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Abstract

In this paper we characterize the optimal linear tax on capital in
the standard Overlapping Generations model with neoclassical produc-
tion and capital accumulation as well as idiosyncratic labor income risk
and incomplete markets. For logarithmic utility we provide a complete
analytical solution of the optimal Ramsey tax policy problem for arbi-
trary social welfare weights across generations. The Ramsey allocation
is characterized by a constant (over time) aggregate saving rate that is
independent of the extent of idiosyncratic income risk. The Ramsey gov-
ernment internalizes that an increase in the household saving rate impacts
wages and interest rate in general equilibrium; we show that with logarith-
mic this pecuniary externality general equilibrium effect exactly cancels
out the standard precautionary savings effect in partial equilibrium. The
constant tax on capital implementing this saving rate is increasing in the
extent of income risk, but might be positive or negative, depending on how
the Ramsey government values current and future generations. We also
show that if it is positive, then a government implementing this tax rate
generates a Pareto-improving, policy induced transition from the unregu-
lated steady equilibrium even if this equilibrium is dynamically efficient.
We then generalize our results to arbitrary Epstein-Zin utility and show
that the optimal steady state savings rate is increasing in the amount of
income risk if and only if the intertemporal elasticity of substitution is
smaller than 1. The associated tax rate is increasing in income risk unless
both the IES and risk aversion are large.

Keywords: Idiosyncratic Risk, Capital Overaccumulation, Capital
Income Taxation, Overlapping Generations

J.E.L. classification codes: H21, H31, E21
∗University of Pennsylvania, CEPR and NBER
†SAFE, Goethe University Frankfurt

1



1 Introduction
How should a benevolent government tax capital in a neoclassical production
economy when households face uninsurable idiosyncratic labor income risk. Par-
tial answers to this question have been given in Bewley-Huggett-Aiyagari style
general equilibrium model with neoclassical production and infinitely lived con-
sumers, starting from Aiyagari (1995), and continuing with recent work by
Davila et al. (2012), Acikgoz (2016), Panousi and Reis (2015), Dyrda and
Pedrono (2016), Hagedorn et al (2017) and Chen et al. (2017), Chien and Wen
(2017).

In this paper we instead provide a complete analytical characterization of
this question in a canonical Diamond (1965) Overlapping Generations model,
enriched by uninsurable idiosyncratic labor income risk. In this environment
we characterize the optimal linear tax on capital chosen by a Ramsey govern-
ment that places arbitrary Pareto weights on different generations born into this
economy, and has to respect equilibrium behavior of households. For logarith-
mic utility we provide a complete analytical solution of the optimal Ramsey tax
policy problem.

The Ramsey allocation is characterized by a constant (over time) aggregate
saving rate that is independent of the extent of idiosyncratic income risk. We
show that this constant saving rate is shaped by three forces i) a standard pre-
cautionary savings force, ii) a general equilibrium pecuniary externality effect
that recognizes that changes in the household saving rate impacts wages and
interest rate, and iii) a future generations effect that recognizes that higher sav-
ing rates by current generations increase the future capital stock, future wages
and thus welfare of future generations in the economy. We characterize all three
effects in closed form and show that with logarithmic this pecuniary external-
ity general equilibrium effect exactly cancels out the standard precautionary
savings effect in partial equilibrium.

The constant tax on capital implementing this saving rate is increasing in the
extent of income risk, but might be positive or negative, depending on how the
Ramsey government values current and future generations. We also show that if
it is positive, then a government implementing this tax rate generates a Pareto-
improving, policy induced transition from the unregulated steady equilibrium
even if this equilibrium is dynamically efficient.

We then generalize our results to arbitrary Epstein-Zin utility and show that
the optimal steady state savings rate is increasing in the amount of income risk
if and only if the intertemporal elasticity of substitution is smaller than 1. The
associated tax rate is increasing in income risk unless both the IES and risk
aversion are large.

1.1 Relation to the Literature
Our paper combines, and contributes to two strands of the literature. First, the
literature on optimal taxation in models with idiosyncratic income risk, Aiyagari
(1995), Davila, Hong, Krusell and Rios-Rull (2012), and recently, ans especially
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relevant, Acikgoz (2015), Panousi (2015), Panousi and Reis (2016, 2017), Dyrda
and Pedrono (2016), Hagedorn et al (2017) and Chen et al. (2017) as well as
Chien and Wen (2017). We share the key modeling trick that permits a closed
form solution of the optimal Ramsey policy with Panousi and Reis (2017): in
both papers the private saving rate is chosen prior to the realization of idiosyn-
cratic, uninsurable income risk, in our case due to the life cycle structure and the
fact that idiosyncratic income risk only hits households in the second period of
their lives. As a consequence, there is no heterogeneity in the saving rate across
households despite the presence of idiosyncratic income risk. The key difference
between both papers is that Panousi and Reis (2017) permit idiosyncratic risk
to affect both capital and labor income, but abstract from precautionary saving,
whereas the capital tax results we obtain are driven precisely by this force.

Second, we contribute to and extend the literature on optimal (capital in-
come) taxation in life cycle economies, see Garriga (2001), Erosa and Gervais
(2003) as well as Conesa, Kitao and Krueger (2009). Neither of these papers is
concerned specifically with the impact of idiosyncratic income risk on optimal
capital income taxes

2 Model

2.1 Time and Demographics
Time is discrete and extends from t = 0 to t = ∞. In each period a new
generation (indexed by the time of birth t) is born that lives for two periods.
Thus at any point in time there is a young and an old generation. We normalize
household size to 1 for each age cohort. In addition there is an initial old
generation that has one remaining year of life.

2.2 Household Preferences and Endowments
2.2.1 Endowments

Each household has one unit of time in both periods, supplied inelastically to
the market. Labor productivity when young is equal to (1 − κ), in the second
period labor productivity is given by

κηt+1

where κ ∈ [0, 1) is a parameter that captures relative labor income of the old,
and ηt+1 is an idiosyncratic labor productivity shock. We assume that the cdf
of ηt+1 is given by Ψ(ηt+1) in every period and denote the corresponding pdf
by ψ

(
ηt+1

)
. We assume that Ψ is both the population distribution of ηt+1 as

well as the cdf of the productivity shock for any given individual (that is, we
assume a Law of Large Numbers, LLN henceforth). Whenever there is no scope
for confusion we suppress the time subscript of the productivity shock ηt+1. We
make the following
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Assumption 1. The shock ηt+1 takes positive values Ψ-almost surely and∫
ηt+1dΨ = 1.

Each member of the initial old generation is additionally endowed with as-
sets equal a0, equal to the initial capital stock k0 in the economy. The asset
endowment is independent of the household’s realization of the shock η.

2.2.2 Preferences

A household of generation t ≥ 0 has preferences over consumption allocations
cyt , c

o
t+1(ηt+1) given by

Vt = u(cyt ) + β

∫
u(cot+1(ηt+1))dΨ (1)

Lifetime utility of the initial old generation is determined as

V−1 =

∫
u(co0(η0))dΨ

In order to obtain the sharpest analytical results in the first part of the paper
we will assume logarithmic utility:

Assumption 2. The utility function u is logarithmic

u(c) = log(c) (2)

We will generalize our results to general Epstein-Zin-Weil preferences in
Section 6 of the paper.

2.3 Technology
The representative firm operates a standard Cobb-Douglas production technol-
ogy of the form

F (Kt, Lt) = Kα
t (Lt)

1−α
.

Capital fully depreciates between two (30 year) periods.

2.4 Government
The government levies a (potentially time varying) capital tax τ t on capital
(including interest) and rebates the proceeds in a lump-sum fashion to all mem-
bers of the current old generation as a transfer Tt. For the optimal tax policy
analysis we assume the government has the following social welfare function

SWF =

∞∑
t=−1

ωtVt
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where {ωt}∞t=−1 are the Pareto weights on different generations and satisfy ωt ≥
0. Since lifetime utilities of each generation will be bounded, so will be the social
welfare function as long as

∑∞
t=−1 ωt <∞.We will also consider the case ωt = 1

for all t, in which case we will take the social welfare function to be defined as

SWF = lim
T→∞

∑T
t=−1 Vt

T

which is equivalent to maximizing steady state welfare (as long as a steady state
exists).

2.5 Competitive Equilibrium
2.5.1 Household Budget Set and Optimization Problem

The budget constraints in both periods read as

cyt + at+1 = (1− κ)wt (3)

cot+1 = at+1Rt+1(1− τ t+1) + κηt+1wt+1 + Tt+1 (4)

where wt, wt+1 are the aggregate wages in period t and t+1, Rt+1 = 1+rt+1

is the gross interest rate between period t and t + 1, and Tt+1 are lump-sum
transfers to the old generation. ηt+1 is the age-2 period-t+1 idiosyncratic shock
to wages.1

2.5.2 Firm Optimization

From the firms first order conditions

Rt = αkα−1
t (5a)

wt = (1− α)kαt (5b)

where
kt =

Kt

Lt
=

Kt

1− κ+ κ
∫
ηtdΨ

= Kt

is the capital-labor ratio. Since labor supply in the economy is Lt = 1, we
henceforth do not need to distinguish between the aggregate capital stock Kt

and the capital-labor ratio.
1 Notice that instead of working with a tax on capital τ t, one could work, completely

equivalently, with a (standard) capital income tax τkt given by

1 + rt(1− τkt ) = (1 + rt)(1− τ t)

and thus
τkt = 1−

Rt(1− τ t)− 1

Rt − 1
.
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2.5.3 Equilibrium Definition

Definition 1. Given the initial condition a0 = k0 an allocation is a sequence
{cyt , cot (ηt), Lt, at+1, kt+1}∞t=0.

Definition 2. Given the initial condition a0 = k0 and a sequence of tax policies
τ = {τ t}∞t=0, a competitive equilibrium is an allocation {cyt , cot , Lt, at+1, kt+1}∞t=0,
prices {Rt, wt}∞t=0 and transfers {Tt}∞t=0 such that

1. Given prices {Rt, wt}∞t=0 and policies {τ t, Tt}∞t=0 for each t ≥ 0, (cyt , c
o
t+1(ηt+1), at+1)

maximizes (1) subject to (3) and (4) (for each realization of ηt+1).

2. Consumption co0(η0) of the initial old satisfies (4) (for each realization of
η0):

co0 = a0R0(1− τ0) + κη0w0 + T0

3. Prices satisfy equations (5a) and (5b).

4. The government budget constraint is satisfied in every period: for all t ≥ 0

Tt = τ tRtkt

5. Markets clear

Lt = L = 1

at+1 = kt+1.

cyt +

∫
cot (ηt)dΨ + kt+1 = kαt

Denote by SWF (τ ) social welfare associated with an equilibrium for given
tax policy τ . As we will show below, for a given tax policy τ the associated
competitive equilibrium in our economy exists and is unique and thus the
function SWF (τ ) is well-defined.2

Definition 3. Given the initial condition a0 = k0, a Ramsey equilibrium is
a sequence of tax policies τ̂ = {τ̂ t}∞t=0 and equilibrium allocations, prices and
transfers associated with τ̂ (in the sense of the previous definition) such that

τ̂ ∈ arg max
τ

SWF (τ )

3 Analysis of Equilibrium for a Given Tax Policy

3.1 Partial Equilibrium
We first proceed to analyze the household problem for given prices and policies.
We will first proceed under the assumption that a unique solution characterized

2This requires some restrictions on the τ t that we need to spell out. I believe we need
τ t ≤ 1 and τ t ≥ −τ̄ .
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by the Euler equation exists, and then make sufficient parametric assumptions
to insure that this is indeed the case.

The optimal asset choice at+1 satisfies

1 = β(1−τ t+1)

∫
Rt+1

[
u′(at+1Rt+1(1− τ t+1) + κηt+1wt+1 + Tt+1)

]
u′((1− κ)wt − at+1)

dΨ(ηt+1).

Defining the saving rate as
st =

at+1

(1− κ)wt

we can rewrite the above equation as

1 = β(1−τ t+1)

∫
Rt+1

[
u′(stRt+1(1− τ t+1)(1− κ)wt + κηt+1wt+1 + Tt+1)

]
u′ [(1− κ)wt(1− st)]

dΨ(ηt+1)

(6)
which defines the solution

st = st(wt, wt+1, Rt+1, τ t+1, Tt+1;β, κ,Ψ)

Note by assumption 1 that consumption in the second period is positive Ψ-
almost surely. Without further assumptions on the fundamentals we cannot
make progress analytical progress. Therefore now invoke assumption 2 that the
utility function is logarithmic. Then the Euler equation becomes:

1 = β(1− τ t+1)

∫
1− st

st(1− τ t+1) + κwt+1

(1−κ)wtRt+1
ηt+1 + Tt+1

(1−κ)wtRt+1

dΨ(ηt+1) (7)

Equation (7) implicitly defines the optimal savings rate st = s(wt, wt+1, Rt+1, τ t+1, Tt+1;β, κΨ).

3.2 General Equilibrium
Now we exploit the remaining equilibrium conditions. In equilibrium factor
prices and transfers are given by

wt = (1− α)kαt (8a)
wt+1 = (1− α)kαt+1 (8b)

Rt+1 = αkα−1
t+1 (8c)

Tt+1 = τ t+1Rt+1kt+1 (8d)

From the definition of the saving rate st = at+1

(1−κ)wt
and market clearing in the

asset market, which implies at+1 = kt+1, we find that

kt+1 = at+1 = (1− κ)stwt

and thus
kt+1 = st(1− κ)(1− α)kαt (9)
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Sometimes it will be useful to express the saving rate as a function of the capital
stocks and write

st =
kt+1

(1− α) (1− κ)kαt
(10)

In general, for a given sequence of capital income taxes {τ t}∞t=0 the com-
petitive equilibrium is a sequence of capital stocks {kt+1}∞t=0 that solves, for a
given initial condition k0, the first order difference equation (equation 7) when
factor prices have been substituted

1 = αβ(1− τ t+1)kα−1
t+1

∫ ([
κηt+1(1− α) + α

]
kαt+1

(1− κ)(1− α)kαt − kt+1

)−1

dΨ(ηt+1)

1 = αβ(1− τ t+1)

(
(1− κ)(1− α)kαt − kt+1

kt+1

)
Γ (11)

where the constant

Γ =

∫ (
κηt+1(1− α) + α

)−1
dΨ(ηt+1) = Γ(α, κ; Ψ) (12)

fully captures the impact of idiosyncratic income risk on the equilibrium dy-
namics of the capital stock.

Equation (11) implicitly defines the function kt+1 = Ω(kt, τ t+1). Alterna-
tively, and often more conveniently, we instead of expressing the solution as
kt+1 = Ω(kt, τ t+1) we can also express it in terms of the saving rate as

st =
kt+1

(1− α) (1− κ)kαt
=

Ω(kt, τ t+1)

(1− α) (1− κ)kαt
= Λ(kt, τ t+1) (13)

where the function st = Λ(kt, τ t+1) solves (using the definition of the saving
rate in equation (11):

1 = αβ(1− τ t+1)

(
1− st
st

)
Γ (14)

3.3 Characterization of the Savings Rate
Evidently, equation (14) has a closed form solution for the saving rate st in
general equilibrium, and we can give a complete analytical characterization of
its comparative statics properties.

Proposition 1. Suppose assumptions 1 and 2 are satisfied. Then for all kt > 0
and all τ t+1 ∈ (−∞, 1] the unique savings rate st = Λ(kt, τ t+1; Γ) is given by

st =
1

1 + [(1− τ t+1)αβΓ(α, κ; Ψ)]
−1 (15)

which is strictly increasing in Γ, strictly decreasing in τ t+1 and independent of
the beginning of the period capital stock.
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The next corollary assures that any desired savings rate st ∈ [0, 1] can be
implemented as part of a competitive equilibrium by appropriate choice of the
capital tax rate τ t+1. This corollary is crucial for our approach of solving the
optimal Ramsey tax problem, since we can cast that problem directly in terms
of the government choosing savings rates rather than tax rates.

Corollary 1. For each savings rate st ∈ [0, 1] there exists a unique tax rate
τ t+1 ∈ (−∞, 1] that implements that savings rate st as part of a competitive
equilibrium.

Finally we want to determine the influence of income risk on the savings
rate in general equilibrium. From proposition 1 we know that the savings rate
depends on income risk η exclusively through the constant Γ. Furthermore, Γ is
a strictly convex function of income risk η, and thus by Jensen’s inequality we
have the following:

Observation 1. Assume that α ∈ (0, 1) and κ > 0. Then

1. The constant Γ(α, κ; Ψ) is strictly increasing in the amount of income risk,
in the sense that if the distribution Ψ̃ over η is a mean-preserving spread
of Ψ, then Γ(α, κ; Ψ) < Γ(α, κ; Ψ̃).

2. Defining the degenerate distribution at η ≡ 1 as Ψ̄, then for any nonde-
generate Ψ

1 < Γ̄ := Γ(α, κ; Ψ̄) < Γ(α, κ; Ψ)

From the above remark and the previous proposition we then immediately
deduce the following:

Corollary 2. The equilibrium savings rate is strictly increasing in the amount
of income risk, where an increase in income risk is defined in the sense of the
previous observation 1.

The proof of this result follows directly from the fact that st = Λ(kt, τ t+1; Γ)
is strictly increasing in Γ and Γ is strictly increasing in the amount of income
risk. Equipped with this full characterization of the competitive equilibrium for
a given sequence of tax policies {τ t+1}∞t=0 we now turn to the analysis of optimal
fiscal policy.

4 The Ramsey Problem
The objective of the government is to maximize social welfareW (k0) =

∑∞
t=−1 ωtVt

by choice of capital taxes {τ t+1}∞t=0 where Vt is the lifetime utility of genera-
tion t in the competitive equilibrium associated with the sequence {τ t+1}∞t=0.
Writing lifetime utility in terms of the savings rate st yields

V (kt, st) = u((1−st)(1−κ) (1− α) kαt )+β

∫
u
(
κηt+1w(st) +R(st)st(1− κ)(1− α)kαt

)
dΨ(ηt+1)

(16)
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where

w(st) = (1− α) [kt+1(st)]
α (17)

R(st) = α [kt+1(st)]
α−1 (18)

kt+1(st) = st(1− κ)(1− α)kαt (19)

We could of course substitute factor prices in the lifetime utility function, but
for the purpose of better interpretation of the results we refrain from doing so
at this moment.

Finally, remaining lifetime utility of the initial old generation is given by
(with factor prices already substituted out)

V−1 = V (k0, τ0) =

∫
u ([α+ κη0(1− α)] kα0 ) dΨ(η0) = V (k0) (20)

Note that τ0 is irrelevant for welfare of the initial old generation (and all future
generations) and can be set arbitrarily. This is due to the fact that τ0 is nondis-
tortionary, is lump-sum rebated and (most crucially) that the government is
assumed to have a period-by-period budget balance. In fact, expression (20)
shows that with the set of policies we consider here lifetime utility of the initial
old cannot be affected at all, which is useful since we therefore do not need to
include it in the social welfare function.

By corollary 1 the Ramsey government can implement any sequence of sav-
ings rates {st}∞t=0 as a competitive equilibrium and thus can choose private
savings rates directly. We therefore can restate the problem the Ramsey gov-
ernment solves as

W (k0) = max
{st}∞t=0

∞∑
t=0

ωtV (kt, st) (21)

subject to (17)-(19).

4.1 Recursive Formulation and Characterization of the
Ramsey Problem

The Ramsey problem lends itself to a recursive formulation, under the following
assumption on the social welfare weights:

Assumption 3. The social welfare weights satisfy, for all t ≥ 0, ωt > 0 and

ωt+1

ωt
= θ ∈ (0, 1].
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Under this assumption, the recursive formulation of the problem reads as

W (k) = max
s∈[0,1)

u((1− s)(1− κ) (1− α) kα)

+β

∫
u (κηw(s) +R(s)s(1− κ)(1− α)kα) dΨ(η) + θW (k′(s))

s.t. (22)
k′(s) = s(1− κ)(1− α)kα (23)

R(s) = α [k′(s)]
α−1 (24)

w(s) = (1− α) [k′(s)]
α (25)

This perhaps unusual way of writing the problem clarifies the three effects the
Ramsey government considers when choosing the savings rate s in the current
period.3 First, there is the direct effect of reduced consumption when young and
increased consumption when old, henceforth denoted by PE(s). Second, there
is the indirect, general equilibrium effect on the current generation of changed
wages and rates of return when old, which we denote as GE(s). And third,
there is the impact on future generations from a changed capital stock induced
by a change in the current savings rate, denoted by FG(s).

Taking first order conditions yields

0 = (1− κ)(1− α)kα
[
−u′(cy) +R(s)β

∫
u′ (co(η)) dΨ(η)

]
+β

∫
u′ (co(η)) [κηw′(s) + (1− κ)(1− α)kαR′(s)s] dΨ(η)

+θW ′(k′(s))
dk′(s)

ds
= PE(s) +GE(s) + FG(s)

We make the following observations:

1. Denote by sCE the savings rate household would choose in the competitive
equilibrium with zero capital taxes. Then PE(sCE) = 0.

2. In Appendix A we show that the general equilibrium effect can be written
as

GE(s) = (1− α)α [(1− κ)(1− α)kα]
α

[s]
α−1

β

∫
u′ (co(η)) [κη − 1] dΨ(η)

and thus the sign of the general equilibrium benefit of an extra unit of
saving for the current generation is determined by the term∫
u′ (co(η)) [κη − 1] dΨ(η) =

∫
u′ (κηw(s) +R(s)s(1− κ)(1− α)kα) [κη − 1] dΨ(η)

3Or equivalently, when choosing the tax rate τ ′ that then induces private households to
choose the savings rate s.
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If κ = 0, then the old do not have labor income, and thus the impact of
higher saving and consequently a larger capital stock is unambiguously
negative, due to a lower return on saving when old. If, on the other
hand, κ is large, wages when old are important for this generation which
calls, ceteris paribus, for a larger saving rate. Note that whereas the
magnitude of a change in factor prices induced by a change in savings
rates is purely determined from the production side of the economy, the
utility value to the household and thus the Ramsey government of these
factor movements depends on the utility function since it determines the
size of the covariance between u′(co(η)) and η (which is negative). If
households are risk-neutral (or there is no risk), then the sign of GE(s)
is given by κ− 1 which is negative, leading to a reduced incentive to save
due to general equilibrium effects, and an associated extra incentive to tax
capital income.4 With risk the sign of GE(s) is determined by the sign of

E [u′(co(η))(κη − 1)] = (κ− 1)E [u′(co(η))] + Cov [u′(co(η)), (κη − 1)]

< (κ− 1)E [u′(co(η))] < 0

and thus there is an extra disincentive to save from the general equilibrium
effect: higher wages exacerbate idiosyncratic income and thus consump-
tion risk and thus it is optimal for the social planner to reduce labor
income risk by reducing savings incentives, other things equal.

3. The effect of a higher savings rate today on future generations through a
higher capital stock from tomorrow on, k′(s) is encoded in the term

FG(s) = θW ′(k′(s))
dk′(s)

ds
= (1− κ)(1− α)kαθW ′(k′(s)) > 0

and depends on the relative social welfare weights of future generations
θ = ωt+τ

ωt
.

The following figure plots the terms PE(s), GE(s), FG(s) as well as their
sum against the savings rate s for a parametric example, and fixing a current
(or initial) capital stock k.5 We observe that, as expected, FG(s) is always
positive (the marginal benefit from a higher saving rate on future generations
through a higher capital stock is always positive). Also, as argued in item
2. above, GE(s) is always negative, and thus calls for a lower savings rate
and higher capital income tax rate. Finally, the PE(s) line shows where the
competitive equilibrium savings rate absent government policies is located (at
the intersection between PE(s) and the zero line, and the sum PE(s)+GE(s)+
FG(s) displays the optimal Ramsey savings rate s (intersection with the zero
line). In this example the FG effect dominates theGE effect and the savings rate

4Unless κ = 1 and the old hold all labor income, in which case the general equilibrium
effect on optimal saving is exactly equal to zero.

5We will show below that for the logarithmic case the Ramsey savings rate is independent
of the current capital stock, and since we display an example with σ = 1 in the plot, the
dependence of s on k is actually moot here.
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s∗ chosen by the Ramsey government exceeds that emerging in the unregulated
competitive equilibrium sCE . Of course this is not a general result; for example,
if θ = 0 and future generations are not valued at all, one would obtain s∗ < sCE .

Figure 1: Decomposition of Optimal Savings Rate Determination
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4.2 Explicit Solution of the Ramsey Tax Problem
We now provide a complete analytical characterization of the Ramsey optimal
policy problem under the assumption that utility is logarithmic. We can do
so for arbitrary social welfare weights {ωt}∞t=0 using the sequential formulation
of the problem, and we do so in appendix B. Here we exploit the recursive
formulation of the problem, which requires assumption 3, but allows us to arrive
at the solution rather immediately.

As in the standard neoclassical growth model, the recursive version of the
Ramsey problem with log-utility has a unique closed-form solution, which can
be obtained by the method of undetermined coefficients. To this end, guess that
the value function takes the following log-linear form:

W (k) = Ψ0 + Ψ1 log(k)

Using this guess and equations (23)-(25) we can rewrite the Bellman equation
(22) as:
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W (k) = Ψ0 + Ψ1 log(k)

= max
s∈[0,1]

{log((1− s)(1− κ) (1− α) kα)

+β

∫
log (κηw(s) +R(s)s(1− κ)(1− α)kα) dΨ(η) + θW (k′)

}
= log((1− κ) (1− α)) + αβ log((1− κ)(1− α))

+

∫
log (κη(1− α) + α) dΨ(η) + θΨ0 + θΨ1 log [(1− κ)(1− α)]

+
[
α+ α2β + αθΨ1

]
log(k) + max

s∈[0,1]
{log(1− s) + (αβ + θΨ1) log(s)}(26)

We immediately observe that for the Bellman equation to hold, the coefficient
Ψ1 has to satisfy

Ψ1 = α+ α2β + αθΨ1

or
Ψ1 =

α(1 + αβ)

(1− αθ)
We also immediately recognize that the optimal saving rate chosen by the Ram-
sey planner is independent of the capital stock k and determined by the first
order condition

1

1− s
=
αβ + θΨ1

s

and thus
s∗ =

αβ + θΨ1

1 + αβ + θΨ1
=
α(β + θ)

1 + αβ
(27)

Plugging in s∗ and Ψ1 into the Bellman equation (26) yields a linear equation
in the constant Ψ0 whose solution completes the full analytical characterization
of the Ramsey optimal taxation problem, summarized in the following

Proposition 2. Suppose assumptions 1 and 2 are satisfied. Then the solution
of the Ramsey problem is characterized by a constant saving rate6

st = s∗ =
α(β + θ)

1 + αβ

a sequence of capital stocks that satisfy

kt+1 = s∗(1− κ)(1− α)kαt
6In appendix we show, using the sequential formulation of the problem, that for arbitrary

welfare weights the optimal savings rate is still independent of the capital stock and given by

st =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt

αj−1
)−1

which implies the savings rate in the proposition under the assumption that ωt+1

ωt
= θ for all

t.
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with initial condition k0. The associated value function is given by

W (k) = Ψ0 +
α(1 + αβ)

(1− αθ)
log(k)

with derivative
W ′(k) =

α(1 + αβ)

(1− αθ)k
The Ramsey allocation is implemented with constant capital taxes τ = τ(β, θ, κ, α; Ψ)
satisfying

1− τ =
(θ + β)

(1− αθ)βΓ(α, κ; Ψ)
(28)

where Γ is a positive constant that was defined in equation (12) and just depends
on parameters.

Corollary 3. The optimal savings rates are independent of the extent of income
risk in the economy.

Corollary 4. The optimal capital tax rates are strictly increasing in the ex-
tent of income risk (as measured by Γ), strictly decreasing in the social discount
factor θ, strictly increasing in the individual discount factor β and strictly de-
creasing in the labor income share κ of the old.

It is noteworthy that not only is the optimal savings rate constant and does
not depend on the level of the capital stock, but it also is independent of the
extent of income risk η. This is true despite the fact that for a given tax policy
higher income risk induces a larger individually optimal savings rate, as shown in
section 3.3. The Ramsey government finds it optimal to exactly offset this effect
with a capital tax that is increasing in the amount of income risk, cancelling out
exactly the partial equilibrium incentive to save more as income risk increases.

One advantage of the complete characterization of the recursive problem is
that we can now give a cleaner decomposition of the three forces determining
the optimal Ramsey saving rate. We now find that

PE(s) =
−1

(1− s)
+
αβ

s
Γ(α, κ; Ψ)

GE(s) =
αβ

s
[1− Γ(α, κ; Ψ)]

FG(s) =
θα(1 + αβ)

(1− αθ)s

where we note that that

Γ(α, κ; Ψ) >
1

κ(1− α) + α
≥ 1
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and where the first inequality is strict as long as Ψ is nondegenerate and κ > 0,
and the second inequality is strict as long as κ < 1. Thus [1− Γ(α, κ; Ψ)] ≤ 0,
with strict inequality if κ < 1.

PE(s) R 0, PE′(s) < 0

GE(s) < 0, GE′(s) > 0

FG(s) > 0, FG′(s) < 0

Recall that the savings rate sCE in the competitive equilibrium with zero
taxes satisfies PE(sCE) = 0. This implies that, starting from zero taxes, the
only reason to tax capital is the general equilibrium, pecuniary externality, effect
which unambiguously pushes the desired savings rate down and the tax rate up
(i.e. makes it positive). Against this works the future generations effect (whose
size is controlled by θ) and calls unambiguously for a higher savings rate and
thus a lower (i.e. negative) tax rate.

Also note that

PE(s) +GE(s) =
−1

(1− s)
+
αβ

s
Γ(α, κ; Ψ) +

αβ

s
[1− Γ(α, κ; Ψ)]

=
−1

(1− s)
+
αβ

s
(29)

and thus the partial equilibrium incentive to save more when income risk rises
is exactly cancelled out by the general equilibrium effect on factor prices. Thus
the simple solution with log-utility of the Ramsey problem masks the presence
of a partial equilibrium and a general equilibrium effect that turn out to exactly
cancel each other out.

4.3 Discussion of Optimal Tax Rates
In this section we use the sharp characterization of optimal Ramsey savings
rates and capital taxes from equation (28) to discuss further properties of the
optimal Ramsey capital tax rates. The following proposition, which follows im-
mediately from the inspection of (28) gives conditions under which the optimal
Ramsey capital tax is positive, and, in contrast, conditions under which capital
is subsidized. For the next proposition, recall that for θ = 0 only the utility of
the first generation receives weight in the social welfare function, whereas θ = 1
amounts to the Ramsey government maximizing steady state welfare.

Proposition 3. There is a threshold social discount factor θ̄ such that for all
θ ≥ θ̄ capital is subsidized in every period whereas for all θ < θ̄ it is taxed in
every period. This threshold is explicitly given as

θ̄ =
(Γ− 1)β

1 + αβΓ
> 0

Corollary 5. If θ̄ ≥ 1, then capital is taxed even when the Ramsey government
maximizes steady state welfare. If θ̄ < 1 then the government should subsidize
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capital when the Ramsey government maximizes steady state welfare. If the
government maximizes welfare of only the initial generation (θ = 0) it should
unambiguously tax capital.

Note that these results also apply to the model without income risk. In that
case, which provides a useful benchmark to interpret the general findings, note
that the optimal Ramsey capital tax from equation (28) is given by

τ = 1− (θ/β + 1) (1− (1− κ)(1− α))

(1− αθ)

If θ = 0 and the Ramsey government only values the first generation (as effec-
tively, in the simple model of Krusell et al. (2012)), the future generations term
FG(s) is absent, and their optimal capital tax is given by

τ = (1− κ)(1− α)

Thus capital is taxed at a weakly positive rate, and at a strictly positive rate
unless κ = 1 (the old receive all labor income).7 Since taxes with income risk are
higher than without, the capital tax rate τ is strictly positive for any degenerate
distribution of the income shock if θ = 0.

At the other extreme, suppose that θ = 1. Then

τ = 1− (1/β + 1) (1− (1− κ)(1− α))

(1− α)

and we show in appendix C.3 that in this case τ < 0 if and only if the competitive
equilibrium without taxes is dynamically efficient (i.e. has an interest rate
R > 1, or equivalently, a capital stock below the golden rule capital stock kGR).

This suggests the possibility that without income risk the competitive econ-
omy is dynamically efficient and the government optimally subsidizes capital in
the steady state, but with sufficiently large income risk the result reverses and
the Ramsey government finds it optimal to tax capital in the steady state. The
following proposition, again proved in appendix C.3, shows that this is indeed
the case.

Proposition 4. Let θ = 1 such that the Ramsey government maximizes steady
state welfare, and denote by s∗ the associated optimal savings rate. Further-
more denote by s0(η) the steady state equilibrium savings rate in the absence of
government policy and sGR the golden rule savings rate that maximizes steady
state aggregate consumption. Finally assume that β <

[
(1− α)Γ̄− 1

]−1.

1. Let income risk be large: Γ > 1

β[(1−α)−1/Γ̄]
. Then the steady state compet-

itive equilibrium is dynamically inefficient, sGR < s0(η), and s∗ < s0(η),
and the optimal capital tax rate has τ > 0.

7If κ = 1, then in the absence of income risk Γ̄ = 1, and the general equilibrium effect is
GE(s) = 0, and thus in the absence of also the future generations effect FG(s) = 0, and thus
the Ramsey optimal saving rate coincides with the competitive equilibrium savings rate for
τ = 0.
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2. Let income risk be intermediate:

Γ ∈

(
1 + β

(1− α)β
,

1[
(1− α)− 1/Γ̄

]
β

)
Then the steady state competitive equilibrium is dynamically efficient, s∗ <
s0(η) < sGR, but optimal capital taxes are nevertheless positive.

3. Let income risk be small:

Γ ∈
[
Γ̄,

1 + β

(1− α)β

)
Then the steady state competitive equilibrium is dynamically efficient, s0(η) <
sGR, and s0(η) < s∗, and optimal capital taxes are negative (capital is sub-
sidized).

Note that if condition β <
[
(1− α)Γ̄− 1

]−1 is violated, then the steady
state competitive equilibrium is dynamically inefficient and the optimal capital
tax rate is positive for all degrees of income risk. The interesting and perhaps
unexpected result is case 2: in the presence of income risk the Ramsey govern-
ment maximizing steady state welfare might want to tax capital even though
this reduces aggregate consumption (since the equilibrium capital stock is not
inefficiently high) because of the GE effect: a lower capital stock shifts away
income from risky labor income to non-risky capital income, and for moderate
income risk this effect dominates the future generations effect as parametrized
by θ. Note that the bounds in the previous proposition can of course be directly
be defined in terms of the variance of the idiosyncratic income shock η, to a sec-
ond order approximation of the integral defining Γ for general distributions, and
without any approximation necessary in case the distribution of η is log-normal.

4.4 Implications for Dynamics of the Capital Stock and
Capital Income Taxes

The discussion in the previous section concerned the optimal, time-invariant
savings rate. The savings rate, together with the law of motion for the capital
stock

kt+1 = st(1− κ)(1− α)kαt =
α(θ + β)(1− κ)(1− α)

1 + αβ
kαt

and the initial condition k0 determine the entire time path for the capital stock.
That sequence {kt}∞t=1 is independent of the amount of income risk and con-
verges monotonically to the steady state

k∗ =

[
α(θ + β)(1− κ)(1− α)

1 + αβ

] 1
1−α

,

either from above if k0 > k∗ or from below, if k0 < k∗. Again, of course the
optimal tax policy that implements this allocation does depend on the extent
of income risk, as shown above.
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With this sharp analytical characterization of the optimal sequence of cap-
ital, we can now also make precise the relation between the capital taxes τ t
studied thus far, and the implied optimal capital income taxes τkt . These are
related by the equation

1 + (Rt − 1)(1− τkt ) = Rt(1− τ t)

and thus
τkt =

Rt
Rt − 1

τ t

where the gross return is given by

Rt = α (kt)
α−1

As long as Rt > 1 for all t, capital taxes and capital income taxes have the
same sign, and the two instruments are fully equivalent. A sufficient condition
for this to be the case is

Assumption 4. The initial capital stock satisfies

k0 < α
1

1−α

and the model parameters satisfy

1 + αβ

(θ + β)(1− κ)(1− α)
> 1

This assumption assures that net returns are strictly positive at all times in
the Ramsey equilibrium, since R0 = α (k0)

α−1
> 1 and R∗ = α (k∗)

α−1
> 1,

(and because the sequence of Rt along the transition is monotone) and thus the
Ramsey allocation can be supported by capital income taxes of the same sign as
the original wealth taxes. Under assumption 4 therefore all interpretations and
qualitative results extend without change to capital income taxes. If instead
assumption 4 is not satisfied, and (ignoring the knife edge case Rt = 1) thus
for some t we have Rt < 1 as part of the Ramsey allocation, then, since capital
income is negative (the net return Rt−1 < 0), the capital tax τ t and associated
capital income tax τkt are of opposite signs.

5 Efficiency Properties of the Ramsey Equilib-
rium

In this section we discuss the welfare properties of the Ramsey equilibrium char-
acterized thus far. By construction, the Ramsey allocation is the best allocation,
given the weights in the social welfare function, that a government that needs
to respect equilibrium behavior of households and is restricted to proportional
taxes on capital can implement. In this section we establish three main results.
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First, the Ramsey equilibrium is generically not Pareto efficient, even if idiosyn-
cratic income risk is absent. Second, defining constrained efficient allocations
as those chosen by a social planner that cannot directly transfer consumption
across households of different ages and with different idiosyncratic shocks (as
in Davila et al., 2012), we show that the Ramsey equilibrium is constrained
efficient in this precise sense. And third, we prove that if the optimal Ram-
sey savings rate s∗(θ = 1) that maximizes steady state welfare is smaller than
s0(η), the steady state savings rate in the competitive equilibrium without gov-
ernment, then implementing s∗(θ = 1) through positive capital taxes yields a
Pareto-improving transition from the initial steady state equilibrium without
government policy towards the steady state associated with s∗(θ = 1). This is
true even if s0(η) < sGR and thus the steady state equilibrium capital stock is
smaller than the golden rule capital stock.

5.1 Ramsey Equilibria and Pareto Efficient Allocations
In section C.1 of the Appendix we fully characterize the set of Pareto efficient
allocations, restricting attention to those associated with welfare weights satis-
fying ωt+1

ωt
= θ ≤ 1.8 The next proposition summarizes the results:

Proposition 5. For a given social discount factor θ ∈ [0, 1] and a given initial
condition k0, the Pareto efficient allocation {cyt , cot (ηt), st, kt+1}∞t=0 is character-
ized by a constant savings rate

sSP :=
kt+1

(1− κ)(1− α)kαt
=

αθ

(1− κ)(1− α)

and associated sequence of capital stocks

kt+1 = αθkαt

and consumption levels

cyt =
θ(1− αθ)
θ + β

kαt

cot (ηt) =
β(1− αθ)
θ + β

kαt

If θ = 1, then the optimal saving rate

sSP =
α

(1− κ)(1− α)
:= sGR (30)

implements the golden rule capital stock

kGR = lim
t→∞

kt = (α)
1

1−α (31)

that maximizes steady state aggregate consumption.
8It is not difficult to relax this assumption, but since the objective here is a comparison

to Ramsey equilibria associated with the same set of social welfare weights, we impose this
restriction to simplify the exposition.
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Comparing the characterization of Pareto efficient allocations with the re-
sults in the previous section on the optimal Ramsey allocation we immediately
have the following obvious

Corollary 6. The Ramsey equilibrium is not Pareto efficient because it does
not provide full consumption insurance against idiosyncratic income risk.

Of course this result is fully expected and not noteworthy at all, since the
Ramsey government has no powers to affect or offset the market incomplete-
ness inherent in our model. What is more remarkable is that even though the
optimal Ramsey savings rate is independent of income risk (and the same as in
a model where income risk is absent), it is in general different from the savings
rate optimally chosen by the social planner (who fully insures the idiosyncratic
income risk). This result is summarized in the next

Corollary 7. For a fixed social discount factor θ ∈ [0, 1], the optimal Ramsey
savings rate equals to the saving rate chosen by the social planner if and only if
the following knife edge condition is satisfied:

(1− κ) =
θ(1 + αβ)

(1− α)(β + θ)

Note that the Ramsey government can surely implement the saving rate
desired by the social planner through an appropriate choice of taxes, but unless
the condition above is satisfied, it is suboptimal to do so. The reason is that the
Ramsey government has no instruments to transfer resources across generations
and thus forcing the planner saving rate onto households (by appropriate choice
of the capital tax rate) results in an equilibrium allocation of consumption across
the young and the old that is typically suboptimal.9

5.2 Constrained Efficiency of Ramsey Equilibria
Can the Ramsey government implement constrained efficient allocations with
the set of instruments it has? A constrained efficient allocation is an allocation of
capital and consumption that maximizes social welfare subject to the constraint
that the allocation does not permit transfers across currently old households
with different η realizations. Define the set of allocation that are feasible for the
constrained planner

cyt +

∫
cot (ηt)dΨ + kt+1 = kαt (32)

cot (ηt) = ktMPK(kt) + κηtMPL(kt) (33)
9Finally note that if one were to treat the social discount factor θ as a free parameter, then

one concludes that the Ramsey optimal savings rate is efficient, in that it is identical to the
choice of the social planner with a different social discount rate θSP

θSP =
(β + θ)(1− κ)(1− α)

1 + αβ
.
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The first constraint is simply the resource constraint. The second constraint
has extra bite as it restricts transfers across different η households: old age
consumption is required to equal capital income plus an η household’s share of
labor income, where the returns to capital and labor are equal to the factors’
relative productivities. The constrained planner might find it optimal, however,
to manipulate factor prices by choosing a different sequence of capital stocks,
relative to that of a competitive equilibrium (without or with tax policy).

Note that these constraints also imply that∫
cot (ηt)dΨ = ktMPK(kt) + κMPL(kt)

cyt = (1− κ)MPL(kt)− kt+1

so that no intergenerational transfers are permitted either, relative to the com-
petitive equilibrium.

A constrained efficient allocation is one that maximizes

SWF =

∞∑
t=−1

ωtVt

subject to (32) and (33).
The social planner may want to manipulate the capital stock so as to change

relative factor prices, relative to the competitive equilibrium without taxes. The
question is whether the simple tax policy we consider here is sufficient to offset
the pecuniary externality and implement the constrained efficient allocation
as defined above. The answer is yes, as the following proposition (proved in
appendix C.2) shows.

Proposition 6. The Ramsey equilibrium, for a given set of social welfare
weights, implements the constrained-efficient allocation for exactly that set of
social welfare weights.

5.3 Pareto-Improving Tax Transitions
In this section we show that under certain condition, starting from the steady
state competitive equilibrium without taxes as initial condition, switching to the
Ramsey optimal savings and tax policy that maximizes steady state welfare
yields a Pareto improvement, that is, all generations, including those along the
transition, are better off. This is true, again under certain parametric restric-
tions, even if the original competitive steady state equilibrium is dynamically
efficient in the sense of satisfying k0 < kGR, (and thus R0 > 1) where kGR is
the golden rule capital stock characterized above.

Proposition 7. Let s0(η) denote the savings rate in a steady state competitive
equilibrium with zero taxes. Assume that s0(η) > s∗. Then a government policy
that sets τ t = τ∗ > 0 leads to a Pareto improving transition from the initial
steady state with capital k0(η) towards the new steady state associated with tax
policy τ∗.
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We provide the proof of this proposition in appendix C.4. The proof shows
that all generations benefit from the government implementing a saving rate
that is lower than the initial competitive equilibrium rate despite the fact that
it lowers the capital stock, thus aggregate production, wages and consumption
along the transition. The key step is to argue that this adverse effect of a
lower capital stock is most severe in the long run (the new steady state), and to
show that by choice of s∗ the government insures that even generations in the
new steady state benefit, in terms of lifetime utility, from the higher tax rate
and associated lower saving rate. Note that this argument is independent of
the specific form of the utility function and thus the result holds for arbitrary
CRRA utility, although the conditions on fundamentals that guarantee that the
equilibrium savings rate s0(η) exceeds the optimal Ramsey steady state savings
rate s∗ evidently will depend on the specific form of the utility function.

Note that from proposition 4 the assumption s0(η) > s∗ is satisfied if and
only if income risk is sufficiently large, in the sense that Γ > 1+β

(1−α)β . The result
in the previous proposition is of course not surprising if s0(η) ≥ sGR and the
initial steady state competitive equilibrium is dynamically inefficient to start
with. However, for intermediate risk, i.e. for

Γ ∈

(
1 + β

(1− α)β
,

1[
(1− α)− 1/Γ̄

]
β

)

the same proposition shows that s∗ < s0(η) < sGR, and thus the steady state
equilibrium is dynamically efficient yet setting τ∗ > 0 implements a Pareto-
improving transition.

Finally, it is important to note that the converse of proposition 7 is not true:
even if s0(η) < s∗, implementing the Ramsey optimal (for θ = 1) savings subsidy
τ∗ < 0 and associated higher saving rate s∗ does not lead to a Pareto improving
transition. We demonstrate this in Appendix C.5 by showing that the generation
born into the first period of this hypothetical policy-induced transition will lose
from this policy innovation. In fact, not only is implementing τ∗ < 0 not Pareto
improving if s0(η) < s∗, any policy reform that induces a savings rate in period
1 above the competitive savings rate with zero taxes, s0(η), will not result in a
Pareto improvement (since it will make the first generation strictly worse off).

6 General Intertemporal Elasticity of Substitu-
tion ρ and Risk Aversion σ

In this section we generalize our steady state results to a more general utility
function with intertemporal elasticity of substitution ρ and risk aversion σ. The
main text contains the essential results, and the details of the derivations are
relegated to Appendix D.
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We now consider a utility function of the form

Vt =
(cyt )1− 1

ρ − 1

1− 1
ρ

+ β

{[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ
}1− 1

ρ

− 1

1− 1
ρ

The parameter ρ measures the IES and the parameter σ governs risk aversion.10
If σ = 1

ρ then the utility function takes the standard CRRA form, and as
the IES ρ→ 1, the utility function becomes

Vt = ln(cyt ) +
β

1− σ
ln

(∫
cot+1(ηt+1)1−σdΨ

)
As in section 4, equation 16 we can write lifetime utility of a generation born

in period t, in general equilibrium, as a function of the beginning of the period
capital stock kt and the saving rate st chosen by the Ramsey government and
implemented by the appropriate choice of the capital tax τ t+1. In addition, in
the steady state the savings rate and the associated capital stock are related by:

k = ((1− κ)(1− α)s)
1

1−α (34)

In Appendix D we show that the objective function of the Ramsey govern-
ment is to maximize, by choice of the steady state saving rate, steady state
lifetime utility, which is given (for ρ 6= 1) by

V (s) = φ̃
(

(1− s)(1− 1
ρ ) + βψ̃Γ̃2

)
s
α(1− 1

ρ )
1−α (35)

where φ̃ and ψ̃ > 0 and Γ̃ > 0 are constants that depend on parameter values.
Taking first order conditions and rearranging we find that optimal steady state
savings rate is defined implicitly as

s =
α

1− α

[
(1− s) + βψ̃Γ̃2(1− s)

1
ρ

]
(36)

10Note that Vt is ordinally equivalent, i.e. represents the same preference ordering
over consumption cyt when young and the certainty equivalent over utility tomorrow,[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ as the more commonly used specification

Ṽt =

(1− β̃)(cyt )
1− ‘1

ρ + β̃

[∫
cot+1(ηt+1)1−σdΨ

] 1− 1
ρ

1−σ


1

1− 1
ρ

since one is a monotone transformation of the other:

Vt =
Ṽ

1− 1
ρ

t

(1− β̃)
(

1− 1
ρ

) − (1 + β)

1− 1
ρ

where β = β̃

1−β̃
. We should note, however, since the Ramsey problem is stated in terms of

the weighted sum of cardinal utilities, a monotone transformation of the utility function will
in general alter the Ramsey problem. When focusing on a steady state analysis, this concern
does not arise, however, since the same saving rate (and associated tax rate) maximizes steady
state V and its monotone transformation Ṽ .
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Inspection of equation 36 (with the formal argument presented in Appendix D)
we immediately obtain

Proposition 8. Suppose θ = 1 and thus the Ramsey government maximizes
steady state welfare. There exists a unique optimal Ramsey saving rate s? ∈
(0, 1) solving equation 36. This savings rate can be implemented with a capital
tax rate τ? determined by the competitive equilibrium Euler equation:

1 = (1− τ?)αβ ((1− κ)(1− α))(
1
ρ−1) (1− s?)

1
ρ

s?
Γ̃ (37)

Note that all comparative statics results, especially those with respect to an
increase in income risk, can be deduced from an analysis of equations (36, 37).
Income risk affects the optimal Ramsey savings rate s? and associated imple-
menting tax rate τ? only through the constants Γ̃, Γ̃2 which are given as:

Γ̃ = ce(η)(σ−
1
ρ )Γ (38)

Γ̃2 = ce(η)(1− 1
ρ ) (39)

where we had defined Γ above for the log-case, and is now given by:

Γ =

∫ (
κηt+1(1− α) + α

)−σ
dΨ(ηt+1) (40)

and where the certainty equivalent of η is defined as, for σ 6= 1

ce(η) =

[∫
(α+ (1− α)κη)

1−σ
dΨ(η)

] 1
1−σ

(41)

and for σ = 1

ce(η) = exp

(∫
ln (α+ (1− α)κη) dΨ(η)

)
. (42)

In appendix F we prove the following result that relates income risk and the
constants Γ̃, Γ̃2 which are in turn crucial for the comparative statics results we
will provide in section 6.2.

Lemma 1. An increase in income risk (again in the sense of a mean-preserving
spread of η), unambiguously reduces ce(η), increases Γ̃2 if and only if ρ < 1 and
increases Γ̃ if ρ < 1 or ρ > 1 and σ < 1/ρ.

Note that the condition that characterizes Γ̃2 is necessary and sufficient
whereas the two alternative conditions that characterize the relation between
income risk and Γ̃ are only sufficient.
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6.1 Unit Elasticity of Substitution ρ = 1

Recognizing that for an IES of ρ = 1 we have ψ̃ = Γ̃2 = 1 direct calculations
reveal

Proposition 9. Suppose that the IES ρ = 1. Then the solution of the Ramsey
problem is identical to that of the log-utility case analyzed in section 5. That is,
the optimal, constant saving rate is given by

s =
α(β + θ)

1 + αβ

The optimal tax rate τ that implements this saving rate as a competitive equi-
librium is given by

1 = (1− τ)

(
1− s
s

)
αβΓ̃

and thus is strictly increasing in income risk measured by Γ̃.

Note that the optimal Ramsey savings rate does neither depend on income
risk nor risk aversion, but that the optimal capital tax rate τ implementing
this savings rate is increasing in income risk, and does depend on risk aversion
through the constant Γ̃ =

∫
(κη(1−α)+α)−σdΨ(η)∫
(κ(1−α)η+α)1−σdΨ(η)

since σ controls the degree of
precautionary saving in the competitive equilibrium that needs to be offset with
capital taxes.

Also note that although here we state this result for steady states only, Ap-
pendix D.2 shows that the entire analysis of section 5 with log-utility (including
the dynamic programming formulation and the analysis of the transition path)
goes through completely unchanged (and only replacing Γ by Γ̃) for general
Epstein-Zin utility as long as the IES ρ = 1.

6.2 The Impact of Risk on the Optimal Saving and Tax
Rate: Disentangling Risk Aversion and IES: 1

σ
6= ρ 6= 1

In the previous section we demonstrated that an intertemporal elasticity of
substitution of 1 was sufficient (and, as will turn out, necessary) for the result
that the optimal Ramsey saving rate can be solved in closed form, is constant
over time and independent of the extent of income risk in the economy. In this
section we investigate how income risk impacts the optimal Ramsey savings
rate and implementing capital tax rate when we allow for general IES and
risk aversion (ρ, σ) where the standard CRRA case is nested as a special case
ρ = 1/σ.

From equation 36 we immediately observe that the optimal steady state
saving rate s is strictly increasing in the constant Γ̃2 that fully summarizes
the impact of income risk. The response of s to income risk then immediately
follows from the impact of an increase in income risk on Γ̃2 stated in Lemma 1.
Thus we have
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Proposition 10. An increase in income risk, that is, a mean-preserving spread
in the distribution of η, increases the optimal steady state Ramsey saving rate s
if and only if ρ < 1 and decreases it if and only if ρ > 1.

Thus the direction of the change in s with respect to income risk is exclusively
determined by the intertemporal elasticity of substitution ρ, with the log-case
emphasized thus far acting as natural watershed. Of course how strongly the
savings rate responds to an increase in income risk is also controlled by risk
aversion through the term Γ̃2.

What is the intuition for this result? Consider the following thought ex-
periment. Suppose the economy is in the steady state associated with a given
extent of income risk and the optimal Ramsey tax policy, and now consider an
increase in income risk. Private households will adjust their savings behavior,
but the Ramsey government can neutralize this behavior by appropriate adjust-
ment of the tax rate on capital to implement the new desired (by the Ramsey
government) savings rate.11

The question is then how the saving rate desired by the Ramsey government
itself changes. Households (and thus the Ramsey government) obtain utility
from safe consumption when young and risky consumption when old, and the
desire for smoothness between safe consumption when young and the certainty
equivalent of consumption when old is determined by the IES ρ. As risk in-
creases, the certainty equivalent of old-age consumption declines, for a given
consumption allocation. In effect, old age consumption is now a less effective
(because more risky) way to generate utils, and whether the Ramsey govern-
ment wants to prop up old-age consumption (by increasing the saving rate) or
reduce it (by lowering the saving rate) depends on how much households value
smoothness between consumption when young and the certainty equivalent of
consumption when old. In the log-case the two forces exactly balance out and
the Ramsey saving rate does not respond to income risk at all. In contrast,
if households strongly desire a smooth path of (the certainty equivalence of)
consumption, then the Ramsey government compensates for the loss of old-age
certainty equivalent consumption by saving at a higher rate. Thus s increases
with income risk if the IES ρ is small. The reverse is true for a high IES.

Finally, we can also determine the impact of income risk on optimal steady
state capital taxes. We can rewrite equation (37) characterizing the optimal
steady state tax rate as

1 = (1− τ∗)ν (1− s∗)
1
ρ

s∗
Γ̃ (43)

where ν > 0 is a constant. From equation (43) we see that income risk affects
the Ramsey optimal tax rate in two ways. First, for a given target saving

11We saw this explicitly in the decomposition of the first order condition of the Ramsey
government in section 4.2, where the risk term Γ from the competitive equilibrium optimality
condition dropped out because the government chooses, through taxes and the associated
changes in factor prices, to exactly offset the impact of higher risk on private household
savings decision. In the logic of that section, an increase in Γ increases PE(s) but reduces
GE(s) by the same factor.
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rate s∗ to implement, the direct impact of income risk depends on Γ̃. Second,
a change in income risk changes the optimal Ramsey tax rate s∗ through Γ̃2,
as characterized in the previous proposition. The next proposition, proved in
section D.4 of the appendix, gives conditions on the IES and risk aversion (ρ, σ)
under which the optimal capital tax rate is increasing in income risk, and an
example under which the it is strictly decreasing in income risk.

Proposition 11. If ρ ≤ 1, then an increase in income risk increases the optimal
tax rate on capital. Similarly, if ρ > 1 and σ ≤ 1/ρ, then an increase in income
risk increases the optimal tax rate on capital.

Proposition 12. If ρ > 1 and σ > 1/ρ then an increase in income risk might
lead to a strict reduction in the optimal tax rate on capital, but only if the private
saving rate in competitive equilibrium for given tax rate τ ∈ (−∞, 1) is strictly
decreasing in income risk. Specifically, if ρ→∞ and σ →∞, then the optimal
tax rate decreases with an increase in income risk.

6.3 Numerical Exploration of Optimal Ramsey Tax Tran-
sitions for General IES ρ 6= 1 and Risk Aversion σ

In the previous section we provided a theoretical characterization of the optimal
Ramsey savings rate under the assumption that the government maximized
steady state utility, i.e. θ = 1. Since no analytical results are available outside
the steady state (unless σ = ρ = 1) in this section we show numerically how
the optimal savings rate depends on the capital stock and the degree of income
risk, and the optimal savings and capital tax rate evolves over time in this case.
Our main focus is on the dynamics of the optimal capital tax, and how that
dynamics depends on the magnitude of income risk and households’ attitudes
towards that risk (as again measured by σ).

Therefore now consider a CRRA utility function with a coefficient of rela-
tive risk aversion of σ ∈ {2, 0.25}, i.e., an IES ∈ {0.5, 4}. Furthermore, we
choose α = 0.2, β = 0.7, κ = 0.3. We assume that η is lognormally distributed
with σln η ∈ {0.0, 0.75, 1.5}, and we refer to these alternative calibrations of risk
as “no risk”, “medium risk” and “high risk” economies, respectively.12 The gov-
ernment discount factor is set to equal the private discount factor at θ = β = 0.7.

For these parameterizations of the model, we analyze policy functions as
well as transitional dynamics of the economy from an initial steady state to
the final steady state.13 To compute the initial allocation in the respective
economy, we characterize an initial steady state with zero capital income taxes.
Transitional dynamics in this economy are then induced by a Ramsey planner

12We approximate the distribution by Gaussian quadrature methods choosing n = 11 inte-
gration nodes.

13We solve for the dynamic problem by first computing the Ramsey planner’s optimal long-
run steady state saving rate (i.e., s?(θ = 1)). We then construct a capital grid where the
lowest grid point is at k0 = 0.01 and the highest grid point is at 4 times the value of the
respective steady state capital stock. Finally, we solve the dynamic program using first-order
methods, see the Appendix of the paper for details.
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that optimally sets saving rates along the transition of the economy (starting
with implementing the optimal policy in period 0, taking as given the initial
allocation).

Saving rates in the long-run optimum for θ = 1, s?(θ = 1), the competi-
tive equilibrium saving rate for a given risk calibration, s0(η), and the golden
rule saving rate sGR for the 3x2 scenarios of income risk and risk aversion are
summarized in Table 1. From this table, we make three observations. In line
with our theoretical analysis, first, the competitive equilibrium saving rate is
strictly increasing in risk and second, the optimal Ramsey long-run saving rate
is increasing in risk for high risk aversion (dominance of the precautionary sav-
ings effect) and decreasing in low risk aversion (dominance of the pecuniary
externality effect). Third, the competitive equilibrium is dynamically efficient
in all cases but for the high risk aversion / high risk calibration with σ = 2
and σln η = 1.5.

Table 1: Saving Rates: Long-Run Optimum, Initial CE, Golden Rule

σ = 2 s?(θ = 1) s0(η) sGR
no risk 0.2899 0.2362 0.3571
med. risk 0.3002 0.2936 0.3571
high risk 0.3199 0.3787 0.3571
σ = 0.25 s?(θ = 1) s0(η) sGR
no risk 0.3066 0.2473 0.3571
med. risk 0.305 0.2528 0.3571
high risk 0.3001 0.2647 0.3571

Notes: Simulated saving rates in long-run optimum, s?(θ = 1), competitive equilibrium, s0(η)

and golden rule sGR for α = 0.25, β = 0.7, κ = 0.3, σ ∈ {0.25, 2}, and σln η ∈ {0.0, 0.75, 1.5}.

Figure 2 shows the policy function for the saving rate for the high risk aver-
sion economy in Panel (a) and the low risk aversion economy in Panel (b). These
policy functions reflect the motives we characterized in our previous theoretical
analysis, see Theorem 1: for all capital stocks the saving rate is increasing in
risk for σ = 2 and decreasing in risk for σ = 0.25. Furthermore, the policy
functions are upward (downward) sloping in k for σ = 2 (σ = 0.25) because
with increasing k wages increase leading to higher earnings risk and therefore
a higher (lower) saving rate because the precautionary savings effect (the pecu-
niary externality effect) dominates.

Turning to the transitional dynamics induced by the Ramsey government
that optimizes the social welfare function taking as given the initial allocation
as of period 0, Figures 3, 4 and 5 show the transitional dynamics of the saving
rate st, the capital stock kt, and the capital tax rate τ t, respectively. Along the
entire transition, the same ranking can be observed as for the policy functions
shown in Figure 2: the saving rate and the capital stock increase (decrease) in
risk for the high (low) risk aversion calibration. For σ = 2 we further observe
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Figure 2: Policy Function: Saving Rate s(k)
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(b) σ = 0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

k

sr

saving function

 

 

no risk
medium risk
high risk

Notes: Simulated saving policy function for θ = 0.7 and α = 0.25, β = 0.7, κ = 0.3,
σ ∈ {0.25, 2}, and σln η ∈ {0.0, 0.75, 1.5}.

that the government finds it optimal to decrease the capital stock along the
transition under medium and high risk. The case with medium risk is partic-
ularly noteworthy because, as documented in Table 1, the economy is initially
dynamically efficient. The reduction of the saving rate (and thereby the capital
stock) is welfare improving because it reduces the risk exposure to households.

For σ = 0.25, the dynamics of the saving rate are non-monotone. Starting
from an initial allocation with saving rates of 0.24, 0.25, 0.26 for no, medium
and high risk, respectively, see Table 1, the Ramsey planner finds it optimal to
implement in period 0 saving rates of about 0.25, 0.24, 0.23 in period 0 leading
to an increase of the capital in the no risk calibration and a decrease of the
capital stock in the medium and high risk calibrations. Thereafter the saving
rates revert slightly so that they still remain above (below) in the no risk (in the
medium/high risk) calibrations compared to the initial period 0 allocation. As
for σ = 2 the capital stock therefore decreases along the transition in the medium
and high risk economies despite the fact that these economies are dynamically
efficient.

The capital taxes required to implement these allocations, shown in Figure 5,
are time varying (which is hard to see from the figures as changes over time show
up in the third digit after the comma) and generally increasing in risk (in fact,
in the no risk economies, the Ramsey planner achieves the increase of the capital
stock through a savings subsidy).

7 Conclusion
In this paper we have analyzed optimal capital taxes in an OLG model with
idiosyncratic labor income risk. The problem is fully analytically tractable and
we obtain a complete characterization of the Ramsey allocation and associated
tax policy along the transition to a steady state in case the intertemporal elas-
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Figure 3: Saving Rate s(t) in Transition

(a) σ = 2

0 1 2 3 4 5 6 7 8 9
0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

time

sr
t

saving rate over time: optimtal transtion policy

 

 

no risk
medium risk
high risk

(b) σ = 0.25
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Notes: Simulated saving rate in the transition for θ = 0.7 and α = 0.25, β = 0.7, κ = 0.3,
σ ∈ {0.25, 2}, and σln η ∈ {0.0, 0.75, 1.5}.

Figure 4: Capital Stock k(t) in Transition
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(b) σ = 0.25
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Notes: Simulated capital stock in the transition for θ = 0.7 and α = 0.25, β = 0.7, κ = 0.3,
σ ∈ {0.25, 2}, and σln η ∈ {0.0, 0.75, 1.5}.
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Figure 5: Capital Tax Rate τ(t): Optimal Ramsey Transition Policy (θ = 0.7)
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(b) σ = 0.25
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Notes: Simulated capital tax rate in the transition for θ = 0.7 and α = 0.25, β = 0.7, κ = 0.3,
σ ∈ {0.25, 2}, and σln η ∈ {0.0, 0.75, 1.5}.

ticity of substitution is unity. The optimal aggregate saving rate is independent
of idiosyncratic income risk, and is implemented by a tax rate that is increasing
in income risk, and positive if and only if income risk is sufficiently large.

Our paper confirms that capital taxation is the appropriate tool of the gov-
ernment to deal with the precautionary externality induced by private pre-
cautionary saving behavior of households that are subject to uninsurable id-
iosyncratic income risk. However, we also demonstrate that capital should not
necessarily be taxed, and it might well be subsidized, especially when the gov-
ernment cares strongly about future generations. By making these points fully
analytically our paper is complementary to the literature characterizing optimal
taxation numerically in large-scale life cycle economies.
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A Details of the General Ramsey Problem
From equations (24) and (24) we find that

w′(s) = (1− α)α [k′(s)]
α−1 dk′(s)

ds
= (1− α)α [(1− κ)(1− α)kα]

α
[s]
α−1

(44)

R′(s) = α(α− 1) [k′(s)]
α−2 dk′(s)

ds
= α(α− 1) [(1− κ)(1− α)kα]

α−1
[s]
α−2

(45)

and thus

(1− κ)(1− α)kαR′(s)s = α(α− 1) [(1− κ)(1− α)kα]
α

[s]
α−1 (46)

κηw′(s) + (1− κ)(1− α)kαR′(s)s = (1− α)α [(1− κ)(1− α)kα]
α

[s]
α−1

[κη − 1]

(47)

which leads to the equation in the main text:

GE(s) = (1− α)α [(1− κ)(1− α)kα]
α

[s]
α−1

β

∫
u′ (co(η)) [κη − 1] dΨ(η)

B Derivation for Log-Utility
In this section we provide a full solution to the Ramsey optimal taxation problem
for the case of logarithmic utility in its sequential formulation, for an arbitrary
set of social welfare weights. We first recognize from the aggregate law of motion
that

log(kt+1) = log(1− α) + log(1− κ) + α log(kt) + log(st)

= κ + log(st) + α [α log(kt−1) + log(st−1)]

= κ +

t∑
τ=0

ατ log(st−τ ) + αt+1 log(k0)

= κt+1 +

t∑
τ=0

ατ log(st−τ )

or

log(kt) = κt +

t−1∑
τ=0

ατ log(st−1−τ ) = κt +

t∑
τ=1

ατ−1 log(st−τ )
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Therefore the objective of the Ramsey is given by (suppressing maximization-
irrelevant constants)

∞∑
t=0

ωtV (kt, st) =

∞∑
t=0

ωt [log(1− st) + αβ log(st) + α (1 + αβ) log(kt)]

= χ+

∞∑
t=0

ωt

[
log(1− st) + αβ log(st) + α (1 + αβ)

∞∑
τ=1

ατ−1 log(st−τ )

]

= χ+

∞∑
t=0

[
ωt log(1− st) + log(st)

(
αβωt + α (1 + αβ)

∞∑
τ=t+1

ωτα
τ−(t+1)

)]

and thus the social welfare function can be expressed purely in terms of savings
rates

SWF ({st}∞t=0) = χ+

∞∑
t=0

ωt

log(1− st) + log(st)

αβ + α (1 + αβ)

∞∑
j=1

ωt+j
ωt

αj−1


where χ is a constant that depends positively on the initial capital stock k0, but
is again irrelevant for maximization.

Taking first order conditions with respect to st and setting it to zero delivers
the optimal savings rate

st =
1

1 +
(
αβ + α (1 + αβ)

∑∞
j=1

ωt+j
ωt

αj−1
)−1

C Characterization of (Unconstrained) Efficient
Allocations

In this section we study whether the Ramsey government implement Pareto
efficient allocations. The set of obvious answer is no, since an unconstrained
social planner would provide full insurance against idiosyncratic η shocks, which,
given the market structure, is ruled out in any competitive equilibrium.

C.1 Characterization of Pareto Efficient Allocations
In this section we derive the solution to the unconstrained social planner prob-
lem. The planner maximizes social welfare

ω−1

∫
log(co0(η0))dΨ(η0) +

∞∑
t=0

ωt

[
log(cyt ) + β

∫
log(cot+1(ηt+1))dΨ(ηt+1)

]
subject just to the sequence of resource constraints

cyt +

∫
cot (ηt)dΨ(ηt) + kt+1 = kαt .
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As before, we restrict attention to geometrically declining welfare weights such
that ωt+1/ωt = θ ≤ 1.

Trivially, the social planner provides full insurance against idiosyncratic in-
come risk so that cot (η) = cot for all η and all t. Thus the problem simplifies
to

max
{cyt ,cot ,kt+1}

ω−1

∫
log(co0) +

∞∑
t=0

ωt
[
log(cyt ) + β log(cot+1)

]
s.t.

cyt + cot + kt+1 = kαt

with k0 > 0 given. The first order conditions are given by
ωt
cyt

= λt

βωt−1

cot
= λt

λt = λt+1αk
α−1
t+1

cyt + cot + kt+1 = kαt

Thus the optimal allocation of consumption across the two generations at a
given point of time is given by

cot
cyt

=
βωt−1

ωt
=
β

θ

and thus from the resource constraint

cyt =
θ

θ + β
(kαt − kt+1)

cot =
β

θ + β
(kαt − kt+1)

Define, analogously with the Ramsey problem, the savings rate of the social
planner as

st =
kt+1

(1− κ)(1− α)kαt
or

(1− κ)(1− α)st =
kt+1

kαt
Then from the first order conditions

1

cyt
=

β

cot+1

αkα−1
t+1

kt+1

(kαt − kt+1)
=

αθkαt+1(
kαt+1 − kt+2

)
(1− (1− κ)(1− α)st+1) = αθ

(
1

(1− κ)(1− α)st
− 1

)
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As in the neoclassical growth model we can show that the only solution to the
first order difference equation that does not eventually violate the non-negativity
constraint of consumption and does not violate the TVC is the constant saving
rate s solving

(1− (1− κ)(1− α)s) = αθ

(
1

(1− κ)(1− α)s
− 1

)
Define s̃ = (1− κ)(1− α)s then we have

1− αθ = αθ

(
1

αθ
− 1

)
with solutions s̃ = 1 and s̃ = αθ and thus

sSP =
αθ

(1− κ)(1− α)

the optimal sequence of capital stocks, starting from initial capital stock k0, is
given by

kt+1 = (1− κ)(1− α)stk
α
t

= αθkαt

Since
kαt − kt+1 = (1− αθ)kαt

we immediately have

Proposition 13. The solution to the social planner problem, any k0 > 0, is
given by a constant savings rate

kt+1

(1− κ)(1− α)kαt
= sSP =

αθ

(1− κ)(1− α)

and associated sequence of capital stocks

kt+1 = αθkαt

and consumption levels

cyt =
θ(1− αθ)kαt

θ + β

cot =
β(1− αθ)kαt

θ + β

Corollary 8. If θ = 1 (associated with a steady state analysis), then the social
planner chooses the golden rule savings rate

sGR =
α

(1− κ)(1− α)
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and the capital stock converges, in the long run, to

kGR = α
1

1−α

which satisfies
α
[
kGR

]α−1
= 1

and associated consumption levels

cy =
(1− α)

1 + β
α

α
1−α

cot =
β(1− α)

1 + β
α

α
1−α

Thus the social planner chooses the golden rule capital stock kGR that maximizes
net output yGR =

(
kGR

)α − kGR and splits it efficiently between cy and co

according to the rule co = βcy.

C.2 Proof of Constrained Efficiency of Ramsey Allocation
Proof. Define the savings rate of the constrained planner as

st =
kt+1

(1− κ)MPL(kt)
=

kt+1

(1− α)(1− κ)kαt

and thus the law of motion for the effective capital stock for the constrained
planner is

kt+1 = st(1− α)(1− κ)kαt

as in the Ramsey problem. Furthermore, from the constraints on the constrained
planner

cyt = (1− κ)MPL(kt)− kt+1 = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1) = kt+1MPK(kt+1) + κηt+1MPL(kt+1)

= αkαt+1 + κηt+1(1− α)kαt+1

=
[
α+ κηt+1(1− α)

]
kαt+1

=
[
α+ κηt+1(1− α)

]
[st(1− α)(1− κ)kαt ]

α

and thus consumption levels are the same as in the Ramsey equilibrium. Thus
the solution, in terms of savings rates, of the constrained planner problem is
identical to that of the Ramsey equilibrium.

C.3 Dynamic Inefficiency of the Competitive Equilibrium
and Positive Capital Taxation

In this section we provide the details of the steady state analysis of the Ramsey
problem and its connection with the dynamic efficiency of the steady state
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equilibrium absent government policy. First, recall that the golden rule capital
stock, savings rate and associated gross real interest rate are given by (see
proposition 8)

kGR = α
1

1−α

sGR =
α

(1− κ)(1− α)

RGR = 1

Second, we note that the steady state gross interest rate is given by

R = αkα−1

and from the law of motion of capital (equation 9) we have

k = s(1− κ)(1− α)kα

and thus
R =

α

s(1− κ)(1− α)
.

The steady state savings rate in turn is given by (see equation 15)

sτ (η) =
1

1 + [(1− τ)αβΓ]
−1 =

(1− τ)αβΓ

1 + (1− τ)αβΓ

Thus we have a steady state relation between the real interest rate and the tax
rate determined by

R =

1
(1−τ)βΓ + α

(1− κ)(1− α)
= R(τ ; Γ)

and thus a higher tax rate reduces the savings rate, thus the capital stock and
thus increases the real interest rate. Furthermore, for a given τ , the steady
state interest rate is decreasing in the amount of income risk (unless β = 0).
Therefore the steady state interest rate in the absence of government policy is
given by

R(τ = 0; Γ) =

1
βΓ + α

(1− κ)(1− α)

and thus the steady state competitive equilibrium without taxes is dynamically
inefficient, i.e.

R(τ = 0; Γ) < 1

if and only if
1
βΓ + α

(1− κ)(1− α)
< 1

or if and only if

1

[(1− κ)(1− α)− α]Γ
< β

Ψ1 =
1

(1− α)Γ− Γ/Γ̄
< β
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where Γ̄ ≤ Γ, with equality if η is generate at η = 1, and thus there is no income
risk.

The optimal Ramsey steady state (i.e. θ = 1) savings and tax rates (see
equations 27 and 28) are given by

s∗ =
α(1 + β)

1 + αβ

1− τ =
1 + β

(1− α)βΓ

and thus the optimal Ramsey tax rate is positive, τ > 0, if and only if

(1 + β)

(1− α)βΓ
< 1

or if and only if

Ψ2 :=
1

(1− α) Γ− 1
< β

Therefore

Ψ2(Γ) =
1

(1− α) Γ− 1
≤ 1

(1− α)Γ− Γ/Γ̄
= Ψ1(Γ)

with equality if and only if η is generate at η = 1. Comparing savings rates we
have

s∗ =
α(1 + β)

1 + αβ

s0(η) =
1

1 + [αβΓ]
−1

sGR =
α

(1− κ)(1− α)

and thus s0(η) > sGR if and only if

β >
1

[(1− κ)(1− α)− α] Γ

and thus if and only if the steady state equilibrium is dynamically inefficient.
Furthermore s∗ < s0(η) if and only if Ψ2 < β and thus if and only if τ > 0.

We thus have the following results stated in the main text, which directly
follow from comparing Ψ1(Γ) and Ψ2(Γ) with β.

Proposition 14. Let θ = 1. If the steady state competitive equilibrium is dy-
namically inefficient, then the optimal Ramsey tax rate τ is positive. If in
addition η is degenerate at η = 1, then the reverse is true as well: τ > 0 only if
the steady state competitive equilibrium is dynamically inefficient.
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Proposition 15. Let θ = 1 such that the Ramsey government maximizes steady
state welfare, and denote by s∗ the associated optimal savings rate. Furthermore
denote by s0(η) the steady state equilibrium savings rate in the absence of gov-
ernment policy and sGR the golden rule savings rate that maximizes steady state
aggregate consumption. Finally assume that β <

[
(1− α)Γ̄− 1

]−1.

1. Let income risk be large: Γ > 1

β[(1−α)−1/Γ̄]
. Then the steady state compet-

itive equilibrium is dynamically inefficient, sGR < s0(η), and s∗ < s0(η),
and the optimal capital tax rate has τ > 0.

2. Let income risk be intermediate:

Γ ∈

(
1 + β

(1− α)β
,

1[
(1− α)− 1/Γ̄

]
β

)

Then the steady state competitive equilibrium is dynamically efficient, s∗ <
s0(η) < sGR, and optimal capital taxes are nevertheless positive, τ > 0.

3. Let income risk be small:

Γ ∈
[
Γ̄,

1 + β

(1− α)β

)
Then the steady state competitive equilibrium is dynamically efficient, s0(η) <
sGR, and s0(η) < s∗, and optimal capital taxes are negative (capital is sub-
sidized).

C.4 Proof of Pareto-Improving Tax-Induced Transition
Proof of Proposition 7. The capital stock evolves according to the law of motion

kt+1 = s(1− κ)(1− α)kαt

Therefore if the Ramsey government implements s∗ through positive capital
taxes in the first period of the transition will lead to a falling capital stock along
the transition. Recall from (1) that utility of a generation born in period t is
given by

Vt = ln(cyt ) + β

∫
ln(cot+1(ηt+1))dΨ.

Now, suppose that the policy is implemented (as a surprise) in period 1 where
k1 = k0. The initial old are unaffected by and thus indifferent to the tax reform.
Now we need to characterize the utility consequences for all generations born
along the transition. Denoting by s0 = s0(η) the equilibrium savings rate in the
initial steady state, we have

∆Vt = Vt(s
∗)−Vt(s0) = ln(cyt (s∗))−ln(cyt (s0))+β

∫ (
ln(cot+1(s∗))− ln(cot+1(s0))

)
dΨ.
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where the consumption allocations are given as functions of a given saving rate:

cyt (st) = (1− st)(1− κ)(1− α)kαt

cot+1(ηt+1; st) = st(1− κ)(1− α)kαt αk
α−1
t+1 + κηt+1(1− α)kαt+1

=
[
α+ κηt+1(1− α)

]
kαt+1

Thus

∆Vt = ln(1− s∗)− ln(1− s0)︸ ︷︷ ︸
=Λ1>0

+α (ln(kt(s
∗))− ln(k0)) + αβ (ln(kt+1(s∗))− ln(k0))︸ ︷︷ ︸

=Λ2,t<0

Term Λ1 is positive because s∗ < s0, and constant in t. Term Λ2,t is negative
for all generations t because kt(s∗)) ≤ k0 for all t and because kt+1(s∗) < k0 for
all t. Furthermore Λ2,t monotonically declines and converges from above to its
minimum for t→∞ when the economy reaches the optimal steady state capital
allocation and the loss term is given as

lim
t→∞

Λ2,t = α(1 + β) (ln(k∗)− ln(k0))

But because s∗ maximizes steady state utility and s0 6= s∗, we know that

lim
t→∞

∆Vt = Λ1 + lim
t→∞

Λ2,t > 0

It then follows that
∆Vt ≥ lim

τ→∞
∆Vτ > 0

and thus all transition generations strictly benefit from the tax reform.

C.5 Savings Subsidy Does Not Induce Pareto Improve-
ment

In this section we show that even if s0(η) < s∗, implementing the Ramsey
optimal (for θ = 1) savings subsidy τ∗ < 0 and associated higher saving rate s∗
does not lead to a Pareto improving transition.

Exploiting the fact that in the first period of the transition the capital stock
k1 = k0 is predetermined, and the capital stock in period 2 satisfies

k2 = s(1− α)(1− κ)kα0

for any savings rate implemented by a given tax policy. Thus we can calculate
lifetime utility of the first transition generation, as a function of an implemented
savings rate s, as

V1(s) = ln ((1− s)(1− κ)(1− α)kα0 ) + β

∫
ln (α+ κη2(1− α)) (s(1− α)(1− κ)kα0 )

α
dΨ(η)

= ln(1− s) + βα ln(s) + ln ((1− κ)(1− α)kα0 )

+ β

∫
ln (α+ κη2(1− α)) ((1− α)(1− κ)kα0 )

α
dΨ(η)
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and thus

V ′1(s) = − 1

1− s
+
αβ

s

V ′′1 (s) = − 1

(1− s)2
− αβ

s2
< 0

and thus V1(s) is strictly concave in s. Therefore, if V ′1(s = s0(η)) ≤ 0, then
V (s = s0(η)) > V (s) for all s > s0(η). But

V ′1(s = s0(η)) = − 1

1− s0(η)
+ αβ

1

s0(η)
≤ 0

⇔ s0(η) ≥ αβ

1 + αβ

which is satisfied, exploiting expression (15) for the optimal competitive equi-
librium saving rate (with zero taxes).

Thus not only is implementing τ∗ < 0 not Pareto improving if s0(η) < s∗,
but in fact any policy reform that induces a savings rate in period 1 above
the competitive savings rate with zero taxes, s0(η), will not result in a Pareto
improvement (since it will make the first generation strictly worse off).

D Analysis of General Epstein-Zin Utility
Now consider general Epstein-Zin preferences, applied to our two period OLG
model. Households have preferences over deterministic consumption when young,
cyt , and the (deterministic) certainty equivalent over utility from consumption to-
morrow,

∫
cot+1(ηt+1)1−σdΨ. We assume that these preferences are represented

by the lifetime utility function

Vt =
(cyt )1− ‘1

ρ − 1

1− 1
ρ

+ β

{[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ
}1− 1

ρ

− 1

1− 1
ρ

(48)

Note that the limit, as the IES ρ→ 1, the (transformed) utility function becomes

Vt = ln(cyt ) +
β

1− σ
ln

(∫
cot+1(ηt+1)1−σdΨ

)
We should point out that often in the literature Epstein-Zin preferences of the
form

Ṽt =

(1− β̃)(cyt )1− ‘1
ρ + β̃

[∫
cot+1(ηt+1)1−σdΨ

] 1− 1
ρ

1−σ


1

1− 1
ρ

(49)

are used. When it comes to ordinal rankings of allocations, we can take mono-
tonic transformations of (49) without changing preference rankings. Thus for
all ordinal purposes the formulations in (48) and (49) are equivalent since
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Vt =
Ṽ

1− 1
ρ

t

(1− β̃)
(

1− 1
ρ

) − (1 + β)

1− 1
ρ

where β = β̃

1−β̃ .
However, also note that, in contrast to any analyses that only require ordinal

rankings (such as studying competitive equilibrium for a given tax system) when
moving from utility form Vt to Ṽt we are changing the Ramsey problem, since
this problem is based on cardinal weighted lifetime utilities. It is therefore not
innocuous whether we choose (49) or (48) when formulating the Ramsey optimal
tax problem.14 If, however, we restrict attention to a steady state analysis, then
this last concern does not emerge, since the first order condition characterizing
the optimal Ramsey steady state saving rate is identical under any monotone
transformation of steady state lifetime lifetime utility (as effectively the only
generation that is relevant for the maximization is the long-run, steady state
generation).

D.1 Competitive Equilibrium for Given Tax Policy
Household maximization delivers

(cyt )−
1
ρ = β(1− τ t+1)Rt+1

[∫
cot+1(η̂t+1)1−σdΨ

] 1− 1
ρ

1−σ −1 ∫
cot+1(ηt+1)−σdΨ(ηt+1)

1 = β(1− τ t+1)Rt+1

[∫ (
cot+1(ηt+1)

cyt

)1−σ

dΨ(ηt+1)

]σ− 1
ρ

1−σ ∫ (
cot+1(ηt+1)

cyt

)−σ
dΨ(ηt+1)

Now, as before, we need to work out the ratio

cot+1(ηt+1)

cyt
=

stRt+1(1− τ t+1)(1− κ)wt + κηt+1wt+1 + Tt+1

(1− κ)wt(1− st)

=
[
α+ (1− α)κηt+1

] st
1− st

kα−1
t+1

14For both formulations the household is not indifferent to the resolution of income risk as
long as σ 6= 1

ρ
.
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and thus

1 = β(1− τ t+1)Rt+1

[∫ (
cot+1(ηt+1)

cyt

)1−σ

dΨ(ηt+1)

]σ− 1
ρ

1−σ ∫ (
cot+1(ηt+1)

cyt

)−σ
dΨ(ηt+1)

1 = β(1− τ t+1)Rt+1

(
stk

α−1
t+1

1− st

)− 1
ρ

Γ̃

1 = αβ(1− τ t+1)
(
kα−1
t+1

)(1− 1
ρ )
(

st
1− st

)− 1
ρ

Γ̃

1 = αβ(1− τ t+1) (st(1− κ)(1− α)kαt )
(α−1)(1− 1

ρ )
(

st
1− st

)− 1
ρ

Γ̃

1 = αβ(1− τ t+1) (st(1− κ)(1− α)kαt )
(α−1)(1− 1

ρ )
(

st
1− st

)− 1
ρ

Γ̃

1 = αβ ((1− κ)(1− α))
(α−1)(1− 1

ρ ) (1− τ t+1)k
α(α−1)(1− 1

ρ )
t st

(α−1)(1− 1
ρ )
(

1− st
st

) 1
ρ

Γ̃.

In the main text we are mainly concerned with characterizing the Ramsey steady
state savings and associated tax rate. In steady state the Euler equation reads
as

1 = αβ ((1− κ)(1− α))
(α−1)(1− 1

ρ ) (1− τ)kα(α−1)(1− 1
ρ )s(α−1)(1− 1

ρ )
(

1− s
s

) 1
ρ

Γ̃

where
k = [(1− κ)(1− α)s]

1
1−α

is the steady state capital stock. Inserting the steady state capital stock into
the Euler equation delivers

1 = (1− τ)αβ ((1− κ)(1− α))(
1
ρ−1) s(

1
ρ−1)

(
1− s
s

) 1
ρ

Γ̃ (50)

or

1 = (1− τ)αβ ((1− κ)(1− α))(
1
ρ−1) (1− s)

1
ρ

s
Γ̃ (51)

where

Γ̃ =

∫
(α+ (1− α)κη)

−σ
dΨ(η)[∫

(α+ (1− α)κη)
1−σ

dΨ(η)
] 1
ρ
−σ

1−σ

= ce(η)(σ−
1
ρ )Γ.

Γ =

∫
(α+ (1− α)κη)

−σ
dΨ(η)
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and where the certainty equivalent of η is defined as, for σ 6= 1

ce(η) =

[∫
(α+ (1− α)κη)

1−σ
dΨ(η)

] 1
1−σ

and for σ = 1

ce(η) = exp

(∫
ln (α+ (1− α)κη) dΨ(η)

)
.

Note that this result is precisely the generalization of the log-case where ρ =
σ = 1, and where the Euler equation was given as

1 = (1− τ)αβ

(
1− s
s

)
Γ

Γ =

∫
(κη(1− α) + α)

−1
dΨ(η)

Thus our previous analysis for log-utility is just a special case. Also note that
if ρ = 1 but σ 6= 1, then the steady state Euler equation is given by

1 = (1− τ)αβ

(
1− s
s

) 1
ρ

Γ̃

but

Γ̃ =

∫
(α+ (1− α)κη)

−σ
dΨ(η)[∫

(α+ (1− α)κη)
1−σ

dΨ(η)
] 6= ∫ (κη(1− α) + α)

−1
dΨ(η) = Γσ=1

D.1.1 Precautionary Savings Behavior in the Competitive Equilib-
rium

In order to aid with the interpretation of the optimal Ramsey tax rate it is
useful to establish conditions under which, for a fixed tax rate constant, the
savings rate in a competitive general equilibrium is increasing in income risk.

Proposition 16. If Γ̃ is strictly increasing in income risk, then for any given tax
rate τ ∈ (−∞, 1) the steady state saving rate sCE(τ) in competitive equilibrium
is strictly increasing in income risk. If Γ̃ is strictly decreasing in income risk,
then so is sCE(τ).

Proof. Rewrite equation

f(s) = (1− τ)αβ ((1− κ)(1− α))(
1
ρ−1) (1− s)

1
ρ

s
− 1

Γ̃

Then the steady state saving rate sCE(τ) satisfies f(sCE(τ)) = 0. We readily
observe that f is continuous and strictly decreasing in s, with

lim
s
f(s) = ∞

f(1) = −1
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and thus for each τ ∈ (−∞, 1) there is a unique s = sCE(τ) that satisfies
f(sCE(τ)) = 0. Inspection of f immediately reveals that sCE(τ) is strictly
increasing in Γ̃, from which the comparative statics results immediately follow.

Corollary 9. For any given τ ∈ (−∞, 1), the steady state saving rate sCE(τ)
increases in income risk if either ρ ≤ 1, or 1 < ρ < 1

σ .

Proof. Proof: Follows directly from the previous proposition and Lemma 1 char-
acterizing the behavior of Γ̃ with respect to income risk.

Proposition 16 establishes a sufficient condition for the private saving rate
to increase in income risk. But, for ρ > 1

σ > 1 it might be possible that the
combination of individual precautionary savings behavior and general equilib-
rium factor price movements lead to the result that, for fixed government policy,
the equilibrium savings rate is decreasing in income risk.15 We will show below
that this in turn is a necessary condition for the optimal Ramsey tax rate to
decrease in income risk.

Figure illustrates how the competitive equilibrium saving rate (in the steady
state, with τ = 0) varies with income risk for different parameterizations of ρ
and σ as a function of risk. We choose α = 0.2 and κ = 0.5. The figure
shows that, consistent with the proposition, the saving rate in the competitive
equilibrium is increasing with income risk for all preference specifications such
that ρ ≤ 1 or 1 < ρ < 1

σ . It also displays an example with very high IES
(ρ = 50) and very high risk aversion (σ = 50) where the previous proposition
does not apply and we indeed observe that the competitive equilibrium saving
rate declines with income risk, at least as long as risk is sufficiently large to
start with.16

D.2 Ramsey Problem for Unit IES
Now suppose we use the formulation of lifetime utility in equation (48). Then
it is straightforward to show that for ρ = 1 the analysis of the Ramsey problem

15Also observe that a parameter constellation 1 < ρ < 1
σ
pairs a high IES with a preference

for a late resolution of risk in a multi-period (more than two periods) model. Interestingly,
the competitive equilibrium savings rate may therefore decrease in income risk precisely when
we pair a high IES with a preference constellation for early resolution of risk.

16The phenomenon already shows up for ρ = σ = 10.
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Figure 6: Saving Rate in Competitive Equilibrium
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proceeds exactly as before,

W (k) = Ψ0 + Ψ1 log(k)

= max
s∈[0,1]

{log((1− s)(1− κ) (1− α) kα)

+
β

1− σ
log

∫
(κηw(s) +R(s)s(1− κ)(1− α)kα)

1−σ
dΨ(η) + θW (k′)

}
= max

s∈[0,1]
{log((1− s)(1− κ) (1− α) kα)

+
β

1− σ
log

∫
([κη(1− α) + α] [s(1− κ)(1− α)kα]

α
)
1−σ

dΨ(η) + θW (s(1− κ)(1− α)kα)

}
= α [1 + θΨ1 + αβ] log(k) + log [(1− κ) (1− α)] + θΨ0 + θΨ1 log((1− κ)(1− α))

+βα log [(1− κ)(1− α)] +
β log

∫
[κη(1− α) + α]

1−σ
dΨ(η)

1− σ
+ max
s∈[0,1]

{log(1− s) + αβ log (s) + θΨ1 log(s)}

with an optimal savings rate as in the main text:

s =
α(β + θ)

1 + αβ

These results clarify that the closed form solution, and the fact that the
optimal saving rate is constant over time and independent of the level of capita,
is driven by an IES = ρ = 1 (and obtained for arbitrary risk aversion), whereas
the size of the capital tax needed to implement the optimal Ramsey allocation
does depend on risk aversion σ, since this parameter determines the degree of
precautionary saving in the competitive equilibrium that needs to be offset with
capital taxes, see Section D.1.1.

D.3 Steady State Analysis for Arbitrary IES
In the steady state we seek to maximize

V (s) =
(cyt )1− ‘1

ρ + β
{[∫

cot+1(ηt+1)1−σdΨ
] 1

1−σ
}1− 1

ρ

1− 1
ρ

=
((1− κ)(1− s)(1− α)kα)1− ‘1

ρ

1− 1
ρ

+

β [s(1− κ)(1− α)kα]
α(1− 1

ρ )
{[∫

{[κη(1− α) + α]}1−σ dΨ
] 1

1−σ
}1− 1

ρ

1− 1
ρ

=
((1− κ)(1− α))1− ‘1

ρ

1− 1
ρ

(1− s)(1− 1
ρ )kα(1− 1

ρ ) +
β [(1− κ)(1− α)]

α(1− 1
ρ ) Γ̃2

1− 1
ρ

sα(1− 1
ρ )kα

2(1− 1
ρ )
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where

Γ̃2 =

[∫
{[κη(1− α) + α]}1−σ dΨ

] 1− 1
ρ

1−σ

= Γ

σ− 1
ρ

1−σ
2 Γ2

Exploiting that
k = ((1− κ)(1− α)s)

1
1−α

yields

V (s) =
((1− κ)(1− α))1− ‘1

ρ

1− 1
ρ

(1− s)(1− 1
ρ ) ((1− κ)(1− α)s)

α(1− 1
ρ )

1−α

+
β [(1− κ)(1− α)]

α(1− 1
ρ ) Γ̃2

1− 1
ρ

(s)
α(1− 1

ρ ) ((1− κ)(1− α)s)
α2(1− 1

ρ )
1−α

=
((1− κ)(1− α))

1− 1
ρ

1−α

1− 1
ρ

[
(1− s)(1− 1

ρ ) + β [(1− κ)(1− α)]
−(1− 1

ρ ) Γ̃2

]
s
α(1− 1

ρ )
1−α

= φ̃
(

(1− s)(1− 1
ρ ) + βψ̃Γ̃2

)
s
α(1− 1

ρ )
1−α

where

φ̃ =
((1− κ)(1− α))

1− 1
ρ

1−α

1− 1
ρ

ψ̃ =

(
1

(1− κ)(1− α)

)(1− 1
ρ )

> 0

Γ̃2 =

([∫
{[κη(1− α) + α]}1−σ dΨ

] 1
1−σ
)1− 1

ρ

> 0

as before. Thus the steady state analysis in the main text carries through to
Epstein-Zin utility almost entirely unchanged, but with the constant that maps
earnings risk into the optimal savings rate now being affected both by risk
aversion and the IES.

Hence, the optimal steady state savings rate is defined implicitly as

s

(1− s)
1
ρ

=
α

1− α
(1− s)(1− 1

ρ ) + β
α

1− α
ψ̃Γ̃2 (52)

and rewriting this equation yields

LHS(s) = s =
α

1− α

[
(1− s) + βψ̃Γ̃2(1− s)

1
ρ

]
= RHS(s) (53)

We observe that the left hand side is linearly increasing in s, with LHS(0) =
0 and LHS(1) = 1 and the right hand side is strictly decreasing in s, with
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RHS(0) > 0 and RHS(1) = 0. Since both sides are continuous in s, from
the intermediate value theorem it follows that there is a unique s∗ ∈ (0, 1)
solving the first order condition of the Ramsey problem (53). Since RHS(s) is
strictly increasing in Γ̃2, the Ramsey saving rate is strictly increasing in Γ̃2.
The comparative statics of s∗ with respect to income risk in the main text then
directly follow from the properties of Γ̃2 stated in Lemma 1.

D.4 Implementation
The optimal steady state capital tax rate τ∗ satisfies, as in equation (51)

1 = (1− τ∗)αβ ((1− κ)(1− α))(
1
ρ−1) (1− s∗)

1
ρ

s∗
Γ̃ (54)

We observe that the optimal tax rate is strictly increasing in Γ̃ and strictly
decreasing in the Ramsey savings rate s∗ that is to be implemented. Further,
recall that that the Ramsey saving rate s∗ itself satisfies the first order condition
(52)

s∗

(1− s∗)
1
ρ

=
α

1− α

[
(1− s∗)(1− 1

ρ ) + βψ̃Γ̃2

]
(55)

and is impacted by income risk through Γ̃2. To analyze the impact of a change on
risk on the optimal capital tax rate, in light of Lemma 1 it is useful to consider
3 cases.

D.4.1 Case ρ > 1 and σ ≤ 1/ρ

In this case Γ̃ is strictly increasing in risk (Lemma 1) and s∗ is strictly decreasing
in risk (see Proposition 10) It then directly follows from equation (54) that τ∗
is strictly increasing in income risk.

D.4.2 Case ρ ≤ 1

This case is more difficult, since the direct effect of risk on τ∗ is positive, but at
the same time s∗ is decreasing in risk. Now rewrite (55) as

1
α −

1
s∗

βψ̃Γ̃2

=
(1− s∗)

1
ρ

s∗

and plugging this into (54) and exploiting that ψ̃ = ((1− κ)(1− α))
( 1
ρ−1) we

find

1 = (1− τ∗)
(

1− α

s∗

) Γ̃

Γ̃2

. (56)

Lemma 1 establishes that the ratio Γ̃
Γ̃2

is strictly increasing in risk, and since
ρ ≥ 1 the saving rate s∗ is increasing in risk (strictly so if ρ < 1). Thus the
term

(
1− α

s∗

)
Γ̃
Γ̃2

is strictly increasing in risk, and thus τ∗ is strictly increasing
in risk.
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D.4.3 Case ρ > 1 and σ > 1/ρ

In this case we know that the Ramsey saving rate s∗ is strictly decreasing in
income risk (which by itself calls for a tax rate that is strictly increasing in
income risk). However, now the direct impact of income risk on taxes through
the term Γ̃ might call for lower taxes since Γ̃ might now be decreasing in income
risk. If Γ̃ is weakly increasing in income risk, then so is τ∗. Thus a necessary
condition for τ∗ to decrease with income risk is Γ̃ to be strictly decreasing
with income risk. This in turn is a necessary and sufficient condition for the
private saving rate in competitive equilibrium to decrease with income risk.
Thus the Ramsey tax rate τ∗ is strictly decreasing in income risk only if the
private saving rate sCE(τ) is strictly decreasing in income risk (see Proposition
16). The corresponding if statement is not necessarily true, as the numerical
illustrations in the main text show.

Now consider the case ρ→∞ and σ →∞. Our objective is to show that in
this case the optimal Ramsey Tax rate is indeed strictly decreasing with income
risk. The case of ρ =∞ corresponds to preferences

Vt = cyt + β

[∫
cot+1(ηt+1)1−σdΨ

] 1
1−σ

where households have linear indifference curves between consumption today
and the certainty equivalence of consumption tomorrow. Also note that Γ̃2 =
ce(η). We can determine the optimal Ramsey saving rate in closed form as

s∗ = α

[
(1− κ)(1− α) + βce(η)

(1− κ)(1− α)

]
and the optimal tax rate is then given, by (56), as

1 = (1− τ∗)
(

1− α

s∗

) Γ̃

Γ̃2

1 = (1− τ∗)
(

βce(η)

(1− κ)(1− α) + βce(η)

)
Γ̃

Γ̃2

1− τ∗ =

(
1 +

(1− κ)(1− α)

βce(η)

)
Γ̃2

Γ̃
(57)

This expression is valid for any σ as long as ρ =∞. Now we note that

Γ̃2

Γ̃
=

∫
(κη(1− α) + α)

1−σ
dΨ(η)∫

(κη(1− α) + α)
−σ

dΨ(η)

as thus limσ→∞
Γ̃2

Γ̃
= 1 and since ce(η) is strictly decreasing in income risk for

all σ, the right hand side of equation (57) is strictly increasing in income risk,
and thus the optimal Ramsey tax rate is strictly decreasing in income risk as
σ →∞ as long as ρ =∞.
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In this case the government reduces the tax rate on capital (or increases
the subsidy on capital) as income risk increases since the Ramsey government
wants a smaller reduction of the saving rate than what households find optimal
to choose in the competitive equilibrium, in response to an increase in income
risk.

Numerical Illustration Figure 7 plots the tax rate that implements the
optimal Ramsey allocation in a competitive equilibrium at the steady state in
Panel (a). For all scenarios except for ρ = σ = 50 the tax rate is monotonically
increasing in risk. Panel (b) illustrates this more clearly by showing the distance
to the maximum tax rate for ρ = σ = 50.

Figure 7: Optimal Tax Rate
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(b) ∆τ for ρ = 50, σ = 50
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Notes: Tax rate τ in Ramsey equilibrium for Epstein-Zin utility. Lognormally distributed
shocks, approximated with n = 11 integration nodes for κ = 0.5, α = 0.2, σ2

ln η = [0, . . . , 4],
ρ ∈ [0.5, . . . , 50], σ ∈ [0.5, . . . , 50]. Panel (a): tax rate, panel (b) distance to maximum tax
rate for ρ = 50, σ = 50.
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