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Abstract

Although surveys routinely ask respondents to evaluate various aspects of their life on an ordered
scale, there is concern about interpersonal comparability of these self-assessments. Statistically,
the problem is one of identification in ordered response models with heterogeneous thresholds.
As a solution to the identification problem, King et al. (2004) proposed using anchoring vignettes,
namely brief descriptions of hypothetical people or situations that survey respondents are asked
to evaluate on the same scale they use to rate their own situation. While vignettes have been
introduced in several social surveys and are increasingly employed in a variety of fields, reliability
of this approach hinges crucially on the validity of the assumptions of response consistency and
vignette equivalence. This paper proposes a joint test of these key assumptions based on the
fact that the underlying statistical model is overidentified if the two assumptions hold. Monte
Carlo results show that the proposed test has good size and power properties in finite samples.
We apply our test to self-assessment of pain using data from the first wave of the Survey of
Health, Ageing and Retirement in Europe. We find that, when using only one of the three
available vignettes, or when the test is carried out separately by subgroups of respondents, the
overidentifying restrictions are less likely to be rejected.
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1 Introduction

Surveys respondents are often asked to evaluate various aspects of their life on an ordered scale.

Examples include questions on life satisfaction and self-rated health in household surveys, or ques-

tions on customer satisfaction in consumer surveys. Although such questions are widely used, there

is a concern that different people may interpret and answer them differently. This is especially

true when comparing subjective assessments across groups characterized by different culture, na-

tionality, socio-economic status, age or gender. For example, when asked to rate their own health

on a given categorical scale, people may answer differently because their true or perceived health

differs, but also because they interpret differently the various levels of the scale. As a consequence,

differences in self-reports between otherwise similar individuals may depend on differences in re-

sponse style, namely the mapping of true or perceived health into reported health (Sen 2002).

Lack of interpersonal comparability of responses to subjective survey questions is often referred

to as “differential item functioning” (DIF), a term originated in the educational testing literature

(Holland and Wainer 1993) where a test question is said to have DIF if equally able individuals

have unequal probabilities of answering the question correctly. From the view point of statistical

modeling, the DIF problem is essentially one of identification in ordered response models where the

observed responses are derived from latent continuous random variables discretized through a set

of heterogeneous thresholds or cutoff points.

Following the seminal paper of King et al. (2004), anchoring vignettes have been developed as a

new component of survey instruments that may be used to solve the DIF problem. They are brief

descriptions of hypothetical people or situations that survey respondents are asked to evaluate on

the same scale they use to rate their own situation. Because the people or situations described in

the vignettes are the same for all respondents, vignettes have the potential to identify individual

variation in subjective thresholds. A number of social surveys such as the Survey of Health, Ageing

and Retirement in Europe (SHARE), the U.S. Health and Retirement Study (HRS), the English

Longitudinal Study of Ageing (ELSA), and the World Health Organization’s World Health Surveys

(WHS) have introduced specific modules with vignette questions. However, introducing anchoring

vignettes implies substantial costs in terms of survey design and reduces the time available for

collecting other information. Of course, anchoring vignettes would not be necessary in a survey if

one is willing to apply the response-scale correction from a different survey under the assumption

that the DIF problem is the same.

Vignette questions have been applied to a variety of problems including comparison of health
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(Salomon, Tandon and Murray 2004, King and Wand 2007, Bago D’Uva, O’Donnel and van

Doorslaer 2008, Bago D’Uva et al. 2008, Peracchi and Rossetti 2009), health system responsive-

ness (Rice et al. 2012), political efficacy (King et al. 2004), work disability (Kapteyn, Smith and

van Soest 2007), life satisfaction (Angelini et al. 2008), and job satisfaction (Kristensen and Jo-

hansson 2008). In most cases, evidence of reporting heterogeneity is found and corrections on the

comparisons of interest are made using the vignettes.

Although vignettes are increasingly employed by researchers in various fields, reliability of this

approach hinges crucially on the validity of two key assumptions (King et al. 2004). The first

assumption (“response consistency”) is that individuals use the available response categories in

the same way when assessing their own situation and the hypothetical situations in the vignettes.

The second assumption (“vignette equivalence”) is that the hypothetical situation in a vignette is

perceived by all respondents in the same way and on the same uni-dimensional scale, apart from

random error. As pointed out by Deaton (2010), the vignette approach replaces the assumption

that there are no differences in the way people rank themselves on a subjective scale with the

alternative assumption (response consistency) that there are no differences in their capacity for

empathy with other people’s conditions. In addition, vignette equivalence assumes that there are

no systematic differences in the way people perceive the situations represented in each vignette.

The latter is also a very strong assumption, for example because of problems with translation of

the same vignette in different languages. Hence, testing these two key assumptions turns out to be

a critical step in evaluating the validity of the vignette approach.

One approach to testing for response consistency relies on the availability of some objective

measure of the concept of interest. This approach, which rests on the maintained assumption of

vignette equivalence, is used by King et al. (2004) and van Soest et al. (2011) to provide evidence

supporting the assumption of response consistency. Other evidence, however, is less supportive

(Datta Gupta, Kristensen and Pozzoli 2010, Bago D’Uva et al. 2011, Voňková and Hullegie 2011).

The main problem with this approach is that objective measures of the concept of interest are

typically only available in ad-hoc studies. Recently, Kaptyen et al. (2011) propose a different test

of response consistency based on longitudinal data where respondents are shown vignettes that

are descriptions of their own health collected in a previous interview. They find that response

consistency is satisfied only for one of the five health domains considered, namely sleep.

Far less attention has been paid to vignette equivalence. King et al. (2004) suggest an informal

test based on the ordering of the answers to different vignette questions on the same domain. A
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more formal approach is adopted by Bago D’Uva et al. (2011), who test the necessary condition

of no systematic variation across individuals by allowing vignette evaluations to depend on ob-

served personal characteristics. This test does not require objective measures but maintains the

assumption of response consistency and needs at least two vignettes questions for each concept of

interest.

In this paper we propose a simple joint test of the two key assumptions of response consis-

tency and vignette equivalence. The proposed test exploits the fact that, as pointed out by Deaton

(2010), the statistical model is overidentified under these two assumptions. Our test offers several

advantages. First, it does not require the availability of some objective measures and can be carried

out using any dataset containing at least one vignette question for each concept of interest. Second,

it does not require embedding the restricted model that imposes response consistency and vignette

equivalence into a larger encompassing model. Third, it only requires a consistent and asymp-

totically normal estimator of the estimable parameters in the model. This is an advantage, both

computationally and because the test can easily be extended to models with sample selection and

to semiparametric settings where strong distributional assumptions are relaxed. Fourth, because

it exploits the mapping between the estimable parameters and the full set of model parameters,

imposing additional restrictions on the model is particularly transparent and simple. Of course,

as typical with tests of parametric or semi-parametric models, our test is conditional on some

other assumptions. Thus, it may reject the overidentifying restrictions for other reasons than fail-

ure of response consistency and vignette equivalence, for example because of failure of parametric

restrictions or because relevant variables have been omitted from the model.

We investigate the finite sample performance of the proposed test through a Monte Carlo study.

We find that the test has good size and power properties in finite samples. Specifically, the test has

no size distortion and no overrejection is reported when the number of overidentifying restrictions

increases.

Finally, we apply our test to self-assessment of pain using data from Release 2 of the first (2004)

wave of the Survey of Health, Ageing and Retirement in Europe (SHARE). Release 2 of the data

also includes the answers to vignettes questions in a self-administered questionnaire submitted to

a randomly selected subsample of respondents. We find that the overidentifying restrictions are

less likely to be rejected when using only one of the three available vignettes, or when the test is

carried out separately by subgroups of respondents.

The remainder of this paper is organized as follows. Section 2 presents the heterogeneous thresh-
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olds ordered response model, discusses its identification, and proposed a test of the overidentifying

restrictions implied by the assumptions of response consistency and vignette equivalence. Section 3

presents the results of a Monte Carlo study to assess the finite sample performance of the proposed

test. Section 4 illustrates the use of our test through an empirical application to self-assessment on

various health domains. Finally, Section 5 offers some conclusions.

2 The heterogeneous thresholds ordered response model

Let Y0 denote the answer by a randomly chosen individual on some concept of interest, and let

Y1, . . . , YJ denote the answers given by the same individual to J vignette questions on the given

concept. For concreteness, we think of Y0 as the assessment of own health on some domain and of

Yj , j = 1, . . . , J , as the assessment of health on the same domain in the jth vignette. We assume

that the elements of the (J+1)-vector of observed responses Y = (Y0, Y1, . . . , YJ) are all categorical

and take values r = 0, 1, . . . , R.

Each observed categorical response Yj is assumed to depend on an underlying continuous latent

variable Y ∗
j through the observation rule

Yj =
R∑
r=0

r 1{ξj,r−1 < Y ∗
j ≤ ξjr}, j = 0, 1, . . . , J,

where 1{·} is the indicator function, and the ξjr are R + 2 individual-specific thresholds or cutoff

points satisfying ξj,r−1 < ξjr, with ξj,−1 = −∞ and ξjR = ∞. We refer to Greene and Hensher

(2010) for a history and an extensive review of this type of models.

The statistical problem is how to use the sample information in order to learn about the condi-

tional distribution of Y ∗
0 given a vector of observable regressors. The vignette information is not of

direct interest, but is used instrumentally in order to control for the fact that the cutoffs ξjr may

vary across individuals depending on observable regressors and, possibly, unobservable individual

effects.

2.1 Model specification

We assume that the continuous latent variables Y ∗
j obey linear models of the form

Y ∗
j = αj + β⊤j Xj + σjUj , j = 0, 1, . . . , J, (1)

where Xj is a vector of observable exogenous regressors, possibly specific to the jth latent vari-

able, αj , βj and σj are unknown parameters, and Uj is an unobservable random error distributed
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independently of Xj with mean zero and distribution function F . We could easily generalize this

model by representing Y ∗
j as additively separable in Xj and Uj , as in Cunha, Heckman and Navarro

(2007), that is, by assuming that Y ∗
j = φj(Xj) + σjUj , where φj is an unknown function.

To account for observed heterogeneity in response scales, we let the thresholds depend on a

vector Wj of observable exogenous regressors, possibly specific to the jth latent variable, that is

ξjr =


−∞, if r = −1,

κjr(Wj), if r = 0, 1, . . . , R− 1,

∞, if r = R,

for j = 0, 1, . . . , J , where the κjr are unknown functions. To guarantee monotonicity of the thresh-

olds, that is ξj,r−1 < ξjr for all r, the functions κjr must be monotonically increasing. Unobserved

heterogeneity may easily be accommodated by including in Wj an unobserved individual effect, as

in Rossi, Gilula and Allenby (2001). This offers a simple way of allowing for correlation between

self-assessment and vignette responses conditional on the observed regressors.

A parametric specification of the κjr functions is the so-called compound hierarchical ordered

response model of King et al. (2004), where

κjr(Wj) =

{
γj0 + δ⊤j0Wj , if r = 0,

κj,r−1 + exp(γjr + δ⊤jrWj), if r = 1, . . . , R− 1.
(2)

This specification guarantees monotonicity of the thresholds, that is, ξj0 < · · · < ξj,R−1. In addition,

the nonlinearities in (2) provide weak (through functional form) identification of the model when

Wj includes the same variables as Xj . An alternative parametric specification, originally proposed

by Terza (1985), is

κjr(Wj) = γjr + δ⊤jrWj , r = 0, 1, . . . , R− 1. (3)

This specification does not guarantee monotonicity of the thresholds, but is computationally simpler

than (2) and has the advantage of making the identification issues more transparent.

To avoid identification via functional form restrictions, we adopt the linear model (3) for the

cutoffs and consider the extreme but very relevant case of no exclusion restrictions, where Xj =

Wj = X for all j, with X containing k exogenous regressors. Pudney and Shields (2000) also

specify the thresholds as linear functions of observed regressors but achieve identification through

exclusion restrictions, by excluding some of the variables in the threshold equations from those in

the latent linear model (1). Since model (3) puts no constraints on the threshold parameters, we

cannot ensure monotonicity of the thresholds. As a result, although the probabilities sum to one

by construction, there is no guarantee that they are positive.
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Under this model specification, the likelihood contribution of the self-assessment component is

L1(θ1;X,Y0) ∝
R∏
r=0

[
F

(
ξ0r − α0 − β⊤0 X

σ0

)
− F

(
ξ0,r−1 − α0 − β⊤0 X

σ0

)]Y0r
,

where Y0r = 1{Y0 = r} and the vector θ1 consists of the parameters in α0, β0, σ0, γ0 = (γ00, . . . , γ0,R−1)

and δ0 = (δ00, . . . , δ0,R−1). The total number of parameters in θ1 is equal to (k + 1)(R + 1) + 1.

The likelihood contribution of the vignette component is

L2(θ2;X,Y1, . . . , YJ) ∝
J∏
j=1

R∏
r=0

[
F

(
ξjr − αj − β⊤j X

σj

)
− F

(
ξj,r−1 − αj − β⊤j X

σj

)]Yjr
,

where Yjr = 1{Yj = r} and the vector θ2 consists of the parameters in all the αj , βj , σj , γj =

(γj0, . . . , γj,R−1) and δj = (δj0, . . . , δj,R−1). The total number of parameters in θ2 is equal to

J [(k + 1)(R+ 1) + 1]. The full likelihood for a single observation is

L(θ;X,Y ) = L1(θ1;X,Y0) L2(θ2;X,Y1, . . . , YJ)

∝
J∏
j=0

R∏
r=0

[
F

(
ξjr − αj − β⊤j X

σj

)
− F

(
ξj,r−1 − αj − β⊤j X

σj

)]Yjr
,

(4)

where θ = (θ1, θ2) = {(αj , βj , σj , γj , δj), j = 0, . . . , J} and we write (θ1, θ2) as a shorthand for

(θ⊤1 , θ
⊤
2 )

⊤. The total number of parameters in θ is equal to [(k + 1)(R+ 1) + 1](J + 1).

2.2 Identification

Identification of the model parameters requires location and scale restrictions, plus restrictions

linking the self-assessment and the vignette contributions to the likelihood. After substituting the

model for the cutoffs (3) into (4), the full likelihood for a single observation becomes

L(θ;X,Y ) ∝
J∏
j=0

R∏
r=0

[
F

(
(γjr − αj) + (δjr − βj)

⊤X

σj

)
− F

(
(γj,r−1 − αj) + (δj,r−1 − βj)

⊤X

σj

)]Yjr
.

In the absence of prior restrictions, the parameters in θ are clearly not separately identifiable. The

identifiable parameters are the following functions of the parameters in θ

γ∗jr =
γjr − αj
σj

, δ∗jr =
δjr − βj
σj

,

with r = 0, 1, . . . , R − 1 and j = 0, 1, . . . , J . We shall refer to these parameters as the reduced-

form parameters. The reduced form of the model corresponds to a set of J + 1 ordered response

models with outcome specific parameters, a model first proposed by Pudney and Shields (2000) and

6



referred to as the generalized ordered response model. Because the total number of parameters in

the reduced form is equal to R(k+1)(J +1), the number of restrictions needed to exactly identify

the parameters in θ from the identifiable reduced-form parameters is equal to

[(k + 1)(R+ 1) + 1](J + 1)−R(k + 1)(J + 1) = (k + 2)(J + 1).

Standard location and scale restrictions, namely the 2(J + 1) restrictions γj0 = 0 and σj = 1,

j = 0, . . . , J , are not enough to identify the parameters in θ, so k(J +1) additional restrictions are

needed.

In the absence of vignette information (J = 0), the (k+1)(R+1)+ 1 parameters of the model

for the self-assessment cannot be obtained from the R(k+1) identifiable parameters of the reduced

form because we only have 2 normalization restrictions (γ00 = 0 and σ0 = 1). In this case, k

additional restrictions would be needed to exactly identify the model. This means that we cannot

separately identify the coefficients β0 on the exogenous regressors in the latent regression for Y ∗
0

model from the coefficients δ0r in the thresholds.

One way of achieving exact identification of the model is to exclude exogenous regressors from

one threshold (Terza 1985). This gives the k additional restrictions needed. In this case, however,

only deviations from the cutoff from which the regressors are arbitrarily excluded can be identified.

Alternatively, a standard practice in ordered response models is to assume homogeneous thresholds,

that is δ0r = 0, r = 0, 1, . . . , R − 1, which corresponds to a set of Rk restrictions. Because only

k restrictions would be needed to identify the model, when there are more than two response

categories (R > 1) we have (R−1)k overidentifying restrictions that allow us to test the assumption

of homogeneous thresholds. This test corresponds to the Wald test proposed by Brant (1990) for

testing the proportional odds restriction in the ordered logistic regression.

If vignette information is available (J > 0), King et al. (2004) proposed to identify the model

by linking the self-assessment and the vignettes through the following assumptions:

A.1 (Response consistency): γjr − γ0r = δjr − δ0r = 0, r = 0, 1, . . . , R− 1, j = 1, . . . , J .

A.2 (Vignette equivalence): βj = 0, j = 1, . . . , J .

The first assumption is that each individual uses the response categories for a particular survey

question in the same way when providing self-assessment and when assessing each of the hypothet-

ical situations in the vignettes. The second assumption is that the level of the variable represented

in each vignette is perceived by all respondents in the same way and on the same uni-dimensional
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scale, apart from random measurement error. Imposing A.1 and A.2 provides [R(k + 1) + k]J

restrictions. Because in this case self-assessment and vignettes are linked together, location and

scale can be fixed by setting the constant term of the first (common) threshold γ00 = 0 and the

variance of the self-assessment σ0 = 1. Alternatively, location and scale can be fixed by setting the

constant terms of the extreme vignettes α1 = 0 and αJ = 1 (King, Lau and Wand 2009). Imposing

assumptions A.1 and A.2, together with location and scale normalization of the self-assessment

(γ00 = 0 and σ0 = 1), gives a total of [R(k + 1) + k]J + 2 restrictions.

To illustrate, in the special case of three response categories (R = 2) and one exogenous re-

gressor (k = 1), the model contains 7(J + 1) parameters, namely {(αj , βj , γj0, δj0, γj1, δj1, σj), j =

0, 1, . . . , J}. The reduced-form parameters are only 4(J + 1), namely

γ∗j0 =
γj0 − αj
σj

, δ∗j0 =
δj0 − βj
σj

, γ∗j1 =
γj1 − αj
σj

, δ∗j1 =
δj1 − βj
σj

,

with j = 0, 1, . . . , J . In this case, 3(J + 1) restrictions are needed to exactly identify the model.

Without vignettes (J = 0), the 7 parameters in the model (α0, β0, σ0, γ00, δ00, γ01, δ01)

cannot be obtained from the 4 reduced-form parameters (γ∗00, δ
∗
00, γ

∗
01, δ

∗
01) because we only have

2 normalization restrictions (γ00 = 0 and σ0 = 1). The model is exactly identified under the

additional assumption that δ00 = 0. Nonetheless, in this case only deviations from δ00 can be

identified. Another possibility to achieve identification is to assume homogeneous thresholds (δ00 =

0 and δ01 = 0). In this case, there is one overidentifying restriction that would allow testing the

homogeneous thresholds hypothesis.

With vignettes (J > 0), the assumption of response consistency gives 4J restrictions

γj0 − γ00 = γj1 − γ01 = δj0 − δ00 = δj1 − δ01 = 0, j = 1, . . . , J,

while the assumption of vignette equivalence gives J restrictions

βj = 0, j = 1, . . . , J.

Because these two sets of restrictions, together with location and scale normalization (γ00 = 0 and

σ0 = 1), provide a total of 5J +2 restrictions, we have a total of 2J − 1 overidentifying restrictions.

For example, with only one vignette (J = 1) we have 14 model parameters (α0, β0, σ0, γ00,

δ00, γ01, δ01, α1, β1, σ1, γ10, δ10, γ11, δ11) and 8 reduced-form parameters (γ∗00, δ
∗
00, γ

∗
01, δ

∗
01, γ

∗
10,

δ∗10, γ
∗
11, δ

∗
11). Under the 2 normalization restrictions (γ00 = 0 and σ0 = 1) and the 5 restrictions

implied by A.1 and A.2 (γ10 = γ00, γ11 = γ01, δ10 = δ00, δ11 = δ01 and β1 = 0) the model is
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overidentified (it has 1 overidentifying restriction). With two vignettes (J = 2) we have 21 model

parameters and 12 reduced-form parameters. In this case, with 2 normalization restrictions and

10 restrictions implied by A.1 and A.2, we have 3 overidentifying restrictions. Finally, with three

vignettes (J = 3) we have 28 model parameters and 16 reduced-form parameters. In this case, with

2 normalization restrictions and 15 restrictions implied by A.1 and A.2, we have 5 overidentifying

restrictions.

2.3 Inference

With vignettes (J ≥ 1) and more than two response categories (R ≥ 2), overidentification of the

restricted model that imposes A.1, A.2 and the location and scale normalizations provides the basis

for testing the key assumptions A.1 and A.2.

One way of approaching the problem of testing is to use a minimum distance (MD) approach.

Let θ be the vector of s = [(k + 1)(R+ 1) + 1](J + 1) model parameters and let π be the vector of

q = R(k+1)(J+1) reduced-form parameters. Also let ψ be the subvector of θ containing the “free”

parameters, namely those not subject to the restrictions implied by A.1, A.2 and the location and

scale normalizations. Since the number of these restrictions is equal to [R(k + 1) + k]J + 2, the

number of “free” parameters in ψ is equal to p = k+R(k+1)+2J , so the number of overidentifying

restrictions is equal to

q − p = R(k + 1)(J + 1)− [k +R(k + 1) + 2J ] = k(JR− 1) + J(R− 2).

When there are more than two response categories (R ≥ 2) and at least one vignette (J ≥ 1), we

have that q − p ≥ 1 (assuming that k ≥ 1). In the binary response case (R = 1), we still have

overidentifying restrictions if either J = 2 and k ≥ 3, or J ≥ 3 and k ≥ 2.

Let π0 and ψ0 be the values of π and ψ in the population. Because ψ0 includes the scale

parameters σj , for j = 1, . . . , J , the relationship between π0 and ψ0 is nonlinear. We write this

relationship as

π0 = g(ψ0),

where g : ℜp → ℜq is a differentiable function with Jacobian matrix G. For (local) identifiability,

we need G(ψ) to be of full rank in an open neighborhood of ψ0. Appendix A presents the structure

of g and G.

Given a sample of size n from the joint distribution of (X,Y ), let π̂n denote the estimator of

π0 obtained by fitting J + 1 generalized ordered response models, one for each categorical variable
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in Y . This estimator is very easy to compute, and is
√
n-consistent and asymptotically normal

under general conditions. Given π̂n, the MD method suggests estimating the vector ψ0 of “free”

parameters by picking the element in the parameter space Ψ such that the difference π̂n − g(ψ) is

the smallest possible. The resulting estimator of ψ0 is consistent and asymptotically normal under

general conditions (Ferguson 1996).

An asymptotically optimal MD estimator of ψ0 is the solution ψ̂n to the problem

min
ψ∈Ψ

Qn(ψ) = [π̂n − g(ψ)]⊤V̂ −1
n [π̂n − g(ψ)], (5)

where the q × q matrix V̂n is a positive definite estimate of the asymptotic variance of π̂n. Under

general conditions,
√
n(ψ̂n − ψ0) ⇒ N (0, (G0V

−1
0 G⊤

0 )
−1)

as n → ∞, where G0 = G(ψ0) denotes the p × q Jacobian matrix of g evaluated at ψ0 and V0

denotes the asymptotic variance of π̂n.

Computation of ψ̂n is straightforward using an iterative procedure. Starting from an initial

estimate ψ̂(0), the updated estimate at the (h+ 1)th iteration is given by

ψ̂(h+1) = (ĜhV̂
−1
n Ĝ⊤

h )
−1ĜhV̂

−1
n (π̂n − ĝh + Ĝ⊤

h ψ̂
(h)), h = 0, 1, . . . ,

where Ĝh = G(ψ̂(h)) and ĝh = g(ψ̂(h)). This corresponds to a GLS regression of the transformed

reduced form estimates π̂n − ĝh + Ĝ⊤
h ψ̂

(h) on the columns of Ĝh with weighting matrix V̂ −1
n .

When J ≥ 1, the model that imposes A.1 and A.2 is overidentified so, under the null hypothesis

that both assumptions hold,

nQn(ψ̂) ⇒ χ2
q−p

as n→ ∞, where q − p = k(JR− 1) + J(R− 2) is the number of overidentifying restrictions. This

result provides the basis for asymptotic tests that reject the key assumptions A.1 and A.2 for large

values of the statistic nQn(ψ̂n).

A test of this type offers several advantages. First, it can be performed with any dataset con-

taining vignette questions (one vignette is enough) on a given concept of interest and does not

require additional information like objective measures. Second, it does not require embedding the

restricted model that imposes response consistency and vignette equivalence into a larger encom-

passing model. Third, it only requires a consistent and asymptotically normal estimator of the

reduced-form parameters. This is an advantage, both computationally and because the test can
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easily be extended to models with sample selection and to semiparametric settings where strong dis-

tributional assumptions are relaxed. Fourth, because we exploit the mapping g between the “free”

parameters and the reduced form parameters, imposing additional restrictions is particularly sim-

ple and transparent. A potential disadvantage of our test is that it may reject the overidentifying

restrictions for other reasons than failure of response consistency and vignette equivalence, for ex-

ample because of failure of linear index restrictions or because relevant variables have been omitted

from the model.

2.4 Power of the test

There are a few special cases in which the proposed test lacks power. The first case is when

γjr − γ0r = 0

and

δjr − δ0r − βj = δls − δ0s − βs,

for all vignettes j, l and all thresholds r, s. This is the unlikely case when (i) there is no violation of

A.1 due to differences in the intercepts, and (ii) the violations of A.1 and A.2 due to the differences

in the slopes are exactly the same for all thresholds and all vignettes, so they all cancel out.

For example, with three response categories (R = 2), one exogenous regressor (k = 1) and one

vignette (J = 1), the vector of model parameters is θ = (α0, β0, σ0, γ00, δ00, γ01, δ01 α1, β1, σ1,

γ10, δ10, γ11, δ11) while the vector of reduced-form parameters is π =(γ∗00, δ
∗
00, γ

∗
01, δ

∗
01, γ

∗
10, δ

∗
10,

γ∗11, δ
∗
11). In this case, if

δ10 − δ00 − β1 = δ11 − δ01 − β1 = ∆ ̸= 0,

then the vector ψ̃ = (α0, β̃0, δ̃00, γ01, δ̃01, α1, σ1), with β̃0 = β0+∆, δ̃00 = δ00+∆ and δ̃01 = δ01+∆,

also solves the minimization problem (5) and satisfies the restrictions A.1 and A.2.

The second case is when

γjr − γ0r = γjs − γ0s ̸= 0,

for any vignette j and all thresholds r, s. This is the unlikely case when the violations of A.1 due to

differences in the intercepts are exactly the same for all thresholds, so they all cancel out. Notice

that in this case the violation of response consistency only affects the intercepts αj in the vignette

equations but does not affect the parameters of interest α0 and β0.
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Consider again the example with three response categories (R = 2), one exogenous regressor

(k = 1) and one vignette (J = 1). In this case, if

γ10 − γ00 = γ11 − γ01 = ∆ ̸= 0,

then the vector ψ̃ = (α0, β0, δ00, γ01, δ01, α̃1, σ1), where α̃1 = α1 − ∆, is also a solution to the

minimization problem (5) and satisfies the restrictions A.1 and A.2. Note that in this case the

parameters of interest α0 and β0 are not affected.

3 Monte Carlo results

In this section, we investigate the finite sample performance of our test of the overidentifying

restrictions implied by A.1 (response consistency) and A.2 (vignette equivalence) through a Monte

Carlo study. Our setup is as follows.

1. We set the number of thresholds or cutoffs to R = 2.

2. We set the number of exogenous regressors to k = 1, 2.

3. We set the number of vignettes to J = 1, 2.

4. We set the sample size to n = 250, 500 and 1000.

5. For all j, we draw the errors Uj from a standard normal distribution.

6. The first regressor X1 is drawn from a U(0, 1) distribution, while the second regressor X2 is

a 0-1 indicator equal to one with probability .50. Considering the case of a binary regressor

is useful because researchers are often interested in comparing subjective assessments across

groups.

7. The null hypothesis H0 corresponds to the case when A.1 and A.2 both hold. As for the

alternatives, we consider three cases: i) A.1 holds but A.2 fails (hypothesis H1), ii) A.2 holds

but A.1 fails (hypothesis H2), and iii) both A.1 and A.2 fail (hypothesis H3).

8. We choose the model parameters to have an approximately even distribution of reports in

each category under the null hypothesis H0.

9. Each Monte Carlo experiment consists of 1,000 runs using antithetic pseudo-random numbers.
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The reduced-form parameters are estimated by maximizing the log-likelihood of J + 1 generalized

ordered probit models using the Newton-Raphson method with analytical first and second deriva-

tives. The routines that compute the estimates of the reduced-form and the “free” parameters are

all written in Mata, the matrix programming language of the statistical package Stata (version 11).

Table 1 shows the Monte Carlo rejection frequencies for tests of asymptotic 5% level. The row

labeled H0 reports the observed size of our test, which should be compared with its asymptotic

value of 5%. Already for n = 250, rejection frequencies are close to nominal under the null. Thus,

our test shows no evidence of size distortion in finite samples. On the other hand, the size of the

test remains stable when the number of overidentifying restrictions increases from 1 to 6.

The block labeled H1 reports the power of our test when response consistency holds but vignette

equivalence fails. The rejection frequencies are presented for increasing values of β1, which is the

coefficient on the first regressor in the linear index for the first vignette. As discussed in Section 2.4,

our test has essentially no power in the case of only one vignette, but its power increases with β1

in the case of two vignettes. The block labeled H2 reports the power of our test when vignette

equivalence holds but response consistency fails. The first four rows present rejection frequencies for

increasing values of the difference δ11−δ01, while the last four rows present rejection frequencies for

increasing values of the differences δ11− δ01 and γ11−γ01. In this case, the power curves are always

increasing except when J = k = 1 and the shift is only in the slope (δ11−δ01 is different from zero).

Although the Monte Carlo was explicitly designed to detect differential power properties of our

test when only one alternative fails, our results suggest that the test is in fact rather “symmetric”.

Finally, the block labeled H3 reports the power of our test when both assumptions fail. In this

case, the results are qualitatively similar to the case of H2 but now the power of our test is higher

in all experiments.

With n = 500 and n = 1000, the results are qualitatively similar to the case of n = 250, but

the power increases with the sample size in most experiments.

4 Empirical application

Women tend to report worse health than men at all ages, although they are less likely to die than

men and are less likely to be hospitalized than men at ages when pregnancy-related hospitalization

is no longer an issue. As argued by Case and Deaton (2005), “this pattern . . . by gender is close

to universal around the world.” This paradox could have various explanations, not necessarily

mutually exclusive. One is that gender differences in self-assessment of health reflect systematic
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differences in the prevalence of chronic conditions, for either biological or behavioral reasons. For

example, Case and Paxson (2005) show that, in the U.S., gender differences in self-rated general

health are almost entirely due to the differences in the distribution of reported chronic conditions,

with hardly any role for gender differences in the mapping from chronic conditions to reported

poor health. Another explanation is that gender differences in self-assessment of health reflect

systematic differences in the way respondents locate themselves on subjective scales (Lindeboom

and van Doorslaer 2004). Anchoring vignettes offer one way of controlling for such differences.

4.1 Data

Our data are from Release 2 of the first (2004–05) wave of the Survey of Health, Ageing and

Retirement in Europe (SHARE), a multidisciplinary and cross-national bi-annual household panel

survey, that is nationally representative of the population aged 50+ living in private households in

Europe. The first wave covers about 19,500 households and about 28,500 individuals in 11 European

countries (Austria, Belgium, Denmark, France, Germany, Greece, the Netherlands, Spain, Sweden

and Switzerland). For a detailed description, see Börsch-Supan and Jürges (2005).

SHARE collects detailed information on demographic and economic variables, health, psycho-

logical variables, and social support variables. In particular, respondents are asked to use a 5-point

ordered scale to rate their own health in general and to assess their health on six domains, namely

pain, sleeping problems, mobility problems, concentration problems, shortness of breath and de-

pression. In eight countries (Belgium, France, Germany, Greece, Italy, the Netherlands, Spain and

Sweden), a random subsample of the respondents is also asked to answers to vignette questions

on the six health domains. The vignette questions are presented in a random order after the self-

assessment questions. For each domain, respondents are presented three hypothetical situations,

corresponding to people with low, moderate and serious health problems. They are instructed

to evaluate the hypothetical persons on exactly the same 5-point ordered scale used for the self-

assessments and to assume that the hypothetical persons in the vignettes have their same age and

background.

4.2 Descriptive statistics

We restrict attention to men and women aged 50–80 for whom the vignette information is available

and there are no missing data on any of the variables that we use. Because the fraction with

missing data is small (less than 3% for self-assessment questions and less than 5% for vignette

questions), we work with the subsample with complete data and ignore selection issues. This gives
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a sample of 3,458 observations (1,631 men and 1,827 women), that represents about 16% of the full

SHARE sample in the relevant age group. Table 2 compares the composition of our working sample

with that of the full SHARE sample and the vignette sample for the age group 50–80. Country

differences in the importance of the vignette sample are mainly due to differences in sampling design

and funding availability. We account for such differences by using the survey weights specifically

provided for the vignette sample.

Table 3 shows the correlation between self-rated general health and self-assessments on the six

health domains. Self-reported problems on these domains are all positively correlated with general

health and with each other. The correlation with general health is highest for pain and mobility

problems (.44), while the correlation between domains is highest for pain and mobility problems

(.53). The last column of Table 3 shows the estimated coefficients from an ordered probit model for

general health on self-assessments of health in the six domains. Because the estimated coefficient

is highest for pain (.513), we focus on this particular health domain.1 Appendix B reports the

various vignettes for pain, where the labels “Vignette 1”, “Vignette 2” and “Vignette 3” do not

represent the order in which the three vignettes are presented (which is random) but instead refer

to the severity of the hypothetical situation (low, moderate and serious).

Figure 1 shows the histograms of the self assessment of pain and the answers to the vignette

questions by gender. Women are more likely to report severe or extreme pain than men. The

distribution of the answers to the vignette questions confirms that on average respondents tend to

rank the three vignettes from least to most severe pain.

4.3 Results

We estimate a fully parametric version of our model by assuming normality of the latent errors in (1).

The reduced form of our model corresponds to a set of J+1 = 4 ordered probit models with outcome

specific parameters. To avoid increasing too much the number of overidentifying restrictions, we

merge the response category “Mild” with “Moderate”, and “Severe” with “Extreme”. This gives

R = 2 thresholds.

Because no credible exclusion restriction is available, we allow Wj to contain exactly the same

regressors as Xj for all j. In our baseline specification, the regressors include a female indicator,

age, an indicator for college education completed, the logarithm of per-capita household income, an

indicator for reporting at least one diagnosed chronic condition, and hand grip strength. The latter

1 Results for the other five health domains are available from the Authors upon request.
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is consider an objective measure of health and is known to be a good predictor of future medical

problems (Rantanen et al. 1999). It is measured here as the maximum of up to four measurements

taken by the interviewer, two for each hand. The baseline specification includes k = 6 regressors, so

the number of reduced-form parameters is equal to q = R(k+1)(J +1) = 56, the number of “free”

parameters is equal to p = k +R(k + 1) + 2J = 26, and the number of overidentifying restrictions

is equal to q − p = k(JR − 1) + J(R − 2) = 30. Appendix C presents the MD estimates of the

model parameters under the assumptions of response consistency and vignette equivalence. Note

that predicted probabilities are always positive in this specification of the model.

Table 4 presents the results of the χ2 test of the overidentifying restrictions implied by our

two key assumptions. Using the full sample, three vignettes (J = 3 and three response categories

(R = 2), the overidentifying restrictions are rejected at any conventional significance level. The

remainder of the table shows the results obtained when the test is carried out using different

subsets of the vignettes (J = 1 or 2) or using all five original response categories (R = 4). The

overidentifying restrictions are not rejected at the 5% level when using only one vignette, especially

when using the first or the second. They are also not rejected when using the second and the third

vignette together, but not when using the first and either the second or the third. Our results are

consistent with those of Voňková and Hullegie (2011), who also find that the vignette method is

sensitive to the choice of the vignette. When the test is carried out using all five original response

categories (last row of the table), the overidentifying restrictions are again strongly rejected.

Table 5 shows the results obtained when the test is carried out separately for various sub-

groups of respondents. Specifically, we group respondents by gender, age group (50–64 vs. 65–80),

health status (no self-reported chronic condition vs. some conditions), educational attainments (less

than secondary vs. secondary or post-secondary), and region of residence (Mediterranean vs. non-

Mediterranean country). Now the overidentifying restrictions are rejected for women, people aged

50–64, people reporting no chronic condition, people with less than secondary education, and for

residents in non-Mediterranean countries, but are not rejected for men, people aged 65–80, peo-

ple reporting some chronic conditions, more educated people, and for residents in Mediterranean

countries. The fact that, when splitting the sample in two subgroups of similar size, the results

of the test may be quite different suggests three things. First, failure to reject is not simply due

to a smaller sample size. Second, since response consistency is a within-respondent property while

vignette equivalence is a between-respondent property, our evidence suggests that the assumption

of vignette equivalence is perhaps more problematic. Third, some of our subgroups may still be
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too heterogeneous for vignette equivalence to hold. In fact, when we further distinguish by region

and gender (last four rows of the table), the overidentifying restrictions are never rejected at the

5% level, and are rejected at the 10% level only for non-Mediterranean women.

5 Conclusions

Vignette questions have been introduced in several household surveys (SHARE, HRS, ELSA, WHS)

and are increasingly used in various fields as an instrument to anchor response scales and allow

comparisons across individuals. Reliability of this approach hinges crucially on the validity of the

key assumptions of response consistency and vignette equivalence (King et al. 2004). In this paper

we introduce a simple joint test of these two assumptions by exploiting the fact that, as pointed out

by Deaton (2010), the statistical model is overidentified under these two assumptions. Our Monte

Carlo results show that the proposed test has good size and power properties in finite samples.

Using data from the first wave of the Survey of Health, Ageing and Retirement in Europe

(SHARE), we apply our test to self-assessment of pain. We find that, in several cases, the overiden-

tifying restrictions imposed by the assumptions of response consistency and vignette equivalence

are rejected. This typically occurs when we use more than one vignette question or, as also argued

by Rice et al. (2012), when the model specification is not rich enough to fully account for individual

heterogeneity. These results suggest that the assumption of vignette equivalence is perhaps more

problematic, but also that care is needed with model specification because vignette equivalence

may be violated because of failure to properly control for heterogeneity across respondents. In fact,

when we carry out the test separately for subgroups of respondents distinguished by gender, age

group, health status, education and region, the evidence against the overidentifying restrictions

becomes weaker, especially for men and for people who are less healthy, more educated, or live in

Mediterranean countries.

Overall, our results confirm the importance of testing the validity of the vignette approach used

for identifying and correcting interpersonal incomparability of answers to subjective survey ques-

tions. Our results also point to the fruitfulness of exploring new research directions. One direction

is vignette design, in particular how to minimize the risk that the vignettes may be interpreted

differently. Another direction is extensions to semi-parametric or nonparametric settings. Relaxing

distributional assumptions will also avoid the risk that the test rejects because of problems with

the assumed parametric specification.
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Voňková H., and Hullegie P. (2011). “Is the anchoring vignettes method sensitive to the domain and choice
of the vignette?,” Journal of the Royal Statistical Society–Series A, 174: 597–620.

19



Table 1: Monte Carlo rejection frequencies for tests of asymptotic 5% level. The number of thresh-
olds is R = 2 and the number of runs is 1,000 per experiment.

k = 1, J = 1 k = 2, J = 1 k = 1, J = 2 k = 2, J = 2
q − p = 1 q − p = 2 q − p = 3 q − p = 6

n n n n
250 500 1000 250 500 1000 250 500 1000 250 500 1000

H0 .057 .059 .050 .050 .042 .053 .056 .059 .043 .053 .052 .052
H1

β1 = .1 .062 .052 .051 .051 .047 .052 .056 .065 .053 .052 .059 .052
β1 = .2 .070 .060 .063 .043 .051 .052 .055 .057 .079 .053 .071 .052
β1 = .4 .057 .079 .055 .068 .056 .052 .080 .128 .185 .070 .081 .148
β1 = .6 .067 .062 .053 .051 .057 .057 .107 .207 .428 .076 .158 .328
β1 = .8 .055 .057 .050 .051 .053 .054 .172 .337 .663 .142 .291 .587
β1 = 1 .068 .073 .070 .065 .046 .045 .254 .543 .903 .188 .463 .774
H2

δ11 − δ01 = .1 .055 .054 .054 .054 .059 .057 .052 .068 .050 .054 .058 .056
δ11 − δ01 = .2 .059 .067 .067 .064 .076 .100 .047 .046 .059 .057 .067 .059
δ11 − δ01 = .4 .059 .074 .047 .102 .139 .244 .061 .091 .143 .065 .088 .129
δ11 − δ01 = .6 .074 .067 .080 .124 .257 .425 .103 .137 .263 .071 .130 .210
δ11 − δ01 = .8 .059 .066 .065 .181 .372 .654 .104 .227 .369 .096 .190 .378
δ11 − δ01 = 1 .056 .064 .055 .256 .501 .808 .151 .260 .518 .103 .240 .518
δ11 − δ01 = γ11 − γ01 = .1 .099 .125 .204 .051 .062 .062 .049 .054 .061 .046 .057 .066
δ11 − δ01 = γ11 − γ01 = .2 .181 .254 .407 .067 .096 .129 .054 .062 .088 .054 .069 .129
δ11 − δ01 = γ11 − γ01 = .4 .296 .495 .754 .108 .146 .317 .065 .078 .142 .091 .153 .341
δ11 − δ01 = γ11 − γ01 = .6 .377 .600 .875 .155 .273 .458 .092 .140 .224 .135 .309 .622
δ11 − δ01 = γ11 − γ01 = .8 .344 .629 .911 .148 .318 .632 .087 .186 .331 .187 .418 .805
δ11 − δ01 = γ11 − γ01 = 1 .281 .595 .905 .174 .360 .671 .088 .223 .438 .214 .559 .904
H3

β1 = δ11 − δ01 = .1 .065 .059 .061 .050 .053 .063 .049 .061 .059 .057 .061 .059
β1 = δ11 − δ01 = .2 .074 .063 .064 .070 .073 .096 .059 .062 .104 .065 .074 .065
β1 = δ11 − δ01 = .4 .068 .078 .074 .110 .144 .260 .095 .170 .270 .089 .123 .232
β1 = δ11 − δ01 = .6 .081 .078 .075 .145 .261 .464 .149 .298 .562 .119 .239 .490
β1 = δ11 − δ01 = .8 .063 .072 .092 .189 .381 .705 .243 .458 .786 .202 .423 .780
β1 = δ11 − δ01 = 1 .057 .084 .098 .291 .555 .854 .312 .628 .941 .269 .590 .899
β1 = δ11 − δ01 = γ11 − γ01 = .1 .094 .125 .186 .058 .053 .071 .052 .062 .078 .048 .059 .074
β1 = δ11 − δ01 = γ11 − γ01 = .2 .168 .262 .413 .066 .103 .137 .069 .099 .147 .070 .103 .195
β1 = δ11 − δ01 = γ11 − γ01 = .4 .307 .525 .809 .105 .148 .324 .125 .218 .444 .139 .275 .548
β1 = δ11 − δ01 = γ11 − γ01 = .6 .419 .641 .915 .175 .286 .524 .184 .409 .719 .254 .572 .879
β1 = δ11 − δ01 = γ11 − γ01 = .8 .467 .758 .963 .192 .367 .681 .251 .591 .880 .382 .724 .985
β1 = δ11 − δ01 = γ11 − γ01 = 1 .485 .801 .972 .244 .459 .760 .324 .654 .958 .474 .860 .996
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Table 2: SHARE sample size by country and gender (people aged 50–80). The full sample includes
all 50–80 respondents, the vignette sample includes all 50–80 respondents who answer the vignette
questions, the working sample includes the respondents in the vignette sample with no missing data
on any of the variables used in our analysis.

Full sample Vignette sample Working sample
Men Women Men Women Men Women

Belgium 1,602 1,791 234 291 201 244
France 1,270 1,484 352 451 301 368
Germany 1,323 1,448 211 264 168 210
Greece 1,154 1,277 317 298 285 254
Italy 1,077 1,295 189 229 149 184
Netherlands 1,272 1,402 242 257 213 216
Spain 900 1,194 185 238 173 202
Sweden 1,285 1,439 186 203 141 149
Total 9,883 11,330 1,916 2,231 1,631 1,827

Table 3: Correlation between self-rated general health and self-assessments on the various health
domains. The last column shows estimated coefficients from an ordered probit (OP) model for
self-rated general health on self-assessments of health on the six domains.

Self-rated Pain Sleeping Mobility Concentr. Shortness Depression OP
health problems problems problems of breath coeff.

Self-rated health 1.000
Pain .443 1.000 .513 (.040)
Sleeping problems .292 .415 1.000 .109 (.033)
Mobility problems .446 .537 .371 1.000 .487 (.039)
Concentr. problems .245 .340 .304 .339 1.000 .046 (.037)
Shortness of breath .281 .306 .241 .383 .298 1.000 .178 (.038)
Depression .291 .378 .399 .353 .391 .329 1.000 .112 (.035)
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Table 4: Tests of response consistency and vignette equivalence. All respondents (n = 3, 458).

k R J q p q − p χ2 p-value
All vignettes 6 2 3 56 26 30 67.4 .000
Only vignette 1 6 2 1 28 22 6 8.7 .188
Only vignette 2 6 2 1 28 22 6 8.6 .200
Only vignette 3 6 2 1 28 22 6 12.6 .051
Vignette 1 and 2 6 2 2 42 24 18 43.2 .001
Vignette 1 and 3 6 2 2 42 24 18 52.0 .000
Vignette 2 and 3 6 2 2 42 24 18 20.5 .305
All 5 categories 6 4 3 112 40 72 468.6 .000

Table 5: Tests of response consistency and vignette equivalence. Subgroups of respondents.

n k R J q p q − p χ2 p-value
Men 1,631 5 2 3 48 23 25 33.1 .129
Women 1,827 5 2 3 48 23 25 40.7 .025
Aged 50–64 2,152 6 2 3 56 26 30 48.0 .020
Aged 65–80 1,306 6 2 3 56 26 30 32.4 .347
No conditions 995 5 2 3 48 23 25 38.2 .044
Any condition 2,463 5 2 3 48 23 25 31.3 .180
Less than secondary educ. 1,834 5 2 3 48 23 25 49.8 .002
Secondary and post-sec. educ. 1,624 5 2 3 48 23 25 22.8 .591
Mediterranean countries 1,247 6 2 3 56 26 30 36.1 .204
Non-Mediterranean countries 2,211 6 2 3 56 26 30 49.2 .015
Mediterranean men 607 5 2 3 48 23 25 28.3 .294
Mediterranean women 640 5 2 3 48 23 25 12.1 .985
Non-Mediterranean men 1,024 5 2 3 48 23 25 21.4 .671
Non-Mediterranean women 1,187 5 2 3 48 23 25 35.1 .087
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Figure 1: Histograms of self-assessments and answers to the vignette questions on pain by gender.
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Appendix

A Structure of the function g and its Jacobian matrix

Write the vector of p = k + R(k + 1) + 2J “free” parameters in the model as ψ = (ρ, σ), where

ρ is the (p − J)-subvector of ψ containing the parameters entering the function g linearly and

σ = (σ1, . . . , σJ) is the J-subvector of ψ containing the scale parameters entering g non-linearly.

Then, the relationship between the reduced-form parameters in π and the “free” parameters in ψ

may be written

π = g(ψ) = A(σ) ρ,

where A(σ) is a q × (p− J) matrix that does not depend on ρ. The p× q Jacobian matrix of g(ψ)

is then

G(ψ) =
∂g(ψ)

∂ψ
=

[
∂g(ψ)
∂ρ

∂g(ψ)
∂σ

]
=


A(σ)⊤

ρ⊤A1(σ)
⊤

...
ρ⊤AJ(σ)

⊤,

 .
where Aj(σ) = ∂A(σ)/∂σj is a q × (p− J) matrix.

To illustrate, in the special case of three response categories (R = 2), one exogenous regressor

(k = 1) and one vignette (J = 1), the vector of q = 8 reduced-form parameters is

π = (γ∗00, δ
∗
00, γ

∗
01, δ

∗
01, γ

∗
10, δ

∗
10, γ

∗
11, δ

∗
11).

Let ψ = (ρ, σ) be the vector of p = 7 “free” parameters, where ρ = (α0, β0, δ00, γ01, δ01, α1) and

σ = σ1. In this case, the relationship between π and ψ can be rewritten as π = g(ψ) = A(σ1)ρ,

where

A(σ1) =



−1 0 0 0 0 0
0 −1 1 0 0 0
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 0 0 0 −1/σ1
0 0 1/σ1 0 0 0
0 0 0 1/σ1 0 −1/σ1
0 0 0 0 1/σ1 0


.

The 7× 8 Jacobian matrix of g(ψ) is then

G(ψ) =

[
A(σ1)

⊤

ρ⊤A′(σ1)
⊤

]
,
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where

A′(σ1) =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1/σ21
0 0 −1/σ21 0 0 0
0 0 0 −1/σ21 0 1/σ21
0 0 0 0 −1/σ21 0


.

B Vignette questions for pain

The vignette questions for pain are the following.

1. “Paul/Karen has a headache once a month that is relieved after taking a pill. During the headache he/she can
carry on with his/her day-to-day affairs.”

2. “Henri/Maria has pain that radiates down his/her right arm and wrist during his/her day at work. This is
slightly relieved in the evenings when he/she is no longer working on his/her computer.”

3. “Charles/Alice has pain in his/her knees, elbows, wrists and fingers, and the pain is present almost all the
time. Although medication helps, he/she feels uncomfortable when moving around, holding and lifting things.”

C MD estimates for the ordered response model with heteroge-
neous thresholds

This appendix presents the MD estimates of the coefficients of the ordered response model with

heterogeneous thresholds for pain under the assumptions of response consistency and vignette

equivalence (* significant at 5%, ** significant at 1%).

Self-assessment Threshold 1 Threshold 2
Any condition .527 ** -.085 ** -.033
Grip strength - 34.9 -.018 ** -.004 * -.001
Age - 55 .001 .000 .003 *
Post-secondary education -.177 ** -.145 ** -.047
Log household income -.098 ** -.063 ** -.067 **
Female .006 -.181 ** -.013
Constant -.084 .000 1.776 **

Vignette 1 Vignette 2 Vignette 3
Constant .560 ** 1.337 ** 2.256 **
ln(σ) -.283 ** -.286 ** .057
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