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a b s t r a c t

A common problem in applied regression analysis is that covariate values may be missing for some
observations but imputed values may be available. This situation generates a trade-off between bias
and precision: the complete cases are often disarmingly few, but replacing the missing observations
with the imputed values to gain precision may lead to bias. In this paper, we formalize this trade-
off by showing that one can augment the regression model with a set of auxiliary variables so as to
obtain, under weak assumptions about the imputations, the same unbiased estimator of the parameters
of interest as complete-case analysis. Given this augmented model, the bias-precision trade-off may then
be tackled by eithermodel reduction procedures ormodel averagingmethods.We illustrate our approach
by considering the problem of estimating the relation between income and the body mass index (BMI)
using survey data affected by item non-response, where the missing values on the main covariates are
filled in by imputations.

© 2011 Elsevier B.V. All rights reserved.
Introduction

A common problem in applied regression analysis is that
covariate values may be missing for some observations but
imputed values may be available, either values provided by the
data-producing agency or directly constructed by the researcher.
This problem has received little attention compared to the more
general problem of missing covariate values, but is of considerable
practical relevance as all empirical researchers knowwell. Inmany
cases, it is safe to assume that the mechanism leading to missing
covariate values does not depend on the outcome of interest. In
these cases, one can ignore the missing data mechanism and focus
on the problem of what use to make of the available imputations.

There are two main approaches to this problem. One is to
simply ignore the imputations and only use the observations
with complete data on all covariates—the so-called complete-case
analysis. Although this may entail a loss of precision, it has the
strong appeal of yielding an unbiased estimator of the parameters
of interest when the missing data mechanism is ignorable. The
other approach is more concerned with precision and replaces
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the missing covariate values with the imputations. A refined
version of this approach corrects for incorporating the imputed
values by some variant of the so-called missing-indicator method
(Little, 1992; Horton and Kleinman, 2007; Little and Rubin, 2002),
which consists of augmenting the regression model with a set of
binary indicators for each covariate with missing values. Although
frequently used in practice, this approach is known to produce
biased estimates (Jones, 1996; Horton and Kleinman, 2007). It also
raises the problem of how to assess precision of the estimators,
a problem that we ignore in this paper because it can easily be
handled by multiple imputation methods (Rubin, 1987).

Thus, when covariate values are missing we face a trade-
off between bias and precision: the complete cases are often
disarmingly few, but replacing the missing observations with
the imputed values to gain precision may lead to bias. In this
paper, we formalize the bias-precision trade-off by showing that
one can augment the regression model with a set of auxiliary
variables so as to obtain, under weak assumptions about the
imputations, the same unbiased estimator of the parameters of
interest as complete-case analysis. Given this augmented model,
the bias-precision trade-offmay then be tackled either by standard
model reduction procedures or, more aptly in our view, by model
averaging methods.

We illustrate our approach by considering the problem of
estimating the relationship between income and the body mass
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index (BMI) using survey data affected by item non-response,
where the missing values on the main covariates are filled in by
imputation.

The sequel of the paper is organized as follows. Section 1
presents the basic notation. Section 2 discusses complete-case
analysis. Sections 3 and 4 present the augmented model with
auxiliary variables and discuss itsmissing-indicator interpretation.
Section 5 contains ourmain result. Section 6 discusses the trade-off
between bias and precision. Section 7 presents our application to
modeling the relation between BMI and income. Finally, Section 8
offers some concluding remarks.

1. Notation

Observations are indexed by n = 1, . . . ,N , and covariates by
k = 0, 1, . . . , K − 1, with k = 0 corresponding to the constant
term and K > 1. We consider the classical linear model

y = Xβ + u, (1)

where y is the N × 1 vector of observations on the outcome of
interest, X is an N × K matrix of observations on the covariates,
β is the K × 1 vector of coefficients and u is an N × 1 vector
of homoskedastic and serially uncorrelated regression errors with
zero mean conditional on X .

A subsample with incomplete data is a group of observations
where one or more covariates are missing. Because the constant
term is always observed, the number of possible subsamples with
incomplete data is equal to 2K−1

− 1. Not all such subsamples
need be present in a data set. In addition to the subsample with
complete data (indexed by j = 0), we assume to have J ≤ 2K−1

−1
subsamples with incomplete data, indexed by j = 1, . . . , J . This
formulation covers both the case when some patterns of missing
covariates are not present in the data and the case when the
investigator decides to drop from the analysis some groups with
incomplete data.

Let Nj, Kj and K ∗

j = K − Kj, respectively, denote the sample
size, the number of available covariates (the covariates with no
missing values, including the constant erm), and the number of
missing covariates in the jth subsample. By construction

∑J
j=0 Nj =

N, K0 = K , K ∗

0 = 0 and 1 ≤ Kj, K ∗

j < K for j = 1, . . . , J . Let y j,X j
a

and X j
m, respectively, denote the Nj ×1 outcome vector, the Nj ×Kj

submatrix containing the values of the available covariates, and the
Nj × K ∗

j submatrix containing the values of the missing covariates
for the jth subsample. Also, let X j

= [X j
a, X j

m], an Nj × K matrix.
We assume that X0

= X0
a is of full column rank, which implies

that N0 ≥ K .

2. Complete-case analysis

Our benchmark in dealing with missing values is the so-called
complete-case method, which uses only the observations with
complete data on all covariates.

Let M denote the N × K missing-data indicator matrix, whose
(n, k)th element mnk takes value 1 if the nth observation contains
a missing value on the kth covariate and value 0 otherwise.
The following assumption is common to most approaches to the
problem of missing covariate values and is maintained throughout
this paper.

Assumption 1 (Ignorability). M and y are conditionally indepen-
dent given X .

By symmetry of conditional independence, it is easily seen that
Assumption 1 is equivalent to the following two assumptions:
P(y | X,M) = P(y | X) (2)

and

P(M | y,X) = P(M | X). (3)

Assumption (2) basically says that if we knew the true values of
the missing covariates, knowing the pattern of missing data would
not help in predicting y. Assumption (3) implies that the missing
data mechanism, seen as a function of y and X , depends on X
only. Assumption 1 may fail if, for example, observations with
missing covariate values have a different regression function than
observations with no missing values. On the other hand, it does
not place restrictions on howM is generated from X . For example,
M may exhibit patterns such that cases with low or high levels
of some covariates systematically have a greater percentage of
missing values.

Theorem 1 provides a formal proof of the fact that, under
Assumption 1, the OLS estimator for the complete case is unbiased.
This result has been known for long time, but may be considered a
‘‘folk theorem’’. Little (1992) and Little andRubin (2002) attribute it
to an unpublished 1986 technical report byWilliamGlynn andNan
Laird. Private communication with Nan Laird however informs us
that the report has never been published and is no longer available.
Jones (1996) offers a proof for the case of two covariates, one
of which has missing values, whereas Wooldridge (2002, p. 553)
shows that the two-stage least-squares estimator for the complete
case is consistent.

Theorem 1 (Complete-Case Estimation). If Assumption 1 holds, then
the OLS estimator of β obtained by using only the observations with
complete data on all covariates is unbiased for β .

Proof. The OLS estimator for the complete data may be written as
follows:β = (X ′DX)−1X ′Dy,

whereD is anN×N diagonalmatrixwhose nth diagonal element dn
takes value 1 if no covariate is missing for the nth observation and
value 0 otherwise. The elements of D are related to the elements
of the missing-indicator matrix M through dn =

∏K
k=1(1 − mnk).

The Ignorability assumption implies that any function of M , in
particular D, is independent of y conditional on X . From (2),

E(β | X,D) = (X ′DX)−1X ′DXβ = β,

and therefore E(β) = β. �

An implication of Theorem 1 is that the subsample with
complete data satisfies

y0
= X0β + u0, (4)

where u0 is an N0 × 1 vector of homoskedastic and serially
uncorrelated regression errors. This result supports the common
practice of complete-case analysis, namely estimating β by
regressing y0 on X0. However, severe loss of information, and
hence of precision, may result unless the fraction of deleted cases
is small.

3. The augmented model with auxiliary variables

Suppose that, for each subsample j = 1, . . . , J with incomplete
data, the values of the K ∗

j missing covariates are filled-in using
some imputation procedure. A covariate with imputed values is
called an imputed covariate. The Nj × K ∗

j matrix corresponding to
the set of imputed covariates is called the imputation matrix for
the jth subsample and is denoted by L j. The Nj × K matrix W j

=

[X j
a, L j

], whose columns correspond to the Kj available covariates
and the K ∗

j imputed covariates, is called the completed design
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matrix for the jth subsample. Our treatment of imputation is very
general and covers a variety of imputation procedures, including
regression and donor-based methods such as nearest-neighbor
and hot-deck imputations. It also allows for the possibility that
different imputation procedures are used for different covariates,
or for different subsamples with incomplete data.

Consider modeling the Nj × 1 outcome vector y j for the jth
subsample as a linear function of the observed covariates in W j.
The best (minimummean-square error) linear predictor of y j given
W j

= [X j
a, L j

] is

E∗(y j
| X j

a, L
j) = E∗(X jβ | X j

a, L
j)

= X j
aβ

j
a + E∗(X j

m | X j
a, L

j)βj
m

= X j
aβ

j
a + (X j

a∆
j
+ L jΓ j)βj

m

= X j
aγ

j
a + L jγ j

m,

where βj
a and βj

m are the subvectors of β associated with X j
a and

X j
m, respectively, E∗(X j

m | X j
a, L j) = X j

a∆
j
+ L jΓ j is the best linear

predictor of X j
m given X j

a and L j, and

γ j
a = βj

a + ∆jβj
m, γ j

m = Γ jβj
m.

The resulting linear model for the jth subsample may be written,
more compactly,

y j
= W jγ j

+ uj, j = 1, . . . , J, (5)

where γ j is theK×1 vector consisting of the coefficients associated
with the observed and the imputed covariates in W j

= [X j
a, L j

],
and uj is an Nj ×1 vector of projection errors that, by construction,
have mean zero and are uncorrelated withW j.

Two important features distinguish model (5) from the original
model (1). First, the vector of population coefficients γ j is gener-
ally different from β unless ∆j

= 0 and Γ j is equal to the iden-
tity matrix or, equivalently, E∗(X j

m | X j
a, L j) = L j, that is, given

the imputations, the available covariates contain no further infor-
mation about the missing covariates. Second, the elements of the
error vector uj are not necessarily homoskedastic, even when ho-
moskedasticity holds for the elements of u.

Letting δj = γ j
− β, j = 1, . . . , J , and stacking on top of each

other the complete-case model and the J linear models for the
subsamples with incomplete data give[
y0

y∗

]
=

[
X0

W ∗

]
β +

[
0
Z∗

]
δ +

[
u0

u∗

]
,

where

y∗
=

y1

...

y J

 , W ∗
=

W 1

...

W J

 , Z∗
=

W 1

. . .

W J

 ,

u∗
=

u1

...

uJ

 ,

and δ is the JK × 1 vector consisting of δ1, . . . , δJ . We can now
write themodel for the available and the imputed data as the grand
model:

y = Wβ + Zδ + u, (6)

where β is the parameter of primary interest, δ is a vector of
nuisance parameters, and

y =

[
y0

y∗

]
, W =

[
X0

W ∗

]
, Z =

[
0
Z∗

]
, u =

[
u0

u∗

]
,

Respectively, an N-vector, an N × K matrix, an N × JK matrix,
and an N-vector. Note that the matrix W is obtained by filling-
in the missing covariate values with the available imputations.
Model (6) includes all observations re-ordered groupwise: first, the
complete cases, and then the first group with incomplete data, etc.
Ordering of the groups is arbitrary and plays no role in the analysis.
In the terminology of Danilov and Magnus (2004), the K columns
of W are the ‘‘focus’’ regressors, while the JK columns of Z are the
‘‘auxiliary’’ regressors.

4. A missing-indicator interpretation

Before presenting our main result it is instructive to give
a missing-indicator interpretation of model (6). Indeed, the JK
auxiliary variables in the matrix Z are obtained by multiplying
the covariates in each group by the various indicators of group
membership. To see this write Z = [Z1, . . . , Zj, . . . , ZJ ], where Zj
is the N × K matrix that contains the auxiliary variables for the jth
group. Let 1K denote the 1×K vector whose elements are all equal
to one and let dj denote the N × 1 vector of group-membership
indicators for the jth group (the elements of dj are equal to one for
observations in group j and zero otherwise). Then

Zj = [1K ⊗ dj] · W , j = 1, . . . , J,

where ⊗ denotes the Kronecker product and · the Hadamard
(elementwise) product.

As an illustration, consider the linear model

E(yn | xn1, xn2) = β0 + β1xn1 + β2xn2,

with a constant term and two covariates, x1 and x2. Suppose
that, in addition to the group with complete data, one has two
groups with incomplete data: in group 1 [resp. 2] only the first
[resp. second] covariate is missing. If dn0, dn1 and dn2 denote the
group-membership indicators, and L1n1 and L2n2 denote the imputed
values in each group with incomplete data, then we may write

yn = dn0(β0 + β1xn1 + β2xn2) + dn1(γ 1
0 + γ 1

1 L
1
n1 + γ 1

2 xn2)

+ dn2(γ 2
0 + γ 2

1 xn1 + γ 2
2 L

2
n2) + un.

Let wnk be equal to xnk if the kth covariate is observed for the
nth observation and to its imputed value otherwise. Then, the last
relation may be written as

yn = β0 + β1wn1 + β2wn2 + δ1
0dn1 + δ2

0dn2
+ δ1

1dn1wn1 + δ2
1dn2wn1 + δ1

2dn1wn2 + δ2
2dn2wn2 + un,

where δ
j
k = γ

j
k − βk. This is exactly model (6) for this special

case, where the auxiliary variables added to thewk’s are the group-
membership indicators and their interactions with the constant
term and the observed or imputed covariates.

5. Main result

The following result shows that, no matter which imputation
procedure is chosen, the OLS estimate of β in the grand model
(6) and that in the complete-case model (4) are numerically the
same. Thus, the statistical properties of the two estimators are also
the same. In particular, if the latter is unbiased (for example, the
conditions of Theorem 1 hold), so is the former.

Theorem 2. Suppose that the matrix W is of full column rank K and
that N ≥ K(J + 1). Then, for any choice of imputation matrices
L1, . . . , L J , the OLS estimate of β in the ‘‘grand’ model’’ (6) coincides
with the OLS estimate of β in the complete-case model (4).
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Proof. Given any matrix A, let RA = I − A(A′A)−A′, where (A′A)−

denotes a g-inverse ofA′A. Since Z ′Z and Z have the same rank, the
rank of Z(Z ′Z)−Z ′ is equal to the rank of Z (Rao and Mitra, 1971).
The fact that the rank of Z may be less than JK implies that the rank
of RZ must be at least N − JK . Because N ≥ K(J + 1) implies that
K ≤ N− JK , it follows that the rank ofW cannot exceed the rank of
RZ , so thematrixW ′RZW must be nonsingular. Thus, by the Frisch-
Waugh-Lovell (Partitioned Regression) Theorem, the OLS estimate
of β in model (6) isβ = (W ′RZW )−1W ′RZy = (X̃ ′X̃)−1X̃ ′y,

where X̃ = RZW . Next notice that

X̃ =


IN0

RW1

. . .

RW J




X0

W 1

...

W J

 =


X0

0
...
0

 ,

where we used the fact that W j(W j′W j)−W j′W j
= W j for all

j and any choice of g-inverse (Rao and Mitra, 1971). Therefore,
X̃ ′X̃ = X0′X0 and X̃y = X0′y0. Henceβ = (X̃ ′X̃)−1X̃ ′y = (X0′

X0)−1X0′

y0,

which is the complete-case estimate. �

The matrix W is of full column rank if, as we already assumed,
the K columns of X0 are linearly independent. The use of a g-
inverse in the proof of the theorem is necessary because some
of the completed design matrices W j may be singular, which
happens if Nj < K or if Nj ≥ K but the columns of W j are linearly
dependent. The latter is for example the case when a missing
covariate value is replaced by its average value for the available
cases (mean imputation) or by its predicted values based on the
observed covariates X j

a and the coefficients from an OLS regression
using the subsample with complete data (deterministic regression
imputation). One can replace a g-inverse with the regular inverse
when the J subsamples with incomplete data are such that all
W j’s have full column rank. In practice, this may be achieved by
dropping groups that contain too few observations and avoiding
mean imputation or deterministic regression imputation. After all,
these two imputation methods are known to produce completed
data sets with undesirable properties, for example they have less
variability than a set of truly observed values (see e.g. Lundström
and Särndal, 2002).

The complete-case model (4) and the grand model (6) may at
first appear as two polar approaches to the problem of handling
missing data in model (1). At one extreme is complete-case
analysis. Under the assumption of Theorem 1, this gives an
unbiased estimate of β butmay throw away toomuch information
by retaining only the observations in the subsamplewith complete
data. At the other extreme, all observations are retained but some
imputation procedure is adopted to fill-in the missing data. In fact,
Theorem 2 shows that if β and δ in (6) are left unconstrained then
this second approach is equivalent to complete-case analysis as far
as estimation of β is concerned.

A referee offered the following heuristic. Our model places no
restrictions (equivalently, uses no information) on the imputation
method. In the decomposition γ j

= β + δj, it is only the obser-
vations from the complete case that sort out the part that should
be β. Since the remaining cases provide absolutely no information,
the estimates are the same. ‘‘No information added, no change’’.

The standard practice of regressing y only on the completed
design matrix W omitting the variable in Z corresponds to using
a restricted version of the grand model (6) where all elements of
the vector δ are set equal to zero. This is the same as assuming
that the missing data mechanism satisfies Assumption 1 and the
imputation procedure is such that β = γ j for each j = 1, . . . , J .
The less frequent practice of regressing y on W and the set of
group-membership indicators (which we shall refer to as the
simple missing-indicator method) corresponds to using another
restricted version of the grand model, where all interactions
between the group membership indicators and the observed or
derived covariates are set equal to zero.

Both sets of restrictions are testable. Testing the first set of re-
strictions corresponds to testing the hypothesis that all regression
coefficients do not change across the J groups containing missing
covariates, while testing the second set of restrictions corresponds
to testing the hypothesis that, except for the intercepts, all other
regression coefficients do not change across the J groups contain-
ing missing covariates.

The precise nature of these tests, in particular the form of
the test statistics, depends on the properties of the error vector
u in model (6). Given OLS estimates β and δ of β and δ in
the grand model, classical F-tests would be appropriate if it
can safely be assumed that u is a vector of homoskedastic and
serially uncorrelated regression errors. If this assumption cannot
be justified, then one could use a ‘‘robustified’’ version of these
tests based on an estimator of the sampling variance of β andδ
that is consistent under heteroskedasticity or autocorrelation of
unknown form in the elements of u.

In our view, however, the key issue is not what statistic to use
for testing, but whether it makes sense to ask questions such as:
Is it true that δ = 0? Following Leamer (1978) and Magnus and
Durbin (1999), we think that asking such questions in this context
iswrong. The right question is:What is the best available estimator
of β?

6. Bias versus precision

Theorem 2 says that unbiased estimates of β may be obtained
in two equivalent ways, either by using the N0 observations in
the subsample with complete data, or by using all N observations
and the grand model (6) which includes the imputed values of the
missing covariates in the matrix W and the auxiliary variables in
the matrix Z . We also know from standard results that placing
restrictions on the elements of δ may lead to biased but more
precise estimates of β.

Two approaches may be followed to handle this trade-off
between bias and precision in the estimation ofβ:model reduction
and model averaging. Either approach can be applied to model (6).

Model reduction involves first selecting an intermediate model
between the grand model and the fully restricted model where
δ = 0, and then estimating the parameter of interest β conditional
on the selected model. Model reduction may be carried out
through variable selection methods, such as stepwise regression
(see e.g. Kennedy and Bancroft, 1971), or more complex general-
to-specific procedures (see Campos et al., 2005, for a survey).
The details of the model reduction procedure may also depend
on whether one allows dropping arbitrary subsets of auxiliary
variables in Z , or only subsets of auxiliary variables corresponding
to specific subsamples with missing covariates. Dropping one of
the columns of Z amounts to selecting a group j and, in the
corresponding equation (5), restricting one element of δj to zero.
This in turn corresponds to forcing the coefficient of that particular
covariate in the completed design matrix W j to be the same as
in the subsample with complete data. Dropping the columns of Z
corresponding to the jth subsample amounts instead to restricting
all element of δj to be zero, which in turn corresponds to forcing
the relationship between y j and the completed design matrix W j

to be the same as that between y0 and X0 in the subsample with
complete data.
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One well-known problem with this approach is pre-testing.
A second problem is that model selection and estimation are
completely separated. As a result, the reported conditional
estimates tend to be interpreted as if they were unconditional. A
third problem is that, since there are J subsampleswith incomplete
data and K covariates (including the constant term), the model
spacemay contain up to 2JK models. Thus, themodel space is huge,
unless both J and K are small.

Model averaging is different. Instead of selecting a model out
of the available set of models, one first estimates the parameter
of interest β conditional on each model in the model space, and
then computes the estimator of β as a weighted average of these
conditional estimators. When the model space contains I models,
a model averaging estimator of β is of the form

β̄ =

I−
i=1

λiβi, (7)

where the λi are non-negative weights that add up to one, andβi
is the estimator of β obtained by conditioning on the ith model.

In Bayesian model averaging (BMA), each βi is weighted by
the posterior probability of the corresponding model. If equal
prior probabilities are assigned to eachmodel under consideration,
then the λi are just proportional to the marginal likelihood of
each model. Bayesian averaging of both classical (least-squares)
and Bayesian estimators have been considered, with the posterior
mean of β for the model under consideration as the typical
Bayesian estimator. Bayesian averaging of Bayesian estimators
has been popularized by Raftery et al. (1997), while Bayesian
averaging of classical estimators has been popularized by Sala-i-
Martin et al. (2004). The choice between the different approaches
involves considering the computational burden and the statistical
properties of the resulting estimators and, in the case of BMA, the
nature of the assumed priors. The role of priors would also arise if
a Bayesian model reduction approach is taken.

Magnus et al. (forthcoming) study the properties of model av-
eraging estimators of the same form as (7) with λi = λi(u), whereu is the vector of OLS residuals from the regression of y onW only.
Their class of weighted-average least-squares (WALS) estimators
generalizes to the case when I ≥ 2 the class of estimators intro-
duced by Magnus and Durbin (1999), which contains the classical
pre-test estimator as a special case. AlthoughWALS estimators are
in fact BMA estimators, they differ from standard BMA in three im-
portant respects: their computational burden, the choice of prior
for δ, and their statistical properties.

The main advantage of WALS is that, although we may have up
to I = 2JK models, the computational burden is only proportional
to JK . With medium or large values of J or K , the computation
burden is minimal compared to standard BMA.

Like standard BMA, WALS assume a classical Gaussian linear
model for (6) and noninformative priors for β and the error
variance σ 2. The assumption that the regression errors are
homoskedastic and serially uncorrelated is not crucial for WALS,
and the method can be generalized to non-spherical errors
(Magnus et al., forthcoming). The key step in WALS is to
reparameterize the model replacing Zδ by Z∗δ∗, with Z∗

=

ZPΛ−1/2 and δ∗
= Λ1/2P ′δ, where P is an orthonormal matrix

and Λ is a diagonal matrix such that P ′Z ′RWZP = Λ. The main
difference with respect to standard BMA is that, instead of a
multivariate Gaussian prior for δ, WALS use a Laplace distribution
with zero mean for the independently and identically distributed
elements of the transformed parameter vector η = δ∗/σ , whose
ith element, ηi is the population t-ratio on δi, the ith element of
δ. In this formulation, ignorance is a situation where it is equally
likely for these population t-ratios to be larger or smaller than one
in absolute value.

Finally, unlike standard BMA, WALS have bounded risk and are
near-optimal in terms of a well-defined regret criterion (Magnus
et al., 2010).
7. An application

In this section, we apply our approach in the context of a
concrete example with missing data. The problem at hand is that
of estimating the relation between body-mass and income using
survey data affected by item non-response. We first present the
estimates one obtains by the complete-case approach, by using
raw data (no dummies), and by the simple indicator method. We
then compare themwith the estimates one obtains using different
model-selection ormodel-averaging techniques on the basis of the
grand model (6).

The BMI, namely the ratio ofweight (in kg) to squared height (in
meters), is one way of combining weight and height into a single
measure. Due to its ease of measurement and calculation, the BMI
is the most common diagnostic tool to identify obesity problems
within a population. As such, it has received lots of attention in
the recent literature on the obesity epidemic and its economic
and public health consequences (Cutler et al., 2003; Philipson and
Posner, 2008).

The obesity epidemic is essentially an imbalance between
food intake and energy expenditure. It has been argued that this
imbalance may be linked to income (see e.g. Drewnowski and
Specter, 2004). The available empirical evidence – Cawley et al.
(2008) for elderly people in the USA and Sanz-de-Galdeano (2005),
and García Villar and Quintana-Domeque (2009) for Europe – is
inconclusive for men, whereas for women there appears to be a
more clear indication of a negative correlation between BMI and
income.

Our data are from Release 2 of the first wave of the
Survey of Health, Ageing, and Retirement in Europe (SHARE),
a multidisciplinary and cross-national household panel survey
designed to investigate several aspects of the elderly population
in Europe. The target population of SHARE consists of people aged
above 50 living in residential households, plus their co-resident
partners irrespective of age. The first wave, conducted in 2004,
covered 15,544 households and 22,431 individuals in 11 European
countries. All national samples are selected through probability
sampling.

The key to ensure comparability is the adoption of a common
survey instrument. The physical health module of the question-
naire collects self-reported height and weight, the income module
collects information on 25 income components, which are then ag-
gregated into a measure of household income, and the consump-
tion module collects household expenditure on four consumption
categories (food at home, food outside the home, telephone, and
all goods and services) in the last month.

Non-response to household income and food expenditure is
substantial, and in this case we use the imputations provided by
SHARE. Complete or partial non-response to household income
occurs for as much as 60 percent of the observations, such a
high fraction being due to the fact that this variable is obtained
by aggregating a large number of income components across
household members. Non-response to food expenditure occurs for
about 15 percent of the observations.

To impute missing values, SHARE uses a complex two-stage
multivariate procedure (Kalwij and van Soest, 2005). Imputations
are first obtained recursively for a few core variables. In the
second stage, the imputed values from the first stage are used
to impute the other variables. This procedure essentially employs
only univariate regression imputation methods. It is important
to note that height and weight are never used to impute
missing variables. To allow multiple imputation methods, SHARE
provides five imputations for each missing value. SHARE imputes
total household income by separately imputing each income
component and then aggregating them. Imputations are provided
for individual incomes of all eligible partners who did not agree to
participate to the survey.

We focus on the income-BMI relationship for males. We model
the mean of log BMI as a function of age and age squared, log
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Table 1
Estimated coefficients.

Complete case Fully restricted Simple indicator Stata’s stepwise WALS BMA

age 0.0008 0.0023*** 0.0023*** 0.0020*** 0.0012* 0.0023***
(0.0008) (0.0004) (0.0004) (0.0005) (0.0007) (0.0004)

agesq −0.0082*** −0.0107*** −0.0107*** −0.0108*** −0.0087*** −0.0107***
(0.0020) (0.0012) (0.0012) (0.0012) (0.0018) (0.0012)

lowed 0.0144*** 0.0201*** 0.0201 *** 0.0197*** 0.0160*** 0.0201***
(0.0047) (0.0027) (0.0027) (0.0027) (0.0041) (0.0027)

lypc −0.0196*** −0.0097*** −0.0098*** −0.0174*** −0.0165*** −0.0101***
(0.0030) (0.0016) (0.0016) (0.0026) (0.0027) (0.0020)

lfpc 0.0054 0.0042 0.0044* 0.0049* 0.0046 0.0042
(0.0045) (0.0026) (0.0026) (0.0026) (0.0039) (0.0026)

N 4067 11,475 11,475 11,475 11,475 11,475

Note: Observed p-values: * p < 0.10; ** p < 0.05; *** p < 0.01.
household income per capita, log household food expenditure per
capita, and a dummy indicator for low educational attainment. In
addition to the subsample with complete data (4067 obs., 35.5%),
we have three subsamples with incomplete data: one where only
food expenditure is missing (287 obs., 2.5%), one where only
household income is missing (5891 obs., 51.3%), and one where
both household income and food expenditure are missing (1230
obs., 10.7%). For each variable, we use the first of the five available
imputations.

Table 1 shows the estimated coefficients for age and its
square (agesq), log household income per capita (lypc), log food
expenditure per capita (lfpc), and a dummy for not having a high-
school degree (lowed). The first three columns contain estimates
for the complete-case/grand model, the fully restricted estimator
corresponding to δ = 0, and the simple missing-indicator method.
The other three are obtained by model-selection or averaging on
the basis of the grand model: Stata’s stepwise procedure with p-
value equal to.05, WALS and BMA. Estimates of the coefficients for
the 18 auxiliary regressors are not presented but are available upon
request. For simplicity, all estimates are based on the assumption
of spherically distributed errors in the grand model (6).

The BMA and WALS estimates and their standard errors
have been computed using the Matlab code downloaded from
Jan Magnus’s web page at http://center.uvt.nl/staff/magnus/wals/.
This BMA implementation estimates all possible models, so it
becomes very time consuming when J or K are large. In our case,
with J = 3 subsamples with incomplete data and K = 6 focus
regressors (including the constant term), examining all possible
218 models required about one day on our desktop computer.
Faster implementations are available, but they estimate only a
randomly chosen subset of all possible models and have the
important disadvantage of not using the distinction between focus
and auxiliary regressors, which is key to our analysis.

As for WALS, it is worth discussing briefly the concept and
treatment of uncertainty implicit in the choice of a Laplace prior for
the elements of the transformed parameter vector η. Assuming this
particular prior means that we think that it is equally likely that
the observed value of the t-statistic on any element of δ is greater
or smaller than one. This is equivalent to say that we are agnostic
about the quality of the imputation: it could be either good or bad.
Since we are simply users, not producers, of the imputations, this
may not be a bad assumption.

There is agreement between the different methods on the
qualitative effect of the various variables: concave for age, negative
for education and income, and positive for food expenditure.
The magnitude of the estimated coefficients, however, differs
considerably across methods. At one extreme are the fully
restricted estimator, the simple missing-indicator method and
BMA that produce nearly identical results: they assign more
importance to age and less importance to income. At the other
extreme are the complete-case estimator and WALS: they assign
less importance to age and more importance to income. It is
noteworthy that, in this example, WALS is close to complete-case
(all dummies in the model), while BMA is close to fully restricted
(no dummy). Thus, starting with the grand model, WALS seems
to give more weight to the auxiliary dummies than BMA. The
stepwise procedure gives estimates of the relative effects of age
and income that are somewhat in between these two extremes.

8. Concluding remarks

In this paper, we formalized the trade-off between bias and
efficiency that arises when there are missing covariate values in
a regression relationship of interest and showed how to tackle
this trade-off by model reduction procedures or model averaging
methods. In future work, we plan to extend our approach to
generalized linear models (GLM), such as logit, probit and Poisson
regression, for which we conjecture that versions of Theorems 1
and 2 also hold. Our conjecture is motivated by the fact that
maximum-likelihood estimators of exponential family models
may be obtained by iteratively reweighted least squares.
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