
1 Panel Data
� In many empirical investigations it is common
to have repeated observations on the same
unit and this then gives us variation across
time and across individuals.

� In this way it is common to write the model
as

yit = �0 + xit� + ci + uit

where c is an individual speci�c e¤ect.
� In the treatment of these models it is common
to assume

E[utjxt; c] = 0:::t = 1::T
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� One implication of this condition is
E[utjxt] = 0:

� If we were to assume E[x0tc] = 0 then one could
also apply OLS to the above model.

� However, if the individual e¤ect is correlated
with the x0s then OLS would not be biased.
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� In proceeding to estimate the parameters of
this model it is important that we clarify our
treatment of the individual components.

� An important distinction is whether they are
treated as random or �xed.

�We will discuss this more in detail below.
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� Another important issue is the exogeneity as-
sumptions regarding the x0s:

� It is very restrictive to assume the x0s are non
random as this excludes potential feedback
from yit to xis for s > t:

�With an unobserved e¤ect the clearest form
of strict exogeneity is

E[yitjxi1; xi2; ::::xiT;ci] = E[yitjxit; ci] = xit� + ci

where the second equality is a functional form
assumption.
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�When this above assumption holds (ie. the
�rst equality) we say that the x0s are strictly
exogenous conditional on the unobserved ef-
fect.

� Generally the strict exogeneity assumption is
written in terms of the idiosyncractic errors
as

E(uitjxi1; xi2; ::::xiT;ci) = 0
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� This assumes that the explanatory variables
in each time period are uncorrelated with the
idiosyncractic errors in each time period.

� That is,
E(x0isuit) = 0; s; t = 1:::T

� This is much stronger than contemporaneous
correlation.

� However, note that it does not impose any
restrictions on the relationship between x and
c:
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1.1 Estimation by Pooled OLS
�Write the model as

yit = xit� + vit

� where
vit = ci + uit

�We know that OLS is consistent if E(x0itvit) = 0

which essentially implies that
E(x0ituit) = E(x

0
itci) = 0
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� Note that even the estimates will be consis-
tent it is necessary to adjust the standard er-
rors to account for the correlation which is
induced since ci is included in each error for
the same individual.
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1.2 Random E¤ects Estimation
� It is useful, from an e¢ ciency perspective, to
account for the presence of ci in the calculation
of the standard errors and this is essentially
what random e¤ects estimation does.

� However, in doing so it imposes additional as-
sumptions above what is required for consis-
tency than pooled OLS.

� Assumption RE.1: a)E(uitjxi; ci) = 0; t = 1::T ; b)E(cijxi) =
E(ci) = 0 noting that xi = (xi1; ::xiT ):
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�We can see that strict exogeneity is implied
by the above. Under the above assumption it
follows that

E(vitjxi) = 0

�Write the model for all T time periods as
yi = Xi� + vi

and vi can be written as vi = cijT + ui where jT is
the Tx1 vector of ones
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� De�ne the unconditional variance matrix of vi
as


 = E(viv
0
i)

which is a TxT matrix that is positive de�-
nite.

� For consistency of GLS we require the usual
rank condition for GLS

� Assumption RE.2: rank E(X0i
�1Xi) = K
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� Now, a feasible GLS estimator using a con-
sistent estimate of 
 would be consistent but
this would not exploit the individual speci�c
component of the error term.

� A standard random e¤ects estimator imposes
structure which exploits this feature.
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� The �rst assumption is that the unconditional
variance of the idiosyncratic term is constant
across t. That is,

E(u2it) = �
2
u; t = 1::T

� The second assumption is that the idiosyn-
cratic error terms are uncorrelated.

E(uituis) = 0; all t 6= s
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� Under these two assumptions we can derive
the variances and covariances of the elements
of vi:

� Under RE.1a E(ciuit) = 0 and thus
E(v2it) = E(c

2
i ) + 2E(uitci) + E(u

2
it) = �

2
c + �

2
u

Also, for all t 6= s
E(vitvis) = E[(ci + uit)(ci + uis)] = �

2
c :
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� Therefore under the above assumptions


 = E(viv
0
i) =

2664
�2c + �

2
u �2c : �2c

�2c �2c + �
2
u : :

: : : :
�2c : �2c + �

2
u

3775
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� Since jT j
0
T is the TxT matrix with unity in

every element, we can write the above as

 = �2uIT + �

2
cjT j

0
T :

� The 
 above has a random e¤ects structure
and rather than depending on T(T+1)/2 un-
restricted variances and covariances it only
depends on the two unknown parameters �2c

and �2u:
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�We can summarize the assumptions as

� Assumption RE.3: a) E(uiu
0
ijxi; ci) = �2uIT: b)E(c

2
i jxi) =

�2c :

� Under RE.3.a. E[u2itjxi; ci] = �2u; t = 1::T and E[uituisjxi; ci] =
0; t 6= s; t; s = 1:::T: RE3.a. assumes the conditional
variances are constant and the conditional co-
variances are zero.

� Assumption RE.3.b is the same as the ho-
moskedasticity assumption on the unobserved
e¤ect.
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� To implement a feasible GLS procedure de�ne
�2v = �

2
c + �

2
u

and assume, for now, that we have consistent
estimates of �2c and �2u:

� Thus we can form
b
 = b�2uIT + b�2cjT j0T (1)

which is a TxT matrix that we assume to be
positive de�nite.
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� The FGLS estimator that uses 1 is known as
the random e¤ects estimator.

b�RE =
 

NX
i=1

X 0
i
b
�1Xi!�1 NX

i=1

X 0
i
b
�1yi! : (2)

� To implement this RE estimator we need es-
timates of the variances which we assumed to
have above.
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� It is easiest to �rst obtain b�2v = b�2u + b�2c :
� Under assumption RE3a. �2v = T�1

PT
t=1E(v

2
it) for

all i:
� Thus averaging v2it across all i and t gives a
consistent estimate of �2v:

� However, this requires an initial estimate of �
and one can use the pooled OLS estimate bb�:
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� Let bbvit denote the pooled OLS residuals.
� A consistent estimator of �2v is given by

b�2v = 1

(NT �K)

NX
i=1

TX
t=1

bbv2it:
� To �nd a consistent estimator of �2c recall that
�2c = E(vitvis), all t 6= s:

� Therefore for each i, there are are T (T � 1)=2 non
redundant error products that can be used to
estimate �2c :
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� If we sum all these combinations and take the
expectation, we get, for each i

E

 
T�1X
t=1

TX
s=t+1

vitvis

!
=

T�1X
t=1

TX
s=t+1

E (vitvis) =
T�1X
t=1

TX
s=t+1

�2c = �
2
c

T�1X
t=1

(T � t)

= �2c((T � 1) + (T � 2) + ::::::2 + 1) = �2cT (T � 1)=2(3)

where we have used the fact that the sum of
the �rst T-1 positive integers is T(T-1)/2.
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� As usual a consistent estimator is obtained
by replacing the expectation with an average
(across i) and replacing vit with its pooled OLS
residual.

�We also make a DOF adjustment as a small
sample correction:

b�2c = 1

[NT (T � 1)=2�K]

NX
i=1

T�1X
t=1

TX
s=t+1

bbvitbbvis
is a consistent estimator of �2c under Assump-
tions RE.1-RE.3.

� Given that we have b�2c and b�2v we can form b�2u =b�2v � b�2c :
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1.3 Fixed E¤ects Estimation
� Recall that the model under investigation for
T time periods has the form

yit = xit� + ci + uit t = 1::T: (4)

� The random e¤ects estimator essentially puts
the ci in the error term under the assumption
that it is orthogonal to the xit and then ac-
counts for the implied correlation in the error
term from doing so.
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� However, in many economic studies the inclu-
sion of the ci is precisely to capture that there
is some unobservable which is potentially cor-
related with the x0s:

� The �xed e¤ects estimator is designed to ac-
count precisely for this possibility. The T equa-
tions can be written as

yi = Xi� + cijT + ui (5)

where the jT is the Tx1 vector of ones.
� This equation represents a single draw from
the cross section.
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� The �rst �xed e¤ects assumption is strict ex-
ogeneity of the explanatory variables condi-
tional on ci :

� Assumption FE.1.
E(uitjxi; ci) = 0; t = 1; 2::T:
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� One can immediately see that this type of as-
sumption regarding the individual e¤ect is far
more appealing than that of the random ef-
fects procedures.

� However, this increased level of �exibility is
associated with a decrease in the number of
parameters that are identi�ed.

� That is, as we allow for any type of relation-
ship between the �xed e¤ects and the x0s this
means the coe¢ cients on any time invariant x
is not identi�ed.

� Also note that this assumption retains the
strict exogeneity of the x:
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� The idea for estimating � under the �xed ef-
fects assumption is to transform the equations
in order to eliminate the ci:

�When we have at least two observations on
the same i we can eliminate ci through an
appropriate "�xed e¤ects transformation" or
"within transformation".

� To perform the FE transformation we �rst av-
erage over 4 to get

yi = xi� + ci + ui (6)

where yi =
1
T

PT
t=1 yi, etc.
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� Subtracting this from the original model we
get

yit � yi = (xit � xi)� + (uit � ui) (7)

or eyit = exit� + euit t = 1::T: (8)

where eyit = yit � yi etc.
� The time demeaning of the original equation
has removed the individual e¤ect ci:
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� TheOLS estimation of 8, which represents FE
estimation, provides consistent estimates of �
provided

E(ex0iteuit) = 0 (9)

noting that in general this condition does not
hold if we relax strict exogeneity.
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�We can also write the model 8 for all time
periods eyi = eXi� + eui (10)

where eyi is Tx1, eXi is a Txk and eui is Tx1.
� This set of equations can be obtained by pre-
multiplying 5 by a time demeaning matrix .
De�ne QT = IT � jT (j0T jT )�1j0T which is a TxT sym-
metric, idempotent matrix with rank T-1.

� Note that QT jT = 0; QT yi = eyi; QTXi = eXi; QTui = eui and
so premultiplying 5 by QT gives the demeaned
equations is 10.
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� For the FE estimator to be well behaved we
require

� Assumption FE.2: rank
�PT

t=1E(ex0itexit)� = rank hE( eX 0
i
eXi)i =

K:

� Thus if the xit contains an element that does
not vary over t for any i then the correspond-
ing element in exit is zero and the above as-
sumption does not hold. Thus the coe¢ cients
on time invariant variables are not identi�ed.
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� The �xed e¤ects estimator can be expressed
as

b�FE =

 
NX
i=1

eX 0
i
eXi!�1 NX

i=1

eX 0
ieyi
!

(11)

=

 
NX
i=1

TX
t=1

ex0itexit
!�1 NX

i=1

TX
t=1

ex0iteyit
!
:

� This is also called the within estimator be-
cause it uses the time variation with within
each cross section.

� The between estimator, which uses only vari-
ation between the cross section observations
, is the OLS estimator applied to the time
averaged equation 6.

� This estimator is not consistent under assump-
tion FE.1 because E(x0ici) is not necessarily zero.
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� So far we have treated the ci as unobserved
random variables. However, often we treat
the ci as parameters to be estimated.

� If assumption FE.2 is changed to its �nite
sample version, rank( eX 0 eX) = K then the models
satis�es the gauss markov assumptions condi-
tional on X:
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� To estimate each ci along with the parameters
� one possibility is to de�ne N dummy vari-
ables, one for each cross sectional unit, such
that

dni = 1 if n = i

dni = 0 otherwise

and then regress yit on xit; d1i; ::dni:

� The bc1 is the coe¢ cient on d1i etc.
� This regression also corresponds to the FE es-
timator described above and this is why the
FE estimator is also known as the dummy
variable estimator.

35



� There is an important distinction between thebci and the b�FE :
�We know that the b�FE is consistent with T �xed
as N !1:

� This is not the case with bci as each additional
cross sectional unit (i.e. N increasing) means
that an additional parameter that has to be
estimated and information does not accumu-
late on any ci as N increases.

� Thus each bci is an unbiased estimator of ci

when the ci are treated as parameters.
� This is a practical example of an estimator
which is unbiased but not consistent.
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