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Abstract. This paper presents a necessary and sufficient condition for non-invertibility

of DSGE models, i.e. for the impossibility of recovering the structural shocks of a DSGE

via a VAR. We contrast this condition with the so-called poor man’s invertibility condition

in Fernández-Villaverde et al. (2007), which is, in general, only a sufficient condition for

invertibility. Situations when the poor man’s invertibility condition becomes equivalent to

the present condition (and hence also necessary) are discussed. The permanent income

model is used to illustrate results in the paper.

1. Introduction

Economic shocks of Dynamic Stochastic General Equilibrium (DSGE) models cannot al-

ways be recovered from Vector AutoRegressions (VAR). This situation has been discussed

e.g. in Chari et al. (2005), Christiano et al. (2006), Kapetanios et al. (2007), Ravenna (2007),

and it is related to the non-fundamentalness of economic models, see Hansen and Sargent

(1980), Lippi and Reichlin (1993, 1994) for early treatments of the problem.

In this context Fernández-Villaverde et al. (2007) have proposed a condition for non-

invertibility of DSGE models, called the ‘poor man’s invertibility condition’. This condition

is applied e.g. in Leeper et al. (2009), Schmitt-Grohé (2010), Kurmann and Otrok (2011),

Sims (2012) to specific models. Fernández-Villaverde et al. (2007) show that if the poor

man’s invertibility condition holds then the model is invertible, i.e. that the condition is

sufficient. They also show that if the poor man’s invertibility condition does not hold and

some additional conditions are satisfied, then the model is non-invertible. Hence the poor
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man’s invertibility condition is in general only a sufficient condition for DSGE models to be

invertible.

The permanent income model provides an example for which the set of additional con-

ditions does not hold, the poor man’s invertibility condition is violated and the model is

invertible; this example motivates our analysis and it is used throughout the paper to illus-

trate various statements.

A novel necessary and sufficient condition for invertibility is formulated and its relation

with the condition in Fernández-Villaverde et al. (2007) is discussed. We also propose a

new strategy for checking fundamentalness. In the last section of the paper, we show that

under the same set of additional conditions the new condition coincides with the poor man’s

invertibility condition. All proofs are deferred to the Appendix.

2. Model generalities: the square case

Following Fernández-Villaverde et al. (2007) we consider an equilibrium of an economic

model with representation

(1)
xt+1 = Axt +Bwt+1

yt+1 = Cxt +Dwt+1

where wt+1 is a Gaussian white noise with identity covariance matrix, ut = xt, yt, wt have

dimension nu × 1, nw = ny and D is non-singular. This is called the square case.

It is of interest to characterize situations in which yt+1 admits representation

(2) yt+1 =
∞∑
j=1

Ajyt+1−j +Gwt+1,

where the sequence {Aj}∞j=1 is square summable and G is a non-singular matrix.1 In this case

the economic model in (1) has the property that its structural shocks wt+1 can be recovered

from the reduced form errors of the infinite order VAR representation of yt+1. When (2)

holds, (1) is called invertible (or fundamental), see Hansen and Sargent (1980), Lippi and

Reichlin (1993, 1994).

1Ravenna (2007) studies the finite order VAR case, see also Franchi and Paruolo (2012).
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Writing the second equation in (1) as wt+1 = D−1(yt+1 − Cxt) and substituting it in the

first equation, Fernández-Villaverde et al. (2007) obtain the equivalent formulation

(3)
xt+1 = Fxt +BD−1yt+1, F := A−BD−1C,
yt+1 = Cxt +Dwt+1.

They call the condition of stability2 of F the ‘poor man’s invertibility condition’.

We observe that (3) implies the transfer function

(4) T (L)yt+1 = Dwt+1, T (z) := Iny − C(Inx − Fz)−1BD−1z, z ∈ C;

this leads to the following statement.

Proposition 2.1. If T (z) is regular,3 then (1) is invertible.

3. Motivating examples

The examples in this section illustrate that the poor man’s invertibility condition is in

general not necessary for the recovery of structural shocks from the VAR. This motivates

the rest of the analysis.

3.1. Permanent income model. Consider the permanent income model

ct+1 = ct + σw(1−R−1)wt+1

ỹt+1 = σwwt+1

where ct+1 is consumption, ỹt+1 is labor income and R > 1 is the gross interest rate. If one

lets xt+1 = ct+1 and yt+1 = ỹt+1, then A = 1, B = σw(1 − R−1), C = 0, and D = σw imply

F = A = 1, so that the poor man’s invertibility condition does not hold. However, the model

is fundamental because (2) is satisfied with Aj = 0, j ≥ 1, and G = σw. This illustrates that

a violation of poor man’s invertibility condition does not necessarily imply non-invertibility

of the economic model, i.e. that the poor man’s invertibility condition is not a check for the

non-invertibility of (1).

2A square matrix is called stable when all its eigenvalues are stable, i.e. of modulus strictly less than one;

if it is has unstable eigenvalues then it is called unstable.
3A function M(z) is called regular if it is finite in the unit disc, i.e. for all z ∈ C such that |z| < 1 + δ,

for some δ > 0; observe that if M(z) is regular, then the sequence {Mj}∞j=0 in M(z) =
∑∞

j=0Mjz
j is square

summable.
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3.2. A second motivating example. Let nx = 2, ny = nw = 1 and take

A =
1

10

(
9 −3

−3 7

)
, B =

(
1

1

)
, C =

1

10

(
1 1

)
, D = 1;

then

F = A−BC =
2

5

(
2 −1

−1 2

)
has eigenvalues

{
2
5
, 6
5

}
and λ := 6

5
is unstable. Observe that one can rank-decompose F −λI

as F −λI = αβ′, with α = B, β = −2
5
α, and one can choose α⊥ = β⊥ = (1 : −1)′ as bases of

the orthogonal complements of colα and col β;4 then Theorem 3 in Johansen (2009) implies

(I − Fz)−1 = β⊥(α′⊥β⊥)−1α′⊥
1

(z − λ−1)
+H(z),

where H(z) =
∑∞

j=0Hjz
j is regular. Because B = α one has α′⊥B = 0 and thus (I −

Fz)−1B = H(z)B is regular. Then T (z) in (4) is regular and

yt+1 = C
∞∑
j=0

HjByt−j + wt+1

is the infinite order VAR representation of yt+1 whose reduced form errors are the structural

shocks. Again here, the poor man’s invertibility condition does not hold and the model is

invertible.

4. A check for non-invertibility

In this section we provide a necessary and sufficient condition for invertibility of (1). This

is presented in Proposition 4.2. In Proposition 4.3 we further show that if F is unstable and

(1) is invertible then any unstable eigenvalue of F is also an eigenvalue of A; the converse

does not hold. Finally, the case in which F has simple unstable eigenvalues is discussed in

Corollary 4.5.

The properties of the transfer function T (z) in (4) depend on those of (I − Fz)−1 =

adj(I−Fz)/|I−Fz|. The roots of |I−Fz| = 0 are poles of (I−Fz)−1; because |I−Fz| = 0

if and only if z = λ−1u , where {λu} are the eigenvalues of F , if F is stable then (I −Fz)−1 is

regular because minu |λ−1u | > 1. Hence T (z) is regular and, by Proposition 2.1, this implies

that (1) is invertible. However, the examples in Section 3 show that the converse does not

4colα indicates the column range space of the matrix α.
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hold. This leads to the following proposition, which states that the poor man’s invertibility

condition is sufficient for invertibility.

Proposition 4.1. If F is stable, then (1) is invertible; the converse does not hold.

Observe that T (z) can be regular, and thus (1) is invertible, even if F is unstable. In fact,

when F is unstable, (I −Fz)−1 has poles in the (closed) unit disc and thus it is non-regular,

but those singularities may be absent from C(I − Fz)−1B due to the presence of B and

C. In this case C(I − Fz)−1B is regular and thus the same holds for T (z); by Proposition

2.1, this implies that (1) is invertible. The condition in Proposition 4.2 below builds on this

observation.

We first introduce notation: let λu, u = 1, . . . , q, be all the distinct, unstable eigenvalues

of F , |λu| ≥ 1. Next apply the partial fraction expansion5

(5)

(I−Fz)−1 = P (z)+H(z), P (z) =

q∑
u=1

Pu(z), Pu(z) =
mu∑
j=1

Pλu,mu−j

(z − λ−1u )j
, Pλu,0 6= 0.

Here H(z) is regular, P (z) is the sum of the principal parts Pu(z) of (I − Fz)−1 at z = λ−1u

and mu is the order of the pole of (I − Fz)−1 at z = λ−1u . Note that if F is stable, q = 0

implies P (z) = 0 and hence (I − Fz)−1 = H(z) is regular. We are now able to state the

main characterization result.

Proposition 4.2. Let λu, u = 1, . . . , q, be all the distinct, unstable eigenvalues of F , |λu| ≥

1; then (1) is invertible if and only if

(6) CPu(z)B = 0, u = 1, . . . , q,

where Pu(z) is the principal part of (I − Fz)−1 at z = λ−1u , see (5). When F is stable, (6)

is automatically satisfied.

The next proposition shows that if F is unstable and (2) holds, then all the unstable

eigenvalues of F are common to A.

Proposition 4.3. If (1) is invertible, then each unstable eigenvalue of F is an eigenvalue

of A.

5See e.g. Fischer and Lieb (2012, Ch. III.2).
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The converse does not hold; that is, if the unstable eigenvalues of F are eigenvalues of A

it does not follow that (1) is invertible.

The previous results suggest the following procedure as a check for invertibility of (1).

Remark 4.4. In order to check whether (1) is invertible or not, proceed as follows: compute

the eigenvalues of F ; if F is stable, conclude that (1) is invertible (by Proposition 4.1). If

F is unstable, compute the eigenvalues of A; if there is an unstable eigenvalue of F which

is not an eigenvalue of A, conclude that (1) is non-invertible (by Proposition 4.3). If each

unstable eigenvalue of F is an eigenvalue of A, check the condition in Proposition 4.2; if it

is satified, conclude that (1) is invertible, otherwise that it is non-invertible.

Of course one could simply check (6) directly.

For simple unstable eigenvalues, the condition in Proposition 4.2 simplifies as follows.

Corollary 4.5. If λu is a simple eigenvalue of F , |λu| ≥ 1; then CPu(z)B = 0 in (6) is

equivalent to

Cβu,⊥(α′u,⊥βu,⊥)−1α′u,⊥B = 0,

where αu, βu are defined by the rank factorization F − λuI = αuβ
′
u and αu,⊥, βu,⊥ are bases

of the orthogonal complements of colα and col β.

We illustrate the procedure in Remark 4.4 on the permanent income model reported in

Section 3 and on the version used in Fernández-Villaverde et al. (2007); in the latter they

let xt+1 = ct+1, yt+1 = ỹt+1 − ct+1 and hence they have A = 1, B = σw(1 − R−1), C = −1,

D = σwR
−1, and F = R > 1.

Both versions satisfy the assumptions of Corollary 4.5. If one lets yt+1 = ỹt+1− ct+1, then

F = R > 1 is a simple unstable eigenvalue of F ; because A = 1, one concludes that the

model is non-invertible. If one lets yt+1 = ỹt+1, then F = A = 1 and one finds α = β = 0,

α⊥ = β⊥ = 1. Because CB = 0, the condition in Corollary 4.5 applies and hence one

concludes that (1) is invertible.



7

5. When the poor man’s invertibility condition provides a check for

non-invertibility

In this section we show that if (1) is stabilizable and detectable6 then the condition in

Proposition 4.2 coincides with the poor man’s invertibility condition. Remark that these are

the conditions used in Fernández-Villaverde et al. (2007, Sec. C) to ensure the asymptotic

stability and time invariance of the Kalman filter, see e.g. Anderson and Moore (1979, Sec.

4.4) and Lancaster and Rodman (1995, Ch. 17). This result is given in Proposition 5.2. In

Corollaries 5.3 and 5.4 we present two direct consequences of it when (1) is stable, or con-

trollable and observable. We conclude this section by discussing the domains of applicability

of the two conditions.

The following definition7 is based on the characterization results in Lancaster and Rodman

(1995, Theorems 4.3.3 and 4.5.6).

Definition 5.1. The economic model (1) is called stabilizable if rank(A − λI : B) = nx

for all |λ| ≥ 1; if this condition holds for all λ ∈ C, model (1) is called controllable. The

economic model in (1) is called detectable if rank(A′ − λI : C ′) = nx for all |λ| ≥ 1; if this

condition holds for all λ ∈ C, model (1) is called observable.

Note that a controllable system is necessarily stabilizable, but not viceversa; hence stabiliz-

ability is a weaker concept than controllability. The same relation holds between the notions

of detectability and observability. The next proposition shows that when (1) is stabilizable

and detectable, the condition in Proposition 4.2 coincides with the poor man’s invertibility

condition.

Proposition 5.2. Assume that (1) is stabilizable and detectable; then it is invertible if and

only if F is stable.

A first direct consequence of this proposition follows from the fact that if A is stable then

(1) is stabilizable and detectable.

6Recall that the pair (A,B) is called stabilizable if there exists K such that A + BK is stable, and that

the pair (C,A) is called detectable if the pair (A′, C ′) is stabilizable, see e.g. Lancaster and Rodman (1995,

Ch. 4).
7Recall that the pair (A,B) is called controllable if rank(B : AB : A2B : · · · : Anx−1B) = nx and the pair

(C,A) is called observable if the pair (A′, C ′) is controllable, see e.g. Lancaster and Rodman (1995, Ch. 4).
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Corollary 5.3. If A is stable, then (1) is invertible if and only if F is stable.

Similarly, if (1) is controllable and observable, then it is stabilizable and detectable; hence

the following statement.

Corollary 5.4. If (1) is controllable and observable, then it is invertible if and only if F is

stable.

Proposition 5.2 shows that if the economic model is stabilizable and detectable, then the

poor man’s invertibility condition provides a check for non-invertibility. Because stability of

A implies stabilizability and detectability of (1), Corollary 5.3 shows that the poor man’s

invertibility condition provides a check for non-invertibility also in this case. Similarly, it is

also a valid check when (1) is controllable and observable, as stated in Corollary 5.4.

Conversely, if (1) is either non-stabilizable and/or non-detectable, then the poor man’s

invertibility condition is not necessary for invertibility and thus it cannot be used to check

for non-invertibility. Unlike for the poor man’s invertibility condition, the condition in

Proposition 4.2 applies to any square case, irrespectively of its stability and/or detectability.

When (1) is stabilizable and detectable, the two conditions coincide.

We illustrate these facts via the permanent income model: if one lets yt+1 = ỹt+1−ct+1, the

model is controllable and observable; in fact λ = A = 1, B = σw(1−R−1) and C = −1 imply

rank(0 : σw(1− R−1)) = rank(0 : −1) = 1. In this case the two conditions agree. If one lets

yt+1 = ỹt+1, then λ = A = 1, B = σw(1− R−1) and C = 0 imply rank(0 : σw(1− R−1)) = 1

and rank(0 : 0) = 0; hence the model is controllable but not detectable and one cannot use

the poor man’s invertibility condition. The second counterexample is neither stabilizable

nor detectable and hence the poor man’s invertibility condition cannot be applied as a check

for fundamentalness. In any of the three cases, one can proceed as described in Remark 4.4,

or simply check condition (6).

6. Conclusions

In the present paper we have illustrated that the poor man’s invertibility condition in

Fernández-Villaverde et al. (2007) is only a sufficient but not necessary condition for in-

vertibility. A violation of this condition does not necessarily imply non-invertibility of the



9

DSGE, unless additional conditions hold. The condition presented in Section 4 is shown to

provide a check (i.e. a necessary and sufficient condition) for non-invertibility in any square

case. When the economic model is stabilizable and detectable, the two conditions coincide.

Appendix A. Proofs

Proof of Proposition 2.1. Regularity of T (z) implies that the VAR coefficients are square

summable, see footnote 4.

Proof of Proposition 4.1. If F is stable, then (I − Fz)−1 is regular and so is T (z); then

apply Proposition 2.1.

Proof of Proposition 4.2. Consider (4) and (5); if CPu(z)B = 0, u = 1, . . . , q, then

C(I−Fz)−1B = CH(z)B is regular and hence the same holds for T (z), and Proposition 2.1

applies. Conversely, assume T (z) is regular; then the same holds for C(I−Fz)−1B and thus

CPu(z)B = 0, u = 1, . . . , q. The last statement follows from the equivalence of F stable and

q = 0.

Proof of Proposition 4.3. Assume (1) is invertible; then, see Proposition 4.2, one has

CPu(z)B = 0 for u = 1, . . . , q. By (5), this is equivalent to CPλu,mu−jB = 0 for j =

1, . . . ,mu and u = 1, . . . , q; hence in particular CPλu,0B = 0, where Pλu,0 6= 0. Write

I −Fz = (I −Fλ−1u )−F (z−λ−1u ) and (5) as (I −Fz)−1 = Pu(z) +P−u(z), where P−u(z) =∑q
v=1,v 6=u Pv(z) +H(z); then (I − Fz)(I − Fz)−1 = I implies

(7) (I − Fλ−1u )Pu(z) + (I − Fλ−1u )P−u(z)− (z − λ−1u )F (I − Fz)−1 = I.

Substituting Pu(z) from (5) one has

(I − Fλ−1u )Pu(z) =
(I − Fλ−1u )Pλu,0

(z − λ−1u )mu
+

mu−1∑
j=1

(I − Fλ−1u )Pλu,mu−j

(z − λ−1u )j
;

because (I − Fλ−1u )Pλu,0 is the only term in (7) that loads (z − λ−1u )−mu , then (7) implies

(I − Fλ−1u )Pλu,0 = 0. Similarly, starting from (I − Fz)−1(I − Fz) = I one finds that

Pλu,0(I − Fλ−1u ) = 0. Hence (I − Fλ−1u )Pλu,0 = Pλu,0(I − Fλ−1u ) = 0. Because λu is an

eigenvalue of F , one can write F − λuI = αβ′, where α, β are nx × r full column rank

matrices, and r = rank(F − λuI) < nx; one then has Pλu,0 = β⊥ϕα
′
⊥ 6= 0, where α⊥, β⊥
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are bases of the orthogonal complements of α, β and ϕ is some matrix, see e.g. Franchi and

Paruolo (2011).

Next let ϕ = ξη′, where ξ, η are (nx− r)× r1 full column rank matrices and r1 = rankϕ ≤

nx − r; then one has Pλu,0 = β1α
′
1, where α1 := α⊥η, β1 := β⊥ξ have full column rank r1.

Let α2 := ᾱ⊥η⊥, β2 := β̄⊥ξ⊥ and use the projection identities8 Inx = αᾱ′ + ᾱ1α
′
1 + α2ᾱ

′
2 =

ββ̄′ + β̄1β
′
1 + β2β̄

′
2 to write B = αB0 + ᾱ1B1 + α2B2, C = C0β

′ + C1β̄
′
1 + C2β

′
2; with this

notation one finds that CPλu,0B = 0 is equivalent to C1B1 = 0. The dimensions of C1 and

B1 are respectively ny × r1 and r1 × ny.

Because rankC1 = r1 implies B1 = 0 and rankB1 = r1 implies C1 = 0, from C1B1 = 0 it

follows that B1 and C1 cannot have simultaneously full rank r1. This implies that Ir B0

0 B1

0 B2

 ,

(
Ir 0 0

C0 C1 C2

)

cannot have simultaneously rank nx. Hence

A− λuI = F − λuI +BD−1C =
(
α BD−1

)( β′

C

)

=
(
α ᾱ1 α2

) Ir B0

0 B1

0 B2

( Ir 0

0 D−1

)(
Ir 0 0

C0 C1 C2

) β′

β̄′1
β′2


is singular. Thus λu is also an eigenvalue of A.

Proof of Corollary 4.5. If λu is a simple eigenvalue of F , there exist αu, βu of full column

rank r = rank(F − λuI) < nx such that F − λuI = αuβ
′
u and |α′u,⊥βu,⊥| 6= 0; moreover,

see Theorem 3 in Johansen (2009), (I − Fz)−1 has a pole of order one at z = λ−1u and

Pλu,0 = βu,⊥(α′u,⊥βu,⊥)−1α′u,⊥. The statement then follows from Proposition 4.2.

Proof of Proposition 5.2. If F is stable, see Proposition 4.1. Next we show that if (1) is

stabilizable and detectable, then the condition in Proposition 4.2 cannot hold; this implies

that (1) is invertible only if F stable. Observe that rank(A − λI : B) = rank(F − λI : B);

in fact (
A− λI B

)( Inx 0

−D−1C Iny

)
=
(
F − λI B

)
.

8In the following we use the notation γ̄ = γ(γ′γ)−1 for any full column rank matrix γ.
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Because (1) is stabilizable, rank(F − λI : B) = nx for all |λ| ≥ 1. Similarly, because (1) is

detectable, one finds that rank(F ′ − λI : C ′) = rank(A′ − λI : C ′) = nx for all |λ| ≥ 1.

Let now λ be an unstable eigenvalue of F , |λ| ≥ 1, and write F − λI = αβ′, where α, β

are nx × r matrices and r = rank(F − λI) < nx, and let α⊥, β⊥ be bases of the orthogonal

complements of colα, col β. Use the projection identities I = αᾱ′ + ᾱ⊥α
′
⊥ = β̄β′ + β⊥β̄

′
⊥ to

write B = αB̃1+ᾱ⊥B̃2 and C = C̃1β
′+C̃2β̄

′
⊥. Next we show that rank B̃2 = rank C̃2 = nx−r;

in fact (
F − λI B

)
=
(
αβ′ αB̃1 + ᾱ⊥B̃2

)
=
(
α ᾱ⊥

)( β′ B̃1

0 B̃2

)
,(

F − λI
C

)
=

(
αβ′

C̃1β
′ + C̃2β̄

′
⊥

)
=

(
α 0

C̃1 C̃2

)(
β′

β̄′⊥

)
.

In the proof of Proposition 4.3 it is shown that (1) is invertible if and only if C1B1 = 0, where

B1 := η′α′⊥B,C1 := Cβ⊥ξ and ϕ = ξη′ 6= 0. Because C1B1 = Cβ⊥ξη
′α′⊥B = C̃2ϕB̃2 = 0

and ϕ 6= 0, this contradicts rank B̃2 = rank C̃2 = nx − r; hence if the economic model is

stabilizable and detectable, then the condition in Proposition 4.2 cannot hold. This implies

that if (1) is invertible and it is also stabilizable and detectable, F cannot have unstable

eigenvalues.

Proof of Corollary 5.3. If A is stable, then rank(A− λI) = nx for all |λ| ≥ 1; hence (1) is

stabilizable and detectable and Proposition 5.2 applies.

Proof of Corollary 5.4. If (1) is controllable and observable then it is stabilizable and

detectable; hence Proposition 5.2 applies.
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