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Abstract
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metric information creates a double bind: either the market breaks down due to a classic lemons
problem or low-quality assets are traded excessively, generating a congestion externality. A mar-
ket designer may improve efficiency without incurring losses by acquiring all assets, issuing asset-
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1 Introduction∗

The liquidity of secondary markets is a key determinant of the success and the terms of trade of the

initial issuance of securities traded in over-the-counter (OTC) markets.1 This paper builds a model of

a secondary OTC market to investigate how search frictions interact with asymmetric information on

both asset qualities and agents’ private values of holding an asset. These two dimensions of private

information have been identified as salient features of OTC markets for various financial instruments.2

We find that bi-dimensional private information adds an additional layer of complexity to the en-

dogenous market composition of sellers relative to a situation in which private information only pertains

to asset quality. Specifically, all the holders of low quality assets, even those with no fundamental rea-

son to trade, may be encouraged to mimic the trading strategy of sellers with high quality assets. This

incentive creates two novel inefficiencies. First, it amplifies the standard lemons problem: the additional

supply of lemons dilutes the average quality of the assets on sale, thus it further discourages buyers from

offering a high, pooling price. Second, even when all asset qualities trade, a share of transactions take

place among high-valuation lemon holders and buyers, who both enjoy an identical private benefit from

holding assets. The latter trades never improve social welfare, but they are actually detrimental when

bilateral trading opportunities arise according to a matching technology which exhibits congestions ef-

fects.3 Indeed, for this class of matching technologies the individual time to sell—a measure of liquidity

in markets with search frictions—becomes longer as the mass of agents who want to sell their assets in-

creases. Even if buyers match more frequently with sellers, the additional delay endured by asset holders

with a real need to sell leads to an overall social welfare loss. The results uncover that bi-dimensional

asymmetric information creates a double bind in OTC markets: either there is too little trade as high

quality assets are not exchanged, or there is an excessive amount of trades and sellers suffer from a

deterioration in their market liquidity conditions. In light of these inefficiencies, we analyze to which

extent a market designer may improve the decentralized outcome through budget-balanced interventions

that aim at enlarging the set of economies4 in which a first-best allocation is implementable.

Our model builds on the classic Duffie et al. (2005) model of OTC markets with search frictions

and repeated trade, and it naturally extends their model along two dimensions. First, we consider a

more general matching technology that includes as special cases the ones in Duffie et al. (2005) and

Kiyotaki and Wright (1993). The former matching technology is non-competitive in the sense that

for a fixed measure of buyers (sellers), the matching rate of sellers (buyers) with buyers (sellers) is

independent of the measure of sellers (buyers) in the market. In contrast, Kiyotaki and Wright (1993)

make use of a competitive matching technology as the rate at which buyers (sellers) match with sellers

(buyers) is decreasing in the measure of buyers (sellers) in the market, i.e. there are congestion effects

∗We are grateful to Max Bruche and Vincent Maurin for helpful comments and suggestions. The views expressed in this
paper are those of the authors and do not involve the responsibility of the Bank of Italy. All errors remain ours.

1Aiyar et al. (2015) and the ECB (2016) explicitly refer to asymmetric information and the lack of a secondary market
among the determinants of the very limited issuance of securities backed by non-performing loans (NPLs) in Europe whereas
IOSCO (2016) presents evidence suggesting that liquidity concerns in the secondary market affect pricing and issuance in primary
corporate bond markets.

2A number of scholars stress that asymmetric information about the quality of the assets underlying these securities have
certainly played a role in the liquidity dry-up observed during the financial crisis. A non-exhaustive list includes Bigio (2015),
Chari et al. (2014), Chang (2017), Friewald et al. (2016), Guerrieri and Shimer (2014) and Kurlat (2013).The impossibility to
observe agents’ trading motives (e.g. liquidity vs. informed trading) is a common assumption in the market microstructure
literature (see Biais et al. (2005) for a review). More recently, Acharya and Bisin (2014) also point out the uncertainty over the
trading motives of other counter parties in OTC markets.

3We later use the term ’competitive’ to refer to this class of matching technologies.
4We refer to an economy as a set of admissible parameters.
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as one side of the market grows in size.5 Second, we introduce bi-dimensional private information

on the individual cost of holding an asset (private value) and on asset quality (common value), hence

introducing uncertainty on the motives for trade. Specifically, we consider a model with two asset

qualities i = b,g, with a share λ (1− λ ) of peaches (lemons), both providing a strictly positive flow

payoff δi such that δg > δb; agents holding an asset can either enjoy the full flow δi or incur a holding

cost equal to x ∈ (0,δb], reducing their flow payoff to δi− x. We can interpret agents with holding costs x

as distressed, and the magnitude of x provides a measure of the gains from trade for each asset quality.

Similarly to Plantin (2009), Guerrieri and Shimer (2014) and Chiu and Koeppl (2016), each asset holder

has superior information on the quality of his asset relative to all other agents. Plantin (2009) refers

to this assumption as ‘learning by holding’, and discusses why holders of ABS, MBS and corporate

bonds obtain superior information on the underlying quality of their securities.6 As in Duffie et al.’s

model each agent exogenously transitions from strictly positive (x > 0) to zero asset holding costs and

vice versa, independently from agents’ trading decisions.7 In this framework the expected utility of each

agent type, and in turn his reservation value when deciding whether to trade or not, may depend on the

expected utilities of all the other agent types.

If asymmetric information only concerned asset quality, in equilibrium only distressed agents could

trade with buyers. This is no longer the case when private information is bi-dimensional: non-distressed

lemon holders may find it convenient to offer their assets for sale as buyers cannot detect whether a

seller trades for liquidity or informational reasons. When the information rent—as measured by the

difference δg−δb—is low relative to the asset holding cost x, only distressed asset holders sell, and some

equilibria achieve the first-best outcome in terms of utilitarian social welfare. In the opposite case—i.e.

when φ := δg−δb

x is high—also non-distressed lemon holders participate in the market, mimicking peach

sellers.8 The fact that non-distressed lemon holders now offer their assets for sale has two negative

effects. First, it worsens the classic adverse selection problem because it increases the endogenous share

of lemons in the market; this quality dilution effect makes buyers more reluctant to offer a high price,

in turn making distressed peach holders less willing to sell. Second, even when all asset qualities trade,

the excessive amount of trade leads to an inefficient delay when the matching function is competitive.

In particular, trades between non-distressed lemon holders and buyers do not entail any allocative gain

but they impose a negative externality on all distressed sellers. Too many lemons for sale slow down

the expected time to sell—a measure of market liquidity in search markets—for all sellers due to a

market congestion effect on the asset supply side. In this excessive trade equilibrium lemons trade more

frequently than peaches because each lemon is continuously offered for sale. Although the overall trade

volume is higher than in the first-best outcome, the corresponding utilitarian social welfare is lower.

5More specifically, in Duffie et al. (2005) the matching rate of buyers and sellers depend on the total measure of agents in
the economy and displays constant returns to scale in this argument but not necessarily in the measures of buyers and sellers. In
Kiyotaki and Wright (1993), on the other hand, the matching technology exhibits constant returns to scale with respect to the
measure of agents participating in the market. That is, the difference between the matching technologies pertains to which set
of agents the uniform random matching technology applies: in Duffie et al. (2005) all agents in the economy, in Kiyotaki and
Wright (1993) only agents choosing to participate in the market. This implies that they are identical only if all agents in the
economy participate as buyers or sellers.

6‘Learning by holding’ is a particularly suitable assumption in the market for syndicated loans, in which the managing agent
and the syndicate participants may have access to material non-public information about the borrower while such information is
usually unavailable to other participants in the secondary market (Wittenberg Moerman, 2010).

7Therefore, we keep the methodological distinction between exogenous preference shocks and endogenously determined
trading patterns.

8Importantly, the minimum threshold φ is endogenous and it depends on the specific equilibrium. Moreover, this threshold
determines not only whether non-distressed lemon holders participate in the market but also when buyers make losses from
acquiring lemons at a pooling price.
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In other words, in OTC markets where the adverse selection problem is sufficiently severe (i.e. φ high

enough) bi-dimensional private information creates a double bind: all decentralized equilibria entail a

welfare loss because either peaches do not trade (for λ small) or there is an excessive supply of lemons,

which forces distressed sellers to keep their assets longer. The results also imply that a small decrease in

λ—the share of peaches in the economy—may cause a substantial reduction in the volume of trade as

the economy transitions from an equilibrium with excessive trade to a market in which only distressed

lemon holders sell.

The existence of inefficiencies for a large set of economies motivates our interest in studying optimal

market design interventions that restore a first-best outcome. Specifically, the first-best outcome is

achieved if the set of incentive compatible and individually rational transfers implements an equilibrium

in which all distressed agents, and only them, offer their assets for sale and trade once they match with a

buyer. The designer is not able to ascertain asset qualities and reallocation is subject to the same search

frictions of the purely decentralized OTC market. We restrict attention to budget-balanced mechanisms.9

In our analysis we consider two classes of mechanisms: (i) a transfer scheme to reallocate existing

assets among agents; (ii) a packaging scheme in which the designer acquires the existing assets and pools

them together to create a new asset whose quality is common knowledge.10 Packaging is analogous to

a securitization process that bundles together a large pool of loans belonging to a specific category. In

the first class of mechanisms it is implicit that the market designer can set the terms of trade at which

assets are exchanged. In the second class of mechanisms, we consider two cases separately: either the

designer can set the terms of trade for the newly issued certificates, or this option is precluded.

If the designer can set the terms of trade in the secondary market, it turns out that imposing a wedge

between the price at which agents buy and sell implements the first-best outcome. In the transfer scheme,

in which asymmetric information is still present, the wedge discourages non-distressed lemon holders

from trying to exchange their assets for peaches. In the packaging scheme, the price differential is a

way to effectively raise revenues from the trades of the newly issued assets, recouping the initial losses

incurred when acquiring all assets at the price of a peach. By removing asymmetric information on the

common value component, a packaging scheme has a wider scope to implement a first-best outcome

than a transfer scheme. In particular, when φ is high—i.e. adverse selection is severe—the only feasible

mechanism requires to buy all assets at a premium such that also high valuation peach holders sell their

assets. Although this rapid removal entails higher initial losses in the acquisition phase, it ensures that

the quality of the acquired assets correspond to the quality of the average asset in the economy.

Our results provide insights into the functioning of markets for securitized loans. Namely, it is

important to ensure that such markets operate at sufficiently high levels of aggregation, at which investors

know the average quality of the underlying assets. Otherwise, the securitized loans may be traded at a

discount due to remaining asymmetric information concerns. A second policy implication relates to

the possibilities to offset the initial losses by intermediation profits generated in the secondary market.

Indeed, one way to ensure that the intervention is budget-balanced is to earn profits by setting the terms

of trade in the secondary market, thereby reducing the initial cost burden. To act as a monopolist in price

setting a designer should have control of all trading venues. However, this solution is often not feasible

9Obviously, a loss-making scheme would further improve the possibility to implement a first-best outcome.
10Stated differently, the designer buys individual assets from their holders at a cost, and then issues certificates backed by the

acquired assets. Since the market designer cannot observe individual asset qualities, the dividend flow of the certificates issued
depends on the average quality of the purchased assets.
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in financial markets, and it is likely to contrast with the current legislative framework. Nonetheless, a

price differential could be analogously introduced through a financial transaction tax (FTT). Although

this policy is often criticized for its potential negative effects on market liquidity, FTTs are already in

place in several jurisdictions and ten European countries are currently discussing a proposal to adopt an

harmonized FTT.11 We provide a novel theoretical argument in favour of a FTT based on a beneficial

change in the composition of market participants, i.e. the market exclusion of non-distressed lemon

holders.

If the terms of trade in the secondary markets are beyond the control of the designer, it turns out that

a packaging scheme may still be budget-balanced if sellers have sufficiently strong bargaining power.12

This allows the designer to sell the newly created assets at a high price, which is a consequence of the

sellers capturing a large share of the surplus from trade.

The paper is structured as follows. The next part discusses the related literature. Section 2 presents

the model and the equilibrium definition. Sections 3 and 4 discuss the equilibria with complete and

unidimensional private information. Section 5 characterize the set of equilibria with bi-dimensional

private information. Section 6 discusses the equilibrium properties in terms of social welfare, volume,

prices and time to sale. Section 7 studies the budget-balanced market intervention mechanisms. Section

8 concludes. All proofs of the results in the main text are in Appendix A. Some additional results are

presented in Appendix B.

Related literature
Our paper contributes to the literature on OTC markets in the presence of search frictions and asym-

metric information between asset holders and other investors. Duffie et al. (2005) is the seminal paper

in the literature on the functioning of OTC markets. In their model a fixed set of infinitely lived agents

have time-varying asset valuations, and they can exchange assets bilaterally after matching with a coun-

terparty, who could be either a dealer (dealership market) or another agent (pure decentralized market).

For analytical tractability, Duffie et al. make a number of assumptions: (i) only one type of asset is

traded; (ii) its dividend flow is common knowledge; (iii) agents can hold either zero or one unit of the

asset; (iv) agents have only two different asset valuations (e.g. distressed or not); (v) risk-neutrality; (vi)

the uniform random matching applies to all agents in the economy.13 Subsequent papers extend this

framework in several directions, and they restrict attention either to a dealership market14 or to a pure

decentralized market.15 In our model we depart from assumptions (i) and (ii) and consider a market in

which two asset qualities (peaches and lemons) coexist and their dividend flows are only observable to

asset holders. We also provide a more general characterization in terms of assumption (vi), thanks to a

general matching technology which allows for endogenous market participation and encompasses Duffie

11See Section 7.1 for a discussion.
12Specifically, if sellers have all the bargaining power then the revenues generated by the intervention are identical irrespective

of whether the designer can set the terms of trade or not.
13Formally, the matching technology is such that, for any two disjoint sets of agents, the total measure of matches is

proportional to the product of their masses.
14Lagos and Rocheteau (2007, 2009), Gârleanu (2009) relax the unit holding restriction and consider search models in which

trade can only take place through dealers.
15For pure decentralized markets Vayanos and Wang (2007), Vayanos and Weill (2008), Weill (2008) extend the model to

multiple assets; Duffie et al. (2009) and Duffie et al. (2014) study information diffusion; Afonso and Lagos (2015) consider the
possibility to hold an integer number of units; Hugonnier et al. (2016) extend the model to an arbitrary distribution of asset
valuations; risk aversion is considered in Duffie et al. (2007); Afonso (2011) and Atkeson et al. (2015) consider the welfare
implications of decentralized market participation decisions; a micro-foundation of Duffie et al. (2005) matching function is
presented in Duffie and Sun (2007).
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et al. (2005) and Kiyotaki and Wright (1993) as special cases. With the exception of non-competitive

matching technologies à la Duffie et al. (2005), the endogenous market participation decision is going

to be crucial because it affects prices, allocations and welfare through congestion effects on the supply

side of the market.

Within the OTC literature Chiu and Koeppl (2016) is the closest paper to ours. They study how to

restart a lemons market in an OTC model with search frictions, resale and asymmetric information. To

reduce the complexity of the non-stationary dynamics in their model, Chiu and Koeppl adopt a series of

simplifying assumptions relative to the original Duffie et al. (2005) model. These assumptions jointly

create a cyclical trading pattern and underlie some of their key findings.16 In this paper we introduce

asymmetric information while preserving the structure of the Duffie et al. (2005) model with random

valuation shocks, i.e. distress statuses are independent of asset holdings and the pattern of trade. We

provide analytical results on stationary equilibria, but the complexity of the model requires to solve it

numerically when we discuss non-stationary dynamics.17

Our results also contribute to the growing literature on dynamic adverse selection. In this strand of

literature the typical model setup considers assets of two different qualities that low-valuation holders

want to sell to high-valuation buyers. All assets qualities yield a strictly positive payoff, and in the

first-best outcome all assets would be traded immediately. However, buyers cannot observe asset quality

and adverse selection may lead to a classic Akerlof (1970) lemons market. Differently from both Duffie

et al. (2005) and our setup, buyers and sellers exit the market forever after trade.18 The possibility to

trade at different points in time allows sellers of different qualities to separate over time (intertemporal

separation): peach sellers trade at a high price by delaying trade, while on average lemons trade earlier.

This result holds true even when the initial share of peaches is close to zero, although the resulting delay

creates inefficiencies. The stationary equilibrium characterized in Moreno and Wooders (2010) offers

the closest comparison to our results.19 They consider a discrete time model in which sellers have a fixed

per period probability to match with a buyer, and show the existence of a mixed strategy equilibrium in

which all assets trade over time. In equilibrium, trade delays mitigate the mimicking incentives of lemon

holders. In contrast, we show that in our model a lemons market is inevitable when the initial share of

peaches is low.20

16In particular, lemons provide a non-positive dividend flow and all lemon holders offer their assets for sale; only peach holders
experience a negative valuation shock, leading to an absorbing state until trade; all agents without assets participate as buyers,
even sellers of peaches who had a low valuation just before trade. As a result, their model features: an increase in the relative
market share of peaches in the absence of trade; continuous market participation of all lemon holders as they own a worthless
asset and have no asset valuation shocks; a fixed measure of buyers participating in the market.

17Maurin (2016) shows the existence of cyclical equilibria in a discrete time model that shares with our setup bi-dimensionality
of private information. However, his model is different from ours in several dimensions. First, the economy in his model is not
closed in that a free entry condition determines the measure of buyers in the market. Second, attention is restricted to a subset
of parameter values for which high-valuation lemon holders are always willing to sell at the pooling price. Lastly, he employs a
Leontief-type matching function which implies that the short-side of the market matches for sure.

18In turn, these features imply that agents’ reservation values are exogenously fixed, while in our model they are endogenously
determined, and may depend on the expected utility of all other agent types.

19The dynamic adverse selection literature mainly considers non-stationary models. A non-exhaustive list includes Janssen
and Roy (2002), Blouin (2003), Camargo and Lester (2014), Fuchs and Skrzypacz (2015) and Moreno and Wooders (2016). A
recent extension by Kaya and Kim (2015) consider buyers that receive private informative signals on asset quality, in the spirit of
Taylor (1999). In Kaya and Kim’s model different trade dynamics arise depending on the initial share of high quality assets, but
inter-temporal separation continues to be the driving economic mechanism when the initial share of high quality assets is low.

20In Moreno and Wooders (2010) buyers get a zero expected payoff and mix among a high price, say pH , accepted by all
sellers, a lower price, say pL, accepted only by lemons, and a set of prices rejected with probability one by all sellers. Delaying
trade with price offers rejected with probability one reinforces the incentives for lemon sellers to accept pL rather than waiting
until a buyer offers pH . As lemons trade faster than peaches, the endogenous market quality can be increased to a point in
which buyers are willing to offer pH . Importantly, this strategy is possible only if lemon sellers have a (endogenous) reservation
utility equal to the (exogenous) outside value of a lemon buyer. In contrast, in our model the expected utility difference between
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Our paper is also related to Chang (2017) and Guerrieri and Shimer (2015) on competitive search

markets with bi-dimensional private information. In this class of models, buyers first observe the prices

posted by sellers—the market is not opaque—and then request to buy the asset from one seller. If

there are more buyers (sellers) than sellers (buyers) the former are rationed. When private information

only concerns asset quality, Guerrieri and Shimer (2014) show that a fully separating equilibrium always

exists: a downward distortion in sellers’ trade probabilities—interpreted as market illiquidity—separates

higher quality assets from lower quality ones. If private information is bi-dimensional multiple semi-

pooling equilibria exist. Chang (2017) characterizes the conditions on the joint distribution of asset

types and holding costs that support the existence of a fire-sales equilibrium in which a set of agent

types pools on the same low price and sell their assets quickly. We obtain a similar result in Section

6, where we discuss the dynamics of an increase in x—i.e. distressed agents have greater urgency to

trade—such that the equilibrium switches from one with excessive trade to one in which only distressed

asset holders trade. Although our model differs in many respects from that of Chang, we also find that

distressed agents trade faster at a lower price, but total volume decreases moving from an excessive (all

lemons are offered for sale) to an efficient (only distressed asset holders sell) level of trade.

Our normative analysis is related to the literature on public interventions in frozen markets. Within

this collection of works, Tirole (2012) and Philippon and Skreta (2012) are closest in spirit to our study.

In particular, their problem, as ours, gives rise to mechanism participation constraints which depend on

the mechanism itself. Both papers establish that the market designer incurs a loss as he acquires the

lowest quality assets at a premium. Although the presence of a private market affects the pattern of the

intervention, there would be no welfare gain from shutting it down. In our model, if the government has

to compete with the private asset market, offering the going market price does not always guarantee a

separation of types because of bi-dimensional private information.21 The inefficiency arising from type-

dependent reservation values implies that interventions targeted at lemons, such as those considered in

Tirole (2012) and Philippon and Skreta (2012), are only feasible in our setting when adverse selection is

moderate, but they would not improve efficiency relative to our packaging scheme. Lastly, to the best of

our knowledge, we provide a novel economic justification for the introduction of a financial transaction

tax (FTT) for the purpose of mitigating the bi-dimensional private information problem. Two recent

theoretical papers also argue in favour of a FTT based on social welfare considerations: in Berentsen et

al. (2016) a FTT mitigates a pecuniary externality on liquid assets; in Davila (2016) a designer may find

it optimal to introduce a FTT to reduce non-fundamental trading due to investors’ differences in beliefs

over asset returns.

2 Model

2.1 Economic environment

Time is continuous and the economy infinitely lived. There are two consumption goods, perishable fruit

and a numéraire good. There is a measure A of durable assets. Each asset is one of two types: a peach

non-distressed (buyers) and distressed (sellers) lemon holders is always strictly positive; as a result, in equilibrium buyers never
find it profitable to offer a price rejected with probability one. If this were the case, they would find it profitable to deviate and
trade immediately by offering a price slightly higher than the reservation price of distressed lemon holders.

21Suppose types could be separated, leaving only peaches to be traded in the private market. This would encourage non-
distressed lemon holders to participate in the private market, which would now offer a higher surplus due to lower information
rents.
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(g) or a lemon (b). A peach yields δg units of fruit per period, while a lemon yields δb, with δg > δb > 0.

A proportion λ ∈ [0,1] of assets are peaches.

Agents are infinitely lived, risk-neutral, and discount future payoffs at a rate r > 0. A measure A of

agents are initially endowed with one unit of the asset, while a measure 1 (normalized) of agents initially

holds no asset. At any point in time, an agent can hold either 0 or 1 unit of the asset. This restriction

on asset holdings keeps the distribution of assets among agents tractable. The type of an asset is private

information to its current owner. At any point in time, each agent is in one of two states: either he has a

low (l) or a high (h) valuation of the asset. The instantaneous utility of an agent with high valuation from

a type-i asset is δi , whilst that of an agent with low valuation is δi− x, where i ∈ {b,g}. The parameter

x satisfies x < δb, ensuring that agents never want to dispose of their asset. The ratio (δg− δb)/x, a key

object in what follows, is denoted by φ . All agents with high (low) valuation, with or without an asset,

transit to the state of low (high) valuation with intensity κ (intensity ν). That is, a high-valuation (low-

valuation) agent receives a valuation shock with Poisson arrival rate κ (rate ν). We assume ν ≥ κA as

it guarantees that the measure of high-valuation agents without assets is always greater or equal to the

measure of low-valuation asset holders. In other words, in a frictionless market assets could always be

held by high-valuation agents. An agent’s valuation state is his private information. Each agent can

produce any amount of the numéraire good, and receives an instantaneous utility which is the sum of

the numéraire good consumed/produced in that instant and the utility obtained from the asset, if any, he

holds.

It is useful to label the agents according to their status, namely whether they are in the state of high

(h) or low (l) valuation, and whether they hold a lemon (b), a peach (g), or no asset (n). Thus, the set

of agent statuses is {hb, lb,hg, lg,hn, ln}. Agents with valuation j ∈ {h, l} holding an asset i ∈ {b,g,n} are

denoted by ji, and their mass by γ ji. In general, the mass of any group C of agents is γC. For notational

convenience, we partition agents with different statutes into a set of potential sellers S̃ = {hb, lb,hg, lg}
and a set of potential buyers B̃ = {hn, ln} with elements s̃ and b̃, respectively.

Trade is decentralized and takes place between an agent without an asset, but wishing to buy one, and

an agent wishing to sell his asset. Buyers and sellers are bilaterally and randomly matched. We denote

by ξ the set of agents with and without an asset to which the matching technology applies. For example,

if matching always involves all agents in the economy then ξ = B̃∪ S̃; alternatively, if the matching

technology requires a deliberate decision to participate in a trading platform, then ξ is the set of agents

with and without assets, respectively, that participate in the platform. For any s̃ ∈ S̃ (b̃ ∈ B̃), we indicate

with qS
s̃ (qB

b̃ ) the share of agents of type s̃ (b̃) to which the matching technology applies. Obviously, if all

agents in the economy are always matched then qS
s̃ = 1 and qB

b̃ = 1 for all s̃ ∈ S̃ and b̃ ∈ B̃.

We derive our results using a general function µM(γC,γD;γξ ) for the total meeting rate between two

sets of agents C and D. In other words, the quantity µM(γC,γD;γξ ) is the instantaneous measure of total

matches between agents in C and D, and all agents belonging to C (to D) have an identical intensity to

match with an agent in D (in C).22 Therefore, an agent in C meets agents in D at intensity µM(γC,γD,γξ )/γC

and an agent in D meets agents in C at intensity µM(γC,γD,γξ )/γD. The parameter µ determines the

22If at times determined by a Poisson process with intensity parameter µ̃ each agent contacts another agent from the set of
agents participating in the platform ‘at random’, the rate at which a group C of agents contacts a disjoint group D of agents
is γC µ̃γD/γξ . Similarly, the rate at which the group D contacts the group C is γD µ̃γC/γξ . Thus, the total meeting rate between
the groups C and D is 2µ̃γCγD/γξ (see Duffie et al., 2005). Thus, the parameter µ in our expression for the total meeting rate
can be equated to 2µ̃, double the intensity at which an agent contacts another agent in ξ . Also, it follows that the meeting rate
between agents in C is given by (µ/2)γ2

C/γξ .
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degree of search frictions in the market. If µ → ∞ trade becomes frictionless. The general matching

function M(γC,γD,γξ ) is required to satisfy: (i) strict monotonicity in each of its first two arguments,

i.e. M1,M2 > 0; (ii) a non-increasing ratio between actual matches M(γC,γD,γξ ) and the total measure

of possible matches γCγD, i.e. M(γC ,γD,γξ )

γCγD
being non-increasing in γC and γD;23 (iii) non-decreasing returns

to scale, i.e. M1(γC,γD,γξ )γC +M2(γC,γD,γξ )γD ≥ M(γC,γD,γξ ).24 The second condition ensures that the

intensity at which agents in set C (D) meet agents in D (C) does not increase when the measure of agent

in set C (D) increases.25 This assumption simply rules out matching functions that reverse the natural

assumption that search among agents has a competitive component, at least weakly, and it is broadly

satisfied by a large class of matching functions. We distinguish between matching functions for which

the ratio M(γC ,γD,γξ )

γCγD
is constant in γC and γD and those for which the ratio is strictly decreasing in these two

arguments, calling the former non-competitive and the latter competitive matching functions. In each of

these two classes, we identify a noticeable matching technology:

1. Duffie-Gârleanu-Pedersen (DGP) matching: each agent has an identical probability to match with

every other agent in the economy as there is no explicit participation decision to a matching

platform. Hence, ξ = B̃∪ S̃ and γξ = 1+A. This matching technology is adopted in the semi-

nal paper by Duffie et al. (2005). In the context of our model, the total meeting rate becomes

µM(γC,γD,γξ ) =
µγCγD
1+A . This matching technology is non-competitive since the ratio M(γC ,γD,γξ )

γCγD
is

equal to a constant.26 Thus, the intensity at which an agent in group C (D) meets agents in group

D (C) is independent of the mass of agents in C (D). As a result, an increase in the number of

sellers does not have an effect on the rate at which an individual seller meets buyers. A real world

example of this matching technology is an over-the-counter market in which participants phone

each other randomly and without knowing whether the agent they contact is willing or able to

buy/sell an asset.

2. Kiyotaki-Wright (KW) matching: each participant in the platform is matched uniformly at random

with another participant. This matching function, adopted in Kiyotaki and Wright (1993), has

been microfounded in Stevens (2007), and it implies that matching takes place only among agents

that actively participate in the market through the platform. Using the previous notation, γξ =

∑s̃∈S̃ qS
s̃ γs̃ +∑b̃∈B̃ qB

b̃ γb̃ ≤ 1+A. Formally, the matching function for groups C and D is M(γC,γD,γξ ) =

γCγD/γξ when C,D ⊂ ξ , whereas the matching function is equal to zero if C or D ⊂ ξ c. This

matching technology is competitive as the ratio M(γC ,γD,γξ )

γCγD
is strictly decreasing in γC and γD. Thus,

the intensity at which an agent in group C meets agents in group D is strictly decreasing in the

mass of agents in C, and analogously for an agent in group D. Therefore, for example, when the

number of sellers increases the rate at which an individual seller meets buyers falls. This matching

technology can be thought of as a physical market place in which only parties interested in trading

participate, but where it is not possible to direct search only towards buyers or sellers.

For notational convenience, in the remainder of the paper we suppress the γξ argument of the match-

ing function and simply write M(γC,γD).

23The condition is equivalent to requiring M(γC,γD,γξ )≥max{M1(γC,γD,γξ )γC,M2(γC,γD,γξ )γD}.
24Note that if M(·, ·) is a homogeneous function, this condition requires it to be homogeneous of at least order one.
25For example, if this condition were violated then, for a constant measure of buyers, sellers would meet buyers more frequently

when the measure of sellers in the market increases.
26By the definition of a non-competitive matching technology, any such technology is characterized, up to a constant, by the

DGP matching function. For this reason, we use the terms non-competitive and DGP matching technologies interchangeably.
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2.2 Strategies and equilibrium definition

In a matched buyer-seller pair, the terms of trade depend on the bargaining protocol. Under complete

information we consider the generalized Nash bargaining solution; under asymmetric information, we

assume buyers make take-it-or-leave-it offers to sellers. This is a common assumption in the dynamic

adverse selection literature27 because it ensures that the price offer does not contain information about

the type of the seller’s asset. In section B.2 in the Appendix we consider an alternative bargaining

protocol, namely asset holders propose prices and buyers can either accept or reject the offer. Once a

seller trades, he becomes an agent without an asset.

For analytical tractability, we restrict attention to stationary equilibria, namely steady state solutions

that do not depend on time t. Let σs̃(p) be the probability that a potential seller of type s̃∈ S̃ accepts price

p. Similarly, σb̃(p) is the probability that a potential buyer of type b̃ ∈ B̃ offers price p.

Fix a strategy profile σ = {σs̃,σb̃} and a set ξ of agents participating in the market. We define as

actual sellers and buyers, and denote them by S and B respectively, the sets of agents with and without

assets belonging to ξ and whose probability to trade is non-zero. For a formal definition, let s̃(ξ ) = s̃∩ξ

and b̃(ξ ) = b̃∩ ξ be the set of agents in s̃ ∈ S̃ and b̃ ∈ B̃ to which the matching technology applies.

Moreover, denote by ST (σ)⊂ S̃ and BT (σ)⊂ B̃ the subsets of S̃ and B̃ that trade with positive probability,

i.e.:

ST (σ) =

{⋃
s̃∈S̃

s̃ : ∃p s.t. σs̃(p)

(
∑
b̃∈B̃

σb̃(p)

)
> 0

}

BT (σ) =

{⋃
b̃∈B̃

b̃ : ∃p s.t. σb̃(p)

(
∑
s̃∈S̃

σs̃(p)

)
> 0

} (1)

The sets of active buyers and sellers are B = BT (σ)
⋂( ⋃

b̃∈B̃
b̃(ξ )

)
and S = ST (σ)

⋂( ⋃̃
s∈S̃

s̃(ξ )

)
.

Agents hold beliefs on the probability to match with a possible trading counter party: mB and mS

denote sellers and buyers’ beliefs to meet a buyer and a seller in B and S, respectively. A potential buyer

b̃ ∈ B̃ holds a belief πb̃(i, p) to get asset quality i when he offers a price p to a seller i ∈ S. Analogously,

a potential seller s̃ ∈ S̃ holds a belief πs̃(p) to receive a price p from a buyer in B. Finally, let π be the

collection of beliefs held by all agents. We proceed to define an equilibrium of the game.

Definition 2.1 A stationary assessment (σ ,π) is a Perfect Bayesian equilibrium of the game if and only

if:

1. For every ji, σ ji is a best response taking as given π and σ .

2. ξ = BT (σ)∪ST (σ), except for the DGP technology for which ξ = B̃∪ S̃.

27See Moreno and Wooders (2010, 2016), Camargo and Lester (2014), Kaya and Kim (2015).
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3. Agents hold correct beliefs on the equilibrium path, i.e.:

πb̃(i, p) = ∑
j=h,l

qS
jiγ ji

γS
σ ji(p) if ∑

s̃∈S̃

σs̃(p)> 0

πs̃(p) = ∑
b̃∈B̃

qB
b̃ γb̃

γB
σb̃(p) if ∑

b̃∈B̃

σb̃(p)> 0

mS = µ
M(γB,γS)

γS
mB = µ

M(γB,γS)

γB

qS
s̃ =

γs̃(ξ )

γs̃
qB

b̃ =
γb̃(ξ )

γb̃

(2)

The first condition is standard as it requires each agent in ji to play a best response strategy. The

second equilibrium requirement is not binding for the DGP technology (as by definition ξ = B̃∪ S̃),

while for all other technologies it selects the equilibrium in which only agents that expect to trade with

positive probability participate in the trade platform, implying that ξ = BT (σ)∪ST (σ). This equilibrium

restriction can be seen as the limit outcome of a model setup with platform participation costs which

tend to zero. Lastly, the third requirement is also standard as it imposes beliefs, matching rates and the

share of agents participating in the platform to be correct on the equilibrium path.

hg lg

hb lb

hn ln

κγhg

κγhb

κγhn

νγlg

νγlb

νγln

mBγlb

mSγhn

(
1− γlg

γS

)
mBγhb

mBγlg
mSγhn

γlg
γS

Figure 1: Transitions due to valuation shocks and trade.

Figure 1 illustrates how agents transition between different statuses due to valuation shocks and

trade. Valuation shocks, giving rise to the flows in grey, apply to all agents, irrespective of their asset

holdings and the equilibrium patterns of trade. The remaining flows are due to trade, thus depending

on agents’ equilibrium strategies. The flows in green denote transitions due to assets passing from low-

valuation to high-valuation agents, between whom there are gains from trade. The flow in red, on the

other hand, arises from low-quality assets changing hands between high-valuation agents. As we will

see in what follows the flows indicated with dashed lines arise only in some of the possible equilibria.

Consider an equilibrium assessment. We denote by Vji the value function of an agent with valuation

j ∈ {h, l} and holding an asset i ∈ {b,g,n}. A high-valuation owner of a type-i asset derives instantaneous

utility δi until he either transits to the state of low valuation or meets a buyer and sells his asset. Denoting
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the random time at which a high-valuation owner transits to the state of low valuation with τd and that

at which he meets a buyer in B with τB, his value function Vhi satisfies

Vhi(t) = Et

[∫
τ

t
e−r(s−t)

δi ds+ e−r(τd−t)Vli(τd)1{τd=τ}+ e−r(τB−t)Whi(τB)1{τB=τ}

]
(3)

where τ = min{τd ,τB} and Whi denotes the value function of a high-valuation owner of type-i asset

matched with a buyer. Note that if the matching technology matches only actively participating agents,

then τ = τd for agents who do not participate in the market.

Analogously, a low-valuation owner of a type-i asset obtains a utility flow δi−x until he either transits

to the state of high valuation or sells his asset. Denoting the time at which a low-valuation asset holder

changes valuation with τu, his value function Vli becomes

Vli(t) = Et

[∫
τ

t
e−r(s−t)(δi− x)ds+ e−r(τu−t)Vhi(τu)1{τu=τ}+ e−r(τB−t)Wli(τB)1{τB=τ}

]
(4)

where τ = min{τu,τB}.
Given an equilibrium assessment (σ ,π), denote the distribution function of prices offered by buyers

at time τ by Fτ(·). The value function of an owner of a type-i asset matched with a buyer Wji satisfies:

Wji(τ) =
∫

max{p+Vjn(τ),Vji(τ)}dFτ(p) (5)

Agents without an asset derive an instantaneous utility of zero, and they experience a change in their

expected future utility when either their valuation state changes, or they meet a seller and buy an asset.

Hence, denoting the time at which an agent without an asset experiences a change in his valuation with

τc, and the next time at which he meets a seller in S with τS, his value function satisfies

Vjn(t) = Et

[
e−r(τc−t)V j̃n(τc)1{τc<τS}+ e−r(τS−t)Wjn(τS)1{τS<τc}

]
(6)

where j, j̃ ∈ {h, l} and j 6= j̃.

A buyer who is matched with a seller in S decides on a price to offer depending on the probabilities

of obtaining an asset of either type conditional on the offered price. The value function Wjn of a buyer

matched with a seller in S satisfies

Wjn(τ) = max
p

{
π jn(g, p,τ) [Vjg(τ)− p]+π jn(b, p,τ) [Vjb(τ)− p]

+ [1−π jn(g, p,τ)−π jn(b, p,τ)]Vjn(τ)
} (7)

Differentiating (3), (4) and (6) with respect to t and rearranging, one obtains the following Hamilton-

Jabobi-Bellman equations

rVhi(t) = δi +κ[Vli(t)−Vhi(t)]+mB(t)[Whi(t)−Vhi(t)]+V̇hi(t) (8)

rVli(t) = δi− x+ν [Vhi(t)−Vli(t)]+mB(t)[Wli(t)−Vli(t)]+V̇li(t) (9)

rVhn(t) = κ[Vln(t)−Vhn(t)]+mS(t)[Whn(t)−Vhn(t)]+V̇hn(t) (10)

rVln(t) = ν [Vhn(t)−Vln(t)]+mS(t)[Wln(t)−Vln(t)]+V̇ln(t), (11)

These general expressions encompass different possible equilibria. In particular, in our subsequent
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analysis it will be of great importance to consider if peaches trade in the market, and whether high-

valuation lemon holders prefer to stay out of the market. As we restrict attention to stationary equilibria,

value functions do not change over time, i.e. V̇ji = 0 and Vji(t) =Vji for every ji.

3 Complete information

Before analysing equilibria under asymmetric information, we consider the environment described in

the previous section when agents have complete information about both asset quality and each other’s

valuation states. This allows us to distinguish between features of the equilibrium outcomes which are

attributable to asymmetric information as opposed to arising from search frictions.

It is straightforward to characterize the equilibrium under complete information. The next proposi-

tion summarizes the main equilibrium properties:

Proposition 3.1 With complete information, a unique equilibrium exists for the whole parameter space,

and satisfies:

1. S = {lb, lg} and B = {hn}.

2. The matching rate mC
B is the unique solution to

mC
Bγ

C
S = mC

S γ
C
B = µM

(
γ

C
B ,γ

C
S

)
⇒ κAmC

B

κ +ν +mC
B
= µM

 κA
κ +ν +mC

B
,

ν− κAmC
B

κ+ν+mC
B

κ +ν

 (12)

3. During any time interval ∆t the trade volume is κAmC
B

κ+ν+mC
B
∆t.

4. Let β and 1−β be the Nash bargaining weights of sellers and buyers, respectively. For an asset

of quality i the equilibrium price is:

pi =
1
r

[
δi−

κ +(1−β )(r+mC
S )

κ +ν + r+(1−β )mC
S +βmC

B
x
]

(13)

where mC
S =

κA(κ+ν)mC
B

(κ+ν)ν+mC
B(ν−κA) .

With complete information assets of both qualities are traded. Buyers offer different prices for

peaches and lemons, the difference being equal to (δg− δb)/r. Prices are equal to the discounted value

of future dividends (δi/r) less a discount which depends on the loss x due to low asset valuation and,

importantly, on the rates mC
S and mC

B at which buyers meet sellers and vice versa. From the equation

linking the two rates, it is easy to see that the two quantities are positively related. Intuitively, markets

with higher matching intensities may be interpreted as more liquid markets as buyers and sellers have to

wait less until they encounter another agent willing to trade. The price equation (13) is analogous to the

one presented in Duffie et al. (2005) for the case without market makers.28

The effect of liquidity (i.e. of the matching intensities mC
B and mS

B) on prices depends on the relative

bargaining power between buyers and sellers. In particular, when buyers (sellers) have relatively more

bargaining power prices decrease (increase) with more market liquidity. To understand the economic

28In Duffie et al. (2005) notation, their model excludes market makers when ρ = 0.
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intuition underlying this result, it is useful to consider the two extreme cases of full bargaining power

for buyers or sellers. If buyers hold all bargaining power (β = 0), the resulting price discount κ+r+mC
S

κ+r+ν+mC
S
x

is increasing in mC
S , i.e. the higher mC

S the lower the price buyers pay to sellers. Indeed, the equilibrium

price is equal to the reservation price p̄li = Vli−Vln, namely it is equal to the difference between the

expected value of holding an asset when in the state of low valuation
(
Vli =

1
r

[
δi− κ+r

κ+ν+r x
])

and the post-

trading continuation value of being without asset
(

Vln =
1
r

mC
S

κ+ν+r+mC
S

ν

κ+ν+r x
)

. The latter term is increasing

in the matching intensity mC
S because it becomes less time-consuming to match with an agent willing

to sell. In other words, an improvement in the matching intensity of buyers mC
S decreases the price that

asset holders require to exchange their assets, because they expect to find a seller more easily once their

valuation will be high again. This counter-intuitive effect of liquidity on prices captures in reality a

common sense notion: if agents know it is going to be hard to buy a similar asset in the market because

of illiquidity, they require a greater compensation to part with an asset which they are likely to desire

in the future. On the contrary, when sellers have all the bargaining power (β = 1) they demand a price

equal to Vhi (the expected value of an asset holder with high valuation) and the price discount is equal to
κ

κ+ν+r+mC
B
x. In this case, a higher matching intensity mC

B for sellers improves Vhi because it makes it easier

to sell the asset when the holder will switch to a low valuation. As a result, higher liquidity leads to

higher market prices. This intuition is more familiar in the financial markets literature, and this positive

effect of liquidity on securities is commonly referred as liquidity premium.

This salient relationship between market liquidity and bargaining power also applies to markets

with asymmetric information between buyers and sellers. When buyers make take-it-or-leave-it of-

fers, they implicitly have full bargaining power and there is a negative relationship between liquidity

and transaction prices. In a similar vein, we show in Appendix B that flipping around the bargaining

protocol—sellers make take-it-or-leave-it offers—reverses this relationship, i.e. a more liquid market

displays higher transaction prices (see Section B.2.2). Nonetheless, despite the similarities, the setup

with asymmetric information leads to additional effects because the average quality of the assets on

sale affects market liquidity. We refer to Appendix B for a detailed analysis of asymmetric information

equilibria with sellers making offers.

In Section 6.2 we are going to show that the decentralized equilibrium outcome of Proposition 3.1

belongs to the set of allocations maximizing utilitarian social welfare, subject to the search frictions due

to the matching process. In other words, the decentralized nature of trade and the bargaining outcome

do not adversely affect allocative efficiency.

4 Unidimensional private information

We proceed by introducing private information only in one dimension: concerning either asset quality or

agents’ valuation states. This allows us to understand whether the equilibrium outcomes in our setting

with bi-dimensional private information are also shaped by an interaction between the two sources of

asymmetric information. We first consider the case in which asset quality is publicly observable but

agents’ valuation states are not; then we consider the alternative case in which agents can distinguish

between high- and low- valuation agents but the quality of an asset is private information of its holder.
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4.1 Asset quality publicly observable

When the quality of each asset is public information, the results obtained with complete information

continue to apply. This can be seen by applying the mechanism for bilateral bargaining in Myerson and

Satterthwaite (1983). Suppose each pair of matched agents, one of which holds an asset, is proposed a

mechanism in which the asset changes hands at the price that would arise from Nash bargaining between

a low-valuation asset holder and a high-valuation agent with no asset. If either of the two agents is not

willing to trade, the mechanism prescribes trade not to take place. With such a mechanism, no encounter

between two agents in the same valuation state results in trade. Therefore, we can conclude that the

market composition and equilibrium quantities are identical to those with complete information.

4.2 Individual valuation state publicly observable

If there is common knowledge about agents’ valuation states, trade can only take place between a low-

valuation asset holder and high-valuation agent with no asset. This result follows immediately from the

no trade theorem in Milgrom and Stokey (1982). Whereas no allocative inefficiency arises with asym-

metric information on the agents’ valuations of the assets, this is no longer the case when asymmetric

information concerns the underlying asset quality, i.e. the common value component, even if individual

private states are publicly observable.

Under this informational setup the equilibrium characterization follows analogous steps to the one

provided in Section 5 in which only low-valuation asset holders sell their good; see Proposition 5.2.

In the interest of space we skip any formal statement here and we provide some additional details in

Appendix B. A crucial difference relative to the analysis in Section 5 is the absence of any constraint

to ensure hb agents do not sell their assets, as common knowledge on private valuation states coupled

with asymmetric information on asset quality leads to the exclusion of trades when there are no gains

from trade, i.e. between hb and hn agents as they both have a high private valuation. Nonetheless, in

equilibrium high-quality assets may not be traded if their share λ is too low and buyers make take-it-

or-leave-it offers: the relevant constraint to ensure trade in both goods is identical to the one presented

in Section 5 for equilibrium E. However, the adverse selection problem is less severe relative to the

equilibria in the bi-dimensional private information case, as in the latter the presence of an additional

constraint on hb agents’ market participation will limit the possibilities for the existence of an allocatively

efficient outcome. We turn to address this point in detail.

5 Asymmetric information on asset quality and private valuations

5.1 Lemons market equilibrium

Since the seminal Akerlof (1970) paper, it is a well known result that the presence of asymmetric in-

formation between buyers and sellers may lead to an extreme form of adverse selection, with only the

lowest quality goods exchanged. We start our analysis by considering when this market breakdown may

materialize in our dynamic model with bilateral matches and resale.

A first important observation is that the existence of the lemons market equilibrium, say equilibrium

L, depends on the matching technology, because it determines whether a buyer who deviates by offering
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a higher price can match with a peach owner. The next proposition provides a necessary and sufficient

condition for the existence of a lemons market equilibrium.

Proposition 5.1 Let ms̃ denote the matching rate of buyers with asset owners of type s̃∈ S̃ when S = {lb}.
A lemons market equilibrium exists if and only if:

φ ≥min
{

mlg

mlb

r
r+κ +ν +mlb

,
mlg

mlb

r
r+κ +ν +mlb

+
mhb

mlb

(
r

r+κ +ν +mlb
−φ

)}
(14)

Proposition 5.1 holds for all admissible matching functions, and in particular it implies the following

corollary for different matching technologies:

Corollary 5.1 With the DGP technology there exist λ∗ < 1 such that for every λ ≥ λ∗ a lemons market

equilibrium does not exist. With any competitive matching technology a lemons market equilibrium

always exists.

In a lemons market equilibrium, buyers never find it optimal to offer a higher price if the matching

technology only applies to agents participating in the market as buyers only encounter lemon holders. In

this case, the lemons market equilibrium is self-fulfilling and it exists over the whole parameter space.

On the contrary, with the DGP technology all agents are continuously matched, implying that buyers

always have a non-zero probability of matching with a peach holder. As a consequence, if the share of

peaches is sufficiently high, each buyer finds it convenient to offer a price accepted by peach holders,

being likely to match with such an agent, whereas offering a price accepted only by lemon holders delays

trade because there are few lemons in the economy.

The lemons market equilibrium is clearly suboptimal because not all mutually convenient trades take

place, and it is a common feature of static adverse selection models. In the remainder of the section, we

consider the existence of semi-pooling equilibria in which both peaches and lemons are traded.

5.2 Semi-pooling equilibria

In this section we discuss the existence of the stationary equilibria in which also peaches are traded. It

is crucial to distinguish between two possible types of equilibria:

1. Equilibrium E: lg and lb agents are active sellers.

2. Equilibrium H: lg, lb and hb agents are active sellers.

Throughout the paper we denote by p̄ ji the price that makes ji-agents indifferent between selling

and keeping their asset; i.e. p̄ ji = Vji−Vjn. Differently from Chiu and Koeppl (2016), in our model the

quantity of lemons on the market is endogenous, and it depends on whether high-valuation lemon holders

prefer to sell their assets at the price p̄lg that low-valuation holders of peaches are willing to accept. Thus,

we distinguish between two types of semi-pooling equilibria: in equilibrium E only low-valuation asset

holders participate in the market, as in the complete information benchmark; in equilibrium H also high-

valuation lemon holders participate as they find it convenient to sell their assets at price p̄lg. In this

section we characterize the conditions for the existence of equilibrium E and H.

By Lemma A.3 in Appendix A, only hn agents are willing to participate as buyers since there are

gains from trade only between low- and high-valuation agents. Moreover, Lemma A.4 shows that, in
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any equilibrium, buyers offer p̄lb and/or p̄lg, lb agents accept p̄lb and p̄lg with probability one while lg

agents only accept p̄lg. Recall that σhn(p̄lg) denotes the probability of buyers offering p̄lg. Then, given

that lg agents reject the lower offer p̄lb, the measures of agents obey the following laws of motion:

γ̇hb =νγlb−κ[(1−λ )A− γlb]+mBγlb

γ̇hg =νγlg−κ(λA− γlg)+mBσhn(p̄lg)γlg

γ̇hn =ν(1− γhn)−κγhn−mSγhn
γlb+σhn(p̄lg)γlg

γS

(15)

Note that whether hb agents participate or not affects the equilibrium masses only through the matching

rates as an hb agent selling an asset to an hn agent leaves the masses of hb and hn agents unchanged.

Using the equilibrium condition mSγB = mBγS, it is immediate to obtain the next lemma.

Lemma 5.1 In equilibria E and H the following properties hold:

1. The measures of agents satisfy:

γlb =
κ(1−λ )A
κ +ν +mB

γlg =
κλA

κ +ν +σhn(p̄lg)mB
γhn =

ν−κA
κ +ν

+ γlb + γlg (16)

2. The total measure of sellers is:

γE
S = γlb + γlg = κ(1−λ )A

κ+ν+mE
B
+ κλA

κ+ν+σhn(p̄lg)mE
B

γH
S = γhb + γlb + γlg = (1−λ )A+ κλA

κ+ν+σhn(p̄lg)mH
B

(17)

It is important to notice that all the endogenous equilibrium masses depend on the matching rate mB

and in general it is different in equilibrium E and H. A higher matching rate decreases the equilibrium

masses of low-valuation asset holders (lg and lb) and buyers (hn) because as they trade assets move from

low-valuation to high-valuation agents. Hence, a higher intensity of trade decreases the measures agents

on the two sides of the market. This occurs also in equilibrium H, albeit to a smaller extent as some

trades occur between hb and hn agents, inducing no change in the masses of these two types of agents.

We now move to analyse the equilibrium value functions. In order to have expressions which cover

both the E and H equilibria we introduce the indicator function 1{hb∈S} which equals one when hb agents

sell their assets (equilibrium H) and zero otherwise. By Lemma A.4, the value function of a seller

matched with a buyer is Wji = σhn(p̄lg)(p̄lg +Vjn). Hence, the value functions of asset holders are:

rVhg=δg +κ (Vlg−Vhg)

rVlg=δg− x+ν (Vhg−Vlg)+mB (Wlg−Vlg)= δg− x+ν (Vhg−Vlg)

rVhb=δb +κ (Vlb−Vhb)+mB (Whb−Vhb)1{hb∈S}= δb +κ (Vlb−Vhb)+mBσhn(p̄lg)(Vlg−Vln+Vhn−Vhb)1{hb∈S}

rVlb=δb− x+ν (Vhb−Vlb)+mB (Wlb−Vlb)= δb− x+ν (Vhb−Vlb)+mBσhn(p̄lg)(Vlg−Vlb)

(18)

The value functions of agents without assets are:

rVhn =κ(Vln−Vhn)+mS(Whn−Vhn)

rVln =ν(Vhn−Vln)
(19)
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In the next Lemma we provide some useful expression that show what are the underlying economic

forces that determine agents’ values.

Lemma 5.2 In equilibrium E and H equilibrium values satisfy these properties:

1. Holders of peaches have the following values in both equilibria:

Vhg−Vlg =
x

κ +ν + r
Vlg =

δg

r
− x

r
κ + r

κ +ν + r
(20)

2. Buyers’ value is:

Vhn =
(ν + r)mS

r(κ +ν + r+mS)

[
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb−Vlg

]
(21)

The first point in Lemma 5.2 reveals that peach holders have identical values in equilibrium E and H.

This result follows from the bargaining protocol: being offered p̄lg =Vlg−Vln leaves lg agents indifferent

between accepting the offer and keeping their asset; consequently, lg agents’ value is equal to that under

autarky, taking into account that they transition between high and low valuation over time. This result

greatly improves the possibilities to compare outcomes between equilibria E and H.

The second point in Lemma 5.2 sheds light on the determinants of buyers’ value. Their value de-

pends on two main components: first, the expected value of acquiring an asset for a high valuation agent
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb, which depends on the probability of obtaining a peach ( γlg

γS
), minus the price paid

p̄lg = Vlg−Vln = Vlg− ν

ν+rVhn; second; a discounting term (ν+r)mS
r(κ+ν+r+mS)

which decreases with the discount

rate r, the intensity at which a high-valuation buyer returns to the state of low valuation (κ), whilst it

increases with the intensity at which an ln agent transits to the state of high valuation (ν) and, most

importantly, with the rate at which buyers meet active sellers mS. The value of being a buyer varies

between equilibrium E and H because three endogenous variables take different values: (i) the share of

active sellers with peaches γlg

γS
; (ii) the value Vhb of being an hb agent; (iii) the matching rate mS. In Sec-

tion 6 we are going to prove that, whenever both equilibrium E and H exist, Vhn is higher in equilibrium

E. Note that there is no prima facie reason to conclude this to be the case because the effect of the lower

share of peaches offered in equilibrium H is (partially) counterbalanced by a higher matching rate for

buyers mS. This comparison is further complicated by the absence of an explicit expression for mS and

the fact that γlg/γS and Vhb also depend on mS. A large part of our effort in solving the model is devoted

to overcoming these difficulties.

The next lemma introduces the two relevant constraints that jointly characterize a semi-pooling

equilibrium.

Lemma 5.3 If peaches are traded, the equilibrium satisfies:

1. Buyers offer p̄lg, which is the case if and only if:

γlg

γS
(Vhg−Vlg)+

(
1− γlg

γS

)
(Vhb−Vlg)≥

γlb

γS

κ +ν + r+mS

κ +ν + r+ γlb
γS

mS
(Vhb−Vlb) (22)

2. In equilibrium hb agents do not participate in the market if and only if:

Vhb−Vlg ≥
γlg

γS
mS

κ +ν + r+ γlg

γS
mS

x
κ +ν + r

(23)
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The first condition is standard in the adverse selection literature: it requires the share of peaches to

be high enough to provide buyers with incentives to offer a price which is accepted by both lemon and

peach holders. Note that the term multiplying (Vhb−Vlb) captures the fact that the outside options of

buyers and asset holders depend on their valuation states. If they were type-independent, as in the static

benchmark model presented in Section B.3 of the Appendix, this term would be equal to 1. The second

condition is novel and it determines whether hb agents participate in the market as active sellers.29 In

dynamic adverse selection models every asset holder is assumed to have a lower valuation than buyers.

In other words, the maximum amount of trade possible is exogenous and coincides with the first-best

volume of trade under complete information. In our setup this is no longer the case because hb agents

would not trade under complete information but they might find it convenient to do so under asymmet-

ric information. This endogenous market participation decision creates novel effects in terms of trade

volume, prices and welfare. We are going to analyse all these implications in Section 6.

5.2.1 Pure strategy pooling equilibria

For analytical tractability, we continue by focusing on pure strategy equilibria, i.e. σhn(p̄lg) = 1 and

σhb(p̄lg) ∈ {0,1}. From here on, we use equilibrium E and H to refer exclusively to pure strategy equi-

libria. In this subset of equilibria we are able to provide analytical results for the main variables of

interest—price, volume of trade and matching intensities—to better highlight the main underlying eco-

nomic forces at work in the model. We discuss mixed strategy equilibria in Section 5.2.2. The findings

therein demonstrate that the main results of our analysis continue to hold when also taking into consid-

eration the possibility of mixed strategy equilibria.

We begin by investigating the rate at which assets are traded. The following lemma demonstrates

the properties of the matching intensities in equilibria E and H.

Lemma 5.4 If peaches are traded the matching rate mK
B , K = E,H, is unique and solves:

mK
B γ

K
S = µM

(
ν− κAmB

(κ+ν+mB)

κ +ν
,γK

S

)
(24)

Moreover, the matching rates have the following properties:

- In equilibrium E, the matching rates mE
B and mE

S do not depend on λ for all matching technologies.

- In equilibrium H, dmB
dλ
≥ 0 and dmS

dλ
< 0. In particular:

- For all competitive matching technologies, mH
B is strictly increasing in λ . Furthermore,

mH
B < mE

B , mH
S > mE

S for every λ ∈ (0,1) with lim
λ→1

mH
B = mE

B and lim
λ→1

mH
S = mE

S .

- For all non-competitive matching technologies, mH
B = mE

B . Moreover, mH
S > mE

S for every

λ ∈ (0,1) and lim
λ→1

mH
S = mE

S .

To understand why the matching intensities in equilibrium E are independent of λ , note that the

measure of active sellers in equilibrium E is γE
S = κA

κ+ν+mE
B
, implying that equation (24) does not depend

on λ . Intuitively, only low-valuation holders of both peaches and lemons participate in the market as

29Notice that the right-hand side of (23) reflects the difference in being without an asset for high- and low-valuation agents.
If it were the case that Vhn =Vln, this term would be equal to zero.
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sellers, while high-valuation agents without assets participate as buyers. As a result, the share λ of

peaches does not affect the total masses of buyers and sellers. In equilibrium H, on the contrary, all

lemon holders participate as active sellers. Hence, the mass of sellers is γH
S = (1−λ )A+ κλA

κ+ν+mH
B

and only

hg agents do not wish to sell their assets. As a consequence, in this equilibrium a higher λ decreases

the mass of active sellers because the share of hg agents increases. In turn, this change in the total mass

of sellers may affect the matching intensities of buyers (mH
S ) and sellers (mH

B ) relative to equilibrium

E. For any matching technology, buyers match more frequently with sellers, i.e. mH
S > mE

S , because the

measure of sellers γH
S is higher than γE

S .30 With a competitive matching technology, the larger measure

of sellers leads to an individual seller waiting on average a longer time before trading (mH
B < mE

B). With

a non-competitive matching technology sellers match at the same rate with buyers (mH
B = mE

B) because

matching occurs among all agents, and not just by agents participating in platform. In other words, there

is no congestion on sellers’ side because there is no decision on whether to be matched, and no resulting

impact on the sellers’ matching rate.

The results in Lemmata 5.2–5.4 are crucial to characterize the conditions that allow equilibrium E

and H to exist. The next two propositions formally state these conditions in terms of the primitives of

the model, and we proceed by discussing their implications.

Proposition 5.2 (Existence of equilibrium E)

A stationary equilibrium in which only lb and lg asset holders are sellers exists if and only if:

1. φ ≤ φ ∗E where φ ∗E =
r(κ +ν + r+mE

B)+κmE
B

(κ +ν + r+λmE
S )(κ +ν + r+mE

B)

2. λ ≥ λ∗E where λ∗E ∈ (0,1) is the unique value of λ that satisfies equation (22) with equality for the

equilibrium values V E
ji with j = h, l and i = b,g,n.

Proposition 5.3 (Existence of equilibrium H)

A stationary equilibrium in which lb, lg and hb asset holders are sellers exists if and only if:

1. φ ≥ φ ∗H where φ ∗H =
r(κ +ν + r+mH

B )+κmH
B

(κ +ν + r+
γH

lg

γH
S

mH
S )(κ +ν + r+mH

B )

2. λ ≥ λ∗H where λ∗H ∈ (0,1) is the unique value of λ that satisfies equation (22) with equality for the

equilibrium values V H
ji with j = h, l and i = b,g,n.

Both propositions introduce two conditions: the first is the hb agents participation condition while

the second ensures that buyers prefer to offer p̄lg rather than p̄lb. Given that the matching rates do not

depend on φ , the first conditions show that hb agents are willing to sell their assets when gains from trade

are low, i.e. x is small and by implication φ large, while they prefer to keep their assets when gains from

trade are large. Intuitively, when x is small buyers offer a relatively high price and hb agents are willing to

sell their assets as well. Differently from the static model presented in the Appendix, both the threshold

values φ ∗E and φ ∗H are smaller than one. This stems from two features: (i) Vlg exceeds δg−x
r , i.e. the value

of being distressed forever; and (ii) being a buyer entails a positive expected payoff, i.e. Vhn > Vln > 0.

The former leads to a higher p̄lg whereas the latter improves the attractiveness of becoming a buyer for

hb agents. Lower threshold values for φ imply a more severe adverse selection problem than in the

30For any competitive matching technology, also the measure of buyers is higher in equilibrium H than E, which exerts a
negative effect on mS. However, the direct, positive effect of a larger number of sellers dominates.
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static benchmark because hb agents have more incentives to participate in the market. Interestingly, this

problem is more severe in economies with more pronounced search frictions.

The second conditions, requiring λ to be sufficiently high, are intuitive. As in the static benchmark,

buyers are willing to offer the higher price p̄lg if and only if the average quality of assets in the economy

is sufficiently high. Otherwise, there are relatively many lemons on the market and, as a result, buyers

prefer to offer the lower price p̄lb.

Before illustrating when both equilibria exist, we state how the threshold values defining the region

of parameters in which each equilibrium exists vary with the parameters.

Lemma 5.5 The threshold values λ∗ and φ ∗ satisfy.

1. φ ∗E is decreasing in λ .

2. λ∗E and λ∗H are increasing in φ .

The fact that φ ∗E is decreasing in λ reveals an important feature of our model, which constrains the

parameter space in which equilibrium E exists. Namely, high-valuation lemon holders have a stronger

incentive to participate in the market when the average quality of assets in the economy is higher. Indeed,

the expected value of buying an asset is higher when there are fewer lemons for sale, as the latter enjoy

an information rent. As a result, the value of being a buyer Vhn, as well as the difference Vhn−Vln, is

increasing in λ . For this reason, hb agents find it more attractive to become buyers when the average

quality of assets increases. These two forces shape the relationship between λ and φ ∗E When hb agents

do not participate in the market; if hb agents offer their assets for sale and the matching technology

is competitive, an additional force comes into play: sellers meet buyers at a higher intensity for larger

values of λ . Due to this effect, the value of a high-valuation lemon holder is increasing in the average

quality of assets, making them more willing to keep their asset. On the other hand, also in this case the

value of being a buyer is increasing in λ . These two opposite effects determine whether φ ∗H is decreasing

or increasing in λ , and in turn this depends on the parameter values considered. On the other hand, for a

non-competitive matching technology mH
B is independent of λ and equal to mE

B , and γH
lg

γH
S

mH
S = λmE

S implies

φ ∗H = φ ∗E . In words, in the absence of congestion externalities, the decision of a high-valuation lemon

holder to participate in the market is independent of whether other hb agents participate or not.

The reason why λ∗E and λ∗H are increasing in φ is the following. A buyer offering p̄lg captures all the

gains from trade, which depend positively on x, when matched with a peach holder but has to concede

information rents, which are increasing in δg− δb, to lemon holders. Therefore, when φ is higher, the

value of λ at which a buyer is indifferent between offering p̄lg and p̄lb is higher.

In order to shed further light on the set of parameters for which equilibria E and H exist, we will

illustrate three cases. In the first case, illustrated in Figure 2, matching takes place according to the

DGP technology. As already pointed out, for this matching technology φ ∗E = φ ∗H . Thus, equilibrium

E can exist below this curve and equilibrium H above it. When hb agents have the incentive to offer

theirs assets for sale, the minimum λ∗H above which peach holders trade is higher than what would be if

private valuation state were observable (λ∗E), i.e. when only low valuation asset holders could trade.

In the second and third case, illustrated in Figures 3 and 4, agents are matched according to the KW

technology. In the economy considered in Figure 3, the positive effect of a higher matching rate mB on

Vhb is stronger than that of a higher λ on the value of being a buyer. As a consequence, φ ∗H is increasing

in λ and there is a set of (λ ,φ) pairs for which both equilibrium E and H exist.

21



Figure 2: DGP technology, parameter values: A = 1, κ = 1, ν = 1, µ = 2.5 and r = 0.05.

In the economy of Figure 4, the positive effect of a higher λ on Vhn−Vln dominates that of the higher

matching rate mB on Vhb. For this reason, the φ ∗H curve is downward sloping. In this case there exists a

set of tuples (λ ,φ) for which neither equilibria E nor H exists. However, as shown in the next section, in

this region mixed strategy equilibria in which a fraction of hb agents participate exist.

5.2.2 Mixed strategy semi-pooling equilibria

In this section we discuss the existence and the properties of equilibria in mixed strategies. In this way

we complete the picture of the possible equilibrium outcomes in our model. As we provide a more

detailed treatment in Appendix B, here we focus on the main insights from that analysis.

By Lemma A.4, three possible types of mixed strategy equilibria exist: one in which buyers random-

ize between p̄lb and p̄lg, one in which hb agents randomize between accepting or not an offer of p̄lg and

one in which both buyers and hb agents play mixed strategies. Table 1 lists the different types of mixed

strategy equilibria and shows how we denote them.

Mixed strategy equilibrium Strategy profiles
M1 σhn(p̄lg) ∈ (0,1) σhb(p̄lg) = 0
M2 σhn(p̄lg) ∈ (0,1) σhb(p̄lg) = 1
M3 σhn(p̄lg) = 1 σhb(p̄lg) ∈ (0,1)
M4 σhn(p̄lg) ∈ (0,1) σhb(p̄lg) ∈ (0,1)

Table 1: The strategy profiles of the agents employing mixed strategies in the mixed strategy equilibria.

Intuitively, for a given φ , the values of λ for which buyers are willing to randomize between the two

prices is determined by the interplay of two forces. On the one hand, a decrease in σhn(p̄lg) entails a

lower effective intensity σhn(p̄lg)mB at which peaches are traded. On the other hand, the average quality

of assets increases when σhn(p̄lg) falls as it implies that lemons trade faster than peaches. When agents
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Figure 3: KW technology, parameter values: A = 1, κ = 1, ν = 2, µ = 5 and r = 0.05.

discount less future payoffs, a buyer attaches relatively more weight to the former effect, as it has to do

with the probability to trade a peach in the future. Therefore, for a given λ , buyers are less willing to

offer the high price p̄lg in a mixed than in a pure strategy equilibrium when r is sufficiently low. In such

economies, mixed strategy equilibria exist for higher values of λ than the thresholds λ∗E and λ∗H .

Figures 5 and 6 illustrates the regions of the parameter space in which mixed strategy equilibria exist

for the DGP and KW technologies, respectively. They show that for r low relative to κ and ν and when

adverse selection is severe, mixed strategy equilibria do not enlarge the set of (λ ,φ) pairs for which

peaches can be traded. That is, above the φ ∗E curve, where equilibrium E does not exist, mixed strategy

equilibria exist for higher values of λ than equilibria H. This motivates our focus on the pure strategy

equilibria L and H when due to severe adverse selection equilibrium E does not exist.31

5.3 Salient features of equilibria under asymmetric information

We close this section by discussing features of the equilibrium characterization which are unique to our

setting. Let us first make a few additional remarks about the threshold φ ∗, which determines whether or

not high-valuation lemon holders are willing to participate as sellers. When φ is below the threshold,

adverse selection is moderate as only low-valuation lemons holders are willing to sell their assets and

for this reason the average quality of the assets on the market corresponds to that in the whole economy.

When, on the contrary, φ ≥ φ ∗, the market suffers from severe adverse selection as all lemon holders,

irrespective of their valuation state, are willing to sell their asset, worsening the average quality of

assets on the market. In the case of severe adverse selection, the minimum average quality of assets in

the economy to support a pooling equilibrium is higher than when adverse selection is moderate. The

31In Appendix B we show that for reasonable values of r, the necessary values of κ and ν which allow the existence of mixed
strategy equilibria for lower values of λ than equilibria E and H are unreasonably low. Specifically, they would imply that agents’
valuations change on average less frequently than every 50 years.

23



Figure 4: KW technology, parameter values: A = 1, κ = 0.02, ν = 0.02, µ = 2.5 and r = 0.2.

reason for this is that the participation constraint of hb agents Vhb− (Vlg−Vln)−Vhn ≤ 0 also determines

when the surplus of a buyer from acquiring a lemon is negative. In other words, whenever adverse

selection is severe, the pooling price p̄lg exceeds the value of a lemon to a buyer. It is also worth pointing

out once more the implications of the fact that φ ∗E is decreasing in λ . This means that severe adverse

selection arises for a larger set of parameter values in economies in which the average quality of assets in

the economy is high. When adverse selection is severe, asymmetric information creates a double bind:

either only lemons are traded or all lemons, irrespective of their holder’s valuation state, are continuously

offered for sale. As we will show in the next section, both outcomes are generically inefficient.

Another feature of equilibria worth pointing out is that decentralized trade does not mitigate the

lemons problem as in a dynamic adverse selection model à la Moreno and Wooders (2010). Namely, in

our model there is only limited scope to support equilibria in which assets of both qualities are traded

by endogenously delaying the trade of peaches. In particular, when λ is low enough, no mixed strategy

equilibrium with σhn(p̄lg)< 1—implying that the share of peaches on the market is above λ—exists. This

is stated formally in the following proposition.

Proposition 5.4 For λ sufficiently small, no equilibrium in which peaches are traded exists.

In our model, Vhb always strictly exceeds Vlb. In particular, if Vlb increases due to buyers offering a

higher price so does Vhb as agents transit between high and low valuation. For this reason, offering p̄lb

always yields a strictly positive surplus, making it impossible to construct, for any λ , an equilibrium in

which buyers are indifferent between offering p̄lg or p̄lg, and obtain with both a zero surplus. Hence, it

is not possible to have trade delays for lemon holders, as they always trade once matched with a buyer.
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Figure 5: DGP technology, parameter values: A = 1, κ = 1, ν = 2, µ = 2.5 and r = 0.05.

6 Equilibrium properties

6.1 Price, volume, time to sell and average quality of traded assets

We continue by investigating the properties of equilibria in terms of price, volume, time to sell and

average quality of traded assets. First, we compare analytically these quantities across stationary equi-

libria. Then, we illustrate graphically the transitional dynamics of the four quantities as well as how they

respond to changes in gains from trade and the average quality of assets in the economy.

Comparing the four quantities of interest in equilibria in which at least some hb agents participate,

i.e. σhb(p̄lg)> 0, to those in equilibrium E, yields the following proposition.

Proposition 6.1 (Prices, volume of trade and average quality of assets across equilibria)

Consider parameter values such that equilibrium E and at least one equilibrium with σhb(p̄lg) > 0 and

σhn(p̄lg) = 1 exist. Relative to equilibrium E, each of the latter features:

1. A higher price at which assets are traded, p̄lg.

2. A higher volume of trade, M(γB,γS).

3. A longer expected time to sell, 1/mB.

4. A lower average quality of assets, γlg/γS.

For all non-competitive matching technologies, p̄lg and 1/mB are equal to their values in equilibrium E.

To understand why the equilibrium price is higher when at least some high-valuation lemon holders

participate in the market, it is useful to report the expression derived in the proof of the proposition for

25



Figure 6: KW technology, parameter values: A = 1, κ = 1, ν = 2, µ = 5 and r = 0.05.

the value of being a buyer:

Vhn =
ν + r

r

 γlg

γS
mS

κ +ν + r+ γlg

γS
mS

(Vhg−Vlg)+

(
1− γlg

γS

)
mS

κ +ν + r+ γlg

γS
mS

(p̄hb− p̄lg)

 (25)

The second expression inside the square brackets shows that when hb agents are willing to sell their asset,

i.e. p̄hb ≤ p̄lg, a buyer obtains a negative surplus from acquiring a lemon at price p̄lg. In the opposite case,

when hb agents prefer to keep their asset, a buyer obtains a positive surplus from acquiring both peaches

and lemons at the pooling price. Due to the negative surplus from buying lemons, the value of being

a buyer is lower when hb agents participate in the market. Consequently, low-valuation peach holders

require a higher price as a compensation for the lower continuation value after selling their asset. For

this reason, the equilibrium price is higher when hb agents participate in the market.

The ranking of the three other quantities is intuitive. The volume of trade is higher due to additional

sellers in the market. For the same reason, an individual seller meets buyers at a lower intensity, ren-

dering the time to sell longer. This leads to higher measures of agents in the economy, which further

increases the volume of trade. Similarly, the lower average quality of traded assets is due to the presence

of additional lemon holders in the pool of sellers.

Figures 7 and 8 show how the four quantities of our interest vary with λ in the three pure strategy

equilibria, when they exist, for the DGP and KW technologies, respectively. Three observations are

worth making. First, both in equilibrium E and H, the equilibrium price is decreasing in λ , while in

equilibrium L it is increasing in λ . This is due to the fact the expected surplus captured by a buyer

is increasing in the share of peaches when both assets are traded whereas it as decreasing in λ when

buyers offer prices rejected by peach holders. Second, the average quality of traded assets is strictly

lower and the volume of trade strictly higher in equilibrium H than in equilibrium E for both matching

technologies. This stems from the higher measure of lemon holders participating in the market. Third,
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Figure 7: DGP technology, parameter values: A = 1, κ = 1, ν = 2, µ = 2.5, r = 0.05, φ = 0.14, δg = 1 and
δb = 0.98.

for the KW technology, the expected time to sell is strictly higher in equilibrium H than in equilibrium

E when both exist. The reason for this is the congestion externality that hb agents impose on all sellers,

slowing the rate at which they are matched with buyers.

To gain further insight into how equilibrium quantities vary with the key parameters of the model and

across equilibria, we carry out the following exercises. First, we illustrate how the equilibrium quantities

respond to unanticipated changes in x and λ in equilibrium E and H, taking into consideration any

transitional dynamics that such changes may induce. Second, we show the behaviour of the equilibrium

quantities when the economy embarks on a transition from equilibrium E to H, with no change in the

parameters. That is, we consider a transition that is due to a change in agents’ beliefs. The exercises are

conducted for the KW technology.

In Figure 9, we illustrate the effect of a gradually higher x, a measure of gains from trade, on

equilibrium quantities. Until t = 1 the economy is in equilibrium H with x = 3/30. At t = 1 there is an

unanticipated increase in x to 4/30 but the economy remains in equilibrium H. Given that the matching

rates do not depend on x, this change induces no transitional dynamics. The discrete decrease in the

equilibrium price reflects the higher value of a buyer, capturing a part of the higher gains from trade. At

t = 2, the economy embarks on a transition to equilibrium E due to a change in agents’ beliefs. Note

that this is possible as both equilibrium E and H exist for the parameter values under consideration (see

Figure 3).32 Given that the ratio of γlg to γlb in equilibrium H is equal to that in equilibrium E, the average

quality of traded assets jumps immediately to its value in the limiting stationary equilibrium when hb

agents exit the market. The volume of trade and the time to sell, on the other hand, are higher along the

transition path than in the stationary equilibrium E. This stems from the fact that initially there are more

low-valuation sellers in the market as previously their matching intensity was below that in equilibrium

32Naturally, we have checked that hb agents are not willing to participate and buyers prefer to offer p̄lg rather than p̄lb also
along the transition path.
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Figure 8: KW technology, parameter values: A = 1, κ = 1, ν = 2, µ = 5, r = 0.05, φ = 0.15, δg = 1 and
δb = 0.98.

E. Due to the initially higher measure of sellers, the rate at which an individual buyer meets sellers is

decreasing along the transition path. For this reason, the value of being a buyer is decreasing and the

equilibrium price increasing along the transition path.33 At t = 3, there is a further unanticipated increase

in x to 5/30. This induces a further decrease in the equilibrium price, attributable to an increase in the

surplus captured by a buyer.

Figure 10 shows the results of an exercise in which the average quality of assets is gradually de-

creased.34 At t = 1, there is an unanticipated decrease in λ from 0.9 to 0.6. Although the economy

remains in equilibrium H, this induces transitional dynamics as the matching rates depend on λ . In

particular, the initial measure of low-valuation sellers is lower than that in the limiting stationary equi-

librium due to the previously higher mB. As a result, the initial volume of trade is lower. The initially

higher time to sell, on the other hand, is due to the initial measure of buyers being lower than in the

limiting stationary equilibrium. Along the transition path, the average quality of traded assets improves

as more low-valuation peach holders accumulate in the market. At t = 2, the economy embarks on a

transition path from equilibrium H to E. The transitional dynamics share the same characteristics as in

the previous exercise. At t = 3, λ further decreases to 0.3. In this case, equilibrium quantities do not dis-

play any transitional dynamics as in equilibrium E mB does not depend on the average quality of assets

in the economy.

The results of the two exercises can be summed up as follows. An increase in distress, as measured

by x, leads to a decrease in the equilibrium price as distressed sellers are willing to sell their assets at

a lower price. The decrease is amplified if the increase in x is associated with the economy moving

from equilibrium H to E. However, in this case, time to sell goes down and the average quality of assets

33The increase in the equilibrium price along the transition path is relatively small and for this reason cannot be seen in the
figure.

34More specifically, a randomly chosen set of peaches turns into lemons.
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Figure 9: KW technology, parameter values: A = 1, κ = 1, ν = 2, µ = 5, r = 0.05, λ = 0.7, δg = 1 and
δb = 0.98.

on the market improves as high-valuation owners of lemons no longer find it convenient to participate

as sellers. A decrease in the average quality of assets in the economy, on the other hand, affects the

equilibrium quantities in a non-monotonic fashion. Namely, if a decrease in λ is associated with the

economy moving to equilibrium E, the direct, positive effect of a lower λ on the equilibrium price can

be at least partly offset by the lower price in equilibrium E. Similarly, the average quality of traded assets

behaves non-monotonically when λ decreases, decreasing due to the direct effect and increasing due to

the transition to equilibrium E.

6.2 Utilitarian welfare across equilibria

We turn to investigate how equilibria compare in terms of utilitarian social welfare. For any strategy

profile σ = {σ ji}i={b,g,n}
j={h,l} , the utilitarian welfare value W (σ) is the weighted sum of the corresponding

value functions, say Vji(σ), using as weights the agents’ masses γ ji(σ):

W (σ) = ∑
ji

γ ji(σ)Vji(σ) (26)

The next Lemma provides an explicit expression for the welfare values.

Lemma 6.1 Consider an admissible strategy profile σ and the corresponding masses γi j(σ). The utili-

tarian social welfare value is equal to:

W (σ) =
A
r
[λδg +(1−λ )δb]−

x
r
[γlg(σ)+ γlb(σ)] (27)

The utilitarian welfare expression point out that strategies profiles σ can be evaluated from a utili-

tarian welfare perspective by comparing the masses of low-valuation asset holders in the economy. The
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Figure 10: KW technology, parameter values: A = 1, κ = 1, ν = 2, µ = 5, r = 0.05, x = 4/30, δg = 1 and
δb = 0.98.

lower the masses, the higher the welfare because fewer assets are in the hands of agents that value them

the least. In turn, the equilibrium masses depend on the strategy profile σ both directly and through

the potential impact on the matching rate mB. The effect on mB substantially complicates the analysis,

and it is not even straightforward to determine whether the complete information benchmark maximizes

utilitarian welfare. In principle, it may be optimal to have buyers offer prices rejected with positive

probability by peach holders, or even to restrict market participation of low-valuation asset holders. In

the next proposition we show that this is never the case because a strategy profile maximizes utilitarian

social welfare only if all low-valuation asset holders participate in the market and trade as soon as they

match with a buyer. For this purpose, we introduce the following notation for the probability that asset

holder ji trades when matched with a buyer:

qT
ji,z(σ) =

∫
σzn(p|I )σ ji(p)dp j,z = {h, l} i = {b,g} (28)

where σzn(p|I ) is the probability that an agent zn offers price p given his information set I on the asset

quality of his matched agent: with complete information I is equal to the true asset quality, while he

has no information under incomplete information, hence his strategies are identical irrespective of the

matched asset holder.

Proposition 6.2 The first-best level of utilitarian social welfare is equal to the one in the complete

information equilibrium:

W (σC) =
A
r
[λδg +(1−λ )δb]−

x
r

κA
κ +ν +mC

B
(29)

where mC
B solves equation (12).

A strategy profile σ satisfies W (σ) =W (σC) if and only if the following conditions hold:

- M(γB,γS)
γBγS

constant in γB,γS (e.g. DGP technology):
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qB
hn ∑

i=b,g
qS

liq
T
li,h = 1 qB

ln ∑
i=b,g

qS
hiq

T
hi,l = 0 (30)

- M(γB,γS)
γBγS

strictly decreasing in γB,γS (e.g. KW technology):

qB
hn ∑

i=b,g
qS

liq
T
li,h = 1 qB

ln + ∑
i=b,g

qS
hi = 0 (31)

Proposition 6.2 has straightforward implications about the welfare properties for the equilibria anal-

ysed in the previous sections. The next corollary provides an overview of the results.

Corollary 6.1 The following statements hold:

1. For all admissible matching technologies, the complete information equilibrium (Proposition 3.1)

and equilibrium E (Proposition 5.2) attain the first-best welfare level W (σC).

2. Equilibrium H in Proposition 5.3 entails a welfare loss equal to:

W (σC)−W (σ H) =
κAx

r

[
1

κ +ν +mH
B
− 1

κ +ν +mC
B

]
(32)

where W (σC)−W (σ H) is strictly positive and decreasing in λ if and only if M(γB,γS)
γBγS

is strictly

decreasing in γB,γS.

3. For all admissible matching technologies, the lemons market equilibrium in Proposition 5.1 en-

tails a welfare loss equal to:

W (σC)−W (σ L) =
κAx

r

[
λ

κ +ν
+

(1−λ )

κ +ν +mL
B
− 1

κ +ν +mC
B

]
(33)

where W (σC)−W (σ L) is strictly positive and increasing in λ .

The corollary points out an important feature of equilibrium H, in which also high-valuation lemon

holders participate in the market. Namely, for any competitive matching technology, such an equilibrium

is inefficient. This is due to the congestion externality that hb agents impose on all sellers: by slowing

down trade, a larger number of assets are held by low-valuation agents, leading to a welfare loss relative

to the first-best outcome.

The welfare loss in the lemons market equilibrium, on the other hand, simply stems from the fact

that peaches are not traded at all and for that reason end up being held by low-valuation agents until they

transit back to the state of high-valuation.

7 Market design interventions

The characterization of the equilibria in Section 5 and the results in 6.2 point out that under asymmetric

information the first-best outcome cannot be implemented for a substantial set of parameters. In this

section we explore whether and to which extent a market designer can implement the first-best outcome

relative to the decentralized equilibria. In Section 7.1 we discuss mechanisms in which the designer can

set the terms of bilateral trades; in Section 7.2 this possibility is precluded.
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7.1 Designer sets the bilateral terms of trade

We first consider the possibility that the designer sets, directly or indirectly, the terms of trade at which

agents can exchange assets. We further distinguish between two possible classes of mechanisms. In the

first class, the designer implements a stationary equilibrium such that the first-best outcome is obtained

by reallocating the existing assets among agents—subject to the same search frictions of the decentral-

ized economy—through a budget-balanced system of transfers. In the second class, the designer—still

subject to the search frictions—first acquires the existing assets from their holders, and then sells a newly

created asset that combines the existing assets in a ‘package’ which is not affected by an asymmetric

information problem about its asset quality. Then, we compare the two mechanisms in terms of their

effectiveness in enlarging the region of parameters for which the first-best outcome is implementable.

Lastly, we discuss the possible practical implementation of this policy and some related issues.

7.1.1 Transfer scheme for existing assets

In the first class of mechanisms the designer implements a stationary equilibrium through a mechanism

M offered to all agents. At every point in time an agent can report a message to the designer: for each

message the mechanism associates a flow transfer, an intensity at which agents sell or buy the asset—

if the agent holds an asset or not, respectively—and a transfer conditional on trade. Importantly, we

assume the designer cannot record what agents reported in their past but only their last message.35

Recall that in our notation agents hold a type b̃ ∈ B̃ = {hn, ln} if buyers or s̃ ∈ S̃ = {hb, lb,hg, lg} if

sellers; in general, let θ ∈ B̃∪ S̃ be a generic type. Types are bi-dimensional as they include both a

private information on the asset quality (b, g or n) and whether the agent holds a high (h) or low (l)

valuation for assets. By the direct revelation principle of Myerson (1981), we can restrict attention to

direct mechanisms in which all agents report directly their type, and we denote by θ ′ the reported type.

The designer promises a mechanism M := {α(θ), tT (θ), tN(θ)}. If the agent reports type θ ′ then the

quantity α(θ ′) denotes the intensity rate at which the agent is going to trade: if θ ′ ∈ S̃ an agent sells

his asset to the designer, while if θ ′ ∈ B̃ the agent receives an asset. We assume the designer observes

whether an agent holds or not an asset, i.e. θ ′ ∈ S̃ for θ ∈ S̃ and θ ′ ∈ B̃ for θ ∈ B̃. Moreover, transfer tT (θ ′)

applies upon trade while tN(θ ′) is a flow transfer received until the agent trades. Transfers are positive

(negative) if the designer pays (receives) the consumption good to the agent. Therefore, we can express

the value functions corresponding to a mechanism M = {α(θ), tT (θ), tN(θ)} as follows:

rV (θ ′,θ = ji,M ) = δi− x1{ j=l}+ν(Vhi−Vli)1{ j=l}+κ(Vli−Vhi)1{ j=h}+α(θ ′) [tT (θ ′)−Vji +Vjn]+ tN(θ ′)

rV (θ ′,θ = jn,M ) = ν(Vhn−Vln)1{ j=l}+κ(Vln−Vhn)1{ j=h}+α(θ ′) [E[Vji]+ tT (θ ′)−Vjn]+ tN(θ ′)
(34)

where E[Vji] is the expected value of holding an asset for a jn ∈ B̃ agent, given his expectation over the

average quality of assets received by the designer from sellers in S̃. We assume the designer does not

observe the quality of the assets, but simply assigns to buyers one asset at random from the ones received

from sellers. Without loss of generality we set tT (θ ′) = 0 if α(θ ′) = 0.

The mechanism designer is subject to the same matching frictions of the decentralized equilibrium.

To formally take into account these constraints, we introduce some notation similar to the one in Section

35If this opportunity would be feasible, it might be possible to implement the first-best outcome for a larger set of parameters,
but we would crucially depart from the anonymity assumption imposed in the decentralized equilibrium with bilateral trades.
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2.2. Let:

S(M ) =

{⋃
s̃∈S̃

s̃ : α(s̃)> 0

}
B(M ) =

{⋃
b̃∈B̃

b̃ : α(b̃)> 0

}
(35)

Denote by γS(M ) and γB(M ) the measure of agents in S(M ) and B(M ), respectively. Given the

matching technology available, the measure of matches between agents in S(M ) and B(M ) is equal

to M (γB(M ),γS(M )), and we can define the matching rates mB(M ) and mS(M ) as the solution to

mS(M )γB(M ) = mB(M )γS(M ) = µM (γB(M ),γS(M )). Therefore, the designer is subject to the con-

straints:

α(θ)≤ mS(M ) for θ ∈ B̃ α(θ)≤ mB(M ) for θ ∈ S̃ (36)

In order to be feasible, we require the mechanism to be budget-balanced on the equilibrium path. In

turn, in a stationary equilibrium this requirement implies the following constraint on the instantaneous

flow of total transfers:

∑
θ∈S̃∪B̃

γθ [tN(θ)+α(θ)tT (θ)]≤ 0 (37)

Finally, the mechanism must satisfy incentive compatibility (IC) and individual rationality (IR) for

each type θ , i.e.:

IC: V (θ ,θ ,M )≥V (θ ′,θ ,M ) ∀θ ∈ S̃∪ B̃

IR: V (θ ,θ ,M )≥ 1
r

(
δi−

κ + r1{ j=l}

κ +ν + r
x
)
∀θ = ji ∈ S̃ V (θ ,θ ,M )≥ 0 ∀θ ∈ B̃

(38)

where the reservation value for sellers is equal to the expected utility from holding the asset forever.

Our goal is to characterize for which set of parameters it is possible to implement the first-best

outcome subject to the constraints in equations (36)–(38). In the first-best allocation the rate at which

low-valuation asset holders trade is equal to the matching rate mC
B under no asymmetric information on

asset quality (Proposition 6.2), i.e. α(lg) = α(lb) = mC
B, and similarly hn agent trade at rate α(hn) = mC

S ;

for all other θ we have α(θ) = 0.

The next proposition characterizes the main result of this section.

Proposition 7.1 A mechanism M = {α(θ), tT (θ), tN(θ)} implements a first-best outcome under con-

straints (36)–(38) if and only if:

φ ≤ r(κ +ν + r+mC
B)+κmC

B

(κ +ν + r)(κ +ν + r+mC
B)

(39)

If inequality (39) holds, the first-best outcome can always be implemented if the transfer scheme satisfies:

tN(lg)+mC
BtT (lg) = tN(lb)+mC

BtT (lb) (40)

tN(h) = tN(hi) = r
r+mC

B

{
tN(li)+mC

B

[
tT (li)− 1

r

(
δg + tN(ln)− κ+r

κ+ν+r x
)]}
≥ 0 (41)

tN(ln) = r
r+mC

S

{
tN(hn)+mC

S

[
tT (hn)+ 1

r

(
δg + tN(h)− κ

κ+ν+r x− (1−λ )
r(κ+ν+r+mC

B)

r(κ+ν+r+mC
B)+κmC

B
(δg−δb)

)]}
≥ 0 (42)

µM(γC
B ,γ

C
S )
[

x
κ+ν+r − (1−λ )

κ+ν+r+mC
B

r(κ+ν+r+mC
B)+κmC

B
(δg−δb)

]
≥ AtN(h)+ tN(ln) (43)

The conditions in (41)–(43) are necessary if equation (39) is satisfied with equality.

It is worth making two observations about the characterization. First, given that mC
B = mE

B , the thresh-
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old value of φ in (39) strictly exceeds the largest value of φ for which equilibrium E exists, i.e. φ ∗E in

Proposition 5.2. Thus, the mechanism under consideration enlarges the set of (λ ,φ) pairs for which the

first-best outcome can be implemented. Second, the reason for which the mechanism can implement

the first-best outcome in regions of the parameter space in which hb agents are willing to participate in

the decentralized economy is that the mechanism compresses the difference between Vhn and Vln. As a

result, hb agents are less willing to participate in the market than in the decentralized economy.

The next corollary follows immediately from Proposition 7.1.

Corollary 7.1 If inequality (39) holds, the mechanism M ∗:

t∗N(θ) = 0 ∀θ α(lg) = α(lb) = mC
B α(hn) = mC

S α(θ) = 0 o.w.

t∗T (li) =
1
r

(
δg−

κ + r
κ +ν + r

x
)
=V (lg, lg,M ∗) i = b,g

t∗T (hn) =−t∗T (li)−
x

κ +ν + r
+

κ +ν + r+mC
B

r(κ +ν + r+mC
B)+κmC

B
(1−λ )(δg−δb)

=−[λV (hg,hg,M ∗)+(1−λ )V (hb,hb,M ∗)] =−E[Vhi]

(44)

maximizes the revenues for the market designer conditional on implementing the first-best outcome.

In the revenue-maximizing reallocation scheme the market designer captures the whole surplus from

trade. That is, in addition to low-valuation peach holders being indifferent between selling and keeping

their asset, buyers obtain a surplus of zero. Consequently, Vln = Vhn = 0, and hb agents have weaker

incentives to sell their assets than in the decentralized economy.

7.1.2 Packaging schemes

We proceed by considering an alternative mechanism which consists of the designer gradually acquiring

all the assets in the economy, and for each asset acquired issuing a certificate yielding a flow dividend

equal to that of an average asset held by the designer. From the moment in which the mechanism is

put in place, buyers can no longer buy the original assets but only the certificates issued by the designer.

Therefore, original assets can either be sold to the designer or kept forever (autarky).36 For newly created

certificates, the only source of private information in bilateral negotiations pertains to agents’ valuation

states, and certificates can be exchanged subject to the same search frictions of the market for the original

assets, but at terms of trade dictated by the designer.

We consider two possible schemes to acquire all the assets in the economy. In the first one, say

slow packaging (SP), the designer offers to buy original assets at a price which is only accepted by low-

valuation asset holders, while all high-valuation asset holders prefer to keep their assets until they transit

to the low-valuation state. In the second one, say fast packaging (FP), the designer acquires assets at a

price accepted by all asset holders. In both schemes, the total measure of certificates issued is equal to A

and the average quality of the assets held by the designer at all times is equal to the one in the economy.37

We assume the designer can commit to make a single take-it-or-leave-it offer to each asset holder.

That is, if an asset holder rejects the designer’s offer, the former cannot sell his asset to the latter in the
36Alternatively, we could assume that the the terms of trade for the original assets are set to be such that all gains from trade

accrue to the designer. This would ensure that agents continuing to trade existing assets would obtain their autarky values.
37If the designer offered a price accepted only by low-valuation lemon holders or by all low-valuation asset holders and high-

valuation lemon holders, the share of peaches held by the designer would, at least temporarily, differ from λ . For simplicity we
do not consider such non-stationary schemes, and restrict attention to the two stationary schemes outlined above.
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future. It turns out that the designer commits to such a single take-it-or-leave-it offer in a FP mechanism,

while he prefers not to do so in a SP one. In the former scheme committing to a single offer ensures

the outside option of a peach holder is equal to his autarky value.38 In the latter scheme instead the

designer does not commit to a single offer because he wishes to acquire assets only from low-valuation

asset holders, irrespective of whether agents previously received an offer while they were in the high-

valuation state.39

A certificate changes hands only when there are gains from trade, meaning that trade takes place

between low-valuation certificate holders and hn agents. As in the previous section, we characterize

stationary schemes, in which the matching intensities are constant over time. Since the certificates are

traded between low-valuation certificate holders and hn agents, sellers’ and buyers’ matching intensities

are equal to mC
B and mC

S , respectively. In the asset acquisition phase, the search frictions determine the

rate at which the designer acquires the original assets and issues certificates. However, we do not model

this rate because our results only depend on the rate at which certificates trade. Another requirement

underlying our mechanisms is that the designer encounters fewer asset holders than buyers. We justify

this assumption on the grounds that when ν ≥ κA the measure of buyers exceeds that of low-valuation

asset holders. This ensures that the designer meets fewer sellers than buyers in a SP scheme. Similarly,

in a FP scheme the measure of buyers exceeds that of sellers as the designer can simultaneously buy an

asset from and sell a certificate to the same agent when encountering a high-valuation asset holder.

We solve for mechanisms which maximize the designer’s profits, conditional on the resulting allo-

cation attaining the first-best welfare level. In this way we obtain the largest set of parameter values for

which the mechanisms under consideration are feasible. Given that the rate at which trade takes place

is constant, we can solve the problem of the designer asset by asset. To implement a first-best outcome,

the terms of trade set by the designer have to be such that only low-valuation certificate holders are

willing to sell their certificate and only hn agents are willing to buy one. Denoting the prices at which

certificates are sold and bought by pT (hn) and pT (ln), respectively, the present value of profits Π from

each certificate accruing to the designer solves:40

rΠh = κ(Πl−Πh)

rΠl = ν(Πh−Πl)+mB(pT (hn)− pT (lc)+Πh−Πl),
(45)

where lc refers to a low-valuation agent with a certificate while Πl and Πh denote the value of the

designer’s profits when the certificate is in the hands of a low-valuation and a high-valuation agent,

respectively. Solving for Πh, we obtain:

Πh =
κmB

r(κ +ν + r+mB)
[pT (hn)− pT (lc)] (46)

38Recall that in a fast packaging scheme the designer acquires all assets at the reservation price of a high-valuation peach
holder, so every other agent type enjoys a strictly positive payoff from accepting this offer. Suppose on the contrary that an
asset holder, even after rejecting an offer in the high-valuation state, could receive the same designer’s offer in the future. Since
low-valuation peach holders are strictly better off accepting than rejecting the offer, this surplus from trade would also increase
the expected utility of high-valuation asset holders. As a consequence, the reservation price of high-valuation peach holders
would be above their autarky value, and the designer would end up paying a higher price to acquire the assets. If instead the
designer can commit to make a single take-it-or-leave-it offer, the value of a high-valuation peach holder matched with the
designer offering pA is Whn = max{pA +Vhn,V a

hg}, where V a
hg denotes the autarky value of an hg agent.

39In contrast to a fast packaging scheme, in a slow one the designer offers the reservation price of low-valuation peach holders.
As a result, the previous argument in favour of a single take-it-or-leave-it offer does not hold.

40Note that differently from the previous section we are expressing the designer’s profits in terms of prices rather than transfers.
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When matched with an asset holder and a buyer, the problem of the designer is:

max
pA,pT
{−pA+pT (hn)+Πh}

subject to pA +V̂jn ≥
1
r

(
δg−

κ + r1{ j=l}

κ +ν + r
x
)

V̂hc− pT (hn)≥ 0

V̂ln + pT (lc)≥
1
r

(
δ̂ − κ + r

κ +ν + r
x
)

(47)

where j = l in a SP scheme, j = h in a FP scheme and δ̂ denotes the flow dividend of a certificate. V̂ji

denote agents’ values when certificates are traded. In words, the designer acquires the asset at price pA,

issues a certificate, sells it at price pT (hn) and the value of the future profits from the certificate is equal

to Πh. The first constraint is the IR constraint of an asset holder, the second the IR constraint of a buyer

and the third the IR constraint of a certificate holder. Note that we are supposing that the IC constraints

do not bind, which will be shown to be true in a revenue-maximizing mechanism. Solving the designer’s

problem yields the following proposition.

Proposition 7.2 The following statements hold for packaging schemes:

1. A revenue-maximizing packaging scheme is characterized by:

pA =
1
r

(
δg−

κ + r1{ j=l}

κ +ν + r
x
)

pT (hn) =
1
r

(
δ̂ − κ

κ +ν + r
x
)

pT (lc) =
1
r

(
δ̂ − κ + r

κ +ν + r
x
)
(48)

2. Slow packaging is feasible if and only if:

φ ≤ r(κ +ν + r+mC
B)+κmC

B

(κ +ν + r)(κ +ν + r+mC
B)

(49)

3. Fast packaging is feasible if and only if:

(1−λ )φ ≤ κmC
B

(κ +ν + r)(κ +ν + r+mC
B)

(50)

4. When both slow and fast packaging are feasible, slow packaging yields higher profits than fast

packaging.

The first part of the proposition reveals that in a revenue-maximizing packaging scheme both buyers

and certificate holders are kept at their outside option values. In this way, the designer maximizes

revenue from the trade in the certificates. The designer offers a price equal to the autarky value of

holding a peach to convince asset holders of both qualities to sell. Alternatively, the designer could set

the terms of trade for certificates to be such that certificate buyers would obtain a positive surplus, and

pay a lower price for the original assets. However, this is not optimal for the following reason: selling

a certificate at a price below the outside option of a buyer entails an immediate cost for the designer

in the form of a lower revenue; at the same time, the reservation price of an asset holder decreases

by less than one-to-one as the seller benefits from the lower price of certificates only in the future. A

similar reasoning applies to the price offered to a seller of certificates. As a consequence, it is optimal
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to maximize the revenues from the trades in certificates, although this implies that the designer has to

acquire all assets at a higher price.

As regards the feasibility condition of a SP scheme, this coincides with the feasibility condition

found in the Section 7.1.1, applying to mechanisms in which the original assets continue to circulate.

This is due to the fact that both revenue-maximizing mechanisms implement the first-best outcome by

setting Vhn =Vln while ensuring that hb agents prefer to keep their assets.

The condition for a FP scheme to yield a non-negative profit is intuitive. Since in a FP scheme the

designer acquires all assets at a ‘premium’, such a scheme yields positive profits only when the average

quality of assets in the economy is sufficiently high. Otherwise, the initial loss incurred due to acquiring

lemons at the high price is larger than the present value of future profits from the certificate trades.

Finally, the fact that a SP scheme yields higher profits than a FP scheme is due to the lower price at

which the assets are acquired.

Figure 11: DGP technology, parameter values: A = 1, κ = 1, ν = 2, µ = 2.5, r = 0.05.

Figure 11 illustrates the feasibility of the two types of packaging schemes. In the yellow area, a

packaging scheme improves efficiency as equilibrium E does not exist even though adverse selection is

moderate. Either a SP or a FP scheme can restore a first-best outcome even in regions of the parame-

ter space where the outcome in the decentralized economy is always inefficient due to severe adverse

selection (the grey and the red areas). This is because for the parameter values considered certificates

change hands relatively frequently, and a high volume of trade implies higher revenues for the designer.

As a result, the market designer is able to recoup any initial losses from acquiring the original assets at

a ‘premium’ by controlling the secondary market for certificates.

To conclude our discussion of market interventions in which the designer can dictate the terms

of trade, we point out that an intervention involving packaging existing assets has a wider scope to

implement the first-best outcome than a reallocation scheme for existing assets. Issuing certificates all of

which yield the same dividend flow removes a source of asymmetric information—heterogeneous asset
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quality—from the economy. Given that bi-dimensional private information amplifies adverse selection

in the decentralized economy, the first-best outcome is easier to implement in an economy in which only

homogeneous assets circulate.

7.1.3 Implementation issues

The previous mechanisms rely on the possibility for the designer to alter the bilateral terms of trade

among agents. Both when a mechanism applies to existing assets and to certificates, it is crucial to

impose a wedge between the price at which agents buy and sell. In a market with asymmetric information

on asset quality, this wedge mitigates the mimicking incentives of non-distressed lemon holders. In the

secondary market for certificates asymmetric information is no longer an issue; nonetheless, imposing

a wedge is the most effective way to raise revenues from trades. Indeed, unless sellers have all the

bargaining power in bilateral negotiations, an initial fee when issuing the certificates raises a lower

amount of revenues (in present value terms). In this sense, imposing a fee for each transaction alleviates

an inefficiency due to bargaining. This will become clearer from the results in Section 7.2. To practically

implement a price differential, two main types of intervention are possible: (i) trade intermediation; (ii)

a financial transaction tax.

Market intermediation of all trades requires to directly set the terms of trade—by charging a bid-ask

spread—for all the transactions taking place in the secondary markets. This implementation strategy

presupposes that the designer controls all the market venues through which market participants can

trade. For the case of the packaging schemes, this implies control of both the primary issuance market

for certificates and their secondary market. This strategy has been implemented by several peer-to-peer

(P2P) platforms that control both the primary and the secondary markets for their originated loans.41

Selling on the secondary market platforms for P2P loans often requires paying a fee or getting a discount

relative to the price paid by new buyers. Although the way P2P secondary markets work may provide

practical insights for the design of other markets, such as the one for NPLs, it is disputable whether this

option is actually feasible and cost-efficient. Indeed, it may be legally impracticable to restrict trade to

one platform, in turn hindering the possibilities to recoup costs. Moreover, the fixed cost for the creation

of a new trading platform may be substantial, further reducing the viability of such an intervention.

A financial transaction tax (FTT) can help to overcome the main hurdles previously pointed out

for setting up a single market venue to trade all certificates. In Europe FTTs are already in place in

some countries (Belgium, France, Greece and Italy), and there is an ongoing discussion on a proposal

to harmonize FTT legislation among ten European countries.42 The main challenge for an effective

tax collection from a FTT comes from the lack of an uniform application of the tax among countries,

asset classes and investors. The need for exemptions has been justified based on the potential negative

liquidity effects on market participants,43 while FTT proponents point out a beneficial composition effect

41FinTech lending companies originate (directly or through a third-party) loans that are bought by an initial set of investors.
To improve the attractiveness of loans to investors, P2P lending companies have been developing internal secondary markets for
their loans that allow investors to sell their portfolio before maturity; see for example ‘Banking without banks’, The Economist,
March 1st , 2014. Interestingly, some platforms allow individual loans to be traded, while others only allow to invest and divest
in a portfolio of all platform loans outstanding; for a detailed overview of P2P lending platforms see the blog piece "Where can
you buy or sell existing loans?" on 4thway.co.uk.

42European Commission, 2013."Proposal for a Council Directive Implementing Enhanced Cooperation in the Area of Financial
Transaction Tax."

43The empirical evidence find mixed evidence on the liquidity effects; see Becchetti et al. (2014), Capelle-Blancard and
Havrylchyk (2015), Coelho (2016), Cappelletti et al. (2016) and Colliard and Hoffmann (2017) for evidence on the recent
implementation of FTTs in France and Italy.
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arising from a more limited participation by non-fundamental traders.44 In the same spirit, our results

advocate introducing a FTT based on the fact that it limits market participation of non-distressed lemon

holders who trade just to take advantage of their information rent and not because of asset valuation

shocks. In the secondary market for certificates there is no asymmetric information, but the FTT is still

optimal from an ex ante perspective as it increases the present value of future tax revenues. In turn,

higher tax revenues better allow to cover the initial losses incurred during the initial asset acquisition,

when all lemons and peaches are acquired at the price of peaches.

7.2 Designer cannot affect the bilateral terms of trade

The interventions characterized so far presuppose that the marker designer can impose a wedge between

the price paid by buyers and the one received by sellers—e.g. a bid-ask spread or a tax—for both the

original assets and the issued certificates. In practice this may not always be possible, and we now

examine under which conditions a packaging scheme can be feasible when terms of trade are dictated

by the market. This alternative assumption has two implications: first, the market designer may no

longer be able to earn a profit from each secondary market transaction of certificates; second, when

acquiring the original assets, the designer has to take into account the possibility that existing assets can

continue to be traded in the private market.

To model this market constraint we consider the following protocol. Once a buyer and a seller meet,

both the designer and the buyer make take-it-or-leave-it offers to the seller to obtain his asset. As in

the previous packaging schemes, the designer can commit to make a single take-it-or-leave-it offer to

each asset holder. In other words, if a seller rejects the designer’s offer, the former will not receive any

further offer from the designer for his asset. If the buyer’s offer is rejected by the seller, he can still buy a

certificate issued by the designer. As previously, the certificate offers a known dividend flow. The price

of the issued certificate, on the contrary, is not set by the designer. Instead, the designer is constrained

to sell certificates at the same price at which they are traded in the secondary market, in which private

buyers and sellers engage in Nash bargaining to determine the terms of trade. This constraint can be

motivated by the fact that now the designer has to compete with private sellers of certificates.45 In this

way, we also avoid the possible non-stationarities that would arise from private buyers finding it more

convenient to reject the designer’s offer when the measure of private certificate sellers increases over

time.

We still focus on stationary schemes which implement the first-best outcome and maximize the de-

signer’s profits. Moreover, we restrict attention to fast packaging schemes for the following reasons.

Suppose that the designer introduces a slow packaging scheme when terms of trade for both the original

assets and the certificates are dictated by the market. If certificate buyers have at least some bargaining

power, the price at which certificates are sold is such that buyers obtain a positive surplus. As a con-

sequence, also the difference V̂hn− V̂ln is strictly positive. As demonstrated in Section 7.1, this implies

that high-valuation lemon holders have a stronger incentive to sell their assets than when the designer

44See Tobin (1978) and Stiglitz (1989) were early proponents of FTT to curb excessive volatility. The recent theoretical
contribution by Berentsen et al. (2016) and Davila (2016) argue that social welfare would improve in the presence of a positive
FTT.

45It should be pointed out that, due to search frictions, buyers may be willing to acquire a certificate from the designer at a
higher price than that resulting from Nash bargaining with a private seller. Buyers’ willingness to do so is due to an analogous
economic mechanism as in Diamond (1971). However, to better highlight the limitations arising from not being able to freely
set the terms of trade, we assume that the designer acts as a price-taker in the market for certificates.
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captures all the gains from trade, in which case V̂hn = V̂ln = 0. Thus, a slow packaging scheme with

market-determined terms of trade would be feasible for a smaller set of parameter values than that char-

acterized in Proposition 7.2. Furthermore, in a slow packaging scheme, the designer, offering a price

accepted only by low-valuation asset sellers, would face stronger competition from private sellers than

in a fast packaging scheme, in which the designer offers a higher price accepted also by high-valuation

asset holders. Therefore, the designer would have to offer a price above the reservation price of low-

valuation peach holders, which would further strengthen the incentives of high-valuation lemon holders

to sell their assets to the designer.

Formally, the designer’s problem is:

max
pA
{−pA+pC}

subject to pA +V̂hn ≥max
{

p+V̂hn,
1
r

(
δg−

κ

κ +ν + r
x
)}

p = argmax
{

πhn(g, p)(Vhg− p)+πhn(b, p)(Vhb− p)+ [1−πhn(g, p)−πhn(b, p)] (V̂hc− pC)
}

(51)

where p denotes the price offered by a private buyer, pA that offered by the designer and pC the certificate

price determined by Nash bargaining in the secondary market. A few comments are in order. First,

sellers’ outside options are no longer equal to their values under autarky. Rather they are determined by

the terms of trade in the private asset market. Second, the price of the certificate issued by the designer

is no longer a choice variable because he acts as a price-taker in the market for certificates. Finally, a

private buyer, taking the strategy of the designer as given, offers a price that maximizes his expected

utility. The strategy of the designer influences the probability that a buyer offering p obtains an asset

of type-i, πhn(i, p). Given that we are interested in the feasibility of a packaging scheme, we focus on

mechanisms in which all sellers accept the designer’s offer. In this class of schemes, we obtain the

following result.

Proposition 7.3 With market-determined outside options and certificate prices set by Nash bargaining,

a fast packaging scheme is feasible if and only if

(1−λ )φ ≤ βκmC
B

(κ +ν + r)
[
κ +ν + r+(1−β )mC

S +βmC
B

]
−

(1−β )r
[
κ +ν + r+(1−β )mC

S

][
κ +ν + r+βmC

B− (1−β )mC
S

]
(κ +ν + r)(κ +ν + r+βmC

B)
[
κ +ν + r+(1−β )mC

S +βmC
B

] (52)

The feasibility of a packaging scheme in which the designer no longer sets the terms of trade in

the secondary market for the certificates depends crucially on the relative bargaining power of sellers.

When a seller of a certificate has all the bargaining power (β = 1), the designer essentially sells not only

a certificate but also all the surplus from its future trade to the buyer. For this reason, the feasibility

condition in this case coincides with that when the designer earns the maximum profit from all future

trades of the certificate. On the other hand, when a buyer of a certificate has all the bargaining power

(β = 0), the designer captures no surplus and has to sell the certificates at a lower price than that paid to

asset holders, always making a loss.

To sum up, a packaging scheme can be budget-balanced even when the market designer does not

control the secondary market for the issued certificates. However, feasibility requires that the bargaining

power of a certificate seller, be it the designer or a private agent, is sufficiently high. This ensures that
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the designer, when issuing the certificates, captures a large share of the surplus from trade which private

sellers obtain when certificates change hands in the future.

8 Conclusions

We have shown that, in a model of over-the-counter markets, private information about both the private

(holding costs) and common value (asset quality) components amplifies the adverse selection problem

due to privately known asset quality. Namely, private information about asset holding costs further

constrains the parameter region in which an efficient market outcome can emerge. This is because of

endogenous market participation; high-valuation holders of low-quality assets have an incentive to sell

when either gains from trade are small, implying a high equilibrium price, or the average quality of

assets in the economy is high, entailing that buyers capture a large surplus. The participation of high-

valuation asset holders as sellers creates an inefficiency because they have the same asset valuation as

buyers—hence no gains from trade exist—and their presence in the market potentially slows down trade

due a congestion effect. High-valuation holders of lemons have a stronger incentives to offer their assets

for sale when the share of peaches is high, as this improves the chances of exchanging their lemons for

peaches.

When the economy suffer from severe adverse selection problem—i.e. when also high-valuation

lemon holders choose to participate in the market—the resulting inefficiency can manifest itself in two

starkly different ways. Either high-quality assets are not traded at all because of a classic market break-

down or the equilibrium exhibits excessive trade. In the first case, due to all lemons being on the market,

a pooling equilibrium cannot exist as buyers do not find it convenient to offer the reservation price of

peach holders. Instead, buyers offer low prices at which only low-valuation lemon holders are willing

to sell. The equilibrium is inefficient as not all mutually beneficial trades take place. In the second

case, although all lemon holders participate as sellers, the average quality of the assets offered for sale

is sufficiently high, and buyers find it convenient to offer a high price accepted by all sellers. Such an

equilibrium, featuring lemons being traded excessively, is inefficient whenever the matching technology

exhibits congestion effects. It is worth mentioning that the two possible outcomes are markedly different

in terms of observables. In the first case, the volume of trade and the market price are low, but time to

sell is short; in the second case, the volume of trade and the market price are high, but the market is less

liquid as it takes longer for sellers to find a buyer.

We have characterized two budget-balanced interventions which can implement the first-best out-

come subject to the search frictions of the decentralized economy. The first intervention entails setting

the terms of trade of the existing assets, and it can restore the first-best outcome in a region of param-

eters where the decentralized economy suffers from severe adverse selection. By reducing the surplus

accruing to buyers, the intervention discourages high-valuation lemon holders from participating in the

market. The second intervention consists of gradually buying the existing assets in the economy, and

simultaneously issuing certificates backed by the whole pool of assets acquired. Acquiring assets at a

premium to market price and earning a profit from trades in the secondary market for certificates, such an

intervention can restore the first-best outcome for a set of economies for which the first type of interven-

tion fails. The packaging scheme eliminates asymmetric information on asset quality—the certificates

issued by the market designer are of homogeneous quality—and at the same time renders irrelevant the
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presence of private information on agents’ valuations states. Such a scheme can be budget-balanced

even when the designer cannot influence the terms of trade in the secondary market for the certificates

as long as the designer’s bargaining power in the primary market is strong.

42



Appendix A

A.1 Auxiliary results

We first make use of the Hamilton-Jabobi-Bellman equations to establish a few auxiliary results that

hold in every stationary equilibrium.

Lemma A.1 For i ∈ {b,g}, Vhi >Vli and Vhn ≥Vln.

Proof of Lemma A.1.
On the contrary, suppose Vli ≥Vhi. Combining (8) and (9) yields

(κ +ν + r)(Vhi−Vli) = x+mB [(Whi−Vhi)− (Wli−Vli)] . (53)

if Vli ≥Vhi then equation (53) implies Whi−Vhi <Wli−Vli as x and mB are strictly positive. Since

Wji−Vji =
∫

max{p+Vjn−Vji,0}dF(p), (54)

it must be the case that Vhn−Vhi <Vln−Vli. Hence the following must hold:

Vln−Vhn >Vli−Vhi ≥ 0 (55)

From equations (10) and (11) we have:

(κ +ν + r)(Vhn−Vln) = mS [(Whn−Vhn)− (Wln−Vln)] , (56)

where

Wjn−Vjn = max
p
{π jh(g, p)(Vjg− p−Vjn)+π jh(b, p)(Vjb− p−Vjn)} . (57)

By (55) it holds that Vln−Vhn > 0, hence equation (56) implies

Whn−Vhn <Wln−Vln ⇒ Wln−Whn >Vln−Vhn > 0 (58)

Let p∗ln an optimal price offered by ln agents. Then, equations (55) and (58) together with the equilibrium

condition πhn = πln lead to the following implications:

0≤Vli−Vhi <Vln−Vhn <Wln−Whn

= max
p
{πln(g, p)[Vlg− p]+πln(b, p)[Vlb− p]}−max

p
{πhn(g, p)[Vhg− p]+πhn(b, p)[Vhb− p]}

≤ πhn(g, p∗ln)[Vlg−Vhg]+πhn(b, p∗ln)[Vlb−Vhb]≤max{Vlg−Vhg,Vlb−Vhb}

(59)

This is a contradiction as the inequality cannot hold for the asset i with the highest value Vli−Vhi.

Now, suppose that Vln > Vhn. Given that Vhi > Vli for i ∈ {b,g}, it follows from (57) that Wln−Vln ≤
Whn−Vhn. Thus, by (56), Vhn ≥Vln, a contradiction. Hence, it has been proved that Vhn ≥Vln.
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Lemma A.2 For j ∈ {h, l}, Vjg >Vjb.

Proof of Lemma A.2.
Consider a high-valuation agent holding an asset. From (8), it follows that

(κ + r)(Vhg−Vhb) = δg−δb +κ(Vlg−Vlb)+mB [(Whg−Vhg)− (Whb−Vhb)] , (60)

where

Whi−Vhi =
∫

max{p+Vhn−Vhi,0}dF(p). (61)

Now, suppose that Vhb ≥ Vhg. Then, from (61), Whg−Vhg ≥Whb−Vhb. Thus, for (60) to hold, it has to be

that Vlg <Vlb. From (9), one obtains

(ν + r)(Vlg−Vlb) = δg−δb +ν(Vhg−Vhb)+mB [(Wlg−Vlg)− (Wlb−Vlb)] , (62)

where the term multiplied by mB is positive by equation (54) and Vlg <Vlb. Thus, for both (60) and (62)

to hold, the following inequalities have to be satisfied

r(Vhg−Vhb)+κ [(Vhg−Vhb)− (Vlg−Vlb)]> 0 (63)

r(Vlg−Vlb)+ν [(Vlg−Vlb)− (Vhg−Vhb)]> 0. (64)

Given that Vhg−Vhb ≤ 0 and Vlg−Vlb < 0, this would require

Vhg−Vhb >Vlg−Vlb >Vhg−Vhb, (65)

a contradiction. Hence, it follows that Vhg > Vhb. A symmetric argument can be employed to establish

that Vlg >Vlb.

Lemma A.3 It is always a best response for ln agents not to trade. It is a strict best response if lemons

and peaches are traded in the market.

Proof of Lemma A.3.
From (5) and Lemma A.1, the lowest price at which a peach can be bought, p̄lg satisfies

p̄lg +Vln =Vlg. (66)

Substituting this price into (7) yields

Wln = πln(g, p̄lg)Vln +πln(b, p̄lg) [Vln− (Vlg−Vlb)]+ [1−πln(g, p̄lg)−πln(b, p̄lg)]Vln (67)

By Lemma A.2, Vlg > Vlb. Thus, it follows that Wln < Vln as πln(b, p̄lg) > 0 because lemons trade at this

price ( p̄lg > p̄lb). That is, a low-valuation agent without an asset is worse off trading at the lowest price

at which a peach can be acquired. The lowest price at which a lemon can be bought, on the other hand,

is equal to:

p̄lb =Vlb−Vln. (68)
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Given that Vlg > Vlb, this price is rejected by sellers of peaches, implying that πln(g, p̄lg) = 0. Thus, one

obtains

Wln = πln(b, p̄lb)Vln +[1−πln(b, p̄lb)]Vln. (69)

Consequently, a low-valuation agent without an asset is at least as well off not trading as trading.

Lemma A.4 Buyers offer p̄lg :=Vlg−Vln and/or p̄lb :=Vlb−Vln. In equilibrium, hg agents never sell their

assets while active sellers accept prices greater or equal to their reservation price with probability one.

Proof of Lemma A.4.
By Lemma A.3 equations (10) and (11) become:

Vln =
ν

ν + r
Vhn

Vhn =
mS

r+ κr
ν+r +mS

max
p
{πhn(g, p)[Vhg− p]+πhn(b, p)[Vhb− p]+ [1−πhn(g, p)−πhn(b, p)]Vhn}

(70)

Step 1. In equilibrium buyers do not offer prices rejected with probability one.

Suppose per contra buyers offer a price rejected with probability one by all sellers. Then, equation (70)

implies Vhn = 0. However, consider a deviation:

p̃lb =Vlb−Vln + ε = p̄lb + ε (71)

As lb agents always participate in the market and accept p̃lb, then πhn(b, p̃lb)> 0; hence buyers’ expected

payoff would be:

πhn(b, p̃lb) [Vhb−Vlb +Vln− ε] = πhn(b, p̃lb) [Vhb−Vlb− ε] (72)

since Vhn = 0. The deviation is profitable for ε sufficiently small because, by Lemma A.1, Vhb−Vlb > 0.

Hence, buyers offer no price rejected with probability one.

Step 2. No buyer offers p≥ p̄hg.

First, notice that Lemma A.2 implies p̄ jg =Vjg−Vjn >Vjb−Vjn = p̄ jb. Moreover, it also holds that p̄hg =

Vhg−Vhn >Vlg−Vln = p̄lg, or equivalently Vhg−Vlg >Vhn−Vln. Suppose per contra the last inequality does

not hold. In equilibrium, if peaches are traded then buyers find it optimal to offer p≥ p̄lg. Let Whn be the

expected payoff from offering p. Then,

Whn = πhn(g, p)[Vhg− p]+πhn(b, p)[Vhb− p]+ [1−πhn(g, p)−πhn(g, p)]Vhn ≤Vhg− p≤Vhg− p̄hg =Vhn (73)

However, if Whn ≤ Vhn then Vhn = 0 and, in turn, by equation (70) it follows that Vln = 0. As a result, by

Lemma A.1, the following contradiction obtains: 0 =Vhn−Vln ≥Vhg−Vlg > 0. Hence, it must be p̄hg > p̄lg.

Therefore, all asset holders are willing to sell at p̄hg. The expected gain for a buyer from offering p̄hg is

zero only if he receives a peach for sure. Thus, a buyer incurs a strictly negative expected payoff because

he always receives a lemon with positive probability (πhn(b, p̄hg) > 0). Hence, p̄hg is never offered and

high-valuation holders of peaches never trade. If offering p̄hg is not convenient it is also suboptimal to

offer any price above it.

Step 3. No buyer offers p̄hb.

Let’s distinguish two cases:
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Case 1. Let p̄lg > p̄hb and suppose per contra a buyer offers p̄hb. Such an offer is only accepted by

lemon holders. If the buyer is an ln agents any price above p̄lb < p̄hb
46 leads to a negative expected gain

from the trade. An hn buyer makes an expected net gain of zero if he trades at p̄hb. Consider a deviation

p ∈ [p̄lb, p̄hb). If an hn agent matches with a hb seller, the latter does not accept so the net gain is zero; if

he matches with a lb-seller, the latter accepts because p ≥ p̄lb and the hn agent makes a strictly positive

net gain from the trade, hence the deviation is profitable.

Case 2. Let p̄hb > p̄lg and suppose per contra a buyer offers p̄hb. Consider a deviation p ∈ [p̄lg, p̄hb).

If a buyer matches with an hb agent he does not trade as p < p̄hb, but the former’s expected payoff is at

most zero as there is no expected gain in acquiring a lemon at p̄hb. If a buyer matches with a lg or lb

seller, both accept p < p̄hb and the buyer’s net gain from the trade is positive.

Step 4. Buyers offer either p̄lb, p̄lg or both. A low-valuation asset holder li, i = b,g, accepts any price

greater or equal to his reservation price p̄li with probability one.

By definition of reservation price p̄li, the statement is obvious for any price p > p̄li. Hence, we can

restrict attention to the following two cases:

Case 1. In equilibrium p̄lb is accepted with probability one by lb agents. Suppose per contra this is

not the case and in equilibrium p̄lb is rejected with positive probability by lb agents. By Lemma A.2 only

lb-agents may accept this price. For every ε ∈ (0, p̄lg− p̄lb) offering a price p̄lb + ε makes all lb-agents

willing to accept, and all lg-agents reject. Agents hn expected payoff from offering this price would be

πhn(b, p̄lb + ε)(Vhb− p)+ [1−πhn(b, p̄lb + ε)]Vhn. Notice that for every ε ∈ (0, p̄lg− p̄lb) the probability of

acceptance jumps discontinuously because all lb-sellers accept with probability one. Therefore, it holds

πhn(b, p̄lb + ε)> πhn(b, p̄lb) for every ε > 0. It is a profitable deviation to offer p̄lb + ε if:

πhn(b, p̄lb + ε)(Vhb− p̄lb− ε))+ [1−πhn(b, p̄lb + ε)]Vhn > πhn(b, p̄lb)(Vhb− p̄lb)+ [1−πhn(b, p̄lb)]Vhn (74)

which holds for ε < [πhn(b,p̄lb+ε)−πhn(b,p̄lb)](Vhb−p̄lb−Vhn)
πhn(b,p̄lb+ε) . Therefore, if p̄lb were not accepted with probability

one then there would be a profitable deviation for buyers. However, if this were the case, no price p̄lb +ε

would be a best response as buyers would always have an incentive to slightly undercut the price offered

by others. Therefore, the only possible equilibrium is that p̄lb is accepted with probability one in order

to be played.

Case 2. In equilibrium p̄lg is accepted with probability one by lg and lb agents. First notice that lb

agents always accept with probability one as p̄lg > p̄lb. For lg agents an analogous argument to the one

in Case 1 shows that lg agents accept p̄lg with probability one both when p̄lg > p̄hb and p̄lg < p̄hb. Indeed,

in this case, for a sufficiently small ε , offering a price p̄lg + ε does not affect the decision of hb agents to

accept or reject, respectively, the out-of-equilibrium deviation price. The argument has to be established

when p̄lg = p̄hb and both lg and hb accept this price with probability less than one; in this case offering a

slightly higher price p̄lg + ε leads both lg and hb agents to accept the deviation with probability one. A

deviation p̄lg + ε is profitable if and only if:

πhn(g, p̄lg + ε)(Vhg− p̄lg− ε)+πhn(b, p̄lg + ε)](Vhb− p̄lg− ε)+ [1−πhn(g, p̄lg + ε)−πhn(b, p̄lg + ε)]Vhn

≥πhn(g, p̄lg)(Vhg− p̄lg)+πhn(b, p̄lg)](Vhb− p̄lg)+ [1−πhn(g, p̄lg)−πhn(b, p̄lg)]Vhn

(75)

46This inequality holds by an argument analogous to the one in Step 2 for peaches.
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Since p̄lg = p̄hb, the expression can be rearranged as:

ε ≤ [πhn(g, p̄lg + ε)−πhn(g, p̄lg)](Vhg−Vhn− p̄lg)+ [πhn(b, p̄lg + ε)−πhn(b, p̄lg)](Vhb−Vhn− p̄hb)

πhn(g, p̄lg + ε)+πhn(b, p̄lg + ε)

=
[πhn(g, p̄lg + ε)−πhn(g, p̄lg)](p̄hg− p̄lg)

πhn(g, p̄lg + ε)+πhn(b, p̄lg + ε)

(76)

Since all lg agents accept p̄lg + ε and, by hypothesis, while they mix between accepting and rejecting

when offered p̄lg, it holds [πhn(g, p̄lg + ε)− πhn(g, p̄lg)] > 0. Moreover, by Step 2 it holds p̄hg− p̄lg > 0.

Therefore, an optimal deviation would exist for ε sufficiently small, contradicting the hypothesis that

offering p̄lg is a best response. As a result, it must be the case that all lg agents accept p̄lg with probability

one.

Finally, notice the previous arguments together with Steps 1–3 imply that it is never optimal to offer

any price different from p̄lg or p̄lb.

A.2 Proofs

Proof of Proposition 3.1.

1. Given that there are gains from trade only between low-valuation asset holders and high-valuation

agents without assets, these two groups constitute the sets of sellers and buyers.

2. In equilibrium mSγB = mBγS = µM(γB,γS). The equilibrium expressions for γS = γlg +γlb and γB = γhn

are the steady state solution of the following system of differential equations for the evolution of

masses:
γ̇hg =νγlg−κ(λA− γlg)+ γlgmB = 0

γ̇hb =νγlb−κ[(1−λ )A− γlb]+ γlbmB = 0

γ̇hn =ν(1− γhn)−κγhn− γhnmS = ν(1− γhn)−κγhn− γSmB = 0

(77)

Solving the equations we get γlg = κλA
κ+ν+mB

, γlb = κ(1−λ )A
κ+ν+mB

and γhn =
ν− κAmB

κ+ν+mB
κ+ν

. Substituting these

expression in mBγS = µM(γB,γS) we get:

κAmB

κ +ν +mB
= µM

(
κA

κ +ν +mB
,

ν− κAmB
κ+ν+mB

κ +ν

)
(78)

The LHS is strictly increasing in mB and it is equal to zero for mB = 0; the RHS is decreasing

in mB as ∂γB
∂mB

< 0, ∂γS
∂mB

< 0 and M(·, ·) is increasing in both its arguments. Moreover, for mB = 0

the matching function M
(

κA
κ+ν

, ν

κ+ν

)
> 0. Therefore, there exists a unique value mB that solves

the equation. The value of mS can be easily obtained once we consider the equilibrium condition

mSγB = mBγS and we substitute for the equilibrium masses γB = γhn and γS = γlg+γlb obtained before.

It is straightforward to obtain that mS is strictly increasing in mB.

3. Notice that the total volume at every point in time is equal to mBγS (or alternatively mSγB), and the

results in point 2. lead immediately to the expression in the proposition.

4. Under the generalized Nash bargaining solution, the equilibrium price solves:

max
p

(p−Vli +Vln)
β (Vhi− p−Vhn)

1−β (79)
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Hence, the solution is equal to p = β (Vhi−Vhn)+ (1−β )(Vli−Vln). Substituting this price expres-

sion in the value functions and using point 1. we get:

rVhi =δi +κ(Vli−Vhi) (80)

rVli =δi− x+ν(Vhi−Vli)+βmB(Vhi−Vhn−Vli +Vln) (81)

rVhn =κ(Vln−Vhn)+(1−β )mS(Vhi−Vli +Vln−Vhn) (82)

rVln =ν(Vhn−Vln) (83)

Using the last two equations we get:

Vhn−Vln =
(1−β )mS

κ +ν + r+(1−β )mS
(Vhi−Vli) (84)

Subtracting the value functions of li agents from that of hi agents and using the last equation we

get:

Vhi−Vli =
κ +ν + r+(1−β )mS

(κ +ν + r)[κ +ν + r+(1−β )mS +βmB]
x (85)

Substituting Vhn−Vln and Vhi−Vli into the value functions we get:

Vhi−Vhn =
1
r

[
δi−

(κ +ν + r)[κ +(1−β )mS]

κ +ν + r+(1−β )mS
(Vhi−Vli)

]
Vli−Vln =

1
r

[
δi−

(κ +ν + r)[κ + r+(1−β )mS]

κ +ν + r+(1−β )mS
(Vhi−Vli)

] (86)

Plugging these values in the expression for the equilibrium price and using equation (85) we get:

pi =
1
r

[
δi−

κ +(1−β )(r+mS)

κ +ν + r+(1−β )mS +βmB
x
]

(87)

Proof of Proposition 5.1.
If only lemons are traded then γS = γlb. Let ms̃ denote the matching rate of buyers with asset owners

of type s̃ ∈ S̃ when γS = γlb. For the DGP technology ms̃ = µ
γs̃

1+A for every s̃ ∈ S̃; for any competitive

matching technology ms̃ = 0 if s̃ 6= lb and mlb = µ
γlb

γlb+γhn
. By Lemma A.4, in a lemons market buyers only

offer p̄lb = Vlb−Vln, while peaches do not trade. As a consequence, the equilibrium value functions are

equal to:
rVhg =δg +κ (Vlg−Vhg)

rVlg =δg− x+ν (Vhg−Vlg)

rVhb =δb +κ (Vlb−Vhb)

rVlb =δb− x+ν (Vhb−Vlb)+mB (Wlb−Vlb) = δb− x+ν (Vhb−Vlb)

rVhn =κ(Vln−Vhn)+mlb(Whn−Vhn) = κ(Vln−Vhn)+mlb(Vhb−Vlb +Vln−Vhn)

rVln =ν(Vhn−Vln)

(88)

From the set of equations in (88) it is straightforward to derive:

Vhg−Vlg =Vhb−Vlb =
x

κ +ν + r
Vhn−Vln =

mlb

κ +ν + r+mlb

x
κ +ν + r

(89)
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It is sufficient to show that buyers do not find convenient to offer a price different from p̄lb. A similar

argument to the one in Lemma A.4 establishes that the best possible deviation is to offer p̄lg =Vlg−Vln.

As a result, the no deviation condition is:

mlb (Vhb−Vlb−Vhn +Vln)≥ mlgVhg +
(
mlb +mhb1{ p̄lg>p̄hb}

)
Vhb−

(
mlg +mlb +mhb1{ p̄lg>p̄hb}

)
(Vlg +Vhn−Vln)

(90)

Rearranging we get:

mlb (Vlg−Vlb)≥ mlg (Vhg−Vlg−Vhn +Vln)+mhb1{ p̄lg>p̄hb} (Vhb−Vlg−Vhn +Vln) (91)

Notice that p̄lg > p̄hb is equivalent to Vhb−Vlg−Vhn +Vln < 0, hence the last term on the RHS is non-

positive. From (88) it is immediate to get Vlg−Vlb =
δg−δb

r and Vhb−Vlg =
x

κ+ν+r −
δg−δb

x . Substituting the

values in equation (89) in (91) and rearranging it is immediate to get the inequality in (14). To determine

the equilibrium γlg, γlb and γhn notice that in a stationary lemons market equilibrium:

γ̇hg =νγlg−κ(λA− γlg) = 0

γ̇hb =νγlb−κ[(1−λ )A− γlb]+ γlbmB = 0

γ̇hn =ν(1− γhn)−κγhn− γhnmlb = 0

(92)

Finally, the equilibrium condition mlbγhn = mhnγlb ensures that the total number of matched buyers and

sellers is equal.

Proof of Corollary 5.1.
For the DGP technology ms̃ = µ

γs̃
1+A for every s̃ ∈ S̃. From the system of equations in (92) we get:

mlg = µ
κλA

(1+A)(κ +ν)
mlb = µ

κ(1−λ )A
(1+A)(κ +ν +mhn)

mhb = µ
(1−λ )A

1+A
−mlb mhn = µ

ν

(1+A)(κ +ν +mlb)

(93)

Substituting the above quantities in equation (14) we get:

φ ≥min
{

λ

1−λ

(κ +ν +mhn)r
(κ +ν)(κ +ν + r+mlb)

,
λ

1−λ

(κ +ν +mhn)r
(κ +ν)(κ +ν + r+mlb)

+
ν +mhn

κ

(
r

κ +ν + r+mlb
−φ

)}
(94)

The RHS of equation (94) is decreasing in mlb and increasing in λ and mhn. To prove the statement it

is sufficient to show that mlb is decreasing and mhn is increasing in λ . If this is the case, the RHS is

monotonically increasing in λ , and it tends to infinity for λ → 1.

First, notice that it is possible to express mhn as:

mhn =
µ

1+A
γhn =

µ

1+A

ν−κ(1−λ )A mhn
κ+ν+mhn

κ +ν
(95)

By implicit differentiation of this expression we get:

dmhn

dλ
=

µκAmhn
(1+A)(κ+ν)(κ+ν+mhn)

1+ µκ(1−λ )A
(1+A)(κ+ν+mhn)2

> 0 (96)
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By the system of equations in (92), we can express mlb as:

mlb =
γlb

γhn
mhn =

γlbmhn

ν− γlbmhn
(κ +ν) (97)

Hence, it is sufficient to show that γlbmhn is decreasing in λ . Notice that:

γlbmhn = κ(1−λ )A
mhn

κ +ν +mhn
(98)

Differentiating this quantity with respect to λ and using the expression in equation (96) we have:

d(γlbmhn)

dλ
= κA

mhn

κ +ν +mhn

[
µκ(1−λ )A

µκ(1−λ )A+(1+A)(κ +ν +mhn)2 −1
]
< 0 (99)

Hence, we proved that the RHS of equation (94) is monotonically increasing in λ .

For any competitive technology it is sufficient to realize that in a lemons market equilibrium a buyer

is only matched with lemon sellers as no peach participates to the market as the price is too low, i.e.

mlg = 0 and inequality (14) holds for every admissible parameter constellation.

Proof of Lemma 5.1.

1. Follows immediately from imposing stationarity, i.e. γ̇ ji = 0 for j = h, l and i = b,g.

2. Implied by the fact that the total measure of lemons on the market is (1−λ )A.

Proof of Lemma 5.2.

1. It follows immediately from the first two equations in (18).

2. From the value function for Vln in (19), we get Vln =
ν

ν+rVhn. To obtain an expression for Vhn, we

first need to compute Whn, i.e. the expected value from acquiring an asset on the market at price

p̄lg =Vlg−Vln:

Whn =
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb− (Vlg−Vln) (100)

Notice that whenever σhn(p̄lg) < 1 buyers are indifferent between offering p̄lg and p̄lb so this ex-

pression continues to hold. Substituting Whn and Vln into the expression for rVhn in equation (19)

and rearranging we get the expression in equation (21).

Proof of Lemma 5.3.

1. Buyers’ expected payoff from offering p̄lg is:

Γ(p̄lg) =
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb−Vlg− (Vhn−Vln) (101)

Since Vhn−Vln =
r

ν+rVhn, and equation (19) provides Vhn, it is immediate to get:

Γ(p̄lg) =
κ +ν + r

κ +ν + r+mS

[
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb−Vlg

]
(102)
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Offering p̄lb =Vlb−Vln instead yields:

Γ(p̄lb) =
γlb

γS
(Vhb−Vlb−Vhn +Vln) =

γlb

γS

[
Vhb−Vlb−

mS

κ +ν + r
Γ(p̄lg)

]
(103)

The no-deviation condition requires Γ(p̄lg)≥ Γ(p̄lb). Rearranging this inequality we get (22).

To prove that Vhn > 0, ensuring that buyers are willing to participate in the market, equation (21)

shows it is sufficient to show that Γ(p̄lg)≥ Γ(p̄lb) implies Γ(p̄lg)> 0. Suppose per contra Γ(p̄lg)≤ 0.

Then, by Lemma A.2:

0≥ Γ(p̄lg)≥ Γ(p̄lb)≥
γlb

γS
(Vhb−Vlb)> 0 (104)

a contradiction.

2. Agents of type hb do not find it convenient to participate in the market when p̄hb ≥ p̄lg, i.e. Vhb−
Vlg≥Vhn−Vln. Since Vhn−Vln =

r
ν+rVhn =

mS
κ+ν+r+mS

[
Vhb−Vlg +

γlg

γS
(Vhg−Vhb)

]
, then Vhb−Vlg≥Vhn−Vln

is equivalent to:

Vhb−Vlg ≥
mS

κ +ν + r+mS

[
Vhb−Vlg +

γlg

γS
(Vhg−Vhb)

]
(105)

Hence,

Vhb−Vlg ≥
mS

κ +ν + r
γlg

γS
[Vhg−Vlg− (Vhb−Vlg)] (106)

Rearranging and using Vhg−Vlg =
x

κ+ν+r we get the expression in (23).

Proof of Lemma 5.4.
In equilibrium an equal mass of buyers and sellers trade at every instant, i.e.:

mBγS = µM

(
ν− κAmB

κ+ν+mB

κ +ν
,γS

)
(107)

From Lemma 5.1 we can substitute for γS to get:

Equilibrium E:
κAmB

κ +ν +mB
= µM

(
ν− κAmB

κ+ν+mB

κ +ν
,

κA
κ +ν +mB

)

Equilibrium H:
[
(1−λ )A+

κλA
κ +ν +mB

]
mB = µM

(
ν− κAmB

κ+ν+mB

κ +ν
,(1−λ )A+

κAλ

κ +ν +mB

) (108)

For both equations the LHS is increasing in mB and it is equal to zero for mB = 0; the RHS is strictly

positive for mB = 0 and it is decreasing in mB because both γB and γS are decreasing in mB and M(·, ·) is

increasing in both arguments. Therefore, there is a unique value that equalizes both sides of the equation.

Notice that equation (108) for equilibrium E does not depend on λ , thus also mE
B is independent of

its value. Similarly, it is immediate to get that mE
S does not depend on λ once we adopt the equivalent

expressions γE
B = ν

κ+ν+mE
S

and γE
S =

κA− νmS
κ+ν+mS

κ+ν
, and we plug them into the equilibrium condition mSγE

B =

µM(γE
B ,γ

E
S ).

We turn to study how mB changes as a function of λ . Consider the function g(λ ,mB) = mBγS −
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µM
(

ν− κAmB
κ+ν+mB
κ+ν

,γS

)
. By implicit differentiation we get:

dmB

dλ
=− ∂g/∂λ

∂g/∂mB

∂g
∂λ

=
∂γS

∂λ
[mB−µM2(γB,γS)]

∂g
∂mB

=γS +
∂γS

∂mB
[mB−µM2(γB,γS)]+µM1(γB,γS)

κA
(κ +ν +mB)2

(109)

Notice that by Lemma 5.1 ∂γE
S

∂λ
= 0 and ∂γH

S
∂λ

= −A ν+mB
κ+ν+mB

< 0, hence ∂g
∂λ
≤ 0 as mB− µM2(γB,γS) has, by

definition of mB, the same sign of M(γB,γS)−M2(γB,γS)γS, i.e. it is by assumption greater or equal to zero.

To determine the sign of ∂g
∂mB

, first notice that ∂γE
S

∂mE
B
= −γE

S
1

κ+ν+mE
B

and ∂γH
S

∂mH
B
= −λ

κA
(κ+ν+mH

B )
2 . Substituting

these expressions in ∂g
∂mB

and simplifying we get:

∂g
∂mE

B
=γ

E
S

κ +ν +µM1(γ
E
B ,γ

E
S )+µM2(γ

E
B ,γ

E
S )

κ +ν +mE
B

> 0

∂g
∂mH

B
=(1−λ )A+

κλA
κ +ν +mH

B

κ +ν +µM1(γ
H
B ,γH

S )+µM2(γ
H
B ,γH

S )/λ

κ +ν +mH
B

> 0
(110)

Therefore, it is possible to conclude that dmE
B

dλ
= 0 and dmH

B
dλ
≥ 0. In particular, dmH

B
dλ

> 0 if and only if the

matching function satisfies M(γB,γS)−M2(γB,γS)γS > 0.

To show that mH
S is strictly decreasing in λ we consider non-competitive and competitive matching

technologies separately.

Case 1. Non-competitive matching technologies. By total differentiation of the equilibrium condition

mSγB = µM(γB,γS) we have:

dmH
S

dλ
γ

H
B +mH

S
dγH

B

dλ
= µ

(
M1

dγH
B

dλ
+M2

dγH
S

dλ

)
(111)

Given that for non-competitive matching technologies mS−µM1 =
µ

γB
[M(γB,γS)−M1γB] = 0, we obtain

dmH
S

dλ
γ

H
B = µM2

dγH
S

dλ
(112)

From above, it is straightforward to show that dγH
S /dλ < 0. Thus, for any non-competitive matching

technology dmH
S /dλ < 0.

Case 2. Competitive matching technologies. From mBγS = µM (γB,γS) we obtain:

dmH
B

dλ
γ

H
S +mH

B
dγH

S

dλ
= µ

(
M1

dγH
B

dλ
+M2

dγH
S

dλ

)
(113)

Rearranging yields:

dmH
B

dλ
γ

H
S = µ

dγH
S

dλ

1
γH

S

[
M1γ

H
B

(
γH

S

γH
B

dγH
B /dλ

dγH
S /dλ

)
+M2γ

H
S −M(γH

B ,γH
S )

]
(114)

Given that dγH
S /dλ < 0 and M1γB +M2γS ≥M(γB,γS) by M(·, ·) satisfying non-decreasing returns to scale,

it must be the case that γH
S

γH
B

dγH
B /dλ

dγH
S /dλ

< 1 in order to have dmH
B /dλ > 0, which we have established for all
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competitive matching technologies. Then, since from mSγB = µM(γB,γS):

dmH
S

dλ
γ

H
B = µ

dγH
B

dλ

1
γH

B

[
M1γ

H
B +M2γ

H
S

(
γH

B

γH
S

dγH
S /dλ

dγH
B /dλ

)
−M(γH

B ,γH
S )

]
, (115)

where γH
B

γH
S

dγH
S /dλ

dγH
B /dλ

> 1, it follows that dmH
S /dλ < 0 as dγH

B /dλ < 0 for all competitive matching technologies.

For competitive technologies we have M(γB,γS)−M2(γB,γS)γS > 0, hence dmH
B

dλ
> 0. Since mE

B = mH
B for

λ = 1 (as it implies γE
S = γH

S ) and dmH
B

dλ
> 0, then it follows that mE

B > mH
B for every λ ∈ (0,1).

For non-competitive technologies mB−µM2(γB,γS) = 0 so dmB
dλ

= 0 both in equilibria E and H. Lastly,

to show that mE
B = mH

B for every λ ∈ (0,1) notice that mE
B = mH

B for λ = 1 as for competitive technologies.

Proof of Proposition 5.2.
To get an expression for the holders of lemons, first notice that (κ + r)Vhb = δb +κVlb. Substituting this

expression in the fourth equation in (18) and multiplying both sides by κ + r, we get:

(κ + r)rVlb = (κ + r)(δb− x)+ν(δb− rVlb)+(κ + r)mB(Vlg−Vlb) (116)

Substituting Vlg from equation (20) and simplifying:

[r(κ +ν + r)+(κ + r)mB]Vlb = (κ +ν + r)δb− (κ + r)x+(κ + r)mB

[
δg

r
− x

r
κ + r

κ +ν + r

]
(117)

Hence:

Vlb =
r(κ +ν + r)

r(κ +ν + r+mB)+κmB

δb

r
+

(κ + r)mB

r(κ +ν + r+mB)+κmB

δg

r
− κ + r

κ +ν + r
x
r

(118)

and

Vhb =
r(κ +ν + r+mB)

r(κ +ν + r+mB)+κmB

δb

r
+

κmB

r(κ +ν + r+mB)+κmB

δg

r
− κ

κ +ν + r
x
r

(119)

The equilibrium exists if hb-agents do not find it convenient to participate in the market. In turn, this

requires p̄hb ≥ p̄lg, i.e. Vhb−Vlg ≥Vhn−Vln.

From equations (20) and (119):

Vhb−Vlg =
x

κ +ν + r
− κ +ν + r+mB

r(κ +ν + r+mB)+κmB
(δg−δb) (120)

Substituting (120) in (23) and noting that γlg

γS
= λ we can immediately rearrange to get:

δg−δb

x
≤ r(κ +ν + r+mB)+κmB

(κ +ν + r+λmS)(κ +ν + r+mB)
(121)

The optimality condition of inequality (22) becomes:

λVhg +(1−λ )Vhb−Vlg ≥
κ +ν + r+mS

κ+ν+r
1−λ

+mS
(Vhb−Vlb) (122)

Notice that:
Vhg−Vhb =

r(κ +ν + r+mB)

r(κ +ν + r+mB)+κmB

δg−δb

r
> 0

Vhb−Vlb =
r

κ +ν + r
x
r
− rmB

r(κ +ν + r+mB)+κmB

δg−δb

r
> 0

(123)
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By Lemmata A.1 and A.2 both quantities are positive. Lemma 5.4 guarantees mB is independent of λ .

Therefore, it is straightforward to notice that the LHS of equation (122) is increasing in λ , while its RHS

is decreasing in λ . For λ = 0 equation (122) is not satisfied as it requires:

Vhb−Vlg ≥Vhb−Vlb ⇒ Vlg ≤Vlb (124)

but the latter inequality contradicts Lemma A.2. If λ = 1 equation (122) holds strictly as Vhg−Vlg > 0

by Lemma A.1. Therefore, there exists a unique λ∗ such that for every λ ≥ λ∗ the condition in (22) is

satisfied. Moreover, if equation (122) holds, then λVhg+(1−λ )Vhb−Vlg > 0 as it is greater than a positive

quantity. As a result, equation (21) implies Vhn > 0.

Proof of Proposition 5.3.
In this equilibrium 1{hb⊂S} = 1. To evaluate condition (23) in Lemma 5.3, let us solve for Vhb−Vlg. The

second and third equation in (18) imply:

Vhb−Vlg =
r

r+mB

(
κ + r

κ +ν + r
x
r
− δg−δb

r
− κ

κ +ν + r+mB

x
r

)
+

ν + r+mB

κ +ν + r+mB

mB

r+mB
(Vhn−Vln), (125)

where, by (19) and (21):

Vhn−Vln =
mS

κ +ν + r+mS

[
γlg

γS
(Vhg−Vlg)+

(
1− γlg

γS

)
(Vhb−Vlg)

]
. (126)

Combining these two equations yields:

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

(κ +ν + r+mB)(κ +ν + r+mS)
(Vhb−Vlg)

=
r(κ +ν + r+mS)+κmB

(κ +ν + r)(κ +ν + r+mB)
x− (δg−δb)+

(ν + r+mB)mB

κ +ν + r+mB

γlg

γS
mS

κ +ν + r+mS

x
κ +ν + r

,

(127)

which simplifies to:

Vhb−Vlg

=
(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)

γlg

γS
mSmB

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

x
κ +ν + r

− (κ +ν + r+mS)(κ +ν + r+mB)

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

(δg−δb)

(128)

Substituting this expression in (23) and combining terms, one finds that hb agents are willing to sell their

assets when:
(κ +ν + r)(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]

κ +ν + r+ γlg

γS
mS

x
κ +ν + r

≤ (κ +ν + r+mS)(κ +ν + r+mB)(δg−δb).

(129)

Simplifying yields:
δg−δb

x
≥ r(r+κ +ν +mH

B )+κmH
B

(r+κ +ν +
γH

lg

γH
S

mH
S )(r+κ +ν +mH

B )
, (130)

the condition 1. in Proposition 5.3.
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As a first step in proving that (22) is satisfied for λ sufficiently high, note that the last two equations

in (18) imply:

Vhb−Vlb =
x

κ +ν + r+mB
+

mB

κ +ν + r+mB
(Vhn−Vln). (131)

Substituting for Vhn−Vln from (126) above yields:

Vhb−Vlb =
x

κ +ν + r+mB

+
mB

κ +ν + r+mB

mS

κ +ν + r+mS

[
γlg

γS
(Vhg−Vlg)+

(
1− γlg

γS

)
(Vhb−Vlg)

]
.

(132)

Plugging this expression into the right-hand side of (22) and combining terms, one gets:

γlg

γS
(Vhg−Vlg)+

(
1− γlg

γS

)
(Vhb−Vlg)≥

κ +ν + r+mS
γS
γlb
(κ +ν + r+mB)+mS

x
κ +ν + r

. (133)

Let us first prove that the right-hand side of (133) is strictly decreasing in λ . Given that the RHS is strictly

increasing mS and strictly decreasing in mB, which are decreasing and increasing in λ , respectively, it

suffices to show that γS/γlb is strictly increasing in λ . Lemma 5.1 implies that:

γS

γlb
=

1
1−λ

+
ν +mB

κ
. (134)

Given that mB is increasing in λ , this quantity is indeed strictly increasing in λ . Thus, we have established

that the RHS of (133) is strictly decreasing in λ . To prove that the left-hand side of (133) is strictly

increasing in λ , note that:

d
dλ

[
γlg

γS
(Vhg−Vlg)+

(
1− γlg

γS

)
(Vhb−Vlg)

]
=

d
dλ

(
γlg

γS

)
(Vhg−Vhb)+

(
1− γlg

γS

)
dVhb

dλ
, (135)

as Vlg and Vhg are independent of λ . Given that, by Lemma A.2, Vhg >Vhb, it suffices to show that γlg/γS and

Vhb are strictly increasing in λ . Let us begin by considering γlg/γS. From Lemma 5.1 and the equilibrium

condition mSγB = mBγS, one obtains:

γlg

γS
mS =

γlg

γS
mBγS

κ +ν

ν− κAmB
κ+ν+mB

. (136)

Substituting for γlg on the right-hand side from Lemma 5.1, this simplifies to:

γlg

γS
=

κλA
mS

(κ +ν)
mB

ν(κ +ν +mB)−κAmB
. (137)

Given that mS is strictly decreasing in λ and

d
dmB

(
mB

ν(κ +ν +mB)−κAmB

)
=

ν(κ +ν)

[ν(κ +ν +mB)−κAmB]2
> 0, (138)

it follows that γlg/γS is strictly increasing in λ . Next, to be able to evaluate dVhb/dλ , let us solve for Vhb.

Combining (128) above with the expression for Vlg in Lemma 5.2 yields

55



Vhb =
(κ +ν + r+mS)κmB +(ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

δg

r

+
(κ +ν + r+mS)r(κ +ν + r+mB)

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

δb

r

− κ

κ +ν + r
x
r

− (ν + r+mB)rmB

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

x
r

(139)

Differentiating with respect to λ , one obtains

dVhb

dλ
=

dmB

dλ

∂Vhb

∂mB
+

dmS

dλ

∂Vhb

∂mS
+

d
dλ

(
γlg

γS
mS

)
∂Vhb

∂

(
γlg

γS
mS

) , (140)

where by Lemma 5.4, mB is increasing and mS strictly decreasing in λ . To show that (140) is strictly

positive, let us begin by considering the derivative of (γlg/γS)mS with respect to λ . Employing Lemma

5.1, one obtains:
γlg

γS
mS =

γlg

γS
mBγS

κ +ν

ν− κAmB
κ+ν+mB

=κλA(κ +ν)
mB

ν(κ +ν +mB)−κAmB
,

(141)

where the equality is obtained by substituting in for γlg. Given that mB is increasing in λ and:

d
dmB

(
mB

ν(κ +ν +mB)−κAmB

)
=

ν(κ +ν)

[ν(κ +ν +mB)−κAmB]2
> 0, (142)

it follows that (γlg/γS)mS is strictly increasing in λ . What remains to sign dVhb/dλ is to evaluate the partial

derivatives of Vhb with respect to mB, mS and (γlg/γS)mS. From (139):

∂Vhb

∂

(
γlg

γS
mS

) =
(ν + r+mB)mB(κ +ν + r+mS)(κ +ν + r+mB)(δg−δb)

{(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB}2

+
(ν + r+mB)

2m2
Bx

{(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB}2

> 0.

(143)

On the other hand,

∂Vhb

∂mS
=

(ν + r+mB)mB[r(κ +ν + r+mB)+κmB]x
{(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB}2

−
(ν + r+mB)(κ +ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB(δg−δb)

{(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB}2

.

(144)

Thus, ∂Vhb/∂mS ≤ 0 if and only if:

δg−δb

x
≥ r(r+κ +ν +mB)+κmB

(r+κ +ν +
γlg

γS
mS)(r+κ +ν +mB)

, (145)

which is the condition for hb agents to be willing to sell their asset. Finally,
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∂Vhb

∂mB
=−

(κ +ν + r+mS)[r(κ +ν + r+mB)mB +κm2
B +(ν + r+mB)r(κ +ν + r)]x

{(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg
γS

mS)mB}2

+
(κ +ν + r+mS){(κ +ν + r+mS)(κ +ν + r)κ +(r+κ +ν +

γlg
γS

mS)[(ν + r+mB)(κ +ν + r+mB)+κmB]}(δg−δb)

{(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg
γS

mS)mB}2

(146)

It follows that ∂Vhb/∂mB ≥ 0 if and only if:

δg−δb

x
≥ r[(ν + r+mB)(r+κ +ν +mB)+κmB]+κm2

B

(r+κ +ν +
γlg

γS
mS)[(ν + r+mB)(κ +ν + r+mB)+κmB]+ (κ +ν + r)κ(κ +ν + r+mS)

(147)

Note that the right-hand side satisfies:

r[(ν + r+mB)(r+κ +ν +mB)+κmB]+κm2
B

(r+κ +ν +
γlg

γS
mS)[(ν + r+mB)(κ +ν + r+mB)+κmB]+ (κ +ν + r)κ(κ +ν + r+mS)

<
r

r+κ +ν +
γlg

γS
mS

+
κmB

(r+κ +ν +
γlg

γS
mS)(κ +ν + r+mB)(1+ ν+r

mB
)

<
r(r+κ +ν +mB)+κmB

(r+κ +ν +
γlg

γS
mS)(r+κ +ν +mB)

.

(148)

Employing the inequality ensuring that hb agents are willing to sell their asset, it follows that (147) is

satisfied. Thus, we have have that:

dmB

dλ
≥ 0,

∂Vhb

∂mB
≥ 0,

dmS

dλ
< 0,

∂Vhb

∂mS
≤ 0,

d
dλ

(
γlg

γS
mS

)
> 0,

∂Vhb

∂

(
γlg

γS
mS

) > 0, (149)

implying that Vhb is strictly increasing in λ . Therefore, the left-hand side of (133) is increasing λ .

Proof of Lemma 5.5.

1. In equilibrium E, the threshold value φ ∗ is determined by

φ
∗E =

r(κ +ν + r+mE
B)+κmE

B

(κ +ν + r+λmE
S )(κ +ν + r+mE

B)
(150)

By Lemma 5.4, mE
B and mE

S do not depend on λ . Hence, by inspection of (150), the threshold value

of φ is decreasing in λ .

2. Let us begin by showing that λ∗E is increasing in φ . By Lemma 5.3, λ∗E satisfies:

λ
∗E(Vhg−Vlg)+(1−λ

∗E)(Vhb−Vlg) =
(1−λ∗E)(κ +ν + r+mS)

κ +ν + r+(1−λ∗E)mS
(Vhb−Vlb). (151)

Substituting the expressions for Vhg−Vlg (from Lemma 5.2), Vhb−Vlg and Vhb−Vlb (from the proof

of Proposition 5.2) yields:

λ
∗E x

κ +ν + r
+(1−λ

∗E)

[
x

κ +ν + r
− κ +ν + r+mB

r(κ +ν + r+mB)+κmB
(δg−δb)

]
=
(1−λ∗E)(κ +ν + r+mS)

κ +ν + r+(1−λ∗E)mS

[
x

κ +ν + r
− mB

r(κ +ν + r+mB)+κmB
(δg−δb)

]
.

(152)

Combining terms, we obtain:
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λ∗E(κ +ν + r)
κ +ν + r+(1−λ∗E)mS

1
κ +ν + r

=

[
(1−λ∗E)(κ +ν + r+mB)

r(κ +ν + r+mB)+κmB
− (1−λ∗E)(κ +ν + r+mS)

κ +ν + r+(1−λ∗E)mS

mB

r(κ +ν + r+mB)+κmB

]
φ .

(153)

Multiplying through by κ +ν + r+(1−λ∗E)mS gives:

λ
∗E =

(1−λ∗E)(κ +ν + r+mB)(κ +ν + r+(1−λ∗E)mS)− (1−λ∗E)(κ +ν + r+mS)mB

r(κ +ν + r+mB)+κmB
φ . (154)

Simplifying, we obtain

λ∗E

1−λ∗E
= φ

(κ +ν + r)(κ +ν + r+mS)−λ∗EmS(κ +ν + r+mB)

r(κ +ν + r+mB)+κmB
(155)

Given that mB and mS are independent of φ , it follows by inspection that λ∗E is increasing in φ .

Turning to λ∗H , Lemma 5.3 implies that

γlg

γS
(Vhg−Vlg)+

(
1− γlg

γS

)
(Vhb−Vlg) =

γlb
γS
(κ +ν + r+mS)

κ +ν + r+ γlb
γS

mS
(Vhb−Vlb). (156)

By substituting the expressions for Vhg−Vlg (from Lemma 5.2) and Vhb−Vlg (from the proof of

Proposition 5.3) we obtain

γlg

γS

x
κ +ν + r

+

(
1−

γlg

γS

)[(
1− (ν + r+mB)(κ +ν + r)mB

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg
γS

mS)mB

)
x

κ +ν + r

− (κ +ν + r+mS)(κ +ν + r+mB)

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg
γS

mS)mB
(δg−δb)

]

=

γlb
γS
(κ +ν + r+mS)

κ +ν + r+ γlb
γS

mS
(Vhb−Vlb)

(157)

Substituting the expression for Vhb−Vlb (from the proof of Proposition 5.3) and simplifying yields

1− γlb
γS

κ +ν + r+ γlb
γS

mS
x

+

γlb
γS
(κ +ν + r+mS)(r+mB)mB−

(
1− γlg

γS

)
(κ +ν + r+ γlb

γS
mS)(ν + r+mB)mB{

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg
γS

mS)mB

}
(κ +ν + r+ γlb

γS
mS)

x

=

(
1− γlg

γS

)[
(κ +ν + r+mS)(κ +ν + r+mB)(κ +ν + r+ γlb

γS
mS)− γlb

γS
(κ +ν + r+mS)mSmB

]
(δg−δb){

(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg
γS

mS)mB

}
(κ +ν + r+ γlb

γS
mS)

(158)
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Simplifying further, we get

(κ +ν + r+mS)
{

γlg
γS
(r+mB)(κ +ν + r+mB)+

γhb
γS
(κ +ν + r)(r+mB)−

(
1− γlg

γS

)
νmB

}
{
(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

}
(κ +ν + r+ γlb

γS
mS)

−

(
1− γlg

γS

)
(κ +ν + r+mS)(κ +ν + r)(κ +ν + r+mB +

γlb
γS

mS)φ{
(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]+ (ν + r+mB)(κ +ν + r+ γlg

γS
mS)mB

}
(κ +ν + r+ γlb

γS
mS)

= 0

(159)

Given that the left-hand side is decreasing in φ and, by the proof of Proposition 5.3, increasing in

λ , it follows that λ∗H is increasing in φ .

Proof of Proposition 5.4.
In proving the proposition, we consider separately equilibria in which hb agents participate in the market

and equilibria in which only low-valuation agents are willing to sell their asset. Let us begin from the

former.

Rewriting the expressions for Γ(p̄lg) and Γ(p̄lb) in the proof of Lemma 5.3 using (19) and the fact

that hb agents participate in the market yields:

Γ(p̄lg) =
κ +ν + r

κ +ν + r+ γlg

γS
mS

[
γlg

γS
(Vhg−Vlg)+

(
σhb(p̄lg)

γhb

γS
+

γlb

γS

)
(Vhb−Vlg−Vhn +Vln)

]
(160)

Γ(p̄lb) =
γlb

γS

(
Vhb−Vlb−

mS

κ +ν + r
Γ(p̄lg)

)
(161)

Note that we have used the fact that by Lemma A.4 lb and lg agents accept offers equal to or greater than

their reservation prices with probability one. Simplifying, we obtain

Γ(p̄lg)≥ Γ(p̄lb)⇔
κ +ν + r+ γlb

γS
mS

κ +ν + r+ γlg

γS
mS

[γlg(Vhg−Vlg)+(σhb(p̄lg)γhb + γlb)(Vhb−Vlg−Vhn +Vln)]≥ γlb(Vhb−Vlb)

(162)

First note that mB = µM(γB,γS)/γS and mS = µM(γB,γS)/γB are bounded between strictly positive lower

and upper bounds as the two arguments are strictly positive and bounded from above. Thus, given that:

γlg =
κλA

κ +ν +σhn(p̄lg)mB
γlb =

κ(1−λ )A
κ +ν +mB

Vhg−Vlg =
x

κ +ν + r
(163)

and Vhb−Vlg−Vhn +Vln ≤ 0 as hb agents participate in the market, we can conclude that the left-hand side

of (162) tends to a non-positive limit with λ → 0. The right-hand side of (162), on the contrary, remains

strictly positive as λ → 0 since Vhb > Vlb by Lemma A.1. Thus, by continuity, (162) cannot be satisfied

for λ sufficiently small, implying that peaches cannot be traded as buyers do not find it convenient to

offer the high price p̄lg.

To prove the result in the latter case when only low-valuation owners participate in the market,

we make use of the explicit expression for the buyers’ indifference condition derived in the proof of

Proposition B.2:

λ

1−λ

κ +ν +mB

κ +ν +σhn(p̄lg)mB
≥ φ

(κ +ν + r)
(

κ +ν + r+ κ(1−λ )A
κ+ν+mB

mS
γS

)
−κλA mS

γS

σhn(p̄lg)mB

κ+ν+σhn(p̄lg)mB

r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB
(164)
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Note that as λ → 0 the left-hand side of (164) tends to zero whereas its right-hand side tends to a strictly

positive limit. Thus, also in this case, for λ sufficiently small, the buyers do not find it convenient to

offer the high price p̄lg and peaches cannot be traded.

Proof of Proposition 6.1.
Let us first compare mB across the two types of equilibria. Given that we are comparing equilibria in

which σhb(p̄lg) > 0 and σhn(p̄lg) = 1 to equilibrium E, characterized by σhb(p̄lg) = 0 and σhn(p̄lg) = 1,

it is sufficient to show how mB varies with σhb(p̄lg). First note that from the equilibrium condition

mBγS = µM(γB,γS), we obtain

dmB

dγS

(
γS−

dγB

dmB
µM1

)
= µM2−mB ≤ 0, (165)

since
dγB

dmB
=− 1

κ +ν

κA
(κ +ν +mB)2 < 0 (166)

Hence, given that γB does not depend directly on σhb(p̄lg), if dγS/σhb(p̄lg) ≤ 0, then dmB/σhb(p̄lg) ≥ 0.

However, this would constitute a contradiction as the equilibrium condition mBγS = µM(γB,γS) implies

that

dmB

σhb(p̄lg)

{
(κ +ν)κA

(κ +ν +mB)2 +σhb(p̄lg)
[(ν +2mB)(κ +ν)+m2

B](1−λ )A
(κ +ν +mB)2

}
+

(ν +mB)(1−λ )A
κ +ν +mB

(167)

=µ
dγB

dσhb(p̄lg)
M1 +µ

dγS

dσhb(p̄lg)
M2, (168)

where
dγB

dσhb(p̄lg)
=

dmB

σhb(p̄lg)

dγB

dmB
≤ 0. (169)

Thus, we can conclude that dγS/σhb(p̄lg)> 0, implying that dmB/σhb(p̄lg)≤ 0. Note that the inequality is

strict whenever µM2 < mB, i.e. for all competitive matching technologies.

Having established that mB is lower in equilibria in which σhb(p̄lg)> 0 and σhn(p̄lg) = 1 than in equi-

librium E, we can prove the four statements in the proposition.

1. Given that p̄lg =Vlg−Vln and Vlg does not vary across equilibria, it is sufficient to prove that V E
ln ≥

V A
ln, where A denotes any of the alternative equilibria under consideration. Given that Vln =

ν

r (Vhn−Vln),

it is equivalent to show that V E
hn−V E

ln ≥V A
hn−V A

ln.

Let us begin by noting that the value functions in (19) imply that

Vhn−Vln =
mS

κ +ν + r

[
γlg

γS
(Vhg−Vlg−Vhn +Vln)+

(
1− γlg

γS

)
(Vhb−Vlg−Vhn +Vln)

]
(170)

Rearranging and rewriting in terms of the reservation prices yields

Vhn−Vln =

γlg

γS
mS

κ +ν + r+ γlg

γS
mS

(Vhg−Vlg)+

(
1− γlg

γS

)
mS

κ +ν + r+ γlg

γS
mS

(p̄hb− p̄lg) (171)

Note that the second term is positive in equilibrium E and negative in the alternative equilibria as they

are characterized by σhb(p̄lg)> 0. Thus, to prove that V E
hn−V E

ln ≥V A
hn−V A

ln, it is sufficient to establish that
γlg

γS
mS is lower in the alternative equilibria than in E. Using the expressions for γlg and γB from Lemma
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5.1, which continue to hold also in equilibria A, we obtain

γlg

γS
mS = γlg

mB

γB
(172)

= κλA(κ +ν)
mB

(ν−κA)(κ +ν +mB)+(κ +ν)κA
(173)

Given that mA
B ≤mE

B , it follows by inspection that ( γlg

γS
mS)

A ≤ (
γlg

γS
mS)

E , with the inequalities being strict for

all competitive matching technologies. Thus, we have shown that p̄A
lg ≥ p̄E

lg.

2. By Lemma 5.1, the measure of buyers in both equilibria E and A is given by

γB =
1

κ +ν

(
ν− mB

κ +ν +mB
κA
)
. (174)

Thus, given that mE
B ≥ mA

B, γA
B ≥ γE

B . As to the measure of sellers, we have:

γ
E
S =

κA
κ +ν +mE

B
, γ

A
S =

κA
κ +ν +mA

B
+σhb(p̄lg)

(ν +mA
B)(1−λ )A

κ +ν +mA
B

(175)

Making use of the fact that mE
B ≥ mA

B, allows us to conclude that γA
S ≥ γE

S . Given that both arguments

of M(·, ·) assume higher values in any equilibrium A than in equilibrium E, we have established that

M(γA
B ,γ

A
S )≥M(γE

B ,γ
E
S ). Note that, by the same argument as above, the inequality is strict for all competi-

tive matching technologies.

3. Follows directly from mE
B ≥ mA

B.

4. Lemma 5.1 implies that:

γE
lg

γE
S
= λ ,

γA
lg

γA
S
= λ

κ

κ +(1−λ )(ν +mB)
(176)

Thus, γH
lg

γH
S
≤ γE

lg

γE
S

and the inequality is strict for λ < 1.

The statement in the proposition about all non-competitive matching technologies is true due to

mA
B = mE

B and φ ∗E = φ ∗H . The former feature ensures that expected time to sell is the same across the

two equilibria. The latter property, on the other hand, implies that equilibrium E and an equilibrium in

which σhb(p̄lg)> 0 and σhn(p̄lg) = 1 can only co-exist when p̄lg = p̄lb. This along with mA
B = mE

B allows us

to conclude that p̄lg takes the same value in the two equilibria.

Proof of Lemma 6.1.
Consider a strategy profile σ and let qS

ji and qB
jn be the probability that an agent ji belongs to the set of

actively participating sellers S or buyers B. In turn, the equilibrium masses satisfy:

γ̇hi =νγli−κγhi +mBqS
liγli

qB
hnγhn

γB

∫
σhn(p|I )σli(p)dp−mBqS

hiγhi
qB

lnγln

γB

∫
σln(p|I )σhi(p)dp = 0 i = b,g (177)

γ̇hn =νγln−κγhn−mSqB
hnγhn

[
∑

i=b,g

qS
liγli

γS

∫
σhn(p|I )σli(p)dp

]
+mSqB

lnγln

[
∑

i=b,g

qS
hiγhi

γS

∫
σln(p|I )σhi(p)dp

]
= 0 (178)

The corresponding values for γlg, γlb and γln follow immediately from γhg + γlg = λA, γhb + γlb = (1−λ )A

and γhn + γln = 1.

For a generic strategy profile σ the corresponding value functions are:
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rVhi =δi +κ (Vli−Vhi)+qS
himB

∫ [qB
hnγhn

γB
σhn(p|I )σhi(p)+

qB
lnγln

γB
σln(p|I )σhi(p)

]
(p−Vhi +Vhn)dp i = b,g (179)

rVli =δi− x+ν (Vhi−Vli)+qS
limB

∫ [qB
hnγhn

γB
σhn(p|I )σli(p)+

qB
lnγln

γB
σln(p|I )σli(p)

]
(p−Vli +Vln)dp i = b,g (180)

rVhn =κ(Vln−Vhn)+qB
hnmS ∑

i=b,g

∫ [qS
hiγhi

γS
σhn(p|I )σhi(p)+

qS
liγli

γS
σhn(p|I )σli(p)

]
(Vhi− p−Vhn)dp (181)

rVln =ν(Vhn−Vln)+qB
lnmS ∑

i=b,g

∫ [qS
hiγhi

γS
σln(p|I )σhi(p)+

qS
liγli

γS
σln(p|I )σli(p)

]
(Vli− p−Vln)dp (182)

Substituting the equilibrium expression mS
γS

= mB
γB

and using the value functions above, it is straightforward

to obtain the utilitarian welfare:

W (σ) =∑
ji

γ jiVji

=
1
r
(γlg + γhg)δg +(γlb + γhb)δb− (γlg + γlb)x

+(Vhi−Vli)

[
mBqS

liγli
qB

hnγhn

γB

∫
σhn(p|I )σli(p)dp−mBqS

hiγhi
qB

lnγln

γB

∫
σln(p|I )σhi(p)dp−κγhi +νγli

]
+(Vhn−Vln)

{
νγln−κγhn−mSqB

hnγhn

[
∑

i=b,g

qS
liγli

γS

∫
σhn(p|I )σli(p)dp

]
+mSqB

lnγln

[
∑

i=b,g

qS
hiγhi

γS

∫
σln(p|I )σhi(p)dp

]}

=
1
r
[(γlg + γhg)δg +(γlb + γhb)δb− (γlg + γlb)x]+ ∑

i=b,g,n
(Vhi−Vli)γ̇hi

(183)

Substituting γlg + γhg = λA,γlb + γhb = (1−λ )A and noting that γ̇ ji = 0 for every ji we get the expression

for utilitarian welfare:

W (σ) =
A
r
[λδg +(1−λ )δb]−

x
r
[γlg(σ)+ γlb(σ)] (184)

where we write γli(σ) to better stress the dependence of the mass of low-valuation asset holders on the

strategy profile σ .

Proof of Proposition 6.2.
Let σC the strategy profile corresponding to the complete information equilibrium in Proposition 3.1. In

this equilibrium we have qB
hn = qS

lg = qS
lb = 1, qB

ln = qS
hg = qS

hb = 0 and qT
lg,h = qT

lb,h = 1. The corresponding

matching rate mC
B solves mBγC

S = mC
S γC

B = µM(γC
B ,γ

C
S ) where γC

B = γhn(σ
C) and γS = γlg(σ

C)+ γlb(σ
C).

To show that σC achieves the maximum welfare value among the set of admissible strategy profiles,

suppose per contra there exists a σ ′ 6= σC such that W (σ ′) ≥W (σC). By equation (177) for a generic

strategy profile σ we have:

(κ +ν) ∑
i=b,g

γli(σ) = κA− mB(σ)

γB(σ)

[
qB

hn(σ)γhn(σ) ∑
i=b,g

qS
li(σ)qT

li,h(σ)γli(σ)−qB
ln(σ)γln(σ) ∑

i=b,g
qS

hi(σ)qT
hi,l(σ)γhi(σ)

]
(185)

Hence, it is sufficient to study under which conditions, if any, it is possible to have:

mC
B

γC
B

γ
C
hn ∑

i=b,g
γ

C
li ≤

mB

γB

[
qB

hnγhn ∑
i=b,g

qS
liq

T
li,hγli−qB

lnγln ∑
i=b,g

qS
hiq

T
hi,lγhi

]
(186)

From the equilibrium condition mBγS = µM(γB,γS) it follows that mB
γB

= µM(γB,γS)
γBγS

. Therefore, a (weak) upper
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bound for the RHS of equation (186) is:

M(γB,γS)

γBγS
qB

hnγhn ∑
i=b,g

qS
liq

T
li,hγli =

M
(

∑
j=l,h

qB
jnγhn, ∑

j=l,h
∑

i=b,g
qS

jiγ ji

)
(

∑
j=l,h

qB
jnγhn

)
·
(

∑
j=l,h

∑
i=b,g

qS
jiγ ji

)qB
hnγhn ∑

i=b,g
qS

liq
T
li,hγli (187)

It is easy to show that the RHS expression in equation (187) is increasing in qB
hnγhn and qS

liγli, i = b,g. By

Lemma 6.1 W (σ ′)≥W (σC) holds if and only if ∑
i=b,g

γli(σ
′)≤ ∑

i=b,g
γli(σ

C). Moreover, by equations (177)–

(178), for every strategy profile σ it holds γhn(σ)− ∑
i=b,g

γli(σ) = ν−κA
κ+ν

, hence it also holds γhn(σ
′)≤ γhn(σ

C).

Therefore, a (weak) upper bound of equation (187) for equilibrium σ ′ is:

M
(

γC
hn +qB

lnγln, ∑
i=b,g

γC
li + ∑

i=b,g
qS

hiγhi

)
(
γC

hn +qB
lnγln

)
·
(

∑
i=b,g

γC
li + ∑

i=b,g
qS

hiγhi

)γ
C
hn ∑

i=b,g
γ

C
li (188)

In turn, by assumption M(γB,γS)
γBγS

is decreasing in both arguments γB and γS. Therefore, an upper bound

for equation (188) is obtained by setting qB
lnγln and ∑

i=b,g
qS

hiγhi equal to zero, i.e. their minimum possible

value. But then the upper bound in equation (188) coincides with M(γC
B ,γ

C
S ) as γB = γC

B and γS = γC
S .

Therefore, W (σC) is the maximum possible value among the set of admissible strategy profiles. It is a

strict maximum whenever one of the upper bounds in equation (187)–(188) is strict. Hence, utilitarian

welfare is equal to W (σC) only if:[
qB

hnγhn ∑
i=b,g

qS
liq

T
li,hγli−qB

lnγln ∑
i=b,g

qS
hiq

T
hi,lγhi

]
= γ

C
B γ

C
S (189)

If M(γB,γS)
γBγS

is constant, as in the DGP technology, equation (189) is a necessary and sufficient condition.

If M(γB,γS)
γBγS

is strictly decreasing in its arguments, as in the KW technology, then the condition in equation

(189) is only necessary, and utilitarian welfare is equal to W (σC) only if the additional conditions qB
ln = 0

and qS
hi = 0, i = b,g, hold.

Proof of Corollary 6.1.
We prove each statement:

1. Under equilibrium E we have qB
hn = qS

lg = qS
lb = 1, qB

ln = qS
hg = qS

hb = 0 and qT
lg,h = qT

lb,h = 1. Hence, by

Proposition 6.2, utilitarian welfare is equal to W (σC).

2. In equilibrium H we have qB
ln = 0, qB

hn ∑
i=b,g

qS
li = 1 and qS

hb = 1. The fact that qS
hb = 1 may create a

difference from the first best only if mH
B 6= mC

B as mB is the only variable that may be different in

the expressions for ∑
i=b,g

γli(σ
H) and ∑

i=b,g
γli(σ

C). By Lemma 5.4 it holds mH
B = mE

B = mC
B if M(γB,γS)

γBγS
is

constant (e.g. DGP technology), and mH
B < mE

B = mC
B if M(γB,γS)

γBγS
strictly decreasing (e.g. KW technol-

ogy). Therefore, there is no welfare loss in the former case, whereas in the latter there is a social

welfare loss equal to equation (32). The welfare loss is decreasing in λ because, by Lemma 5.4,

mH
B is increasing in λ whereas mC

B is independent of it.

3. In a lemons market qT
lg,h = 0 and the social welfare loss is equal to
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W (σC)−W (σ L) =
κAx

r

[
λ

κ +ν
+

(1−λ )

κ +ν +mL
B
− 1

κ +ν +mC
B

]
(190)

where mL
B solves

κA(1−λ )mB

κ +ν +mB
= µM

(
ν− κ(1−λ )AmB

κ+ν+mB

κ +ν
,

κ(1−λ )A
κ +ν +mB

)
(191)

Notice that for λ = 0 we have mL
B = mC

B and the welfare loss is equal to zero. By implicit differen-

tiation of equation (191), we get

∂mL
B

∂λ
=

[
mL

B−µM2 +µM1
mL

B
κ+ν

]
(κ +ν +mL

B)

(1−λ )(κ +ν +µM1 +µM2)
> 0 (192)

hence mL
B > mC

B for every λ ∈ (0,1). To prove the social welfare loss is positive we show that total

derivative of equation (190) is strictly increasing with respect to λ , i.e.

d[W (σC)−W (σ L)]

dλ
=

κA
r

[
1

κ +ν
− 1

κ +ν +mL
B
− (1−λ )

1
(κ +ν +mL

B)
2

∂mL
B

∂λ

]
> 0 (193)

Substituting equation (192) and simplifying we get:

d[W (σC)−W (σ L)]

dλ
=

κA
r(κ +ν)

[
1− κ +ν +µM1

κ +ν +µM1 +µM2

]
> 0 (194)

as M1,M2 > 0.

Proof of Proposition 7.1.
To reduce notation we simply denote by Vji the equilibrium value V ( ji, ji,M ) for a ji agent under mech-

anism M .

From the set of incentive compatibility constraints, the following constraint apply:

mC
S [λVhg +(1−λ )Vhb−Vhn + tT (hn)]≥ tN(ln)− tN(hn)≥ mC

S [λVlg +(1−λ )Vlb−Vln + tT (hn)] (195)

tN(hi)− tN(θ ′)≥ α(θ ′)[tT (θ ′)−Vhi +Vhn] θ
′ 6= hi, i = b,g (196)

tN(li)+mC
B[tT (li)−Vli +Vln]≥ tN(θ ′)+α(θ ′)[tT (θ ′)−Vli +Vln] θ

′ 6= li, i = b,g (197)

From condition (196) and the fact that α(hi) = 0 for i = b,g it follows that tN(hg) = tN(hb) := tN(h). From

condition (197) and α(li) = mC
B, i = b,g, it follows that tN(lg)+mC

BtT (lg) = tN(lb)+mC
BtT (lb) := t(l), i.e.

condition (40). Hence, the conditions (195)–(197) can be expressed as:

mC
S [λVhg +(1−λ )Vhb−Vhn + tT (hn)]≥ tN(ln)− tN(hn)≥ mC

S [λVlg +(1−λ )Vlb−Vln + tT (hn)] (198)

t(l)−mC
B(Vli−Vln)≥ tN(h)≥ t(l)−mC

B(Vhi−Vhn) i = b,g (199)

In particular, constraint (199) requires Vhb−Vhn ≥ Vlg−Vln. We next verify when this condition holds.

From the equations in (34) it follows immediately that:

Vhi−Vli =
x+ tN(h)− t(l)+mC

B(Vli−Vln)

κ +ν + r
i = b,g (200)
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Substituting equation (200) into (34) we get:

Vli−Vln =
(κ +ν + r)δi− (κ + r)[x− t(l)]+νtN(h)− r(κ +ν + r)Vln

r(κ +ν + r+mC
B)+κmC

B
i = b,g (201)

To get an expression for Vhb−Vhn, we use (34) to express Vhn as a function of Vln, i.e. Vhn =
(ν+r)Vln−tN(ln)

ν
.

Using equations (200) and (201) into (34) and rearranging we get:

Vhi−Vhn =
(κ +ν + r+mC

B)δi−κ[x− t(l)]− ν+r+mC
B

ν
r(κ +ν + r)Vln +(ν + r+mC

B)tN(h)
r(κ +ν + r+mC

B)+κmC
B

+
tN(ln)

ν
i = b,g

(202)

By equations (202) and (201), the condition Vhb−Vhn ≥Vlg−Vln is equivalent to:

r(x− t(l))− r+mC
B

ν
r(κ +ν + r)Vln +(r+mC

B)tN(h)
r(κ +ν + r+mC

B)+κmC
B

+
tN(ln)

ν
≥ (κ +ν + r)δg− (κ +ν + r+mC

B)δb

r(κ +ν + r+mC
B)+κmC

B
(203)

Next we substitute for t(l), tN(h) and tN(ln) in order to characterize the largest set of parameters for

which inequality (203) can hold. For this purpose, as the RHS is a constant, transfers have to maximize

the LHS of equation (203). First, set tN(h) as high as possible consistently with constraint (199), i.e.

tN(h) = t(l)−mC
B(Vlg−Vln). Substituting in equation (201) and plugging back into equation (203):

r(κ+ν+r+mC
B)+κmC

B
κ+ν+r x−mC

Bδg− rVln
r(κ+ν+r+mC

B)+κmC
B

ν

r(κ +ν + r+mC
B)+κmC

B
+

tN(ln)
ν
≥ (κ +ν + r)δg− (κ +ν + r+mC

B)δb

r(κ +ν + r+mC
B)+κmC

B
(204)

Substituting the expression rVln = ν(Vhn−Vln)+ tN(ln) into equation (204) the tN(ln) terms cancel out:

r(κ+ν+r+mC
B)+κmC

B
κ+ν+r x−mC

Bδg

r(κ +ν + r+mC
B)+κmC

B
− (Vhn−Vln)≥

(κ +ν + r)δg− (κ +ν + r+mC
B)δb

r(κ +ν + r+mC
B)+κmC

B
(205)

Therefore, the condition is going to be satisfied for the largest set of parameters when Vhn−Vln is as low

as possible; by equation (34) and (196) the lowest incentive compatible value is Vhn−Vln = 0. Therefore,

rearranging inequality (205) with Vhn−Vln = 0 we get condition (39).

We now characterize the set of transfers satisfying and the IC, IR and budget balance constraints.

When condition (39) is slack, imposing Vhn−Vln = 0 is not necessary to implement the first-best outcome,

but it becomes so when equation (39) is binding, as shown in the previous paragraph.

Imposing Vhn−Vln = 0 and using (34), (201) and (202) we get:

Vlg =
δg + tN(h)

r
− κ + r

κ +ν + r
x
r

Vhg−Vlg =
x

κ +ν + r

Vlg−Vlb =
κ +ν + r

r(κ +ν + r+mC
B)+κmC

B
(δg−δb)

Vhb−Vlg =
x

κ +ν + r
− κ +ν + r+mC

B

r(κ +ν + r+mC
B)+κmC

B
(δg−δb)

Vhn =Vln =
mC

S [λVhg +(1−λ )Vhb + tT (hn)]+ tN(hn)
r+mC

S
=

tN(ln)
r

(206)

To get the corresponding transfers, first consider:
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0 = r(Vhn−Vln) =mC
S [λVhg +(1−λ )Vhb + tT (hn)−Vhn]+ tN(hn)− tN(ln)

=mC
S

[
λVhg +(1−λ )Vhb + tT (hn)− mC

S [λVhg +(1−λ )Vhb + tT (hn)]+ tN(hn)
r+mC

S

]
+ tN(hn)− tN(ln)

(207)

Rearranging and using equation (206) we get:

tN(ln)=
r

r+mC
S

{
tN(hn)+mC

S
[
λVhg +(1−λ )Vhb + tT (hn)

]}
=

r
r+mC

S

{
tN(hn)+mC

S
[
λ (Vhg−Vlg)+(1−λ )(Vhb−Vlg)+Vlg + tT (hn)

]}
=

r
r+mC

S

{
tN(hn)+mC

S

[
tT (hn)+

1
r

(
δg + tN(h)−

κ

κ +ν + r
x− (1−λ )

r(κ +ν + r+mC
B)

r(κ +ν + r+mC
B)+κmC

B
(δg−δb)

)]}
≥ 0

(208)

As Vhn = Vln =
tN(ln)

r , the IR constraint is always satisfied when this lower bound is positive, guaranteed

by condition (42). Similarly, using (206) and imposing the IR constraint for the lg agents we get:

tN(h) = t(l)−mC
B(Vlg−Vln) = t(l)−mC

B

(
δg + tN(h)

r
− κ + r

κ +ν + r
x
r
− tN(ln)

r

)
≥ 0 (209)

Rearranging and substituting t(l) = tN(li)+mC
BtT (li), i = b,g, we get:

tN(h) = tN(hi) =
r

r+mC
B

{
tN(li)+mC

B

[
tT (li)−

1
r

(
δg−

κ + r
κ +ν + r

x
)
− tN(ln)

r

]}
≥ 0 (210)

Finally, the designer’s flow of net revenues from the mechanism is:

∑
θ∈S̃∪B̃

γθ [tN(θ)+α(θ)tT (θ)] =(λA− γlg)tN(hg)+ γlg
[
tN(lg)+mC

BtT (lg)
]
+[(1−λ )A− γlb] tN(hb)

+γlb
[
tN(lb)+mC

BtT (lb)
]
+ γhn

[
tN(hn)+mC

S tT (hn)
]
+(1− γhn)tN(ln)

(211)

Substituting the transfer restrictions tN(hg)= tN(hb) and tN(lg)+mC
BtT (lg)= tN(lb)+mC

BtT (lb), recalling that

mC
B(γ

C
lg +γC

lb) = mC
S γC

hn = µM(γC
B ,γ

C
S ), and using the results in (206), the budget balance condition simplifies

to:

µM(γC
B ,γ

C
S )

[
x

κ +ν + r
− (1−λ )

κ +ν + r+mC
B

r(κ +ν + r+mC
B)+κmC

B
(δg−δb)

]
≥ AtN(h)+ tN(ln) (212)

i.e. condition (43).

Proof of Corollary 7.1.
From the proof of Proposition 7.1, within the class of mechanism such that Vhn−Vln = 0 net revenues are

maximized when tN(hi) and tN(ln) are as low as possible, i.e. both are equal to zero to satisfy (208) and

(210). In this case Vhn = Vln = 0 so the IR constraints are both binding, and no other mechanism with

Vhn−Vln > 0 could improve total revenues. The transfers in (44) follow immediately from conditions

(40)–(42).

Proof of Proposition 7.2.

1. Let us begin by solving for V̂jn. To do so, note that agents’ values when certificates are traded

satisfy:
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rV̂hc = δ̂ +κ(V̂lc−V̂hc) (213)

rV̂lc = δ̂ − x+ν(V̂hc−V̂lc)+mB[pT (lc)+V̂ln−V̂lc] (214)

rV̂hn = κ(V̂ln−V̂hn)+mS[V̂hc−V̂hn− pT (hn)] (215)

rV̂ln = ν(V̂hn−V̂ln), (216)

From this system of equations, we immediately obtain:

V̂hn =
mS(ν + r){(κmB pT (lc)− [r(κ +ν + r+mB)+κmB]pT (hn)+(κ +ν + r+mB)δ̂ −κx}

r(κ +ν + r)[r(κ +ν + r+mB)+κmB +mS(ν + r+mB)]
(217)

V̂ln =
mSν{κmB pT (lc)− [r(κ +ν + r+mB)+κmB]pT (hn)+(κ +ν + r+mB)δ̂ −κx}

r(κ +ν + r)[r(κ +ν + r+mB)+κmB +mS(ν + r+mB)]
(218)

Given that these values do not depend on pA, it must be the case that:

pA−V̂jn =
1
r

(
δg−

κ + r1{ j=l}

κ +ν + r
x
)

(219)

Otherwise, the designer could increase pA marginally and make strictly higher profits while still

satisfying all the constraints. Thus, given that the autarky value of a jg agent does not depend on

the choice variables, the designer’s problem becomes:

max
pA,pT
{V̂jn+pT (hn)+Πh} (220)

subject to V̂hc− pT (hn)≥ 0 (221)

V̂ln + pT (lc)≥
1
r

(
δ̂ − κ + r

κ +ν + r
x
)

(222)

Let us consider slow and fast packaging in turn. The designer’s objective function in a SP scheme

up to a constant is:

mSν{(κmB pT (lc)− [r(κ +ν + r+mB)+κmB]pT (hn)}
r(κ +ν + r)[r(κ +ν + r+mB)+κmB +mS(ν + r+mB)]

+ pT (hn)+
κmB[pT (hn)− pT (lc)]

r(κ +ν + r+mB)
(223)

Note that this objective function is increasing in pT (hn) and decreasing in pT (lc) if and only if:

r(κ +ν + r)[r(κ +ν + r+mB)+κmB +mS(ν + r+mB)]≥ mSνr(κ +ν + r+mB) (224)

⇔ r(κ +ν + r)[r(κ +ν + r+mB)+κmB +mS(r+mB)]≥ mSνrmB (225)

⇔ r(κ +ν + r+mS)[r(κ +ν + r+mB)+κmB]≥ 0 (226)

Clearly, this inequality is always satisfied. In a FP scheme, the designer’s objective function up to

a constant is:

mS(ν + r){(κmB pT (lc)− [r(κ +ν + r+mB)+κmB]pT (hn)}
r(κ +ν + r)[r(κ +ν + r+mB)+κmB +mS(ν + r+mB)]

+ pT (hn)+
κmB[pT (hn)− pT (lc)]

r(κ +ν + r+mB)
(227)
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In this case, the objective is increasing in pT (hn) and decreasing in pT (lc) if and only if:

r(κ +ν + r)[r(κ +ν + r+mB)+κmB +mS(ν + r+mB)]≥ mS(ν + r)r(κ +ν + r+mB) (228)

⇔ r(κ +ν + r)[r(κ +ν + r+mB)+κmB +mSmB]≥ mS(ν + r)rmB (229)

⇔ r(κ +ν + r)r(κ +ν + r+mB)+ r(κ +ν + r+mS)κmB ≥ 0 (230)

Also this inequality is always satisfied. Thus, we have established that both in SP and in FP

schemes the designer’s objective function is increasing in pT (hn) and decreasing in pT (lc). Con-

sequently, in a revenue-maximizing scheme pT (hn) = V̂hc. From this, it follows that V̂ln = V̂hn = 0.

Thus, the revenue-maximizing prices for a certificate are given by:

pT (lc) =
1
r

(
δ̂ − κ + r

κ +ν + r
x
)

pT (hn) =
1
r

(
δ̂ − κ

κ +ν + r
x
)

(231)

2. The feasibility of a SP scheme is determined by the highest price pA at which hb agents prefer to

keep their asset. This is due to the fact that we are requiring the average quality of the assets held

by the designer to be equal to the average quality of the assets in the economy. If, in addition to

low-valuation agents, also hb agents would be willing to sell their asset, the share of peaches held

by the designer would be initially lower than λ . Given that in a revenue-maximizing SP scheme

V̂ln = V̂hn = 0, hb agents prefer to keep their assets when:

1
r

[
δb +

κmB

r(κ +ν + r+mB)+κmB
(δg−δb)−

κ

κ +ν + r
x
]
≥ 1

r

(
δg−

κ + r
κ +ν + r

x
)
= pA (232)

The left-hand side represents the value of keeping a lemon until transiting to the state of low-

valuation and is equal to Vhb in equilibrium E. Rearranging yields the expression in the proposition.

Note that a SP scheme, when feasible, yields a positive profit as:

− pA + pT (hn)+Πh =
x
r

[
r(κ +ν + r+mB)+κmB

(κ +ν + r)(κ +ν + r+mB)
− (1−λ )φ

]
(233)

This expression is positive as, for the scheme to be feasible, φ is required to be smaller than the

first term inside the square brackets.

3. The feasibility of a FP scheme, on the other hand, is determined by a non-negative profits condi-

tion. In a FP scheme:

− pA + pT (hn)+Πh =
x
r

[
κmB

(κ +ν + r)(κ +ν + r+mB)
− (1−λ )φ

]
(234)

Requiring this to be positive yields the expression in the proposition.

4. This follows immediately by comparing the expressions in (233) and (234).

Proof of Proposition 7.3.
Given that we are considering fast packaging schemes, the price offered by the designer has to satisfy

pA ≥Vhg−V̂hn. Let us suppose that the designer offers Vhg−V̂hn and check whether a private buyer would

have an incentive to match this offer. Offering Vhg−V̂hn, a private buyer obtains at most (for πhn(g, p) = 1)
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V̂hn. Any offer below that of the designer is rejected, in which case the buyer purchases a certificate at

price pC and his value is V̂hc− pC. Using the expression in the proof of Proposition 3.1, we obtain:

pC = β (V̂hc−V̂hn)+(1−β )(V̂lc−V̂ln) (235)

A buyer prefers not to match the designer’s offer when

V̂hc− pC ≥ V̂hn

⇔ βV̂hn +(1−β )(V̂hc−V̂lc +V̂ln)≥ V̂hn

⇔ (1−β )(V̂hc−V̂lc +V̂ln−V̂hn)≥ 0

(236)

Using the results in the proof of Proposition 3.1, we get:

V̂hc−V̂lc +V̂ln−V̂hn =
r(κ +ν + r)

κ +ν + r+(1−β )mS
(V̂hc−V̂lc)> 0 (237)

Thus, (236) is satisfied, implying that a private buyer prefers not to match the designer’s offer. What

remains is to derive a condition for the feasibility of the scheme. Given that the designer can commit to

making each buyer a single take-it-or-leave-it offer, the outside option of a peach holder is equal to his

value under autarky. Therefore, the feasibility condition becomes:

− pA + pC =−
[

1
r

(
δg−

κ

κ +ν + r
x
)
−V̂hn

]
+β (V̂hc−V̂hn)+(1−β )(V̂lc−V̂ln)≥ 0 (238)

Using the results in the proof of Proposition 3.1 yields

V̂hc−
1
r

(
δg−

κ

κ +ν + r
x
)
=

1
r

[
κ

κ +ν + r
βmB

κ +ν + r+(1−β )mS +βmB
x− (1−λ )(δg−δb)

]
V̂lc +V̂hn−V̂ln−

1
r

(
δg−

κ

κ +ν + r
x
)
=

1
r

[
κ

κ +ν + r
βmB

κ +ν + r+(1−β )mS +βmB
x− (1−λ )(δg−δb)

− r
κ +ν + r

[κ +ν + r+(1−β )mS] [κ +ν + r+βmB− (1−β )mS]

[κ +ν + r+βmB] [κ +ν + r+(1−β )mS +βmB]
(239)

Substituting these expressions into (238) and simplifying yields the feasibility condition in the proposi-

tion.

Appendix B

B.1 Mixed strategy equilibria

First, we characterize analytically some properties of mixed strategy equilibria when trading opportuni-

ties arise according to the DGP technology. Then, we illustrate graphically mixed strategy equilibria for

the KW technology.

Note that in general agents can randomize on two margins: whether to participate or not in the

market and whether to play a mixed strategy either when offering a price or when accepting an offer.

However, for the DGP technology the first margin is redundant as matching takes place among all agents

in the economy and no participation decisions are taken. Hence, for the DGP technology, we can focus

on the latter margin.
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We begin by considering equilibria M3, described in Table 1, in which only hb agents play mixed

strategies. For the existence of such equilibria, the following characterization is obtained.

Proposition B.1 For the DGP technology, mixed strategy equilibria M3, in which only hb agents play

mixed strategies exist for a set of pairs of (λ ,φ) with measure zero.

Proof. The proposition is proven in two steps. First, it is shown that the condition which needs to be

satisfied for hb agents to be indifferent between accepting and not an offer of p̄lg is invariant to σhb(p̄lg).

Then, it is proven that this condition is satisfied for a set of pairs of (λ ,φ) with measure zero.

The relevant indifference condition of hb agents is given by Vhb−Vlg = Vhn−Vln. We slightly abuse

notation and set γS = γlg + γlb +σhb(p̄lg)γhb, which represents the measure of sellers accepting an offer of

p̄lg with probability one. Using this definition and noting that for the DGP technology mS = µγS/(1+A),

we can find an explicit expression for the indifference condition following the same steps as in the proof

of Proposition 5.3. We obtain the following:

Vhb−Vlg =Vhn−Vln ⇔ δg−δb

x
=

r(κ +ν + r+mB)+κmB

(κ +ν + r+ γlg

γS
mS)(κ +ν + r+mB)

(240)

Given that for the DGP technology

mB = µ
γB

1+A
, (241)

mS
γlg

γS
= µ

γlg

1+A
(242)

are independent of σhb(p̄lg), it follows that the indifference condition of hb agents is invariant to σhb(p̄lg)

and coincides with that in equilibrium H.

Finally, note that for the DGP technology the indifference condition of hb agents is identical in

equilibria E and H as mB and mS
γlg

γS
assume the same values in these two equilibria. Thus, by Lemma 5.5,

the indifference condition Vhb−Vlg =Vhn−Vln defines a curve in the (λ ,φ) space, a set with measure zero.

Intuitively, when trading opportunities arise according to the DGP technology, the indifference con-

dition of hb agents does not depend on whether they actively trade or not. For this reason, the indifference

condition is identical in equilibria E, H and M3. Consequently, such mixed strategy equilibria exist only

on the curve along which hb agents are indifferent between participating and not.

A second aspect of mixed strategy equilibria that we wish to discuss is whether such equilibria exist

for λ smaller λ∗ above which pure strategy equilibrium in which both lemons and peaches are traded

exist. In this case, mixed strategy equilibria would enlarge the parameter space in which both lemons

and peaches can be traded.

We seek to find a sufficient condition for mixed strategy equilibria of any type to exist in a region

of the (λ ,φ) space where neither equilibrium E nor equilibrium H exists. For this reason, we can focus

on M1, the most analytically tractable mixed strategy equilibria, in which only lg agents employ mixed

strategies and hb agents do not trade. We begin by characterizing on how mB, the rate at which a seller

meets buyers, varies with σhn(p̄lg).
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Lemma B.1 For the DGP technology, the rate at which a seller meets buyers mB is decreasing in

σhn(p̄lg).

Proof. For the DGP technology, the rate at which a seller meets buyers is given by mB = µγB/(1+A).

Differentiating this with respect to σhn(p̄lg) yields

dmB

dσhn(p̄lg)

(
1− µ

1+A
∂γB

∂mB

)
=− µ

1+A
κλAmB

(κ +ν +σhn(p̄lg)mB)2 , (243)

where
∂γB

∂mB
=− κλAσhn(p̄lg)

(κ +ν +σhn(p̄lg)mB)2 −
κ(1−λ )A

(κ +ν +mB)2 < 0 (244)

Thus, we have shown that mB is decreasing in σhn(p̄lg).

As σhn(p̄lg) increases, the measure of buyers decreases, which for the DGP technology leads to a

decrease in mB. Equipped with this property we can prove the following result about the values of λ for

which mixed strategy equilibria exist.

Proposition B.2 For the DGP technology, if r2 ≥ κ
(
κ +ν +φ µ

A
1+A

)
, then mixed strategy equilibria exist

for lower values of λ than equilibria in pure strategies in which peaches are traded.

Proof. The result is proven by considering how the indifference condition of buyers in equation (22)

varies with σhn(p̄lg). This is sufficient as when the condition for hb agents not to participate holds with

strict inequality for σhn(p̄lg) = 1, by continuity, it also holds for σhn(p̄lg) < 1 in a neighbourhood of

σhn(p̄lg) = 1. Given that the effective rate at which a seller receives an offer of p̄lg in a mixed strategy

equilibrium is σhn(p̄lg)mB and the ratio of sellers of peaches to those of lemons is given by

γlg

γlb
=

λ

1−λ

κ +ν +mB

κ +ν +σhn(p̄lg)mB
, (245)

the indifference condition for buyers becomes (following the same steps as in the proof of Lemma 5.5):

λ

1−λ

κ +ν +mB

κ +ν +σhn(p̄lg)mB
= φ

(κ +ν + r)(κ +ν + r+mS)− γlg

γS
mS(κ +ν + r+σhn(p̄lg)mB)

r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB
(246)

Given that by Lemma 5.1 γlb = κ(1−λ )A/(κ+ν+mB) and γlg = κλA/(κ+ν+σhn(p̄lg)mB), we can rewrite

the condition as follows:

λ

1−λ

κ +ν +mB

κ +ν +σhn(p̄lg)mB
= φ

(κ +ν + r)
(

κ +ν + r+ κ(1−λ )A
κ+ν+mB

mS
γS

)
−κλA mS

γS

σhn(p̄lg)mB

κ+ν+σhn(p̄lg)mB

r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB
(247)

Note that mS = µγS/(1+A). Thus, we obtain the following equivalent expression:

−φ

(κ +ν +σhn(p̄lg)mB)
[
(κ +ν + r)

(
κ +ν + r+ κ(1−λ )µ

κ+ν+mB

A
1+A

)
−κλ µ

A
1+A

σhn(p̄lg)mB

κ+ν+σhn(p̄lg)mB

]
r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB

+
λ

1−λ
(κ +ν +mB) = 0

(248)

Let us denote the left-hand side of (248) by g. Differentiating with respect to σhn(p̄lg) yields:
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∂g
∂σhn(p̄lg)

=
λ

1−λ

∂mB

∂σhn(p̄lg)

+φ
(κ +ν +σhn(p̄lg)mB)(κ +ν + r)

r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB

κ(1−λ )µ

(κ +ν +mB)2
A

1+A
∂mB

∂σhn(p̄lg)

−φ

[r2−κ(κ +ν)]
[
(κ +ν + r)

(
κ +ν + r+ κ(1−λ )µ

κ+ν+mB

A
1+A

)
−κλ µ

A
1+A

σhn(p̄lg)mB
κ+ν+σhn(p̄lg)mB

]
[r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB]2

∂ (σhn(p̄lg)mB)

∂σhn(p̄lg)

+φ

(κ +ν +σhn(p̄lg)mB)κλ µ
A

1+A
κ+ν

(κ+ν+σhn(p̄lg)mB)2

r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB

∂ (σhn(p̄lg)mB)

∂σhn(p̄lg)
(249)

Note that the first two terms are negative as ∂mB/∂σhn(p̄lg) ≤ 0. The last two terms, on the other hand,

can be combined, using the expression for g, as follows

−
λ

{
[r2−κ(κ+ν)](κ+ν+mB)

1−λ
−φκ(κ +ν)µ A

1+A

}
(κ +ν +σhn(p̄lg)mB)[r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB]

∂ (σhn(p̄lg)mB)

∂σhn(p̄lg)
(250)

For r2 ≥ κ
(
κ +ν +φ µ

A
1+A

)
this expression is negative as

∂ (σhn(p̄lg)mB)

∂σhn(p̄lg)

(
1+

κλAσhn(p̄lg)

(κ +ν +σhn(p̄lg)mB)2

)
= mB−

κ(1−λ )Aσhn(p̄lg)

(κ +ν +mB)2

∂mB

∂σhn(p̄lg)
> 0 (251)

Differentiating with respect to λ , on the other hand, we obtain:

∂g
∂λ

=
κ +ν +σhn(p̄lg)mB

r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB

{
1

(1−λ )2 (κ +ν +mB)
r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB

κ +ν +σhn(p̄lg)mB

+φ

[
(κ +ν + r)

κµ

κ +ν +mB

A
1+A

+κµ
A

1+A
κ +ν + r+σhn(p̄lg)mB

κ +ν +σhn(p̄lg)mB

]
+

λ

1−λ

[
(1−σhn(p̄lg))(κ +ν)

(κ +ν +σhn(p̄lg)mB)2 [r(κ +ν + r+σhn(p̄lg)mB)+κσhn(p̄lg)mB]+σhn(p̄lg)(κ + r)
κ +ν +mB

κ +ν +σhn(p̄lg)mB

]
∂mB

∂λ

+φ

[
(κ +ν + r)

κ(1−λ )µ

(κ +ν +mB)2
A

1+A
+σhn(p̄lg)(κ +ν)

κλ µ

(κ +ν +σhn(p̄lg)mB)2
A

1+A

]
∂mB

∂λ

}
(252)

Given that

∂mB

∂λ

(
1+

σhn(p̄lg)κλA
(κ +ν +σhn(p̄lg)mB)2 +

κ(1−λ )A
(κ +ν +mB)2

)
= µ

(1−σhn(p̄lg))mB

(κ +ν +σhn(p̄lg)mB)(κ +ν +mB)
≥ 0 (253)

it holds that ∂g/∂λ > 0. Thus, we have established that dλ/dσhn(p̄lg) ≥ 0 for r2 ≥ κ
(
κ +ν +φ µ

A
1+A

)
.

Thus, for any σhn(p̄lg) < 1, the value of λ for which the indifference condition of buyers is satisfied is

smaller than the threshold value λ∗E above which equilibria in pure strategies exist. Given that for the

DGP technology the indifference condition of hb agents is identical in equilibria E and H, for λ < λ∗E

and φ < φ ∗E , no pure strategy equilibria in which peaches are traded exists. Thus, we can conclude that

mixed strategy equilibria exists for lower values of λ than pure strategy equilibria in which σhn(p̄lg) = 1

when r2 ≥ κ
(
κ +ν +φ µ

A
1+A

)
.

Figure 12 illustrates a case in which equilibria M1 exist for lower values of λ than pure strategy

equilibria E and H. Note that, for the parameters to satisfy the sufficient condition in Proposition B.2,

the values of κ and ν have to be relatively low. For the chosen parameter values, an agent’s valuation

state changes in expectation once every 50 years. Figure 12 reveals that also mixed strategy equilibria

M2, in which σhb(p̄lg) = 1 can exist for lower values of λ than pure strategy equilibria H. A difference
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between equilibria M1 and M2 is that in the latter the positive effect of a lower σhn(p̄lg) on the average

quality of assets is asymmetric around λ = 0.5, being stronger for λ equal to 0.5+ ε than for λ equal

to 0.5− ε .47 For this reason, M2 can exist for higher values of λ than pure strategy equilibria H when

the opposite holds for the equilibria E and M1. Finally, for the parameter values considered in Figure

12, also mixed strategy equilibria M4, in which both lg and hb agents employ mixed strategies exist for

pairs of (λ ,φ) for which no pure strategy equilibria in which peaches are traded exists. The existence of

equilibria M4 is determined by two considerations. First, to render hb agents indifferent between trading

and not, φ has to be lower than in equilibria in which σhn(p̄lg) = 1. This is due to the fact that, for a

given λ , σhn(p̄lg)mB is lower and (γlg/γS)mS is higher than when σhn(p̄lg) = 1. Second, to render buyers

indifferent between offering p̄lg and p̄lb, λ has to be lower than in the pure strategy equilibria, given that

we are considering a case in which the discount rate is high.

Figure 12: DGP technology, parameter values: A = 1, κ = 0.02, ν = 0.02, µ = 1.25, r = 0.2.

Let us conclude our discussion of mixed strategy equilibria when considering the DGP technology

by further commenting Figure 5, illustrating where they exist for values of κ and ν which are larger

relative to r, implying more reasonable intensities for the changes in agents’ valuation states. For the

chosen parameter values, mixed strategy equilibria M1 and M2 exist in the interior of the parameter

space in which the pure strategy equilibria E and H exist. It is worth pointing out that the contour lines

of M1 and M2 meet for each σhn(p̄lg). This is due to the fact that, for any σhn(p̄lg), mB assumes the

same value in M1 and M2 and when the hb agents’ participation constraint is satisfied with equality the

value functions across the two mixed strategy equilibria are identical. Mixed strategy equilibria of type

M4, on the other hand, exist also in the parameter region in which neither equilibria E nor equilibria H

exist. This is due to the fact that hb agents indifference condition is satisfied below the φ ∗E curve for

σhn(p̄lg) < 1 and buyers are indifferent between offering p̄lb and p̄lg on the right of the λ∗H curve when

some hb agents trade.

47This can be seen by analysing how ∂ (γlg/γS)

∂ (σhn(p̄lg)mB)
=− κλ (1−λ )

[κ+(ν+σhn(p̄lg)mB)(1−λ )]2
varies with λ .
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When agents are matched according to the KW technology, the two margins on which agents can

randomize are both potentially relevant. This is because the matching rates of buyers and sellers depend

on who participates in the market. In particular, the fraction of hb agents participating in the market

influences the matching rates. However, the probability of hb agents accepting an offer of p̄lg when they

are indifferent between accepting and rejecting has no effect on the matching rates and the value func-

tions. This is because this acceptance probability does not affect the measures of agents with different

statuses and buyers obtain zero surplus from trading with an hb agent. Consequently, when considering

the KW technology, the only relevant margin for hb agents is whether they participate in the market or

not. For this reason, we slightly depart from our equilibrium definition and assume that only a fraction

of hb agents, denoted by σhb, participate in the market. This allows us to discover whether peaches can

be traded in a larger region of the parameter space when hb agents randomize on the relevant margin.

We begin by illustrating, in Figure 13, a parameter configuration in which r is relatively large. The

two effects of a decrease in σhn(p̄lg) discussed above are also at play when agents are matched according

to the KW technology. However, in this case, the intensity at which peaches are traded varies more

strongly with σhn(p̄lg) as mB is increasing in σhn(p̄lg). This renders the effect of the effective trading

intensity stronger, constraining the parameter space for which mixed strategy equilibria exist for lower

values of λ than pure strategy equilibria E and H. For the chosen parameter values, the two effects of a

lower σhn(p̄lg) almost cancel each other out, as evidenced by the fact the the mixed strategy equilibria

M1 exist only for values of λ marginally smaller than λ∗E . Mixed strategy equilibria M2, on the other

hand, exist for smaller values of λ than λ∗H for λ slightly larger than 0.5 due to the same reason as for

the DGP technology: the positive effect of a decrease in σhn(p̄lg) on the average quality is strongest for λ

in this range. As regards mixed strategy equilibria M3, in which only a fraction of hb agents participate

in the market, such equilibria exist between the two indifference curves for hb agents in the pure strategy

equilibria E and H, φ ∗E and φ ∗H . The reason for this is that when a fraction of hb agents participate in

the market, (γlg/γS)mS is lower than in the pure strategy equilibrium E. Finally, mixed strategy equilibria

M4 exist in a region between the equilibria M1 and M2 as in this part of the (λ ,φ) space hb agents are

indifferent between participating and not in the market and at the same time λ is sufficiently high such

that buyers are indifferent between offering the low and the high price.

When r assumes a lower value relative to κ and ν , as illustrated in Figure 6, mixed strategy equilibria

exist in the interior of the (λ ,φ) space in which the pure strategy equilibria E and H exist. Note that

differently from when considering the DGP technology, also equilibria M4 exist for higher values of λ

than pure strategy equilibria in which peaches are traded. The reason for this, in this case, higher values

of λ are needed to support equilibria where hb agents participate than for the DGP technology given that

sellers meet buyers less frequently than in equilibrium E. Mixed strategy equilibria M3, in which only

hb agents employ mixed strategies, again exist in between the two indifference curves for hb agents, φ ∗E

and φ ∗H .

B.2 Pure strategy equilibria when sellers offer prices

We consider the same model setup of section 2.1 but we assume a different trading protocol: sellers

make take-it-or-leave-it offers to buyers who can either accept or reject. Being a signalling game, there

are many possible Perfect Bayesian equilibria and their complete characterization is a challenging task

that goes beyond the scope of this paper. In this appendix we restrict attention to stationary pure strategy
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Figure 13: KW technology, parameter values: A = 1, κ = 0.02, ν = 0.02, µ = 2.5 and r = 0.2.

equilibria in which peaches and lemons trade. Our main results in terms of welfare inefficiencies, trade

volume and liquidity continue to hold with this bargaining protocol. Similarly to the complete informa-

tion benchmark, transaction prices and market liquidity are positively related when sellers fully exploit

their bargaining power vis-á-vis buyers (Section B.2.2).

If peaches are traded, the restriction to pure strategy equilibria implies that all sellers offer the same

price and buyers accept this price with probability one. Indeed, when peaches are traded and buyers

only play pure strategies, the price offered by peach holders has to be accepted with probability one,

thus lemon holders do not find convenient to offer a lower price because it would not allow them to

trade more rapidly. As common in signalling models, infinitely many pooling prices may support an

equilibrium; it is sufficient that buyers out of equilibrium beliefs assign a sufficiently high probability to

the event of receiving a lemon. As in the previous analysis, we first characterize the equilibrium when

individual private states are observable, and later we consider the case of private information also along

this dimension. For this latter case we distinguish whether in equilibrium hb agents participate in the

market as active sellers or not. For each of the two cases, we restrict attention to equilibria in which

sellers demand the highest possible price that buyers accept. This restriction allows to characterize the

largest set of parameters in which lg agents sell their assets.

B.2.1 Individual private states publicly observable

By Milgrom and Stokey (1982) no trade theorem, in equilibrium only low valuation asset holders trade

their assets. If both peaches and lemons trade, then matching are equal to mC
B and mC

S and sellers offer

the highest possible price that buyers accept:

p =
γlg

γS
Vhg +

(
1− γlg

γS
Vhb

)
−Vhn = λVhg +(1−λ )Vhb−Vhn (254)
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In turn, at this price it follows immediately that Vhn =Vln = 0. Hence, the relevant value functions are:

rVhi = δi +κ(Vli−Vhi) i = b,g (255)

rVli = δi− x+ν(Vhi−Vli)+mC
B [λVhg +(1−λ )Vhb−Vli] i = b,g (256)

It is immediate to realize that this equilibrium exists if and only if:

λ (Vhg−Vlg)+(1−λ )(Vhb−Vlg)≥ 0 (257)

From equations (255) and (256) we get:

Vhg−Vlg =
x− (1−λ )mC

B(Vhb−Vlg)

κ +ν + r+λmB
(258)

Vhb−Vlg =
x− (δg−δb)−

(
ν +λmC

B

)
(Vhg−Vlg)−κ(Vhb−Vlb)

r+(1−λ )mC
B

(259)

Vhg−Vhb =
δg−δb +κ(Vlg−Vlb)

κ + r
(260)

Vlg−Vlb =
δg−δb +ν(Vhg−Vhb)

ν + r+mC
B

(261)

From the above equations we get:

Vhb−Vlg =
x

κ +ν + r+mC
B
− κ +ν + r+λmC

B

r(κ +ν + r+mC
B)+κmC

B
(δg−δb) (262)

Substituting (262) first in equation (258), and then in (257) we get that the equilibrium exists if and only

if:

(1−λ )φ ≤ r(κ +ν + r+mC
B)+κmC

B

(κ +ν + r)(κ +ν + r+mC
B)

(263)

B.2.2 Bi-dimensional private information: hb agents sell their assets

Consider sellers offering the highest possible price that buyers would accept:

p =
γlg

γS
Vhg +

(
1− γlg

γS
Vhb

)
−Vhn (264)

This price offer makes hb agents willing to sell their assets because p+Vhn >Vhb as Vhg >Vhb.

If sellers trade at this price then agents with no assets have the following values:

rVhn =κ (Vln−Vhn)+mS

[
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb− p−Vhn

]
= κ (Vln−Vhn) (265)

rVln =ν (Vhn−Vln) (266)

The only solution to these two equations is Vhn =Vln = 0, i.e. agents without asset do not get any surplus.

Note that also in this case only hn agents participate as buyers, while ln agents wait until their valuation

is high again. The remaining value functions are:

rVhg =δg +κ (Vlg−Vhg) (267)
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rVlg =δg− x+ν (Vhg−Vlg)+mB

[
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb−Vlg

]
(268)

rVhb =δb +κ (Vlb−Vhb)+mB

[
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb−Vhb

]
(269)

rVlb =δb− x+ν (Vhb−Vlb)+mB

[
γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb−Vlb

]
(270)

This equilibrium exists if and only if lg agents are willing to offer this price, i.e.

γlg

γS
Vhg +

(
1− γlg

γS

)
Vhb−Vlg ≥ 0 (271)

To compute when this condition holds, let’s consider Vhg−Vlg and Vhb−Vlg. From equations (267)–(270)

we get:

Vhg−Vlg =
x−
(

1− γlg

γS

)
mB (Vhb−Vlg)

κ +ν + r+ γlg

γS
mB

Vhb−Vlb =
x

κ +ν + r+mB
(272)

Subtracting equation (268) from (269) and using the results in (272) we have:

r(Vhb−Vlg) =δb−δg + x−κ(Vhb−Vlb)−ν(Vhg−Vlg)−mB(Vhb−Vlg)

=δb−δg + x−κ
x

κ +ν + r+mB
−ν

x−
(

1− γlg

γS

)
mB (Vhb−Vlg)

κ +ν + r+ γlg

γS
mB

−mB(Vhb−Vlg)
(273)

Rearranging and simplifying we get:

Vhb−Vlg =
x

κ +ν + r+mB
−

(δg−δb)
(

κ +ν + r+ γlg

γS
mB

)
r(κ +ν + r+mB)+κmB +

γlg

γS
mB(ν + r+mB)

(274)

Substituting the results in (272) and (274) in (271) and rearranging:

γlg

γS

(
Vhg−Vlg

)
+

(
1−

γlg

γS

)
(Vhb−Vlg) =

x
κ +ν + r+mB

−
(

1−
γlg

γS

)
(κ +ν + r)(δg−δb)

r(κ +ν + r+mB)+κmB +
γlg
γS

mB(ν + r+mB)

(275)

Therefore, this equilibrium exists only if:

δg−δb

x
≤

r(κ +ν + r+mB)+κmB +
γlg

γS
mB(ν + r+mB)(

1− γlg

γS

)
(κ +ν + r)(κ +ν + r+mB)

(276)

Lastly, we derive an expression for the equilibrium price, and we show it is in increasing in the

matching rate mB. The price offered by sellers is equal to:

p =
γlg

γS
(Vhg−Vlg)+

(
1− γlg

γS

)
(Vhb−Vlg)+Vlg (277)

From the previous results, after some algebraic manipulations, we get the following expression in terms

of the fundamentals:

p =
1
r

{
δg−

κ

κ +ν + r+mB
x−
(

1− γlg

γS

)
(δg−δb)[r(κ +ν + r+mB)+κmB]

r(κ +ν + r+mB)+κmB +
γlg

γS
mB(κ + r+mB)

}
(278)
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In general, this expression can be increasing or decreasing in mB because the term multiplying x is

decreasing in mB, while the last term can be increasing in mB. However, if the inequality in (276) holds

then the expression is unambiguously increasing in mB. Indeed, consider a tuple (δg,δb,x) such that (276)

holds with equality. Substituting in (278) the price expression becomes:

p =
1
r

(
δg−

κ + r
κ +ν + r

x
)

(279)

which is independent of mB. Therefore, a higher x (or equivalently a lower δg−δb) satisfies the existence

condition in (276), and it simultaneously increases the absolute value of the derivative with respect to

mB of κ

κ+ν+r+mB
x relative to the one for the last term in equation (278).

B.2.3 Bi-dimensional private information: hb agents do not sell their assets

Consider an equilibrium in which lg and lb agents propose a price that would never be offered by hb

agents. The highest possible such price is equal to p =Vhb−Vhn.

Since hb agents do not trade while lg and lb agents trade at p =Vhb−Vhn, the value functions are:

rVhg = δg +κ(Vlg−Vhg) (280)

rVlg = δg− x+ν(Vhg−Vlg)+mB(Vhb−Vhn−Vlg +Vln) (281)

rVhb = δb +κ(Vlb−Vhb) (282)

rVlb = δb− x+ν(Vhb−Vlb)+mB(Vhb−Vhn−Vlb +Vln) (283)

rVhn = κ(Vln−Vhn)+
γlg

γS
mS(Vhg−Vhb) (284)

rVln = ν(Vhn−Vln) (285)

After some simple algebraic manipulations we get:

Vlg−Vlb =
κ +ν + r

r(κ +ν + r+mB)+κmB
(δg−δb) (286)

Vhg−Vhb =
κ +ν + r+mB

r(κ +ν + r+mB)+κmB
(δg−δb) (287)

Vhn−Vln =

γlg

γS
mS

κ +ν + r
κ +ν + r+mB

r(κ +ν + r+mB)+κmB
(δg−δb) (288)

(Vhb−Vlg)

(
r+mB

κ + r
κ +ν + r

)
=δb−δg +

(
1− κ

κ +ν + r+mB
− ν

κ +ν + r

)
[x+mB(Vhn−Vln)] (289)

Agents of type lg participate in the market only if the price satisfies p+Vln ≥ Vlg. In this equilibrium

p =Vhb−Vhn, hence it must hold Vhb−Vlg−Vhn +Vln ≥ 0. To get a condition on the underlying parameters

that satisfy this inequality we consider the equivalent condition (Vhb−Vlg−Vhn +Vln)
(
r+mB

κ+r
κ+ν+r

)
≥ 0.

Deducting
(
r+mB

κ+r
κ+ν+r

)
(Vhn−Vln) from both sides of (289) and substituting the expressions in equation

(288) in the resulting expression we get (after some simplifications):

(Vhb−Vlg−Vhn +Vln)

(
r+mB

κ + r
κ +ν + r

)
=

r(κ +ν + r+mB)+κmB

(κ +ν + r+mB)(κ +ν + r)
x−

κ +ν + r+ γlg

γS
mS

κ +ν + r
(δg−δb) (290)

Since in equilibrium only lg and lb agents trade, we have γlg

γS
= λ (as in Proposition 5.2). Therefore, by
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equation (290), this equilibrium exists if and only if:

δg−δb

x
≤ r(κ +ν + r+mB)+κmB

(κ +ν + r+λmS)(κ +ν + r+mB)
(291)

B.3 Static benchmark

Consider an economy in which there two types of non-durable goods, peaches and lemons. The value

in utils of a good of either type to an agent depends on his valuation state, which can be either high or

low. An agent in the high valuation state derives a utility of δg from a peach and δb from a lemon, with

δg > δb. An agent in the low valuation state, on the other hand, obtains a utility of δg−x from a peach and

δb−x from a lemon. A proportion λ of all the goods are peaches. The fractions of peaches and lemons in

the hands of low-valuation agents are equal. Thus, the probability of a randomly-chosen low-valuation

agent with a good holding a peach is equal to λ .

Consider an agent in the high valuation state but without a good, called a buyer, making a take-it-or-

leave-it offer to an agent with a good, without knowing the type of the good he holds and his valuation

state. The buyer will offer either δg− x or δb− x as the latter dominates any price above it, whereas the

former any price between the two. Note that the higher price δg− x is accepted also by high-valuation

agents holding a lemon when δg−x≥ δb. Thus, there are two cases to consider: δg−δb

x < 1 and δg−δb

x ≥ 1. In

the former case, both of the two possibly prices are rejected by all high-valuation agents. Thus, offering

the higher price is optimal in this case when:

λδg +(1−λ )δb− (δg− x)≥ (1−λ )[δb− (δb− x)] ⇔ λ

1−λ
≥ δg−δb

x
(292)

In the latter case, in which δg−δb

x ≥ 1, on the other hand, the higher price is accepted also by high-valuation

agents holding lemons. Denoting the fraction of low-valuation agents with α , offering the higher price

is optimal when:

αλ [δg− (δg−x)]+(1−λ )[δb− (δg−x)]≥ α(1−λ )[δb− (δb−x)] ⇔ α
λ

1−λ
+(1−α)≥ δg−δb

x
(293)

Figure 14, where φ denotes δg−δb

x , illustrates the different equilibria in the static benchmark. Equi-

librium E refers to the equilibrium in which the higher price is offered and only low-valuation owners

are willing to sell their asset. Equilibrium H, on the other hand, denotes the equilibrium in which also

high-valuation owners of lemons are willing to sell their asset. Note that in the unshaded area, the unique

equilibrium is one in which the lower price δb− x is offered and only low-valuation owners of lemons

are willing to sell their asset.

It is worth making two observations, that also apply to the dynamic model considered in the main

text. First, Figure 14 shows that when gains from trade are low, i.e. x is small and by implication φ

large, the only equilibrium in which both types of assets are traded is H. This is because the price δg− x

is sufficiently high such that also high-valuation owners of lemons are willing to sell their asset. Given

that there are no gains from trade between such an owner and a buyer, the equilibrium exhibits excessive

trade. Second, the fact that λ∗H lies to the right of λ∗E for φ > 1 reflects buyers’ lower willingness to

offer the higher price when all the lemons are on the market. For this reason, for assets of both types

to be traded, a higher share of peaches is required. Taken together, these two observations allow us to
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Figure 14: Equilibria in the static benchmark. The two curves λ∗E and λ∗H show the threshold values for
which equations (292) and (293), respectively, hold with equality, while φ ∗ denotes the line φ = 1.

conclude that when gains from trade are small there is a double bind of asymmetric information: either

high-quality goods are not traded at all or too many low-quality goods are traded. In our dynamic model,

with type-dependent, endogenous outside options of asset holders, the double bind is more pronounced

as high-valuation owners of lemons are more willing to participate in the market when the average

quality of goods in the economy is higher.
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