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ABSTRACT
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Contemporary research on determinants of corporate hedging policy has stumbled upon sev-

eral facts that are seemingly inconsistent with firm optimization. Three often-mentioned

observations are especially puzzling: i) hedging activity tends to be concentrated in large

mature firms with few growth options (Bartram, Brown, and Fehle (2009), Nance, Smith, and

Smithson (1993), Tufano (1996), Haushalter (2000), Graham and Rogers (2002), Mian (1996),

Allayannis and Ofek (2001), Gay and Nam (1998)); firms with tighter financing constraints do

not appear to hedge more than firms with fewer constraints (Rampini, Sufi, and Viswanathan

(2013)); riskier firms tend to have lower hedging ratios (see, e.g., Guay (1999)). These facts

seem to run counter to the basic prediction that hedging policy is dictated by firm risk.

The goal of this paper is to reconcile these empirical regularities with theory by building

a model of real investment and financing. The simple fact that the exercise of investment

options typically requires a large amount of financing goes a long way toward explaining the

observed hedging policies. The need to finance investment can rationalize, in particular, the

lack of hedging by the low-net-worth firms and can also explain why riskier firms, which

inherently have more investment options, hedge less than safer firms.

Intuitively, risk management does not always create value because it may jeopardize a

firm’s chances to undertake lumpy profitable investment. For example, consider a company

holding a single investment option, which can only be financed internally. A low-expected-

net-worth firm will lack sufficient funds for a large investment project and will abandon it

unless its cash flow turns out to be very high. Because hedging effectively moves cash away

from the high- to the low-profitability states, it makes the prospect of undertaking investment

even more remote and is value-destroying absent any other benefits of hedging. In contrast,

a high-expected-net-worth firm will have sufficient financing for a project in most, but not

all, cases. Hedging is desirable for such a firm because it increases the amount of cash in the

low-profitability states, in which investment would otherwise be impossible, and at the same

time preserves the level of investment in the high-profitability states.

Further, because the value of investment options naturally increases with profitability,

an additional “cash flow correlation” effect appears. If options are in-the-money, the cash
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flows from the existing assets also tend to be high and thus provide a convenient source of

investment funds. Over-hedging decreases the correlation between a firm’s investment demand

and internal funds, thereby necessitating costly external financing. We show that the natural

positive correlation between cash flows and investment is higher in riskier firms and in those

with more real options, which helps to explain the lower hedging ratios for those firms.

Another way to understand the intuition for why the optimal cash flow risk is higher in

this case is by thinking about the firm’s financing gap. The usual argument is that risk is

undesirable because it causes the firm to have either too much or too little cash to pay for its

expenses, assuming that expenses are constant. We find, however, that the firm’s investment

costs tend to increase with the cash flow. First, the option to abandon investment helps to

reduce the investment costs when the cash flow is low. Second, the opportunity to expand

investment results in higher investment costs when the cash flow is high. In sum, the firm’s

revenues and expenses tend to be positively correlated, making the cash flow risk desirable.

Our model exhibits parsimony in most of its assumptions, requiring only that investment

cost is significant and that external financing is costly. The optimal risk management strat-

egy balances the costs of financial distress with the ability to finance investment. We first

develop intuition for the optimal hedging ratio in the one-period setting and then build the

intertemporal model with dynamic cash accumulation.

Using the model, we obtain several new results. First, the relation between the hedging

ratio and asset risk is non-monotonic. Firms with riskier assets may want to leave a larger

proportion of their risk unhedged because, intuitively, they have more valuable real options.

Cash flows and the demand for financing tend to have a higher correlation in these firms. In

contrast, safer firms exercise fewer growth options and are mainly concerned with eliminating

negative cash flow outcomes, which is accomplished by hedging most of their risk exposure.

Second, and paradoxically, stronger financing constraints can lead to less hedging. In par-

ticular, we show that the low-expected-net-worth firms maximize the value of their investment

by leaving their profits unhedged. In a sense, this effect is akin to the risk-shifting behavior of

levered firms. The difference, however, is that we are discussing the financing effect that arises
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because a higher risk in cash savings can increase the probability of investment. Shareholders

are protected by the option to abandon investment when there is a lack of financing, and the

value of this option increases with the riskiness of the firm’s cash flow. Therefore, our results

provide a new explanation for insufficient risk management that does not require high costs

of hedging or agency problems between shareholders and debtholders.

Third, using the dynamic model with cash accumulation, we derive the value of cash inside

the firm, examine the incentive to increase the risk of cash savings, and show the benefit of

a dynamic risk management policy relative to a one-shot policy. In static models, a fixed

hedging ratio must balance losses in some regions with gains in others. One must evaluate

the firm’s payoff function over the whole domain of the underlying risk variable to determine

whether this function is overall concave or convex. Under the dynamic policy, the firm can

tailor its hedging strategy to specific circumstances, such as the current liquidity position. For

example, we show that when the firm’s current cash savings are large, the value function is

concave and therefore hedging is optimal. In contrast, firm value exhibits convexity when cash

savings are relatively low, and it becomes optimal to increase the volatility of cash savings to

maximize the value of investment.

Further, we show that the optimal risk management strategy is influenced by the strategies

of other firms in the economy. The model predicts that the optimal hedging ratio will be higher

for firms with more systematic risk (i.e., common risk across firms) and lower for firms with

more idiosyncratic risk. To arrive at this result, we rely on the view that firms mainly compete

for the common component of their profits and therefore derive less value from investment

options that are linked to the overall state of economy.1 In turn, the limit to growth imposed

by the interaction between firms decreases the correlation between cash flows and option

value. Risk management policy therefore depends not only on the amount but also on the

type of risk that firms are subjected to.

1The basic idea is that competition erodes the value of a firm’s real options (see, e.g., Grenadier (2002)),
and that competition matters more if risk is systematic. For example, if the investment opportunities improve
uniformly for all firms in an industry, the increase in competition associated with higher aggregate production
and new entry into the market will limit each firm’s profits (see, e.g., Caballero and Pindyck (1996) for a
discussion of competition effects on real options). However, when a firm’s success is unique, its real options
are likely to increase in value, implying that firms that start with unique assets derive a larger component of
their market value from real options than firms with generic assets.
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The rest of the paper is organized as follows. The next section offers a brief literature

review. Section 2 presents a single-period model, which explains how risk management affects

investment. Section 3 lays out a general continuous-time model of investment under financing

constraints, which allows for cash savings and a dynamic hedging ratio. The last section

concludes.

I. Literature Review

Most of the previous studies focus on the positive effects of risk management. Benefits come

from the reduction in expected bankruptcy costs (e.g., Smith and Stulz (1985) and Graham

and Smith (1999)); higher debt capacity (Leland (1998) and Graham and Rogers (2002)); con-

vexity in operating costs and/or concavity in the production function (Froot, Scharfstein, and

Stein (1993) and Mackay and Moeller (2007)); improvement in contracting terms with firm

creditors, customers, and suppliers (Bessembinder (1991)); mitigation of information asym-

metry (DeMarzo and Duffie (1995)); and reduction in management overinvestment incentives

(Morellec and Smith (2007)).

It is somewhat more difficult to justify a preference for risk, especially given the recent

developments in derivatives trading and reductions in transaction costs. Froot, Scharfstein,

and Stein (1993) show that firms may choose not to eliminate risk exposure when their cash

flow is positively correlated with profitability of investment. The study by Adam, Dasgupta,

and Titman (2007) shows that incomplete hedging can arise from competition. They recognize

that a firm’s optimal risk management can depend on its competitors’ strategies. The goal

is to increase cash reserves in those states of the world where the competitors lack financing.

Fehle and Tsyplakov (2005) present a dynamic model, in which full hedging is suboptimal

when the firm is in deep financial distress or very far from it. Their results rely on leverage,

the costs of financial distress, and the fixed costs of hedging.

Methodologically, we contribute to the growing literature on dynamic risk management,

cash policies, and investment. Bolton, Chen, and Wang (2011) build a structural investment

model with adjustment costs. In their model, the firm’s investment opportunity set is con-
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tinuous and does not depend on the current profitability shock; therefore the value function

is everywhere concave, inducing hedging. Hugonnier, Malamud, and Morellec (2014) derive

the optimal financing and cash policies in a model with lumpy investment. In their setup, the

cash policy of a firm without growth options is characterized by a standard “barrier” policy,

i.e., the firm distributes cash when its holdings are above the target and raises equity financ-

ing when its holdings are below the target. They also show that for a firm with investment

options, the barrier policy may no longer be valid. The firm optimally retains cash in the

pre-investment region waiting to invest and finance internally when cash reaches a critical

value. Therefore, in their model , cash risk may also be beneficial to shareholders.

Decamps, Gryglewicz, Morellec, and Villeneuve (2015) study cash and risk management

policies of firms that are subject to permanent and temporary cash flow shocks. Using the

setup similar to Decamps, Mariotti, Rochet, and Villeneuve (2011), they show that firms may

prefer to increase cash flow volatility because it increases cash flow correlation to permanent

profitability shocks. Finally, they show that when cash flow shocks are permanent, hedging

(using derivatives) and asset substitution (selecting real assets with different risk) are not

equivalent because the former generates immediate cash flow, but the latter does not. Similar

result holds in our model, but for a different reason; the value of the option to invest increases

with the risk of the assets but not with the risk of cash flows.

Similar to us, Rampini and Viswanathan (2010) obtain the result that financially con-

strained firms can prefer to hedge less, but using a different mechanism. In their model, both

financing and risk management involve promises to pay that need to be collateralized, thereby

resulting in a tradeoff between a firm’s ability to finance current investment and engage in

risk management in order to maximize future investment. Since more constrained firms find

it more advantageous to use the available cash for current investment, a negative relation

between financial constraints and risk management arises. In our setting, there are no col-

lateral constraints, and hence risk management is not limited by the current amount of cash.

Nevertheless, firms with low expected-net-worth can prefer to hedge less because this allows

them to maximize the probability of future investment.
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Our work is also related to studies on investment and firm liquidity under financing con-

straints. Boyle and Guthrie (2003), Dasgupta and Sengupta (2007), and Bolton, Wang, and

Yang (2013) study the implications of future cash flow uncertainty and the current level of

cash for current investment. In their papers, cash flow risk is exogenous, and it matters be-

cause firms choose to accelerate or delay investment keeping the possibility of future funding

shortfalls in mind. In our model, firms choose their risk management policies optimally.

II. Single-Period Analysis

To fix ideas, we develop a simple one-period example of risk management under financing

constraints that builds on the investment literature. We first provide the solution for the

optimal hedging strategy and then proceed with a discussion of how a firm’s net worth, firm

risk and its composition, product market competition, and investment opportunities affect

the optimal hedging ratio. In Section III, we present a full model with cash accumulation and

dynamic risk management policy, which extends the simple example.

A. Preliminaries

There are three dates in the model corresponding to: (1) hedging strategy, (2) cash flow real-

ization, external financing, and investment, and (3) the final payoff.2 There is no discounting.

We assume that the firm can hedge its cash flow risk by buying forward contracts and post-

pone the discussion of nonlinear hedging strategies to Section II.E. For the firm that adopts

hedging ratio φ, the cash flow available at date 2 is

w = w0 + w1 (φε+ (1− φ) ε) , (1)

where ε is the primitive uncertainty (the cash flow shock) governed by the probability distri-

bution function g (ε) with mean ε and variance σ2. By construction, hedging decreases cash

flow variability but leaves the expected cash flow, w0 +w1ε, unchanged. This assumption, in

particular, implies that hedging has no direct costs. Note that if φ = 1, the firm’s internal

funds are completely independent of the profitability shock.

2If the payoff is immediate, the last date is redundant. This notation simply clarifies that the final payoff
cannot be used to pay for investment or operating costs.
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The cash flow w can be used to pay for firm’s operating costs and investment at date

2. Whenever the firm is short of internally generated funds, it can raise external financing

e available at a cost C(e). Following Kaplan and Zingales (1997) and Hennessy and Whited

(2007), we assume that the external cost function is increasing and convex (Ce > 0, Cee > 0).

Operating costs R are paid at date 2 to keep the firm running and to retain the claim on

the final payoff f0. The payoff is high enough so that liquidating the firm with the goal of

avoiding the operating costs is never optimal, i.e., the firm is better off by raising external

financing than liquidating.3

At the management’s discretion, the firm can also invest an additional amount I −R > 0

to replace the existing assets and to increase firm profitability. If this investment option

is exercised, the payoff at date 3 changes from f0 to θf (I), with variable θ capturing the

firm’s investment opportunities at date 2. Note that the assumption that new assets will

render old ones unproductive (profit f0 is not available if investment is made) is equivalent

to assuming that there are fixed costs of investment. Such costs may, for example, originate

from new investment cannibalizing profits associated with assets in place (see, e.g., Hackbarth,

Richmond, and Robinson (2012)).

To model the fact that firm’s investment opportunities are correlated with cash flow shocks,

we specify

θ = α (ε− ε) + β, (2)

where α ≥ 0 captures the positive correlation and higher β implies better overall investment

opportunities. We also assume that investment technology has decreasing returns to scale,

fI > 0, fII < 0.

3The condition for no liquidation is f0−R−C(R−w) > 0. It is straightforward but unnecessary to model
liquidation or bankruptcy costs because the costs of external financing C() already punish the firm for having
a low cash flow.
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B. Optimal Investment

The firm decides whether to invest and how much to invest. Should the firm invest, it chooses

the optimal amount of investment by solving:

max
I
{θf(I)− I − C(e)}, (3)

which gives I∗ through the first-order condition:

θfI (I∗)− 1 = Ce (e) . (4)

In general, investment is optimal only if the profit net of investment and financing costs is

higher than the profit associated with running existing assets

θf(I)− I − C(e) ≥ f0 −R− C(e0), (5)

where e and e0 are the financing gaps given, respectively, by e = I − w, e0 = R− w.

Setting (5) to equality gives the implicit condition for the investment threshold ε∗, such

that investing in the new technology is optimal only for the cash flow shock above such

threshold, i.e., when ε > ε∗.

The option to abandon investment is an important feature of the model that differentiates

our study from the past risk management literature. If the firm must invest, its sole concern

is minimizing the financing gap, and therefore a low cash flow risk is optimal. Realistically,

however, it may be better to drop the investment project altogether if the external financing

is too costly and the present value of investment is relatively small. In this case, the cash flow

risk may be beneficial.

To summarize, the firm’s profit function in the no-investment (inaction) and investment

region is given by

Π (ε) =

 P = θf(I∗)− I∗ − C(e), if ε ≥ ε∗, investment region

P0 = f0 −R− C(e0), if ε < ε∗, inaction region

 (6)

where the threshold ε∗ is determined endogenously.

Before we proceed to analyzing the firm’s optimal hedging policy, it is worthwhile to

examine the incremental effect of hedging on investment. As the following lemma shows, the
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answer depends on whether the cash from the firm’s fully hedged position is sufficient to cover

the investment cost.

Lemma 1. Suppose there exists an interior solution for the investment threshold ε∗. Then,

we have:

(i) If ε∗ > ε, then hedging increases the investment threshold (investment is more selective),

dε∗

dφ > 0, and decreases the optimal investment level, dI∗

dφ < 0, for ∀ε.

(ii) If ε∗ < ε, then hedging decreases the investment threshold (investment is less selective),

dε∗

dφ < 0. The effect of hedging on the optimal investment level is ambiguous.

Intuitively, when a firm decides whether to invest, the firm internalizes the costs of external

financing, which increase with the financing gap. By hedging the firm effectively moves cash

from the high-profitability states (i.e., from the states above the average, ε > ε) to the low-

profitability states (ε < ε). In case (i) in the lemma, the investment is only optimal in the

high-profitability states. Therefore, it will require a larger amount of external financing when

the firm decides to hedge. This will make investment less profitable and lead to an increase

in the investment threshold. In contrast, if investment was feasible in the low-profitability

states without hedging, it will require a smaller amount of external financing after hedging,

which results in a decrease in the investment threshold (case (ii)).

C. Optimal Hedging Ratio: Uncorrelated Investment

We first consider a case when the investment payoff is uncorrelated with firm profitability,

α = 0. For example, one can think of a firm that can invest $1 million to obtain a guaranteed

fixed payoff of $1.2 million. An unconstrained firm would always invest and pocket $0.2 million

from this deal, while a constrained firm may either invest less than $1 million or completely

abandon the investment if external financing is expensive.

The optimal hedging ratio maximizes the firm’s expected profit:

φ∗ = argmax
φ∈[0,1]

E [Π(ε)] . (7)
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Proposition 1. Suppose α = 0 and φ ∈ [0, 1]. Then, the optimal hedging ratio is given by:

φ∗ = 0 for ε∗ ∈ [εL, εH ],

φ∗ = 1 otherwise,

where εL and εH are defined in the Appendix.

Two opposing effects determine the choice of optimal hedging. On the one hand, convexity

of costs (Cee > 0) and concavity of revenues (fII < 0) create an incentive to hedge, as in

Froot, Scharfstein, and Stein (1993). On the other hand, because the firm has an investment

option, there is a disadvantage to hedging. The benefit of hedging is independent of the

investment threshold, but the disadvantage is largest when the option value is large, i.e., when

the investment option is neither far out-of-the-money nor deep in-the-money. Therefore, a

firm will prefer not to hedge for intermediate investment thresholds ε∗ ∈ [εL, εH ].

Using the proposition, we next examine the comparative statics with respect to profitabil-

ity of firms investment opportunities, β, the firm’s wealth, w0, and volatility, σ. Note that a

high investment threshold ε∗ means that the firm is highly constrained.

First, we show that hedging ratio can be lower for firms with more valuable investment

options.4

Corollary 1. Suppose ε∗ > εL. Then, firms with more valuable growth options choose to

hedge less, i.e., ∆φ∗

∆β ≤ 0.

This result follows from the fact that for firms with very poor investment opportunities

(low β), the probability of investment is small. Therefore, the risk management policy in these

firms is mostly driven by the desire to minimize the costs of financial distress, which is achieved

by choosing high hedging ratios. In contrast, firms with better investment opportunities are

concerned about investment financing, which results in choice of lower hedging ratios.

Second, we show that tighter financing constraints (lower w0) can lead to less hedging.

4The empirical literature generally finds that hedging activity is concentrated in firms with few growth
options, as measured by their book-to-market ratios (see, e.g., Bartram, Brown, and Fehle (2009), Mian
(1996), Graham and Rogers (2002), Allayannis and Ofek (2001), Haushalter (2000), Gay and Nam (1998).
Two papers by Guay (1999) and Geczy, Minton, and Schrand (1997) find the opposite result.
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Corollary 2. Suppose ε∗ < εH . Then, easing of financing constraints leads weakly to more

hedging, i.e., ∆φ∗

∆w0
≥ 0.

The intuition is that greater savings lead to lower costs of external financing and therefore

a lower investment threshold. In this case, it is optimal for a firm to fully hedge its risk

exposure since such action guarantees investment and at the same time decreases the costs of

external financing when the profitability is low.

Finally, we investigate the role of volatility. Observing that the effects limiting the value of

hedging come from the firm holding investment options, we conjecture that the high volatility

firms—i.e., companies holding more valuable options—will be less aggressive in their cash flow

risk management.

Corollary 3. There exists σ > 0, such that for σ ∈ [0, σ] hedging ratio weakly decreases in

cash flow volatility, i.e., ∆φ∗/∆σ ≤ 0.

To understand why riskier firms may prefer lower hedging ratios, consider the case when

ε∗ > ε and the volatility of the profitability shock is close to zero. In this case, the probability

of ever reaching the investment threshold is negligibly small so that investment does not affect

the risk management choice. However, because of the concavity of value function, any risk

is undesirable, and the hedging ratio is equal to 1.5 When the volatility increases, however,

the probability that the shock crosses the threshold increases. Additionally, not only the

probability but also the level of investment becomes larger because larger cash flow shocks

can be drawn from a distribution with a higher volatility. As a result, we have a lower

hedging ratio. Therefore, φ∗ must decrease in volatility at least in some continuous range of

the volatility parameter values.

5More formally, observe that the threshold ε∗ is independent of volatility and that ε∗ > ε; therefore
Pr(ε > ε∗) −→ 0 when σ → 0.
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D. Optimal Hedging Ratio: Positive Investment-Cash Flow Correlation

Proposition 2. There exists a threshold α > 0, a solution to (89) in the Appendix, such that:

i) for α > α, the optimal interior hedging ratio is given by

φ∗ = 1− α

w1

∫∞
ε∗ fIk (e) dG∫ ε∗

−∞Cee (e0) dG−
∫∞
ε∗ θfIIk (e) dG

, (8)

where

k (e) =
Cee(e)

Cee(e)− θfII (e)
, (9)

ii) for 0 < α < α, the optimal hedging ratio is given by a corner solution, i.e. φ∗ = φmin or

φ∗ = φmax.

The proposition shows that the natural tendency of real options to become more valuable

when the firm is profitable can discourage hedging. In particular, it follows from (8) that firms

with a positive correlation between cash flows and investment opportunities (α > 0) can use

incomplete hedging and that the amount of optimal hedging decreases when the correlation

is greater.

E. Illustrations and Comparative Statics

Figure 1 illustrates the effect of hedging on financing of investment and cash shortfall in the

distress region. The firm has operating costs R = 20 and can also invest a fixed amount

I − R = 80 in the profitable project. For facilitate the exposition, we assume that external

financing is prohibitively expensive and investment is possible only out of internal funds.

Parameters are chosen in such a way that investment always generates a higher profit than

running existing assets. Panels A and B are respectively for the cases of w0 = 0 (low net

worth) and w0 = 30 (high net worth). If the low-net-worth firm fully hedges, the investment

never occurs. In contrast, the high-net-worth firm always invests when fully hedged. The

filled areas show financing slack and financing shortfalls in the regions of investment (on the

right) and distress (on the left) when the firms do not hedge.

In Figure 2, we plot the expected investment level as a function of hedging policy when

cash flows and investment opportunities are uncorrelated (α = 0). For illustration purposes,

12



we assume a logarithmic payoff function and quadratic costs of external financing. Lemma

1 establishes that the effect of risk management on investment depends on the profitability

of investment. If the investment option is out-of-the-money when hedging ratio is zero, then

hedging decreases the probability of investment. Indeed, Panel A shows that the expected

investment steadily drops with hedging, with the probability of investment eventually going

down to zero at high hedging ratios. In contrast, if the investment option is in-the-money

when hedging ratio is zero, hedging encourages investment. This effect is observed in Panel

B. In fact, when hedging ratio is high, the investment reaches the first-best level, i.e., the

investment made by an unconstrained firm.

Figure 3, Panels A and B, provide an illustration of the volatility effect on optimal hedg-

ing policy. We plot the optimal investment amount and cash flow realizations for a firm with

positive correlation between investment opportunities and cash flows. The difference between

the investment amount and cash represents the “financing gap,” which requires external fi-

nancing. Because of a positive correlation between investment opportunities and cash flow,

the optimal investment amount increases with cash flow. Panel A shows what happens when

the firm has high expected distress costs in a low profitability state but does not hedge any

risk exposure. For comparison we also provide a corresponding function in Panel B, which

shows what happens when the firm hedges completely. It is clear that if the firm fully hedges,

it minimizes the costs of financial distress where cash is low (since a constant financing gap

minimizes convex costs). However, the financing gap of the firm is not constant in the in-

vestment region and increases with higher cash flow shocks. Therefore, the firm with a high

hedging ratio will incur, in expectation, large costs of raising external financing for invest-

ment. In fact, by comparing Panel A and Panel B, we can see that a fully hedged firm will

even decrease the amount of state-contingent investment because of financing costs.

The next pair of panels illustrates how firm risk affects hedging. Panels B and C plot the

investment demand and cash relation for the case when the volatility of a firm’s cash flow is

low (Panel C and D). Intuitively, the probability of state-contingent investment is low, and

therefore demand for cash is unchanged across states of profitability. It follows that maximum
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hedging is optimal in this case.

Next, Figure 4 shows how the value of investment and the optimal hedging ratio change

with volatility of the assets. In Panel A of Figure 4, we show the expected investment amount

of a constrained firm (solid line). The dashed line displays the expected investment level of an

unconstrained firm. It is easy to see that financial constraints affect both the level and proba-

bility of investment, and that the expected investment increases in volatility. Finally, in Panel

B of Figure 4, we plot the optimal hedging ratio of a firm as a function of volatility. Indeed,

we observe that at low volatility, the firm prefers to hedge all of its risk exposure. However,

as volatility increases, the optimal hedging ratio drops and can even become negative, which

means that a firm may choose to speculate.

Panel A of Figure 5 shows how the optimal hedging ratio changes with financing con-

straints for a firm with uncorrelated investment opportunities (dashed line) and for a firm

with a positive correlation between investment opportunities and cash flows (solid line). The

graph shows that the firm with a positive correlation never chooses full hedging and always

maintains a lower hedging ratio than the firm with uncorrelated investment opportunities.

When financing constraints ease (higher w0), both types of firms may prefer to hedge more

aggressively, but the relation between constraints and hedging is non-monotonic.

In Panel B, we plot the optimal hedging ratio as a function of firm’s investment opportu-

nities β. It is clear that firms with higher positive correlation between their cash flows and

investment opportunities tend to have lower hedging ratios. Furthermore, the relation between

risk management and the value of growth options is non-monotonic, which could explain the

mixed empirical results on the relation between hedging ratios and firms’ market-to-book

ratios.

Finally, Figure 6 shows the relation between the correlation between investment opportu-

nities and cash flows, α, and a firm’s optimal hedging ratio. Since larger positive α implies a

better coordination between firm’s investment needs and internal funds, it is intuitive that the

optimal hedging ratio decreases with α. However, the shape of the function crucially depends

on the value of investment options, β. For example, when β = 1.5, the hedging ratio function
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is flat and equal to zero irrespective of α .

F. Economy with Multiple Firms

In the benchmark model we consider the firm’s decisions in isolation. However, both invest-

ment and risk management strategies must be determined in conjunction with strategies of

other firms.6 It is intuitive that real options are less valuable in a competitive economy since

increased production by other firms can depress the price of output and therefore impose a

limit to profitability. Since the profitability of new investment is reduced by competition, firms

invest less and are also less concerned with financing investment. Our model then predicts a

higher optimal hedging ratio.

The relation between real options and competition is well known in the real options litera-

ture; however most of the related studies are concerned with the exercise timing. For example,

Grenadier (2002) argues that competition decreases the value of real options and the advan-

tage of waiting to invest. In contrast, Leahy (1993) and Caballero and Pindyck (1996) argue

that despite the fact that the option to wait is less valuable in a competitive environment,

irreversible investment is still delayed because upside profits are limited by new entry. By

focusing on nonlinear production technology, Novy-Marx (2007) shows that firms in a com-

petitive industry may delay irreversible investment longer than suggested by a neoclassical

framework. None of these studies, however, analyze hedging incentives.

We formalize the intuition by representing the total cash flow of the firm as the sum of

two parts—the component of the profit common across all firms and a firm-specific profit

component. We assume that firms are identical aside from the differences in their cash flow

composition. The required adjustment to the previous section’s model is as follows: we supply

the profitability shock with a firm-index “i” and separate it into common and idiosyncratic

components

εi = βivm +

√
1− β2

i vi, (10)

where we denote 0 < βi < 1 the sensitivity of the total cash flow to the common shock. It is

6Zhu (2012) empirically analyzes the relation between hedging policies and competition and concludes that
the hedging strategy a firm chooses affects the probability of the exit.
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related but not necessarily equal to the market “beta.” We assume that the two components

have the same mean v and are drawn from an identical probability distribution with density

function G (v). This assumption allows us to vary the mix of firm-specific risk (by changing

βi) without changing the volatility of total cash flow.

With competition among different firms, the optimal investment strategy turns out to be

a function of both the total cash flow shock εi and the common component of profit vm. Since

competitors are more likely to invest with high shock vm, a particular firm’s investment is

more profitable when vm is relatively low and the idiosyncratic component vi is relatively

high.

It is important that in our model firms compete to the extent that their profit shocks

contain the common component. Therefore, firms in the economy that have a larger propor-

tion of the systematic profit risk are less valuable and have fewer real options. The following

proposition summarizes these facts.

Proposition 3. In the economy with multiple firms:

(i) The optimal hedging ratio φ∗ increases with competition.

(ii) The optimal hedging ratio φ∗ increases with βi.

The proposition states that the optimal hedging ratio increases with the systematic risk

exposure because the probability of exercise decreases. Even if the total cash flow is currently

high, firms may not invest heavily because they expect new entry to reduce profitability in the

future. In contrast, firms with a high proportion of unique risk possess valuable investment

options and expect to invest in the future. Therefore, the correlation between their cash flows

and investment is large and leads to their adoption of a lower hedging ratio.7

The one-period model provides the basic intuition for the static problem. However, it

assumes that firms can only finance investment out of their cash flows or using external

7Mello and Ruckes (2005), Adam, Dasgupta, and Titman (2007) analyze optimal hedging in models with
product market competition. In their setting, firms choose a hedging policy simultaneously with their rivals
in anticipation of the opponent’s strategy and with the purpose to increase the chances of its own survival
in competition. The mechanism in our model is different. The ex-post competition decreases the value of
investment options that are not unique to the firm. This approach is more similar to that in the real options
literature (see, e.g., Grenadier (2002), Novy-Marx (2007)).
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financing. This may be unrealistic because liquidity issues and a persistent wedge between

internal and external financing costs force firms to save. We next consider a dynamic model.

III. Dynamic Model with Cash Accumulation

This section presents and solves the model with cash savings, investment, and dynamic risk

management policy. First, we present the dynamic model of a financially constrained firm with

risky cash holdings and a simple investment option. Second, we analyze the firm’s incentive

to increase or decrease risk and derive the optimal hedging strategy. Third, we present a

more general case when the underlying stochastic profitability can affect both the firm’s cash

holdings and the value of its investment option. The last step is complicated by the fact that

firm profitability presents another state variable, in addition to cash savings.

A. Risky Cash Inventory and Risk Management

We first present the base model, with a single source of risk.

A.1. Evolution of Cash Inventory

The firm is initially endowed with a stock of cash C0 and can carry the cash balance forward

by investing it in a risk-free security that earns a riskless rate of return r.8 Cash inventory

is subject to random shocks due to uncertainty in the production process or unexpected

expenses. Cash process evolves according to

dCt = rCtdt+ σCtdBc. (11)

The first term above reflects the interest earned on the running cash balance, whereas the

second term reflects the cash inventory risk. It captures the uncertainty in the firm’s financ-

ing environment, such as unanticipated expenses, revenues, settlement of legal disputes, or

proceeds from employee stock option exercises.

8We deviate from the analysis in Bolton, Chen, and Wang (2011) by assuming in the base model that
carrying cash is costless. Because of this assumption, the voluntary payout to shareholders is never optimal in
the base model. The cash cost, such as tax disadvantage to savings on the corporate account, can be easily
accommodated in the model by reducing the interest rate. In this case, the optimal payout policy would
amount to distributing excess cash when the accumulated cash process reaches an upper boundary.
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Because the firm has no leverage, it never finds it optimal to default even if a series of

negative shocks cause its cash inventory to decrease to zero.9 To model the incentive to

hedge and also to avoid the singularity problem when the cash variable approaches zero from

above, we assume that the firm has to satisfy the minimum working capital requirement. We

therefore impose the minimum working capital requirement on savings, C ≥ C. Once the

cash level falls below this threshold, the firm must raise more cash at the price kd > 1. The

fact that rasing cash entails a cost creates an incentive for the firm to avoid the distress states,

similar to the effect created by the bankruptcy costs.10 If, on opposite, cash reserves become

excessively large the marginal value of cash becomes one, meaning that the firm is indifferent

between retaining cash or disbursing cash to shareholders as dividends or share repurchases.

A.2. Option to Invest

The firm may have an opportunity to invest in a new project at time τ . We model the

investment option in a simple way to keep the model tractable. In particular, if a Poisson

shock with intensity λ arrives at time τ , the firm can invest an amount I and obtain an

instantaneous payoff of Θ, where Θ > I. If the firm does not have a sufficient cash balance to

make investment, it needs to raise external financing and pay the associated financing costs

k (I − C)+. We allow for the possibility that k 6= kd because the costs of raising external

financing in distress can, in principle, differ from costs incurred at other times. The option is

worthless if the costs of financing exceed the benefit of the investment.

For tractability purposes, we assume that after investment is made the firm pays a dividend

and is immediately liquidated. The value of the firm at date τ is then equal to the final payout

D(C) = C + max
(
0,Θ− I − k (I − C)+) . (12)

9It is never optimal to liquidate an unlevered firm because the cash inventory is guaranteed to stay positive.
This is the common feature in the cash flow models that use the geometric Brownian motion (e.g., Leland
(1994)).

10One could interpret such cost as a proportional cost of financial distress or a refinancing cost that is
incurred in the low-cash states. We assume that the firm cannot chose C. In a setup with no financial leverage,
the optimal value of C is zero because it minimizes the cost of expected recapitalization.
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A.3. Hedging Instrument

To mitigate the cash savings risk the firm can buy financial securities (e.g., futures or cus-

tomized hedging contracts), that carry payments correlated with the firm’s profitability. The

firm can optimize dynamically over its hedging policy and is restricted to using linear con-

tracts. In particular, at any point in time, the firm can enter into a short position in Φt

futures contracts, subject to a proportional cost π. The costs associated with hedging can be

thought of as either direct transaction fees or the cost of holding cash in a margin account and

posting collateral. Transaction costs do not drive any of our results and we will be assuming

zero proportional cost for the base case to emphasize this fact. The futures price Ft is driftless

under the risk-neutral measure and is assumed to evolve as11

dFt
Ft

= σFdBF , (13)

E [dBcdBF ] = ρcdt. (14)

Anticipating that the amount of money Φt invested in the hedging portfolio is proportional

to the size of cash inventory, we normalize the size of hedging position Φt by cash and define

the hedging ratio as φt = ΦtFt/Ct.
12 Hence, we can amend the cash process with the net

proceeds from the hedging portfolio

dCt = rCtdt+ σCtdB − φtCtσFdBF − πφtCtdt, (15)

where the last two terms represent the hedging portfolio payoff and cost, respectively. The

costs associated with hedging can be thought of as either direct transaction fees or the cost of

holding cash in a margin account and posting collateral. Note that complete hedging (meaning

that savings is a locally deterministic process) is achieved if there is a perfect correlation

between cash innovation shocks and the hedging security, ρc = 1, and the following hedging

11Equivalently, the model is solved with the forward price on the same underlying asset (see Cox, Ingersoll,
and Ross (1981) for comparison of the futures and forward prices for the nonstochastic interest rate case).

12To verify the conjecture that the futures position Φt is proportional to cash Ct, it will be sufficient to show
that the optimal hedging ratio φt is independent of cash Ct.
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portfolio is chosen13

Φt =
σCt
σFFt

or φt =
σ

σF
. (16)

When a complete hedging is impossible because of imperfect correlation, the hedging portfolio

(16) trivially minimizes the conditional variance of cash. As defined, the hedging ratio has

a meaningful range between zero (no hedging) and σ
σF

(minimum risk), we therefore assume

going forward φ ∈ [0, σ
σF

].

A.4. Firm Value

Applying the Itô’s lemma to firm value V (C) and using the dynamics of cash savings (15), we

can describe the firm value function as a solution to the Hamilton-Jacoby-Bellman equation

(r + λ)V (C) = max
φt

CVC (r − πFtφt) +
C2

2
VCC

(
σ2 + φ2

tσ
2
F − 2ρcφtσFσ

)
(17)

+λC + λmax
(
0,Θ− I − k (I − C)+) .

The left-hand side, intuitively, represents the required return on firm assets, including the

required return r and the probability of liquidation λ, while the right-hand side is the expected

rate of change in its value. In particular, the first two terms on the right side capture the

effect of cash growth and the payments from the hedging portfolio, while the last two terms

are due to the expected exercise of the option and the final dividend payment.

Equation (17) is subject to boundary conditions. First, when the cash level reaches the

recapitalization threshold C, we require that the marginal value of cash is equal to the marginal

cost of recapitalization, that is

VC (C) = 1 + kd, (18)

where VC is the first-order derivative of firm value with respect to cash. Second, when the

cash level is high C →∞, the value V (C) must approach the value of the fully unconstrained

firm, so that we have

VC
(
C
)
|C→∞ = 1. (19)

13To see this, note that the instantaneous variance of cash innovations is given by E(dC2) = σ2−2ρcφσσF +
φ2σ2

F .
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A.5. Base Case Solution

The base case assumes φ = 0 (no hedging).14 Ordinary differential equation (17) can be

solved in closed-form. We conjecture the following solution

V (C) = ACa1 +BCa2 + EC +D, (20)

where a1 and a2 are constants. Substituting the trial solution (20) into the ODE (17) gives

(r + λ) (ACa1 +BCa2 + EC +D) = r (a1AC
a1 + a2BC

a1 + EC) (21)

+
σ2

2
(a1(a1 − 1)ACa + a2(a2 − 1)BCa2) + λC + λmax

(
0,Θ− I − k (I − C)+) .

It follows that {a1, a2} are the solutions to the standard quadratic equation

a1,2 =
1

2
− r

σ2
±

√(
1

2
− r

σ2

)2

+
2 (r + λ)

σ2
. (22)

Note that a1 > 1 and a2 < 0. Because of the last term in (21), we need to consider three

regions: no investment (left region), investment using external financing (middle region), and

investment out of cash (right region). If C > I, then the firm has sufficient financing to cover

the full cost of investment, and the last term in (21) is λ (Θ− I). If C < I, the firm may

choose to finance investment by raising external financing or may choose not to invest. The

cash reserves that sets the payoff from investment net of costs of external financing to zero

determines the threshold, C∗, at which the firm starts to invest

C∗ = I − Θ− I
k

. (23)

When C∗ < C < I, the external financing is used, and the last term in (21) is λ (Θ− I − k (I − C)).

If C < C∗, the firm chooses not to invest and the last term is 0. Using (21), we can solve for

constants E and D

E = 1, D = 0 for C ≤ C∗, (24)

E = 1 + k,D =
λ (Θ− I − Ik)

r + λ
for C∗ < C < I,

E = 1, D =
λ (Θ− I)

r + λ
for C ≥ I,

14In the Appendix, we solve a simpler case, with internal financing only (k very large). It may be more
intuitive because the solution is necessary only for two regions, where cash is sufficient for investment and
where investment is dropped.
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and the firm value function in each region, VL, VM , and VR, is given by

VL(C) = ALC
a1 +BLC

a2 + C for C < C∗, (25)

VM (C) = AMC
a1 +BMC

a2 + C + kC +
λ (Θ− I − Ik)

r + λ
for I > C > C∗,

VR(C) = BRC
a2 + C +

λ (Θ− I)

r + λ
for C ≥ I.

Free constants AL, BL, AM , BM , and BR are determined by the value-matching and smooth-

pasting conditions at the boundaries C∗ and I

VM (I) = VR (I) , (26)

V ′M (I) = V ′R (I) ,

VL (C∗) = VM (C∗) ,

V ′L (C∗) = V ′M (C∗) ,

and by the boundary conditions (18) and (19) at the lowest and highest values of cash.

Condition (19) implies that VR(C) in the right region does not contain a positive exponent

term, therefore we already used AR = 0 in (25). Condition (18) implies

V ′L (C) = 1 + kd. (27)

Combing (25), (26), and (27), we obtain a system of linear equations which can be solved for

all constants

AL =

(
k − kra2

r+λ

) (
I1−a1 − C∗1−a1

)
a2 − a1

, AM =

(
k − kra2

r+λ

)
I1−a1

a2 − a1
, (28)

BL =
kdC

1−a2

a2
−

a1Ca1−a2

a2

(
k − kra2

r+λ

) (
I1−a1 − C∗1−a1

)
a2 − a1

,

BM =
kdC

1−a2

a2
−

a1Ca1−a2

a2

(
k − kra2

r+λ

) (
I1−a1 − C∗1−a1

)
a2 − a1

−

(
k − kra1

r+λ

)
C∗1−a2

a2 − a1
,

BR =
kdC

1−a2

a2
−

a1Ca1−a2

a2

(
k − kra2

r+λ

) (
I1−a1 − C∗1−a1

)
a2 − a1

+

(
k − kra1

r+λ

) (
I1−a2 − C∗1−a2

)
a2 − a1

.

Having solved for the value function, we proceed to investigating the properties of the solution.
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A.6. Incentives to Hedge

Intuitively, the local incentive to increase or decrease cash risk is determined by the convexity

or concavity of the value function with respect to cash. We therefore investigate the second

derivative of the value function, starting from the left region

V
′′

L (C) = a1 (a1 − 1)ALC
a1−2 + a2 (a2 − 1)BLC

a2−2. (29)

The claim is that the value function is convex on the left, V
′′

L (C), so that higher risk is

optimal. Because a1 > 1 and a2 < 0, a1 (a1 − 1) > 0, a2 (a2 − 1) > 0, and therefore convexity

is guaranteed if both AL > 0 and BL > 0. Further, AL > 0 because I > C∗ and BL > 0 if

kd <
ka1C

a1−1

a1 − a2

(
1− ra2

r + λ

)(
C∗1−a1 − I1−a1

)
. (30)

This is a sufficient condition for the value function in the left region to be convex. The

intuition is that the convexity/concavity of the value function (and therefore risk-aversion or

risk-loving incentive) is a product of the trade-off. On one hand, higher risk increases the

probability to move into the region to the right and be able to exercise the valuable investment

option. On the other hand, higher risk also increases the expected costs of recapitalization

at low cash levels. Therefore, when recapitalization is less costly (smaller kd), the incentive

to increase risk dominates. The described trade-off is akin to the familiar considerations,

from the real options literature, that the higher risk speeds up and increases the value from

exercises of the option, however it comes at the cost of a higher probability of bankruptcy. By

comparison, in our model, risk increases the chances of obtaining sufficient financing, however

at the expense of more frequent recapitalizations.

We can also derive the necessary condition for convexity in the whole left region:

V ′′L = Ca2−2
(
a1 (a1 − 1)ALC

a1−a2 + a2 (a2 − 1)BL
)

(31)

kd <
ka1C

a1−1

1− a2

(
1− ra2

r + λ

)(
C∗1−a1 − I1−a1

)
.

The right region is concave, and the middle region is concave under mild conditions.
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V ′′M (C) = a1 (a1 − 1)

(
k − kra2

r+λ

)
I1−a1

a2 − a1
Ca1−2 + a2 (a2 − 1)BMC

a2−2, (32)

V ′′R(C) = a2 (a2 − 1)BRC
a2−2.

An important implication of the results in this section lies in observation that hedging becomes

less desirable when firms become more poor. With low net worth, the incentive to take risk and

obtain sufficient financing are especially valuable, and so the risk will be optimally increased

to the extent that the negative effect of the risk is limited.

Next, we discuss the optimal hedging portfolio.

A.7. The Optimal Hedging

From (17), the optimal hedging ratio maximizes

φ∗t = max
φt

(
φ2
tσ

2
F

2
− ρcφtσFσ

)
VCCC

2 − πFtφtVCC, (33)

where the second term is the negative impact of the cost of creating the hedging portfolio.

The fact that optimal φ∗t is constant confirms the conjecture in the previous section that

the optimal hedging portfolio is proportional to cash. The first-order condition of the above

maximization problem produces an interior solution whenever VCC < 0

φ∗t =
ρcσ

σF
+

πFtVC
σ2
FCVCC

if VCC < 0, (34)

SOC ∼ VCC < 0, (35)

and we have the corner solution whenever VCC > 0

φ∗t = 0 if VCC > 0,

because the hedging ratio is bounded by zero (we do not allow using the hedging portfolio to

speculate). Note that, without the transaction costs, the hedging ratio (34) is the one that

minimizes the conditional variance of cash

φ∗t =
ρcσ

σF
, for VCC < 0, if π = 0. (36)

24



Further, the optimal hedging ratio increases in the volatility of cash and the correlation with

the hedging instrument, but decreases with the variance of futures.

Finally, note that the hedging strategy changes the exponents in the concave region and

therefore the solution for the value function (intuitively, it becomes less volatile). We describe

the adjustment in the Appendix.

B. The Model with Risky Cash and Correlated Investment Option

We now extend the model by explicitly modeling risky cash flows and allowing for the cash

to be correlated with the firm’s investment. This is an important case, because it leads to the

natural correlation between firm demand for investment and the cash used to finance it. As

we show below, the profit-cash correlation carries implications for the optimal hedging policy.

To capture the idea that the higher underlying profitability leads to higher cash holdings

and higher investment option value, we introduce an additional term in (15), which accounts

for contemporaneous profitability and the value of options. Specifically, assume that at every

point in time firms observe the stochastic variable, pt, which follows the geometric Brownian

motion (GBM) process in the risk-adjusted probability measure

dpt = ptµpdt+ σpptdBp. (37)

Here, pt can be interpreted as an underlying profitability variable, such per-unit output price.

We assume there is no arbitrage in the economy and there exists a stochastic discount factor

(SDF) that evolves as dΛt/Λt = −rdt − ςdBt, where E(dBtdBp) = ρBΛdt. Because of the

positive risk premium implied by SDF, the drift µp in the risk-adjusted measure Q is lower

by ςσpρBΛ than the drift in the physical measure.

The firm’s profit flow resulting from selling units at this price is assumed to be

ΠtdBp = δpγt dBp, (38)

where δ is a positive proportionality constant, and γ captures nonlinearity in the profit func-

tion. Note that the output flow is homogeneous of degree one in pγt . As we will see shortly,

the firm’s basic valuation equation, including the present value of firm’s profit and costs, is

also homogeneous of degree one in pγt .
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We rewrite the recapitalization requirement (18) by imposing the minimum requirement

on savings as

C ≥ cpγ , (39)

with constant c > 0. Once the cash level falls below this threshold, the firm must raise more

cash at the marginal cost kd.

As in the base case, to mitigate the cash savings risk the firm can enter into Φt futures

contracts; the dynamics of the futures price is given by (13). Because we conjecture (and

verify) that the optimal number of hedging contracts will be proportional to the size of cash

inventory, we amend the notation to measure the number of contracts in the scaled units,

i.e., φt = Φt/p
γ . We allow for the correlation between the hedging security and the firm’s

profitability

E [dBpdBF ] = ρpdt. (40)

It is intuitive to further assume that the correlations ρp and ρc are of the same sign. This

allows us to use a single hedging instrument capable of reducing the cash holdings risk in dBc

and the risk from variations in profit dBp.

Hence, cash savings with a hedging portfolio follow

dCt = rCtdt+ δpγt dBp + σcCtdBc − pγφtFtσFdBF − πφtCtdt, (41)

where the last term, as before, captures the cost of hedging. Note that the conditional variance

of cash savings is minimized when

φ∗ =
δρp + σccρc

FσF
. (42)

where c = Cp−γ . Note that complete hedging is impossible here even if all stochastic shocks

have correlation of one.

Finally, we scale the invested amount and the investment payoff by pγ . This makes

investment option more valuable when the firm profitability is larger. In particular, if a

Poisson shock with intensity λ arrives at time τ , the firm can invest an amount ipγ and obtain

an instantaneous payoff of θpγ . The investment amount and the payoff from investment are
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both made proportional to pγ to ensure that the firm’s cash flows do not outgrow investment.

The value of the firm at date τ is then equal to the final payout

D (C, p) = C + max
(
0, θpγ − ipγ − k (ipγ − C)+) . (43)

At any other time, the value of the firm is equal to the present value of cash flows, including

the interest earned on cash, plus the expected liquidation value

V (pt, Ct) = C0 +

∫ τ

t
rCtdt+

∫ τ

t
δpγt dBp +

∫ τ

t
σcCtdBc (44)

+e−rτ max
(
0, θpγ − ipγ − k (ipγ − C)+) .

Using Itô’s lemma and expression (11), we can describe the value function V (pt, Ct) as a

solution to the Hamilton-Jacoby-Bellman equation

(r + λ)V (p, C) = Vpµpp+ VCrC +
Vpp
2
σ2
pp

2 +
VCC

2

(
δ2p2γ + σ2

cC
2
)

(45)

+VpCδp
γ+1σp + λC + λmax

(
0, θpγ − ipγ − k (ipγ − C)+) .

This equation is subject to boundary conditions. First, when the cash level reaches the

threshold cpγ , we have from (39)

VC (p, cpγ) = 1 + kd, (46)

where VC is the first-order derivative of firm value with respect to cash savings. Second, when

the cash level is high, the value V (p, C) must approach the value of the fully unconstrained

firm.

We therefore obtain a second-order partial differential equation (PDE) with respect to the

profitability shock p and amount of cash C. It should be considered as a more general version

of the ODE (17) where we modeled only idiosyncratic cash risk. In general, this PDE equation

does not have the analytical solution. In the next section, we show that this particular PDE

can be reduced to the ordinary differential equation.

B.1. The Solution for Firm Value Without Hedging

The model with correlated cash flow and investment admits a closed-form solution (as an

Ordinary Differential Equation with two boundary conditions). The value of a firm’s assets,
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including cash, is proportional to pγ . One can think of the scaling parameter pγ as a new

numeraire or a new currency, in terms of which all values, such as firm value, cash holdings,

investment, and payoff, will be computed. Because of this scaling property, the model is

identical to a much simpler one, where all values are scaled by a factor of pγ .

It is therefore convenient to define the scaled cash variable, which will be the main state

variable in the model

c = Cp−γ . (47)

The value of the firm at date τ is then

D (c, p) = cpγ + pγ
(
θ − i− k (i− c)+)+ , (48)

where the first term is accumulated cash and the second term is the option payoff. When the

cash level is low and investment requires significant external financing, the option is optimally

abandoned. We define such a trigger level of scaled cash by

c∗ ≡ i− θ − i
k

. (49)

Finally, if cash savings are higher than the cost of investment when the investment option

arrives, i.e.,

c ≥ i, (50)

the firm does not need to raise any external financing and does not incur any costs. Note,

however, that even if c ≥ i the firm still remains constrained. This is because cash c can fall

below i before an option arrives and therefore firm value is lower than that of the unconstrained

firm by the amount of expected financing costs. Unlike in Bolton, Wang, and Yang (2013), in

our model there is no such level of cash, at which the firm becomes permanently unconstrained.

It is always possible for the level of cash to decrease below the investment costs.

We conjecture that the value function can be written in the following separable form

V (p, C) ≡ pγv
(
C

pγ

)
= pγv (c) , (51)
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where v (c) is the scaled value function. Using definitions in (47) and (51), it is easy to show

Vp (p, C) = γpγ−1
(
v (c)− cv′ (c)

)
, VpC (p, C) ≡ −γp−1v′′ (c) c (52)

VC (p, C) = v′ (c) , VCC (p, C) = v′′ (c) p−γ , (53)

Vpp (p, C) = γ (γ − 1) pγ−2
(
v (c)− cv′ (c)

)
+ c2γ2pγ−2v′′ (c) . (54)

Substituting (52-54) into the Hamilton-Jacoby-Bellman equation (45), we can write the

second-order ordinary differential equation (ODE) for value function v (c), where now c is the

only state variable

λv =

(
r − γµp −

σ2
p

2
γ (γ − 1)

)(
v′c− v

)
+
v′′

2

(
σ2
pc

2γ2 + δ2 + σ2
cc

2 − 2γcδσp
)

(55)

+λmax
(
c, c+ θ − i− k (i− c)+) .

To properly characterize the solution, we also need to specify two boundary conditions.

The first condition comes from the working capital requirement at the lower boundary (46),

which we can rewrite in the scaled variables notation as

v′ (c) = 1 + kd. (56)

The second condition applies when cash savings are large, c → ∞. At this point, the firm

is not constrained and does not incur any costs of raising external financing. Therefore, the

firm is worth its cash holdings, plus the value of cash flows and the investment opportunity

v (c)→ c+ g, (57)

where constant g can be determined endogenously by substituting (57) into (55) and solving

for g

g =
λ (θ − i)

r + λ− γµp − 1
2σ

2
pγ (γ − 1)

. (58)

Note that g, which is the value of unconstrained firm net of cash, increases with the prof-

itability of investment θ − i and the probability of option arrival λ.
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B.2. Hedging Incentives

At this point, we can describe the scaled value function v (c) as a solution to the ODE (55),

subject to the boundary conditions (56) and (57). Because concavity/convexity of the function

v (c) determines the incentive to hedge, we proceed to finding the second derivative of this

function.

The value function v (c) is concave at high levels of cash, c ≥ i, and concavity induces

hedging. The upper boundary condition requires that the function is linear at high values of

cash, implying that v′ → 1 as c → ∞, while the lower boundary condition (the refinancing

requirement) requires that v′ = 1 +kd ≥ 1. Therefore, the function is concave in some region.

In the Appendix, we prove that function v (c) which satisfies the ODE must be concave in

the whole region above i (that is, where the option is exercised using firm’s own cash savings

only). It follows then that it is always optimal to reduce cash flow risk when the firm becomes

unconstrained. Intuitively, for the firm carrying sufficient cash to finance the exercise of the

option, the best strategy is to preserve this amount by reducing risk.

However, in the region where c < i, the value function can be convex. We prove in the

Appendix that if the costs of financial distress are not too large compared to the costs of

financing the investment, there exists a convexity region for lower values of c. This result is

explained by the fact that the firm holds an option to invest, which has a convex payoff in the

cash variable. For example, when cash is just below investment threshold c∗, it can pay off for

a firm to increase the volatility in cash savings since such behavior increases the probability

of cash exceeding the threshold c∗, and therefore also increases the value of the option. It is

important that the additional value of risk in cash flows comes from the option to abandon

the investment if the financing is insufficient. If the firm were always required to exercise the

option, cash flow risk would be value-destroying because it would necessitate large financing

costs when cash is very low.

We further show that the higher financial distress costs reduce or eliminate the convexity

region in v (c). When cash savings are very low and the probability of exercise is small, a firm

may actually prefer to hedge because this allows it to avoid distress and the costly external
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financing associated with distress. Therefore, for the high values of kd (high distress costs)

we recover the standard intuition. The value function is concave in the whole region because

concerns about the potential distress dominate other considerations.

In Figure 7, Panel A, we show the shape of function v (c) for a given set of parameters.

The solution to ODE (55) is obtained numerically. The upper dashed line in the graph gives

the value of the firm if it were completely unconstrained (i.e., kd = k = 0), in which case

the firm would always exercise its investment option when the option arrives. It is clear that

firm value approaches this line as the accumulated cash savings increase beyond i. The lower

dashed line shows the value of the firm that does not have an investment option and is not

subject to the costs of financial distress (i.e., λ = 0 and kd = 0). As predicted, the function

exhibits concavity in the region of the high values of cash and convexity in the region of the

low values. Panels B helps to evaluate how the first derivative of v (c) change with cash.

Having analyzed the shape of the value function that gives us guidance on where it is

optimal to increase or decrease risk of cash savings, we now turn to determining the optimal

amount of hedging.

B.3. Optimal Hedging Policy

We now discuss the optimal hedging portfolio. Using the expression for the cash evolution

specified in (41) and also using the previously obtained derivatives (52)-(54), we can write

the Hamilton-Jacoby-Bellman equation for the scaled firm value v (c)

(r + λ)V (p, C) = max
φ

Vpµpp+ VCC (r − πφ) + VpCσpp
γ+1

(
δ − φFσFρp

)
+

1

2
Vppσ

2
pp

2(59)

+
1

2
VCC

(
δ2p2γ + σ2

cC
2 − 2

(
δp2γρp + σcρcCp

γ
)
φFσF + p2γφ2F 2σ2

F

)
+λC + λmax

(
0, θpγ − ipγ − k (ipγ − C)+) .

where v (c) is the scaled value function. Using definitions in (47) and (51), it is easy to
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show

(r + λ) v = max
φ

(
v − cv′

)(
γµp +

σ2
p

2
γ (γ − 1)

)
+ v′c (r − πφ)− γv′′cσp

(
δ − φFσFρp

)
(60)

+
1

2
v′′
(
c2γ2σ2

p + δ2 + σ2
cc

2 − 2
(
δρp + σcρcc

)
φFσF + φ2F 2σ2

F

)
+λc+ λmax

(
0, θ − i− k (i− c)+) ,

this ODE corresponds to (55) but includes the hedging portfolio. Differentiating with respect

to hedging policy φ gives the optimal choice of hedging for the concavity region

φ∗t =
δρp + σcρcc− γσpρpc

FσF
+

πcv′

σ2
FF

2v′′
. (61)

SOC = v′′F 2σ2
F < 0 (62)

Note that the second-order condition is satisfied as long as function v (c) is concave. It is worth

examining the expression (61) with care. First, observe that the second term is negative, and

therefore optimal hedging is less than complete (compare (61) to (42)). Second, observe that

the optimal hedging ratio decreases with the volatility of the output price, σp, particularly if

the convexity of the firm’s profit (γ) is high. This means that the correlation between cash

and investment decreases the amount of hedging as compared to the minimum conditional

variance case. Third, φt decreases with the cost of hedging.

When v (c) is convex, there is no interior solution for hedging and the firm chooses between

corner solutions 0 and φmax. In particular, if there are no costs of hedging (π = 0), the firm

will choose φ∗ = 0 when for c < i

−
(
δρp + σcρcc

) [ v′cπ
FσF

+ v′′
(
δρp
2

+
σcρcc

2
− γσpρpc

)]
< 0. (63)

Interestingly, it is possible for the firm to radically change its hedging position from time to

time (and even go from hedging to speculation if it is allowed), as firm cash holding increases

or decreases.

IV. Conclusion

In this study, we analyze the relation between optimal risk management policy and invest-

ment under financing constraints. In particular, we recognize that hedging policy can affect
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the probability of option exercise and also the cost of financing. The optimal amount of fi-

nancial hedging balances the benefits of lower expected financial distress costs with the better

ability to finance investment. The model demonstrates importance of real frictions, such as

irreversibility of investment or fixed costs.

The predictions of the model are consistent with the empirical findings: firms with less

financing constraints operate with higher hedging ratios, and firms with more risky cash flows

operate with lower hedging ratios. The hedging ratio is linked theoretically to the value

of growth options, the ratio of firm-specific to systematic risk, and the costs of forming a

hedging portfolio. Therefore, the model generates additional empirical predictions for future

work. Our results offer an alternative explanation for the observed hedging policies that does

not rely on the cost of hedging.

The analytical solution for the one-period model and the dynamic model with cash ac-

cumulation can be used in other applications. For example, it would be relatively easy to

extend the model to study optimal dividend policy and the implications of a minimum cash

balance requirement.
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V. Appendix A: Proposition Proofs

Proof of Lemma 1. Using the implicit function theorem for (5), we obtain

dε∗

dφ
=

(Ce (e)− Ce (e0)) (ε∗ − ε)
αf
w1

+ (Ce (e)− Ce (e0)) (1− φ)
. (64)

Our assumptions imply that I∗ > R, α ≥ 0, Cee > 0, and e > e0.

Therefore (i) dε∗

dφ > 0 for ε∗ > ε, and (ii) dε∗

dφ < 0 for ε∗ < ε. Additionally, using condition (4)

yields

dI∗

dφ
= −w1 (ε− ε)Cee

Cee − θfII
. (65)

Because Cee < 0, it follows that dI∗

dφ < 0 for all states ε in the investment region, ε∗ > ε .

Proof of Proposition 1. If α = 0, the optimization function does not have an interior maxi-

mum; we show this formally in the proof of Proposition 2. Therefore, the optimal hedging

ratio is either a minimum φ∗ = 0 or a maximum φ∗ = 1.

If the firm hedges completely (φ∗ = 1), its cash savings at date 2 are independent of the

state and the profit is given by either P0 (ε) or P (ε) depending on whether investment is

optimal at ε

P0 (ε) = f0 −R− C (R− w0 − w1ε) , (66)

P (ε) = βf (I∗)− I∗ − C (I∗ − w0 − w1ε) . (67)

where the optimal investment I∗ is fixed (does not vary with the profitability state.

If the firm does not hedge, there exists a threshold ε∗, above which the firm invests. To

determine φ that maximizes expected profit, consider two cases: (1) ε∗ < ε (the firm would

invest at the average profitability, P (ε) > P0 (ε)); and (2) ε∗ > ε (the firm would not invest

at the average profitability, P (ε) < P0 (ε)).

If ε∗ < ε, the difference between the expected profit in the case of full hedging and the
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case of no hedging is

P (ε)−
∫ ε∗

−∞
P0 (ε) dG (ε)−

∫ ∞
ε∗

P (ε) dG (ε) (68)

= P (ε)− E (P (ε)) +

∫ ε∗

−∞
(P (ε)− P0 (ε)) dG (ε) .

Because the profit function is concave it must be that P (ε) > E (P (ε)) and the first

term in (68) is positive. However, the second term is negative and captures the value of

abandonment option lost by hedging.15 Since the first term in (68) is independent of ε∗ and

the second term increases in magnitude with ε∗, there must exist such εL that for ε∗ > εL

hedging destroys value (φ∗ = 0) and for ε∗ < εL hedging creates value (φ∗ = 1). Such εL can

be found by setting expression (68) to zero and plugging εL in place of ε∗.

Similarly, if ε∗ > ε, the difference between the expected profit under full hedging and no

hedging is

P0 (ε)−
∫ ε∗

−∞
P0 (ε) dG (ε)−

∫ ∞
ε∗

P (ε) dG (ε) (69)

= P0 (ε)− E (P0 (ε))−
∫ ∞
ε∗

(P (ε)− P0 (ε)) dG (ε) .

The first term is positive because of the concavity of the profit function, whereas the

second term is negative and captures the value of the investment option lost by hedging.

Since the first term is independent of ε∗ and the second one decreases with ε∗, there must

exist εH such that for any ε∗ > εH hedging creates value (φ∗ = 1) and for ε∗ < εH hedging

destroys value (φ∗ = 0). The value of εH is found by setting (69) to zero at ε∗ = εH .

Proof of Corollary 1. From investment condition (5) we obtain

dε∗

dβ
= − f

αf + w1 (1− φ) (Ce (e) + Ce (e0))
< 0,

which implies that firms with more valuable options start investing at lower thresholds. There-

fore, from Proposition 1 it follows that ∆φ∗

∆β ≤ 0.

15Intuitively, hedging decreases the volatility in cash flow and hence makes the external financing cost
constant. Because α = 0 and ε∗ < ε, the only reason not to invest is low cash flow and expensive financing, but
this situation never happens with full hedging. Therefore, the option not to invest has no value when φ = 1.
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Proof of Corollary 2. Using the definition of the investment threshold (5), we obtain the com-

parative statics with respect to the firm’s initial cash position w0

dε∗

dw0
= − Ce (e)− Ce (e0)

αf + w1 (1− φ) (Ce (e)− Ce (e0))
< 0. (70)

Therefore, as w0 increases and the firm becomes less constrained, the investment threshold

ε∗ decreases. Proposition 1 shows that the optimal hedging ratio depends on the investment

threshold.

If initially ε∗ < εL, then full hedging remains optimal as w0 increases since the firm

remains in the same region (see Proposition 1). If initially ε∗ ∈ [εL, εH ], then the hedging

ratio either remains unchanged or increases to φ∗ = 1. Therefore, an increase in the firm’s

internal cash reserves can result in more hedging.

Proof of Corollary 3. Recall from the proof of Proposition 1 that when ε∗ < ε, the difference

between the expected profit in the case of full hedging and the case of zero hedging is

P (ε)− E (P (ε)) +

∫ ε∗

−∞
(P (ε)− P0 (ε)) dG (ε) . (71)

Note that the investment threshold ε∗ is independent of volatility. When the volatility is small,

the firm never reaches the region below ε∗. Therefore, the second term in the formula above

disappears, while the first term is positive and induces hedging. A firm with low volatility

and ε∗ < ε chooses φ∗ = 1. As volatility increases, the second term starts to create a greater

disadvantage to hedging, with a resulting decrease in the hedging ratio.

Similarly, if ε∗ > ε, the difference between the expected profit under full hedging and no

hedging is

P0 (ε)− E (P0 (ε))−
∫ ∞
ε∗

(P (ε)− P0 (ε)) dG (ε) . (72)

If the volatility is small, the second term is zero and thus φ∗ = 1. As volatility increases,

the second term becomes more important and hedging ratio drops.
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Proof of Proposition 2. From (7) we can use Leibniz’s rule to obtain the first order condition∫ ∞
ε∗

Pw
∂w

∂φ
dG (ε) +

∫ ε∗

−∞
P0w

∂w

∂φ
dG (ε) +

dε∗

dφ
(P0 (ε∗)− P (ε∗)) g (ε∗) = 0. (73)

Because the profit functions P0 (ε∗) and P (ε∗) match at ε∗, the last term in condition (73)is

zero, so that we have

E

[
Πw

∂w

∂φ

]
= 0. (74)

By applying (1), we can further simplify the first order condition (74) to

cov (Πw, ε) = 0. (75)

Using Stein’s lemma for normally distributed profitability shocks, g (ε) ∼ N
(
ε, σ2

)
, and using

the expression (75), we have

E(Πwε)σ
2 = 0. (76)

Alternatively, if the distribution is not normal, the same expression can be obtained from the

second-order Taylor expansion around ε. In the investment region, ε > ε∗, we obtain

Πwε = Pwε = (αfI + θfIIIε) Iw + (θfI − 1− Ce) Iwε − Cee (Iε − w1 (1− φ)) (Iw − 1) , (77)

which simplifies using the first order condition for investment (4) to

Pwε = [αfI + θfIIIε − CeeIε + Ceew1 (1− φ)] Iw + Cee [Iε − w1 (1− φ)] . (78)

Differentiating implicitly equation (4),

Iε =
αfI + Ceew1 (1− φ)

Cee − θfII
, (79)

Iw =
Cee

Cee − θfII
, (80)

and substituting these expressions in (78) we obtain

Pwε =
CeeαfI + θfIICeew1 (1− φ)

Cee − θfII
. (81)

In the inaction region, ε < ε∗, we have

Πwε = P0wε = −Cee (e0)w1 (1− φ) . (82)
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Substituting (78), rewrite (76) as

E [Πwε] = 0 =

∫ ∞
ε∗

PwεdG (ε) +

∫ ε∗

−∞
P0wεdG (ε) . (83)

Finally, solving this equation for the optimal hedging ratio φ∗ yields

φ∗ = 1− α

w1

∫∞
ε∗

fICee
Cee−θfII dG (ε)∫ ε∗

−∞Cee (e0) dG (ε)−
∫∞
ε∗

θfIICee
Cee−θfII dG (ε)

. (84)

The second order condition with respect to φ is∫ ∞
ε∗

Pww

(
∂w

∂φ

)2

dG (ε) +

∫ ε∗

−∞
P0ww

(
∂w

∂φ

)2

dG (ε) (85)

+
dε∗

dφ
(P0w (ε∗)− Pw (ε∗))w1 (ε− ε∗) g (ε∗) < 0.

Since

Pww =
θfIICee
Cee − θfII

< 0, (86)

P0ww = −Cee < 0, (87)

the first two terms in (85) are negative. The last term in (85) is positive and is equal to

(Ce (e)− Ce (e0))2 (ε∗ − ε)2w1g (ε∗)
αf
w1

+ (Ce (e)− Ce (e0)) (1− φ)
> 0. (88)

For a sufficiently large α (i.e., for α > α), the condition (85) is satisfied, where α is a solution

to the following equation

−
∫ ∞
ε∗

Pww (ε− ε)2 dG−
∫ ε∗

−∞
P0ww (ε− ε)2 dG =

(Ce (e)− Ce (e0))2 (ε∗ − ε)2 g (ε∗)

αf + (Ce (e)− Ce (e0))w1 (1− φ∗)
. (89)

Note that when α → 0, from (84) we have φ∗ → 1. The denominator in (88) is linear

in α, and therefore the last term in the second order condition is infinite for a very small

α. Therefore, when α → 0 the solution entails either maximum or minimum value for the

hedging ratio.

Proof of Proposition 3. Similarly to the steps in Proof of Proposition 2, we obtain the first

order condition for the optimal hedging ratio as

E [Πwε(φ
∗)] = 0. (90)
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In the investment region, we have

Pwε =
CeeαfI + θfIICeew1 (1− φ)

Cee − θfII
, (91)

whereas in the region where the firm operates its existing assets, we obtain

P0wε = −Cee (e0)w1 (1− φ) . (92)

Substituting these expressions into the first-order condition (90) and rewriting the expectation

yields

E [Πwε] = 0 =

∫ v̂m

−∞

∫ ∞
ε∗
i
−βivm√
1−β2

i

PwεdG (vi)

 dG (vm) . (93)

+

∫ v̂m

−∞

(∫ ε∗i−βivm√
1−β2

i

−∞
P0wεdG (vi)

)
dG (vm) .

Finally, solving this equation for the optimal hedging ratio φ∗ yields

φ∗ = 1− α

w1

∫ v̂m
−∞

(∫∞
ε∗
i
−βivm√
1−β2

i

CeefIdG(εi)
Cee−θfII

)
dG (vm)

∫ v̂m
−∞

∫ ε∗
i
−βivm√
1−β2

i

−∞ Cee (e0) dG (vi)−
∫∞
ε∗
i
−βivm√
1−β2

i

θfIICeedG(vi)
Cee−θfII

 dG (vm)

(94)

To show that dφ∗

dβi
> 0, note that φ∗ depends on βi only through the limits of the integration

v∗i (vm) =
ε∗i − βivm√

1− β2
i

, (95)

which has the meaning of the minimum idiosyncratic shock vi which warrants new investment

at the current realized value of the systematic shock vm. Note that v∗i (vm) → +∞ when

βi → 1, i.e., an infinitely large idiosyncratic shock is required to trigger investment if almost

all risk comes from the systematic component. Therefore, it follows from (94) that φ∗ → 1 as

βi → 1, and φ∗ < 1 if βi < 1.

Derivation of the value function and prove of convexity for the case with cash financing only.

Consider a simple case with π → 0 (no transaction costs for simplicity) and φ = 0 (we are
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looking for the value function before hedging is in place). Then we have the following solution

to the left (L) and to the right (R) of the threshold I

VL(C) = ALC
a1 +BLC

a2 + C for C < I, (96)

VR(C) = ARC
a1 +BRC

a2 + C +
λ (Θ− I)

r + λ
for C ≥ I,

subject to the value-matching and smooth-pasting condition at the boundary between two

regions at C = I, and subject to the recapitalization threshold C = C:

VL (I) = VR (I) , (97)

V ′L (I) = V ′R (I) ,

V ′L (C) = 1 + kd,

From the requirement that VR(∞) is finite, we must set AR = 0. The boundary conditions

pin the other three free constants in left and right regions

AL =
λ (Θ− I)

r + λ

a2I
−a1

a2 − a1
> 0, (98)

BR =
kd
a2
C1−a2 − λ (Θ− I)

r + λ

a1I
−a1

a2 − a1
Ca1−a2 +

λ (Θ− I)

r + λ

a1I
−a2

a2 − a1
,

BL =
kd
a2
C1−a2 − λ (Θ− I)

r + λ

a1I
−a1

a2 − a1
Ca1−a2 .

Further, we check the second derivative V ′′L (C) to establish convexity in some lower region,

V ′′L (C) > 0.

V ′′L (C) =
λ (Θ− I)

r + λ

a2a1 (a1 − 1) I−a1

a2 − a1
Ca1−2 (99)

+

(
(a2 − 1) kdC

1−a2 − λ (Θ− I)

r + λ

a2a1 (a2 − 1) I−a1

a2 − a1
Ca1−a2

)
Ca2−2

Let C → C

kd <
λ (Θ− I)

r + λ

(−a2) a1

1− a2
I−a1Ca1−1 (100)

Thus convexity at C is guaranteed as long as kd is not too large (note that it does not have

to be zero). Convexity is also guaranteed for any C < I as long as

kd <
λ (Θ− I)

r + λ

a2a1

a2 − a1
I−a1Ca1−1 (101)
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This second condition is more binding (as it should be), but note that it is sufficient, but

not necessary condition too.

a1 > 1, a2 < 0

Check the shape on the right

V ′′R(C) = (a2 − 1)C−a2

(
Ckd +

λ (Θ− I)

r + λ

a1a2

a2 − a1

(
I

C

)−a1

((
I

C

)a1−a2

− 1

))
Ca2−2 < 0

(102)

It is always negative, i.e. the function is always concave.

Derivation of value functions under optimal hedging. Substituting the trial solution into the

ODE gives

(r + λ)
(
ACb1 +BCb2 + EC +D

)
= max

φt
r
(
b1AC

b1 + b2BC
b2 + EC

)
(103)

+
1

2

(
b1(b1 − 1)ACb1 + b2(b2 − 1)BCb2

) (
σ2 + φ2

tσ
2
F − 2ρcφtσFσ

)
+λC + λ (Θ− I) ∗ Ind(C > I).

It follows that {b1,b2} are solutions to the standard quadratic equation

r + λ = max
φt

1

2
b(b− 1)

(
σ2 + φ2

tσ
2
F − 2ρcφtσFσ

)
+ rb. (104)

which given the interior solution φ = ρcσ
σF

simplifies to

r + λ = rb+
1

2
b(b− 1)σ2

(
1− ρ2

c

)
(105)

We define the exponents as

b1,2 = −
(

r

σ2 (1− ρ2
c)
− 1

2

)
±

√(
r

σ2 (1− ρ2
c)
− 1

2

)2

+
2 (r + λ)

σ2 (1− ρ2
c)

. (106)

Note b1 > 1, b2 < 0. Free constants A and B are determined by the boundary conditions (18)

and (19) and constants E, and D are given by

E = 1; D =
λ (Θ− I)

r + λ
for C ≥ I, and D = 0 for C < I. (107)

We hypothesize that value function is convex for C < I and concave for C > I.
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Then we have

VL(C) = ALC
a1 +BLC

a2 + C for C < I, (108)

VR(C) = BRC
b2 + C +

λ (Θ− I)

r + λ
for C ≥ I,

subject to boundary conditions

VL (I) = VR (I) , (109)

V ′L (I) = V ′R (I) ,

V ′L (C) = 1 + kd,

Solving these system of equations yields:

AL =
kdC

1−a2Ia2 (b2 − a2)− a2b2
λ(Θ−I)
r+λ

a2 (a1 − b2) Ia1 − a1 (a2 − b2)Cb1−a2Ia2

, (110)

BL =
kdC

1−a2 (a1 − b2) Ia1Ca1−b1 + a1b2
λ(Θ−I)
r+λ

a2 (a1 − b2) Ia1Ca1−b1 − a1 (a2 − b2) Ia2

,

BR =
a1

b2
ALI

a1−b2 +
a2

b2
BLI

a2−b2 .

The case with external financing is very similar and not shown here.

Proof of concavity of v (c) function when c ≥ i. We have shown that function v (c) must have

at least some region of c values where it is concave. The following argument shows that the

value function contains no convex region when c ≥ i. The ODE for the value function is

(r + λ) v (c) =
(
γv (c)− γcv′ (c)

)
µp +

σ2
p

2
γ (γ − 1)

(
v (c)− cv′ (c)

)
(111)

+
σ2
p

2
c2γ2v′′ (c) + v′ (c) (rc+ δ) + λd (c) ,

with function d (c) being weakly concave for c ≥ i.

We proceed with the proof by contradiction. Suppose function v (c) is convex at point c2. Then

it should be possible to pick such values c1 and c3, with c1 < c2 < c3 and c2 = αc1 +(1− α) c3,

that

v′ (c1) = v′ (c2) = v′ (c3) = b, (112)
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and

v′′ (c1) < 0, v′′ (c2) > 0, v′′ (c3) < 0. (113)

Using these conditions and letting v1 = v (c1), v2 = v (c2) and v3 = v (c3) , we can then write

the following inequalities

(r + λ) v1 < γ

(
µp +

σ2
p

2
(γ − 1)

)
(v1 − c1b) + b (rc1 + δ) + λd (c1) , (114)

(r + λ) v3 < γ

(
µp +

σ2
p

2
(γ − 1)

)
(v3 − c3b) + b (rc3 + δ) + λd (c3) , (115)

(r + λ) v2 > γ

(
µp +

σ2
p

2
(γ − 1)

)
(v2 − c2b) + b (rc2 + δ) + λd (c2) . (116)

Let v̂2 ≡ αv1 + (1− α) v3. If the function v (c) is convex at point c2, then it must be that

v̂2 > v2. Using this fact, we can rewrite (116) as

(r + λ) v̂2 < γ

(
µp +

σ2
p

2
(γ − 1)

)
(v̂2 − c2b) + b (rc2 + δ) (117)

+λ [αd (c1) + (1− α) d (c3)] .

Taking the difference, we obtain

(r + λ) (v̂2 − v2) <

[
γµp +

σ2
p

2
γ (γ − 1)

]
(v̂2 − v2) (118)

+λ [d (c2)− αd (c1)− (1− α) d (c3)] .

Because

r + λ > γµp +
σ2
p

2
γ (γ − 1) , and d (c2) ≥ αd (c1) + (1− α) d (c3) ,

we get a contradiction.

Proof of existence of convexity of v (c) function when c < i. Suppose the distress costs are small

(kd → 0). Then, the slope of the value function v (c) is the same at the lower boundary and

the upper boundary, i.e.,

v′ (c) = v′ (c→∞) = 1, (119)

At the lower boundary, c → c, the investment option is far out-of-the-money and hence the

value of the firm is the same as of a firm without option. However, at the upper boundary,
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the firm always exercises the option, that is the firm value approaches the value of the un-

constrained firm with the investment option. To have the same slope at both boundaries,

but a higher value at the right boundary, the function v (c) must have convexity on the left

and concavity on the right. The inflection point may or may not coincide with the exercise

threshold. We have shown that function v (c) must have at least some region of c values where

it is convex. The following argument shows that the value function contains no concave region

when c < i. The ODE for the value function is

λv =

(
r − γµp −

σ2
p

2
γ (γ − 1)

)(
v′c− v

)
+
v′′

2

(
σ2
pc

2γ2 + δ2 + σ2
cc

2 − 2γcδσp
)

+ d (c) . (120)

with function d (c) being weakly convex for c < i. Note that for any c function f (c) > 0

f (c) =
1

2

(
σ2
pc

2γ2 + δ2 + σ2
cc

2 − 2γcδσp
)
> 0. (121)

The way to show this is to find minimum of this function with respect to c and show that

function evaluated at its minimum is positive.

cmin =
γδσp

γ2σ2
p + σ2

c

(122)

f (cmin) =
1

2

δ2σ2
c

γ2σ2
p + σ2

c

We proceed with the proof by contradiction. Suppose function v (c) is concave at point c2.

Then it should be possible to pick such values c1 and c3, with c1 < c2 < c3 and c2 =

αc1 + (1− α) c3, that

v′ (c1) = v′ (c2) = v′ (c3) = b, (123)

and

v′′ (c1) > 0, v′′ (c2) < 0, v′′ (c3) > 0. (124)

Using these conditions and letting v1 = v (c1), v2 = v (c2) and v3 = v (c3) , we can then write
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the following inequalities

λv1 >

(
r − γµp −

σ2
p

2
γ (γ − 1)

)
(bc1 − v1) + d (c1) (125)

λv3 >

(
r − γµp −

σ2
p

2
γ (γ − 1)

)
(bc3 − v3) + d (c3)

λv2 <

(
r − γµp −

σ2
p

2
γ (γ − 1)

)
(bc2 − v2) + d (c2)

Let v̂2 ≡ αv1 + (1− α) v3. If the function v (c) is concave at point c2, then it must be that

v̂2 < v2. Using this fact, we can write

λv̂2 >

(
r − γµp −

σ2
p

2
γ (γ − 1)

)
(bc2 − v̂2) + αd (c1) + (1− α) d (c3) (126)

Taking the difference, we obtain(
r + λ− γµp −

σ2
p

2
γ (γ − 1)

)
(v̂2 − v2) > αd (c1) + (1− α) d (c3)− d (c2) (127)

Because

r + λ > γµp +
σ2
p

2
γ (γ − 1) , and d (c2) ≤ αd (c1) + (1− α) d (c3) (128)

we get a contradiction.
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Figure 1. Investment and Distress Regions

The firm has operating costs, R = 20, and a profitable option to invest a fixed amount,
I − R = 80. All expenses must be financed internally. Shock ε is distrubuted uniformly on
[0, 4], and w1 = 40. The upper dashed line marks the sum of investment and operating costs,
I = 100, whereas the lower dashed line marks the operating costs. The solid upward-sloping
(flat) line shows the firm’s internal funds under no hedging (full hedging). The filled area on
the left of the figure represents the financing shortfall in distress; the filled area on the right
side represents the financing slack available after the firm invests. The firm invests only when
cash exceeds 100. Panels A and B are for the cases of w0 = 0 and w0 = 30, respectively.
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Figure 2. Expected Investment and Hedging

This figure shows the expected investment level as a function of hedging ratio φ. We assume
f (I) = b log I and C (e) = ke2

2 and set parameters as follows: w1 = 24, w0 = 0, R = 50,
b = 300, α = 0, f0 = 1900, k = 0.08, ε = 2. Panels A is for the case when the investment
option is out-of-the-money at zero hedging, β = 1.45. Panel B is for the case when the
investment option is in-the-money at zero hedging, β = 1.5.
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Figure 3. Financing Gap and Hedging

This figure shows a firm’s cash flow (solid line) and optimal investment level (dashed line) as

a function of the primitive uncertainty shock ε. We assume f (I) = b log I and C (e) = ke2

2
and set parameters as follows: w1 = 24, w0 = 0, R = 50, b = 300, α = 1, β = 1, f0 = 1900,
k = 0.08, ε = 2. Panels A and B are for high volatility σ = 1.2; Panels C and D are for low
volatility σ = 0.2.
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Figure 4. Expected Investment and Optimal Risk Management

Panel A shows the expected investment level of a constrained firm (solid line) and an uncon-
strained firm (dashed line) as a function of volatility σ. Panel B displays the optimal hedging
ratio ϕ (solid line) as a function of volatility σ. Hedging ratios below zero (dashed line) indi-
cate speculation. Whenever investment exceeds cash flow, the firm raises external financing.
We assume f (I) = b log I and C (e) = ke2

2 and set the parameters as follows: w1 = 24, w0 = 0,
R = 50, b = 300, α = 1, β = 1, f0 = 1900, k = 0.08, ε = 2.
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Figure 5. The Effect of Financing Constraints and Growth Options on Hedging Ratio

This figure shows the optimal hedging ratio for a firm with zero correlation between investment
opportunities and cash flows (dashed line) and for a firm with positive correlation (solid line).
Panel A plots the hedging ratio as a function of financing constraints w0, and Panel B as a
function of a firm’s investment opportunities β. We assume f (I) = b log I and C (e) = ke2

2
and set the parameters as follows: w1 = 24, w0 = 0, R = 50, b = 300, β = 1, σ=0.8,
f0 = 1900, k = 0.08, ε = 2.
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Figure 6. The Effect of Positive Correlation on Hedging Ratio

This figure shows the optimal hedging ratio as a function of correlation between investment
opportunities and cash flows, α. We assume f (I) = b log I and C (e) = ke2

2 and set the
parameters as follows: w1 = 24, w0 = 0, R = 50, b = 300, σ=0.8, f0 = 1900, k = 0.08, ε = 2.
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Figure 7. Value function v (c) and its first derivative

This figure shows the shape of value function v (c) (Panel A) and its first derivative (Panel B).
The solution to ODE (55) is obtained numerically. The upper dashed line in Panel A gives
the value of the firm if it were completely unconstrained (i.e., kd = k = 0). The lower dashed
line shows the value of the firm that does not have an investment option and is not subject
to the costs of financial distress (i.e., λ = 0 and kd = 0). Vertical lines denote the option
exercise threshold and the value of c at which the firm can finance the exercise internally.
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