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I examine a version of the Lagos and Wright (2005) monetary model where coercive
lump-sum taxation is infeasible. Despite this restriction, I demonstrate that the first-best
allocation remains implementable under an appropriately designed monetary policy; at
least, if agents are sufficiently patient. The main conclusion is that any incentive-feasible
monetary policy necessarily requires a strictly positive nominal interest rate to be paid on
money balances.

1. INTRODUCTION

In a wide class of monetary models, deflating at the so-called Friedman rule
constitutes an optimal policy. It is commonly understood that this policy prescrip-
tion presumes that lump-sum taxation is feasible. It is perhaps less well-known
that policies that pay interest on money—with at least a part of the aggregate inter-
est expense financed via taxation—are also optimal, even if interest-bearing money
policies are not essential. Absent lump-sum taxation, it is widely believed that the
optimal policy is constrained to deliver a second-best allocation. This conclusion,
however, ignores the possibility that agents might be induced in some manner to
make voluntary tax contributions. I describe below how policies can be designed
in this manner without violating or modifying any of the underlying assumptions
imposed on an otherwise standard environment.

The environment I study is based on the quasi-linear model introduced by Lagos
and Wright (2005), but absent search frictions. Agents lack commitment and it
is impossible to monitor individual trading histories. There is a technology that
allows for the creation of non-counterfeitable tokens (intrinsically useless objects
that encode no personal information). These properties of the environment are
known to generate an essential role for tokens as a means of payment. The supply
of tokens is managed by society (a government) and society is limited in the manner
by which it may penalize agents. In particular, coercive taxation is ruled out
altogether. Trade among agents is assumed to occur in competitive spot markets.

I find that in this setup, an optimal policy can be designed that implements
the first-best allocation; at least, assuming that agents are sufficiently patient. The
optimal policy necessarily requires interest-bearing money, with at least a part of
the aggregate interest expense financed by way of an individually-rational lump-sum

1I thank Paul Beaudry, Francesco Lippi, Narayana Kocherlakota, Fernando Martin, Haitao
Xiang, and seminar participants at the Einaudi Instititute for Economics and Finance, Simon
Fraser University, and the University of British Columbia, for many helpful comments. This
research was funded in part by SSHRC.
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tax. The way in which this can be accomplished is by issuing a second time-dated
token that is offered in exchange to agents in return for their voluntary tax payment.
The purpose of this second token is to serve as a verifiable record of an earlier tax
contribution. Agents can be motivated to collect this record if it entitles them to
earn interest on money in a high inflation environment. That is, the failure to pay
taxes disentitles the agent from collecting interest and exposes him to the welfare
cost of holding zero-interest money in an inflationary environment.

There is a sense in which this second token resembles a nominal government
bond, but this is not quite right. In particular, this second token entitles the bearer
to earn interest on his money holdings; the token itself more closely resembles a tax
receipt than a bond. In fact, in the environment considered here, there is no role
for a second token in the form of an interest-bearing bond; see, Berentsen, Camera,
and Waller (2007). As in this latter paper, paying interest on money is essential.
The manner in which these authors make this possible is by introducing a limited
record-keeping and enforcement technology giving rise to “banks” that pay interest
on cash deposits. The analysis in my paper describes how the same thing can be
achieved in the absence of this modification to the basic environment.

2. THE ENVIRONMENT

There is a continuum of ex ante identical agents i ∈ [0, 1]. Time is discrete and
the horizon is infinite. Each period is divided into two subperiods, labelled day and
night. Agents have preferences defined over stochastic sequences {xt(i), ct(i) : t ≥ 0} ;
where xt denotes consumption in the day and ct denotes consumption at night, at
date t. These preferences are represented by a utility function,

E0

∞X
t=0

βt [xt(i) + ωt(i)u(ct(i))] ;

where 0 < β < 1, and u : R+ → R is increasing and strictly concave. The parameter
ωt(i) is a preference shock that, for simplicity, I assume takes on only one of two
values; i.e., ωt(i) ∈ {ωl, ωh} , with 0 < ωl < ωh <∞ (the analysis generalizes to a
continuum of types). Define η ≡ ωh/ωl > 1. Assume that these preference shocks
are i.i.d. across agents and across time; and assume Pr [ωt(i) = ωh] = 1/2.

All agents are endowed with a non-storable endowment y > 0 at night. There
are two resource constraints, Z

xt(i)di = 0;Z
ct(i)di = y.

Note that xt(i) is unbounded from above and below (negative consumption during
the day is allowed).

Consider the problem faced by a planner that wishes to maximize ex ante utility.
Owing to quasi-linearity, any lottery {xt(i)} satisfying Et [xt(i)] = 0 will be feasible
and efficient. Without loss then, assume xt(i) = 0 for all i and t.
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As this environment is stationary, consider allocations of the form {c(ω)} . Ex
ante utility is given by

W =

µ
0.5

1− β

¶
[ωlu(c(ωl)) + ωhu(c(ωh))] .

An efficient (first-best) allocation satisfies

u0(c∗(ωl)) = ηu0(c∗(ωh)) (1)

and
c∗(ωl) + c∗(ωh) = 2y. (2)

Clearly, c∗(ωl) < y < c∗(ωh).

I make the following assumptions concerning the nature of the environment.
First, agents lack commitment. Second, it is impossible to monitor individual
trading histories; that is, there is an absence of societal memory. Third, society
can create physical tokens that inscribe non-personal information (e.g., date of
issue). Fourth, society is limited in the manner by which it may penalize agents. In
particular, coercive taxation is ruled out altogether. Finally, I assume that trade
among agents, if it is to occur at all, does so in a competitive manner (in particular,
on a sequence of competitive spot markets).2

Together, these assumptions imply that fiat money (in the form of a supply
of tokens managed by society) is necessary to facilitate trade. The restriction to
competitive markets implies that these trades will occur on a sequence of spot
markets where agents trade money for goods. The inability to tax rules out the
use of the Friedman rule (a deflation induced by contracting the money supply via
lump-sum taxation) as a feasible policy. These are restrictions that are commonly
believed to rule out first-best implementation. The main purpose of my paper is
to demonstrate that this is not necessarily the case. In particular, I show that
for an appropriately designed monetary policy (one that does not violate any of
the restrictions placed on the environment above), the first-best allocation remains
implementable; at least, if agents are sufficiently patient.

3. A MONETARY ECONOMY

3.1. Timing and Budget Constraints

In the initial period, society creates a given quantity of physical tokens that
are distributed evenly across the population. These tokens, which are to serve as
money, are perfectly durable, divisible, and non-counterfeitable. Let (vd, vn) denote
the value of money in the day and night, respectively. I use a superscript “+” to
denote future (next period) values; e.g., (v+d , v

+
n ). Let md denote the nominal value

of money held by an agent at the beginning of the day and let z ≡ vdmd denote
the real value of money md in the day.

2One may also assume that preference types are private information to rule out the possibility
of type-contingent transfers. As it turns out, type-contingent transfers have no real consequence
in this environment so that this possibility can be ignored; see Berentsen, Camera, and Waller
(2007).
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The timing of events is as follows. First, agents have an opportunity to trade
money md for goods x in the day-market. At the same time, they have the option
of paying a lump-sum transfer of money to the government. Let τ denote the real
value of this payment and let χ ∈ {0, 1} denote whether the option to pay τ is
exercised or not. If the option is exercised (χ = 1), then the agent receives in
return for this payment a time-dated token (distinct from the money token) that
will effectively serve as a tax receipt.3

Letmn ≥ 0 denote the money held by an agent following these day trades (hence,
mn is the money with which the agent enters the night-market). Let q ≡ vnmn

denote the real value of money mn at night. An agent entering the day with real
money z faces the following budget constraint,

x = z − χτ − φq; (3)

where φ ≡ vd/vn. Note that x < 0 is possible here (interpret this as working for
money).

At night, individuals can trade money mn for goods (y− c). Note that if y > c,
agents are saving (selling their excess output for money). On the other hand, if
y < c, then agents are dissaving (drawing down their money balances to purchase
output in excess of their endowment). Because agents cannot borrow or create
money, their night trades are constrained in the following manner,

mn + v−1n (y − c) ≥ 0;

or, expressed in real terms,
q + y − c ≥ 0. (4)

In what follows, I refer to (4) as a cash constraint.

Following these night trades, an agent is left with nominal money balances£
mn + v−1n (y − c)

¤
≥ 0. Assume that at this point (at the end of the night), the

government expands an individual’s money balances by the factor Rχ, so that

m+
d = Rχ

£
mn + v−1n (y − c)

¤
≥ 0;

or, expressed in real terms,

z+ = (v+d /vd)φR
χ [q + y − c] ≥ 0. (5)

Here, one can interpret R ≥ 1 as a gross nominal interest rate that is paid only
in the event that χ = 1 (which denotes that the individual made the contribution
τ in the day). Note that as there is no record-keeping, some form of tangible
evidence must be provided by an individual to the government reflecting the fact
that τ was in fact paid. This tangible evidence exists in the form of the second
time-dated token that could have been acquired during the day in any date t. This
token entitles the individual to an interest rate R on his money balances at the end
of date t if and only if the individual presents a date t token to the government for
redemption. If an agent fails to present this second token for redemption, he will
in effect earn a zero nominal interest rate on his money.

3By assumption, this tax receipt cannot be personalized, but this is not important here. It is
important, however, that this second token, like the money token, cannot be counterfeited.
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It remains to describe the government’s budget constraint. Assume that the
government expands the money supply at some constant rate, so that M+ = μM,
where M denotes the aggregate supply of money at the beginning of a day. Hence,
a government policy in this model is described by the triplet (R,μ, τ).

In deriving the government’s budget constraint, assume that χ = 1 is individually-
rational. The aggregate money supply M at the beginning of the day is reduced
by the amount v−1d τ by the end of the day. The quantity M − v−1d τ is then
augmented by new money (R − 1)

£
M − v−1d τ

¤
at then end of the night, so that

M+ = R
£
M − v−1d τ

¤
. Defining Q ≡ vdM, this latter expression may alternatively

be expressed as

τ =
h
1− μ

R

i
Q. (6)

A feasible policy (R,μ, τ) is one that satisfies (6).

3.2. Individual Decision-Making

In what follows, I assume for the moment that χ = 1 is individually-rational.
The restrictions that are necessary to make this so are discussed in due course.

Let V (q;ω) denote the value of entering the night-market with real money bal-
ances q and having realized type ω ∈ {ωl, ωh} . Assume, for the moment, that V
is increasing and weakly concave in q. Let W (z) denote the value of entering the
day with real money balances z. Then, in recursive form, the choice problem of an
agent during the day can be written as,

W (z) ≡ max
q≥0

[z − τ − φq] + 0.5 [V (q;ωl) + V (q;ωh)] ; (7)

where here, I have made use of (3). The FONC characterizing the demand for
money 0 < q̂ <∞ is given by

φ = 0.5 [V1(q̂;ωl) + V1(q̂;ωh)] ; (8)

where Vj denotes the derivative of V with respect to argument j.

Technically, condition (8) determines a unique value for q̂ only in the event that
V is strictly concave in q. As it turns out, V will turn out to be strictly concave
only when we are away from the first-best allocation. At the first-best, V turns
out to be linear in q, so that there is some indeterminacy in q̂. Nevertheless, even
in this case, condition (8) will continue to hold in equilibrium; a point that I will
return to later. In the meantime, note that by the envelope theorem,

W1(z) = 1. (9)

With q̂ determined in some manner during the day, let us now turn to decision-
making at night. Here, the choice problem can be written recursively as follows,

V (q̂;ω) ≡ max
c,z+≥0

ωu(c) + βW (z+); (10)

where z+ is given by (5). If the constraint z+ ≥ 0 remains slack, then desired
consumption is determined by,

ωu0(ĉ(ω)) = (v+d /vd)φRβ. (11)
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If the constraint z+ ≥ 0 binds, then desired consumption is determined by,

ĉ(ω) = q̂ + y. (12)

In either case, the envelope theorem implies

V1(q̂;ω) = ωu0(ĉ(ω)). (13)

Note that this latter condition implies that V1(q̂;ω) = (v
+
d /vd)φRβ in case (11);

that is, V is linear in q̂. On the other hand, if the cash-constraint binds, then
V1(q̂;ω) = ωu0(q̂ + y); so that V is strictly concave in q̂ in case (12). Letting
Eω denote an expectations operator over ω, it follows that Eω [V (q̂;ω)] is strictly
concave in q̂ if and only if the cash-constraint binds for at least one type ω ∈
{ωl, ωh} . If no cash-constraint binds tightly, then Eω [V (q̂;ω)] is linear in q̂.

Now, combining (13) with (8), we have 0 < q̂ <∞ satisfying,

φ = 0.5 [ωlu
0(ĉ(ωl)) + ωhu

0(ĉ(ωh))] . (14)

Note that if case (11) applies to both ω ∈ {ωl, ωh} , then the condition above reduces
to 1 = (v+1 /v1)Rβ, so that q̂ is indeterminate in the sense that any q̂ ≥ ĉ(ωh) − y
is consistent with optimal behavior. One may therefore, without loss of generality,
assume q̂ = ĉ(ωh)−y in this case. In other words, q̂ is determined by the minimum
amount of real money balances necessary to ensure that the agent does not “run
out of cash” in the state where he needs its the most (the impatient state). In this
case, the cash-constraint binds weakly in state ωh and remains slack in state ωl.

3.3. Monetary Equilibrium Assuming χ = 1

In describing equilibria, I restrict attention to stationary allocations. One im-
plication of stationarity is that vdM = v+d M

+ = Q; which impliesµ
v+d
vd

¶
=

µ
1

μ

¶
. (15)

That is, the equilibrium inflation rate from one day to the next is determined
entirely by policy.

In a stationary equilibrium, the level of consumption in each day will be de-
termined by the type that was realized in the previous night; i.e., x̂(ω−) for
ω− ∈ {ωl, ωh} . Hence, market-clearing at each day and night require, respectively,

0.5x̂(ωl) + 0.5x̂(ωh) = 0; (16)

0.5ĉ(ωl) + 0.5ĉ(ωh) = y. (17)

In a non-autarkic equilibrium (q̂ > 0), it must be the case that the cash-
constraint for at least one type of agent (patient) remains slack. Hence, condition
(14), together with (15), implies,

2φ =

∙
φ

µ
Rβ

μ

¶
+ ωhu

0(ĉ(ωh))

¸
.

Making use of (11), the expression above may alternatively be expressed as,
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∙
2

µ
Rβ

μ

¶
− 1
¸
u0(ĉ(ωl)) = ηu0(ĉ(ωh)). (18)

For a given policy (R,μ), conditions (17) and (18) characterize the equilibrium
allocation at night ĉ(ω). Comparing these latter two restrictions with (1) and (2),
we have the following result:

Lemma 1 The competitive monetary equilibrium allocation ĉ(ω) corresponds to
the first-best allocation c∗(ω) if and only if policy satisfies μ = Rβ.

In what follows then, let me assume that policy satisfies the restriction μ = Rβ.
In this case, ĉ(ω) = c∗(ω); and, in particular, note that q∗ = c∗(ωh) − y > 0,
with ẑ+(ωh) = 0 (the cash-constraint for the impatient agent binds just weakly).
Moreover, from (11) and (15),

φ∗ = ωu0(c∗(ω)). (19)

Now, at the end of the day, nominal money demand must equal the nominal
supply of money available; i.e., m̂n =M − v−1d τ , or expressed in real terms,

φ∗q∗ = Q− τ . (20)

The policy μ = Rβ together with the government budget constraint (6) im-
plies τ = (1 − β)Q; which, when combined with (20) yields an expression for the
equilibrium real value of the money supply,

Q∗ = β−1φ∗q∗. (21)

With Q∗ determined in this manner, the equilibrium lump-sum tax is then given
by,

τ∗ = (1− β)Q∗. (22)

The equilibrium prices (v∗d, v
∗
n) are determined by,

v∗d =

µ
Q∗

M

¶
; v∗n =

µ
v∗1
φ∗

¶
(23)

Finally, the distribution of real money balances at the beginning of each day
(apart from the initial date) is given by,

z∗(ω−) ≡ φ∗β−1
£
q∗ + y − c∗(ω−)

¤
≥ 0, (24)

where ω− ∈ {ωl, ωh} denotes the previous night’s preference shock.
By the budget constraint (3),

x∗(ω−) = z∗(ω−)− φ∗q∗ − τ∗;

= z∗(ω−)−Q∗,

7



where this latter derivation makes use of (21) and (22). Combining this with (24),

x∗(ωl) = φ∗β−1 [q∗ + y − c∗(ωl)]−Q∗;

x∗(ωh) = φ∗β−1 [q∗ + y − c∗(ωh)]−Q∗;

or, by employing (21),

x∗(ωl) = φ∗β−1 (y − c∗(ωl)) > 0; (25)

x∗(ωh) = φ∗β−1 (y − c∗(ωh)) < 0.

Note that 0.5x∗(ωl)+0.5x∗(ωh) = 0; which is consistent with (16) and the first-best
restriction that Et [x

∗
t (i)] = 0.

Proposition 1. If χ ≡ 1, then any policy (R,μ, τ∗) satisfying μ = Rβ and (22)
will implement the first-best allocation as a competitive monetary equilibrium.

The proposition above states a result that is familiar for this class of models; in
particular, if lump-sum taxation is feasible (χ ≡ 1), then the Friedman rule policy
(R,μ) = (1, β) is consistent with first-best implementation. In fact, the result is
more general than this; in particular, that there are many policies with the property
R > 1 and μ > β that can also implement the first-best allocation (each of these
policies require the same level of taxation τ∗). One such policy includes holding
the money supply constant and paying interest R = 1/β. As long as μ = Rβ,
money earns the real rate of return 1/β and the sequence of competitive money-
goods markets substitute perfectly for the missing private debt market. But when
lump-sum taxation is feasible, interest-bearing money is not essential.

4. INDIVIDUAL RATIONALITY

Imagine now that agents cannot be forced to pay the tax τ∗. This would then
seem to pose a problem, as the contribution τ∗ is necessary either to finance the
requisite deflation or the aggregate interest expense of interest-bearing money. For
agents to be willing to pay the tax τ∗, it must be individually-rational to do so.
In what follows, I refer to an incentive-feasible policy as one that simultaneously
satisfies the government budget constraint and respects individual rationality.

To begin, assume that all agents play χ = 1. In this case, the competitive
equilibrium corresponds to the first-best; and the (ex ante) utility payoff associated
with choosing χ = 1 is

W (z) ≡ [z − φ∗q∗ − τ∗] + 0.5 [V (q∗;ωl) + V (q∗;ωh)] . (26)

Here, it will be useful to note the following,

Lemma 2 If χ = 1 is individually-rational, and if policy is set optimally, then
money is superneutral (nothing real depends on μ ).

The proof of Lemma 1 follows as a corollary to Proposition 1. Among other
things, Lemma 1 implies that W (z) does not depend on μ.

8



Next, consider the payoff associated with an individual defection; i.e., when one
agent plays χ = 0 expecting all others to continue playing χ = 1. As agents belong
to a continuum, an individual defection will have no aggregate consequences. Hence,
I can evaluate the payoff associated with defection assuming that the equilibrium
price-system remains unchanged.

LetW d(z) denote the value associated with defection in the day, and let V d(q;ω)
denote the value associated with defection at night. In this case, conditional on
defection, the choice problem is given by

W d(z) ≡ max
q≥0

[z − φ∗q] + 0.5
£
V d(q;ωl) + V d(q;ωh)

¤
. (27)

For the defector then, the demand for real money balances q̂ is determined by

φ∗ = 0.5
£
V d
1 (q̂;ωl) + V d

1 (q̂;ωh)
¤

if q̂ > 0;
φ∗ > 0.5

£
V d
1 (0;ωl) + V d

1 (0;ωh)
¤

if q̂ = 0.
(28)

Note that W d
1 (z) = 1.

Having defected during the day, the defector enters the night without the second
time-dated token. This does not inhibit the ability to trade at night, but it does
imply that money balances held at the end of the night do not earn interest. Hence,
by condition (5) with χ = 0,

z+ =

µ
φ∗

μ

¶
[q̂ + y − c] ≥ 0. (29)

The choice problem at night can therefore be expressed as,

V d(q̂;ω) ≡ max
c,z+≥0

ωu(c) + βmax
©
W d(z+),W (z+)

ª
, (30)

with z+ given by (29).

Note that the choice problem at night embeds the possibility that the decision
to defect one day is reversed the next. In fact, one can demonstrate that if defection
is optimal at any date, it will remain optimal forever. It should be evident by the
quasi-linear preference structure that,

Lemma 3 The net gain from defection
£
W d(z)−W (z)

¤
is independent of z.

Lemma 3 implies that if W d(z) > W (z), then W d(z+) > W (z+), so that if
defection is desirable one day, it will also be desirable the next; i.e.,

max
©
W d(z+),W (z+)

ª
=W d(z+).

Hence, if an agent finds it optimal to defect in the day, his choice problem at night
can be stated more simply as,

V d(q̂;ω) ≡ max
c,z+≥0

ωu(c) + βW d(z+). (31)

The solution to this problem is characterized by,

ωu0(ĉ(ω)) = φ∗μ−1β if ẑ+(ω) > 0;
ĉ(ω) = q̂ + y if ẑ+(ω) = 0;

(32)
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for ω ∈ {ωl, ωh}.
By the envelope theorem,

V d
1 (q̂;ω) = ωu0(ĉ(ω)); (33)

which, when combined with (28), implies

φ∗ = 0.5 [ωlu
0(ĉ(ωl)) + ωhu

0(ĉ(ωh))] if q̂ > 0;
φ∗ > 0.5 [ωlu

0(ĉ(ωl)) + ωhu
0(ĉ(ωh))] if q̂ = 0.

(34)

At this point, it should be evident that the following is true.

Proposition 2. The “Friedman rule” policy (R,μ, τ) = (1, β, τ∗) is not individually-
rational.

Proof. Under the Friedman rule, non-defectors pay a tax τ∗ and earn zero in-
terest, while defectors avoid paying the tax τ∗ and also earn zero interest. Hence,
(ĉ(ω), q̂) = (c∗(ω), q∗) is both desirable and feasible for the defector and yields the
same expected utility in night-market exchanges as non-defectors. However, as the
defector avoids paying the tax τ∗ in the day, it must therefore be the case that
W d(z) > W (z).

One way to understand this result is as follows. Given the nature of this en-
vironment, fiat money is the only asset with which agents can self-insure. Hence,
money is an instrument created by society to serve a desirable social objective;
in this sense, fiat money is like a public good. Efficient risk-sharing requires that
money earn an adequate real rate of return. When R = 1, the only way to increase
the real rate of return on money is through deflation. This deflation requires that
some part of the money supply be destroyed in every period. As the government
cannot simply force people to hand over their money, they must be willing to hand
it over, if the public good is to be served. But at the individual level, agents can
“free-ride” on this public good provision by not paying their taxes. When R = 1,
there is no individual cost associated with not collecting a tax receipt. As all
agents can be expected to behave in the same manner, the Friedman rule policy is
not incentive-feasible.4

4.1. Incentive-Feasible Monetary Policy

Intuition suggests that defectors can be punished here indirectly by creating
an inflation (increasing μ). By Lemma 1, such an inflation will have no effect on
non-defectors; that is, the nominal interest rate will simply adjust in proportion
to the inflation rate. But as defectors cannot protect themselves against inflation
(they are not entitled to earn interest), an inflation will hamper their ability to self
insure. The welfare cost associated with this reduced level of insurance may be
sufficiently high to induce them to pay their taxes.

To investigate this possibility, let us first consider the choice problem facing a
defector during the day. Condition (34) characterizes the defector’s desired quantity
of real money balances q̂, to be carried into the night-market. Clearly, under the

4This interpretation was suggested to me by Todd Keister.
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Friedman rule policy, neither cash-constraint will bind tightly for the defector; so
that in this case, q̂ = q∗. But for any inflation rate μ > β, it must be the case that
at least one cash-constraint binds tightly for the defector.

Lemma 4 If μ > β, then the defector’s cash-constraints cannot both remain slack.

Proof. If both cash-constraints remain slack, then (32) implies ωu0(ĉ2(ω)) =
φ∗βμ−1 for ω ∈ {ωl, ωh}. Combining this with (34) (when q̂ > 0) implies μ = β;
which is a contradiction.

Imagine then that only one cash-constraint binds for the defector; clearly, this
will occur for the impatient type. Utilizing (32), the allocation for the defector at
night is characterized by

ωlu
0(ĉ(ωl)) = φ∗

µ
β

μ

¶
; (35)

ĉ(ωh) = q̂ + y; (36)

with q̂ determined by (34); i.e.,

φ∗
µ
2− β

μ

¶
= ωhu

0(q̂ + y); (37)

at least, as long as q̂ > 0.

Hence, when the allocation associated with defection is characterized by (35),
(36), and (37), the effect of increasing μ away from β is to increase ĉ(ωl) and to
reduce both q̂(μ) and ĉ(ωh) = q̂(μ) + y. At the same time, ẑ+(ωl) = 0 remains
invariant to μ; while ẑ+(ωl) = (φ∗/μ) [q̂(μ) + y − ĉ(ωl)] declines monotonically in
μ. These properties imply that, at some point, this second cash-constraint will have
to bind as inflation is increased. Let μ0 define the minimum inflation rate for which
ẑ+(ωl) = 0.

Note that it is conceivable that the constraint q ≥ 0 binds for some μ ≤ μ0;
whether this is true or not is likely to depend on parameters and, in particular,
on the curvature properties of u. In the event that q̂ = 0 when μ ≤ μ0, then
the punishment associated with defection is autarky. On the other hand, it is
also conceivable that the constraint q ≥ 0 does not bind at μ = μ0. In this case,
condition (34)) implies that q̂0 ≥ 0 is determined by

2φ∗ = (ωl + ωh)u
0(q̂0 + y). (38)

One can verify that for the class of utility functions with u0(c) = c−σ, σ > 0, that
q̂0 > 0 for σ > 1; and that q̂0 = 0 for σ ≤ 1.
Condition (38) implies that there is an upper bound on the punishment that

can be inflicted by way of inflation on the defector. This upper bound is either
given by autarky, or the allocation associated with q̂0 > 0 (which does not depend
on inflation). In this latter case, the defector is cash-constrained in both states
and consumption at night is equalized across states; ĉ(ω) = q̂0 + y. Evidently, if
preferences at night are sufficiently linear (e.g., if u less than log concave), then the
defector will still desire to accumulate cash each day and spend it at night.
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Lemma 5 If μ ≥ μ0, then ĉ(ω) and q̂0 are independent of β.

If μ = Rβ is incentive-feasible, then the equilibrium allocation and price system
does not depend on β. If policy is further restricted such that μ ≥ μ0, then Lemma
5 asserts that the allocation associated with defection is also independent of β. The
only equilibrium variable that depends on β is the real value of the lump-sum tax,
which by (21) and (22) is given by

τ∗(β) =

µ
1− β

β

¶
φ∗q∗. (39)

Assume then that policy is such that μ = Rβ for some μ ≥ μ0. In this case,
the night allocation associated with defection is ĉ(ω) = q̂0+ y. Apart from the first
day in which the defection occurs, all future day allocations for the defector (both
actual and expected) is given by Eωx̂(ω) = −φ∗q̂0 ≤ 0. Hence, the expected utility
payoff associated with defection from the first night onward is given by

EωV
d(q̂0;ω) =

∙
A(β)

1− β

¸
;

where
A(β) ≡ 0.5(ωl + ωh)u(q̂0 + y)− βφ∗q̂0.

The corresponding value for the non-defector is given by

EωV (q
∗;ω) =

∙
B

1− β

¸
;

where
B ≡ 0.5 [ωlu(c∗(ωl)) + ωhu(c

∗(ωh))] .

Lemma 6 g(β) ≡ B −A(β) > 0 for all β ∈ [0, 1).

Appendix A provides a proof of Lemma 6; but the result is readily apparent
for the case in which q̂0 = 0 (so that the value A(β) corresponds to the flow payoff
associated with a future of autarky).

Lemma 7 Define G(β) ≡ (1 − β)−1g(β) > 0. Then G0(β), G00(β) > 0 for all
β ∈ [0, 1), and limβ→1G(β) = +∞.

Appendix A also provides a proof of Lemma 7. The function G measures the net
benefit associated with not defecting beginning with the first night onward. The
lemma asserts that G is monotonically increasing in β and approaches infinity as
the discount factor approaches unity.

Finally, consider the day in which the defection initially occurs. An individual
who begins the day with real money balances z and chooses χ = 1 will consume
[z − φ∗q∗ − τ∗] in the day. The same individual who chooses χ = 0 will consume
[z − φ∗q̂0]. Hence, the immediate net benefit to not defecting is given by

φ∗(q̂0 − q∗)− τ∗(β) < 0.

12



That is, there is an immediate direct cost associated with paying the tax. Using
(39), this latter expression may be rewritten as

φ∗
∙
q̂0 −

µ
1

β

¶
q∗
¸
< 0.

Combining the terms derived above, the net benefit associated with not defecting
can be expressed as,

W (z)−W d(z) = φ∗
∙
q̂0 −

µ
1

β

¶
q∗
¸
+G(β).

Clearly, W (z)−W d(z) ≥ 0 requires,

G(β) ≥ φ∗
∙µ
1

β

¶
q∗ − q̂0

¸
. (40)

Lemma 7 establishes the properties of G(β). The right-hand-side of (40) is
monotonically decreasing in β, approaching+∞ as β → 0 and approaching−φ∗q̂0 ≤
0 as β → 1. Hence, we have the following result,

Proposition 3. The first-best allocation is implementable as a competitive mon-
etary equilibrium for any β ∈ [β∗, 1). The optimal policy necessarily has the property
that R > 1 and μ > β.

5. CONCLUSION

Most discussions concerning the optimality of the Friedman rule assume that
lump-sum taxation is feasible. Absent the ability to collect lump-sum taxes, the
general presumption appears to be that only second-best allocations are feasible in
monetary economies. The analysis above, however, suggests that even in societies
for which coercive taxation is difficult (or even impossible) to implement, policy
might nevertheless be designed in a manner that elicits voluntary “tax” payments
that support a first-best allocation.

In monetary economies, there appears to be a natural manner in which punish-
ment can be dispensed on individuals noncompliant in tax obligations necessary to
promote the public good. That is, an appropriate policy requires three basic ele-
ments: [1] an inflation (away from the Friedman rule); [2] a strictly positive nom-
inal interest rate on money balances; and [3] the issuance of non-counterfeitable
tax receipts that entitle the bearer to collect interest. Failing to pay taxes in a
high-inflation/high-interest-rate environment reduces the ongoing value associated
with monetary exchange. If individuals are sufficiently patient, they may find it
individually-rational to make their contribution to society. Doing so entitles them
to earn nominal interest on their money balances, which mitigates (or even elimi-
nates) the otherwise harmful effects of inflation.

13



Appendix A

Lemma 6 asserts that
g(β) ≡ B −A(β) > 0,

where

A(β) ≡ 0.5(ωl + ωh)u(q̂0 + y)− βφ∗q̂0;

B ≡ 0.5[ωlu(c
∗(ωl)) + ωhu(c

∗(ωh))].

There are two cases to consider; one in which q̂0 = 0 (autarky) and in which q̂0 > 0
(both cash-constraints bind, but the agent accumulates cash in the day and spends
it all at night).

Consider the following program,

max {0.5[ωlu(c(ωl)) + ωhu(c(ωh))] : y ≥ 0.5 [c(ωl) + c(ωh)]} ;

and the associated Lagrangian,

L(c(ωl), c(ωh), λ) = 0.5[ωlu(c(ωl)) + ωhu(c(ωh))] + λ [y − 0.5c(ωl)− 0.5c(ωh)] .
(41)

The solution to this program is the first-best allocation c∗(ω) with an associated
multiplier λ∗ = φ∗ > 0, and value L(c∗(ωl), c∗(ωh), λ

∗) = B.

For the case in which q̂0 = 0, the value A(β) corresponds to the payoff associated
with autarky (and is independent of β). In this case, it is clear that g(β) = B −
A(β) > 0 and that g(β) is independent of β.

The case in which q̂0 > 0 is not as straightforward. That is, while both cash-
constraints bind in this case, it is also true that the defector enjoys a higher average
level of consumption at night (this is offset to some extent by a lower average level
of consumption in the day).

To proceed, consider next the following problem,

max {0.5[ωlu(c(ωl)) + ωhu(c(ωh))]− βφ∗q : q + y ≥ 0.5 [c(ωl) + c(ωh)]} .

Substituting the constraint into the objective, one may rewrite this problem as,

A1(β) ≡ max {0.5[ωlu(c(ωl)) + ωhu(c(ωh))] + βφ∗ [y − 0.5c(ωl)− 0.5c(ωh)]} .
(42)

This problem is equivalent to maximizing the Lagrangian in (41), but subject
to the added constraint λ = βφ∗. Note that the solution here corresponds to
(c∗(ωl), c

∗(ωh), λ
∗) when β = 1, so that A1(1) = B.

Next, impose another constraint on the problem (42) by assuming that c(ωl) =
c(ωh) = c. In this case, (42) may be expressed as,

A2(β) ≡ max {0.5 (ωl + ωh)u(c) + βφ∗ [y − c]} .

Note that the solution here corresponds to q̂0 when β = 1 (with ĉ0 = q̂0 − y).
Clearly, A2(1) < A1(1) = B.
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Finally, observe that A(1) = A2(1). Moreover, as q̂0 is independent of β, it
follows that A(β) is decreasing in β. Hence, A(β) ≤ A2(1) < B for all β. But then,
this implies that g(β) > 0 for all β.

Next, consider Lemma 7. Again, there are two cases to consider. In the event
that q̂0 = 0, g(β) > 0 is independent of β, so that G(β) is monotonically increasing
in β with limβ→1G(β) = +∞.

Consider now the case in which q̂0 > 0. Observe that

G0(β) =
T (β)

(1− β)2
;

where T (β) ≡ g(β)−(1−β)φ∗q̂0. This latter expression reduces to T (β) = g(1) > 0;
which implies that G0(β) > 0. Moreover, note that T (β) is independent of β; so that
G00(β) > 0. In short, G is monotonically increasing in β, with limβ→1G(β) = +∞.
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