βM = 1, consider the following perturbation for the

allocation of type (βM, θN):

ũt

(
ht−1, (βM, θN)

)
= ut

(
ht−1, (βM, θN)

)
− ε

ũt+1

(
ht−1, (βm, θn) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

)
+

1
δ

ε

for ε > 0. Welfare of type
(
ht−1, (βM, θN)

)
is kept constant by such a change. Types

(
ht−1,

(
β j, θN

))
for β j < 1 dislike this perturbation, so it preserves IC. The marginal resource cost is

dE = −C′
(

ut

(
ht−1, (βM, θN)

))
ε +

1
Rt

Et

[
C′
(

ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

))
|θN

] 1
δ

ε

=

[
1

δRt
Et

[
C′
(

ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

))
|θN

]
− C′

(
ut

(
ht−1, (βM, θN)

))]
ε

= (κ − 1)C′
(

ut

(
ht−1, (βM, θN)

))
ε

For the original allocation to be optimal, we require dE ≥ 0 and thus κ ≥ 1.

Suppose further that κ > 1. Recall that βt ≤ 1 for all βt ∈ Bt and consider the following
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perturbation to all types
(
ht−1, (βt, θN)

)
:

ũt

(
ht−1, (βt, θN)

)
= ut

(
ht−1, (βt, θN)

)
+ ε

ũt+1

(
ht−1, (βt, θN) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (βt, θN) , (βt+1, θt+1)

)
− 1

δ
ε

Type
(
ht−1, (βM, θN)

)
is indifferent between the original allocation and the new one, while types(

ht−1, (βt, θN)
)

with βt < 1 strictly prefer the new allocation for ε > 0. Since no IC constraint for

types {θ1, θ2, . . . , θN−1} are binding with respect to θN-types, then the perturbation preserves IC

for ε > 0 small enough. The associated resource cost is

dE = (1− κ)C′
(

ut

(
ht−1, (βt, θN)

))
ε

But κ > 1, leading to a resource gain—a contradiction. This leaves us with the case when κ = 1.

Suppose that κ = 1 so that for agents bunched at θN the inverse Euler equation holds. By

Lemma 3 and θN-type agents are bunched, we have ut
(
ht−1, (βt, θN)

)
> ut

(
ht−1,

(
βt, θj

))
for all

j < N. Then consider the following perturbation:

ũt

(
ht−1, (β1, θN)

)
= ut

(
ht−1, (β1, θN)

)
+ ε− ν

ũt+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

)
− 1

δβ2
ε

From the point of view of β1-types the payoff change is

dU (β1) =

(
1− β1

β2

)
ε− ν

Since β1 < β2, we can choose ε > 0 and ν > 0 such that (1− β1/β2) ε = ν. All
(
ht−1, (β1, θN)

)
-

types are left indifferent by this perturbation. Furthermore, agents with type β > β1 dislike this

perturbation. Therefore, since other IC constraints with respect to type
(
ht−1, (β1, θN)

)
are slack,

the perturbation preserves IC. In terms of resources, however, we have

dE = C′
(

ut

(
ht−1, (β1, θN)

))
(ε− ν)− 1

Rt
Et

[
C′
(

ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

))
|θN

] 1
δβ2

ε

= C′
(

ut

(
ht−1, (β1, θN)

))(β1

β2
− κ

β2

)
ε
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Since β2 ≤ 1, then for ε > 0 and ν > 0 we get dE < 0, so that the planner saves resources. Since

ut
(
ht−1, (βt, θN)

)
> ut

(
ht−1,

(
βt, θj

))
for all j < N, there exists ε > 0 small enough such that

redistributing these extra resources improves welfare—a contradiction..

B.3.4 Proof of Theorem 5

Part 1.

Proof. Fix a period t and a history ht−1. From Theorem 4, we know that there exists θ > 0 such

that all agents with a history in
{(

ht−1, (β, θ1)
)

: β ∈ B
}

for θ1 < θ are bunched at the same con-

tinuation allocation. In particular, those agents face the same inverse Euler equation distortion

∑
(βt+1,θt+1)∈B×Θ

γt+1 (βt+1) ρt+1 (θt+1|θ1)

[
C′
(
ut+1

(
ht−1, (β, θ1) , (βt+1, θt+1)

))
δRtC′ (ut (ht−1, (β, θ1)))

|θN

]
= κ

for all β ∈ B and for some constant κ > 0. The desired result holds if and only if κ ≥ 1. Assume

by way of contradiction that κ < 1. Then consider the following perturbation:

ũt

(
ht−1, (β, θ1)

)
= ut

(
ht−1, (β, θ1)

)
− δε

ũt+1

(
ht−1, (β, θ1) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (β, θ1) , (βt+1, θt+1)

)
+ ε

for all (βt+1, θt+1) ∈ B × Θ. This perturbation keeps welfare constant, hence does not affect IC

at period s < t, when due to quasi-geometric discounting agents and the planner agree about

the intertemporal trade-off between periods t and t + 1. From Lemma 4, there exists θ > 0 such

that for θ1 < θ agents with histories in
{(

ht−1, (β, θ1)
)

: β ∈ B
}

have strictly slack IC constraints

with respect to any other agent not in this group. For ε > 0, agents with β ≤ 1 find themselves

weakly worse off under this perturbation, so the perturbation preserves incentive compatible. The

marginal resource cost is

dE = (κ − 1) δC′
(

ut

(
ht−1, (β, θ1)

))
ε

For ε > 0 and κ < 1 we get dE < 0, so the perturbation saves resources—a contradiction.

Part 2.
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Proof. For the first part, let

∑
(βt+1,θt+1)∈B×Θ

γt+1 (βt+1) ρt+1 (θt+1|θN)

[
C′
(
ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

))
δRtC′ (ut (ht−1, (βM, θN)))

|θN

]
= κH

for some κH > 0. Assume by way of contradiction that κH < 1. Then consider the perturbation

ũt

(
ht−1, (βM, θN)

)
= ut

(
ht−1, (βM, θN)

)
− δε

ũt+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (βM, θN) , (βt+1, θt+1)

)
+ ε

for all (βt+1, θt+1) ∈ B×Θ. Since βM = 1, this perturbation preserves IC for ε > 0. The marginal

resource cost is

dE = (κH − 1) δC′
(

ut

(
ht−1, (βM, θN)

))
ε

so for κH < 1 we have that dE < 0 whenever ε > 0, which saves a strict amount of resources—a

contradiction.

For the second part, note that from Lemma 6 and from Theorem 4 we have that there exists

θ < +∞ and β > 0 such that for θN > θ and β1 < β we have that agents with histories in{(
ht−1, (β, θ)

)
: β ∈ B, θ < θN

}
strictly prefer their own allocation to the allocation of any agent

with history
{(

ht−1, (β, θN)
)

: β ∈ B
}

. Furthermore, we have ut
(
ht−1, (β1, θN)

)
> ut

(
ht−1, (β, θ)

)
for all θ < θN and all β ∈ B by Lemma 6. Suppose now that

∑
(βt+1,θt+1)∈B×Θ

γt+1 (βt+1) ρt+1 (θt+1|θN)

[
C′
(
ut+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

))
δRtC′ (ut (ht−1, (β1, θN)))

|θN

]
= κ̃H

for some κ̃H > 0. Assume by way of contradiction that κ̃H ≥ 1. Then consider the perturbation:

ũt

(
ht−1, (β1, θN)

)
= ut

(
ht−1, (β1, θN)

)
+ β1δε + ν

ũt+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

)
= ut+1

(
ht−1, (β1, θN) , (βt+1, θt+1)

)
− ε

ũt

(
ht−1, (β, θ)

)
= ũt

(
ht−1, (β, θ)

)
+ ν

for all (βt+1, θt+1) ∈ B × Θ and all (β, θ) 6= (β1, θN). For ε > 0 and ν > 0, this perturbation is

incentive compatible since agents with β ≥ β1 find it (weakly) less attractive. To keep welfare
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unchanged, we require

dW = π
(

β1, θN |ht−1
)
(β1 − 1) δε + ν = 0

so that ν = π
(

β1, θN |ht−1) (1− β1) δε. The marginal resource cost is

dE =π
(

β1, θN |ht−1
)

C′
(

ut

(
ht−1, (β1, θN)

))
δ (β1 − κ̃H) ε + ν ∑

(β,θ)
π
(

β, θ|ht−1
)

C′
(

ut

(
ht−1, (β, θ)

))

=π
(

β1, θN |ht−1
)

δC′
(

ut

(
ht−1, (β1, θN)

))
(1− β1)

( β1 − κ̃H
1− β1

)
+ ∑

(β,θ)
π
(

β, θ|ht−1
) C′

(
ut
(
ht−1, (β, θ)

))
C′
(
ut
(
ht−1, (β1, θN)

))
 ε

Since ut
(
ht−1, (β1, θN)

)
> ut

(
ht−1, (β, θ)

)
for θ < θN by Lemma 6, and clearly ut

(
ht−1, (β1, θN)

)
≥

ut
(
ht−1, (β, θN)

)
for all β ∈ B, then

∑
(β,θ)

π
(

β, θ|ht−1
) C′

(
ut
(
ht−1, (β, θ)

))
C′ (ut (ht−1, (β1, θN)))

< 1

Since β1 < 1 ≤ κ̃H we conclude that dE < 0 for ε > 0, meaning that this perturbation saves a

strictly positive amount of resources—a contradiction.

C Details of numerical solution algorithm

We start by defining a general global non-linear maximization problem

max
x∈A

f (x)

for A ⊂ RK and f : RK → R where K ∈ N. We impose the following four regularity conditions,

which are satisfied for a large class of problems including the one we study:

Assumption 1. A = ∩i∈I Di where Di are convex sets, for some finite set I.

Assumption 2. f is concave and has a unique maximum at any set ∩j∈J Dj for J ⊂ I.

Assumption 3. There exists J∗ ⊂ I such that #J∗ < K and

arg max
x∈∩j∈J∗Dj

f (x) = arg max
x∈A

f (x)

66



Assumption 4. For all J ⊂ I, there exists SJ ⊂ J such that #SJ < K− 1 and

arg max
x∈∩j∈SJ Dj

f (x) = arg max
x∈∩j∈J Dj

f (x)

Assumptions 1 is satisfied since all constraints in the re-stated planner’s problem (6) are either

linear or strictly convex. Assumption 2 holds because we seek the solution to a convex program.

Assumptions 3 and 4 are sufficient conditions for the LICQ to hold at the solution to the planner’s

problem. We check them numerically at each step in our routine. We then propose the following

numerical algorithm, which finds the smallest set of binding constraints at the optimum by loop-

ing through subsets of the set of global IC constraints and solving a sequence of relaxed problems:

1. Start with a set J0 ⊂ I such that #J0 ≤ K− 1

1.1 If #J0 = K− 1, then find J′0 ⊂ J0 that makes assumption 4 hold

1.2 Let J0 = J′0.

2. Solve for x (J0) = arg maxx∈∩j∈J0
f (x)

2.1 Let JD (J0) =
{

j ∈ J0 : x (J0\ {j}) ∈ ∩i∈J0 Di
}

be the set of slack constraints

2.2 If #JD (J0) = 0, let J′0 = J0

2.3 If #JD (J0) > 0:

i. Randomly select JD
0 ⊂ JD (J0)

ii. Let J′0 = J0\JD
0

2.4 Let JV (J′0) = {i ∈ I : x (J′0) /∈ Di}

2.5 Stop if #JV (J′0) = 0

3. Randomly select a subset JV
0 ⊂ JV (J0) with K− #J′0 − 1 elements

4. Let J1 =
(

J0\JD
0
)
∪ JV

0 , then #J1 = K− 1

This algorithm iteratively finds the smallest set of binding constraints by adding a subset of vio-

lated but excluded constraints, and dropping a subset of redundant constraints in each iteration.

Adding a stochastic component to the constraint selection criterion avoids cycles and guarantees

that the algorithm finds the unique global optimum of the above program in finite time.
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Theorem 6. The algorithm converges with probability one to the global solution of the problem

plim x (Jn) = x∗

where x∗ = arg maxx∈A f (x).

Proof. The proof relies on the convexity of the problem as defined in Section A.2.1, and proceeds as

follows: First, note that f (x (Jn)) is monotonically decreasing, so it converges. Suppose the limit is

above f (x∗). Then since I is finite, from some sufficiently high n onward we have f (Jn) = f (Jn−1)

for all n. But #JV (Jn) > 0, so there is a positive probability that f (Jn+1) < f (Jn). Therefore, there

is zero probability of a limit above f (x∗). Thus plim f (Jn) = f (x∗). Since x∗ is unique and f is

continuous, we have plimx (Jn) = x∗.

Large-scale implementation. We implement our algorithm using the Interior Point Optimizer

(IPOPT) large-scale nonlinear optimization library in Python. To ensure stability of our solution,

we try different algorithms and starting points, and ensure that solutions coincide. We illustrate

the capabilities of our algorithm by solving a problem with (|Θ| , |B|) = (1000, 6), that is 6, 000

types, 18, 000 choice variables, and 35, 994, 001 constraints. Our algorithm solves this problem

in approximately two minutes on a 2013 MacBook Pro. We find that well below one percent of

constraints bind at the optimum, and that most binding constraints—though not all—are “local.”

Figure 7 plots optimal savings ratios, defined as s = (c2/R) / (c1 + c2/R), as a function of

individuals’ gross income (x-axis) and present bias level (colored lines). The numerical solution

extends in interesting ways our main theoretical results, which stated that the lowest ability types

were bunched and the highest types were separated (Theorem 1), and that optimal savings were

above the first-best rate at the bottom but below first-best at the top (Theorem 2). In the interme-

diate range, we observe bunching at higher than first-best savings rates up to some threshold, and

separation into savings rates ordered by β above this threshold. Notably, high-ability agents that

agree with the planner (β = 1) converge to the first-best savings rate, while those who disagree

(β < 1) save above their preferred rate but below the first-best.
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Figure 7. Optimal savings rates in a numerical illustration of the solution algorithm
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Note: Illustration of numerical algorithm solving a problem with (|Θ| , |B|) = (1000, 6) types, 18, 000 choice vari-
ables, and 35, 994, 001 constraints. Savings rate is defined as s = (c2/R) / (c1 + c2/R).

D Proof of Theorem 3 for the general problem

Part 1.

Proof. The proof is analogous to that of Theorem 1 and relies only on convexity of the set of IC

constraints when we rewrite the problem in terms of utility levels and preference wedges.

Part 2.

Proof. Note that since θ1 < θ < θ < θN we have v (θN , α) > v (θ1). Therefore, IC implies

u (θN , α) + αε (θN , α) > u (θ1) + αε (θ1)

In particular, for α = 0 we have u (θN , α) > u (θ, α′) for all (θ, α′). Assume by way of contradiction

that u (θN , α) = u (θN), v (θN , α) = v (θN) and a (θN , α) = a (θN) at the solution to the planner’s

problem. Then we have u (θN) > u (θ1). Let αmax = max {A} ≥ 0. If b′ (a (θN)) > p, then consider
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the following change to the allocation:

ã (θN , αmax) = α (θN) + ν

ũ (θN , αmax) = u (θN)− αmaxν + η

ũ (θ, α) = ũ (θ, α) + η

for all (θ, α) 6= (θN , αmax) . For ν > 0 this perturbation is incentive compatible since for α < αmax

the change in the deviation payoff into the allocation of (θN , αmax) is (α− αmax) ν < 0 and the

original allocation is incentive compatible. The marginal change in resources used is

dE =π (θN , αmax)

[
−αmaxνC′ (u (θN))−

(
b′
(
ε−1 (ε (θN))

)
ε′ (ε−1 (ε (θN)))

− p
ε′ (ε−1 (ε (θN)))

)
ν

]

+ η ∑
θ,α

π (θ, α)C′ (u (θ, α))

If αmax = 0, then this yields a contradiction since for ν > 0 we can set η > 0 small enough to

increase welfare. For αmax > 0, the marginal change in the government’s objective is given by

dW = −π (θN , αmax) λ (θN) αmaxν + η

If η = π (θN , αmax) λ (θN) αmaxν, then dW = 0 and the marginal change in resource cost is

dE
π (θN , αmax) αmaxC′ (u (θN))

=ν

{
λ (θN)∑

θ,α
π (θ, α)

C′ (u (θ, α))

C′ (u (θN))
− 1

}

− ν

αmaxC′ (u (θN))

(
b′
(
ε−1 (ε (θN))

)
ε′ (ε−1 (ε (θN)))

− p
ε′ (ε−1 (ε (θN)))

)

Since λ (θN) ≤ 1 and since C (·) is convex and u (θN) ≥ u (θ, α), then dE < 0 for ν > 0, a con-

tradiction. Therefore we must have b′ (a (θN)) ≤ p. In this case, we can construct an analogous

perturbation for αmin = min {A} ≤ 0. Hence, we conclude that b′ (a (θN)) = p. If αmax > 0, note

that the perturbation above also implies that dE < 0 since u (θN) > u (θ, α) for θ < θN , a contra-

diction. The case for αmin < 0 is analogous. This exhausts all possible cases, thus contradicting

the initial assumption that all agents in {(θN , α) : α ∈ A} receive the same allocation. We conclude

that θN-types are separated in the α-dimension.
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