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Abstract

We evaluate the performance of an information aggregation mechanism (IAM) im-

plemented inside Intel to forecast unit sales for the company. Developed, refined and

tested in the laboratory using experimental methods, the IAM is designed specifically

to aggregate information. Its implementation at Intel allows us to test its performance

in a much more complex field environment. The IAM provides not only a point forecast

of future sales but also yields the full distribution of participants’ beliefs regarding this

variable. This predictive distribution very closely matches the distribution over out-

comes at short horizons while slightly underweighting low-probability realizations of

unit sales at long horizons. Compared to Intel’s “official forecast,” the IAM forecasts

perform well overall, even though they predate the official forecasts. The forecasts

improvements are most prominent at short forecast horizons and in direct distribution

channels, where the effective aggregation of individually-held information drives the

IAM to be more accurate than the official forecast over 75% of the time.
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dation, and the Laboratory of Experimental Economics and Political Science is gratefully acknowledged. We
thank Dan Zhou for providing excellent research assistance, Erik Snowberg, Allan Timmermann, Michael
Waldman, and audiences at Arizona State, MIT, Rice, and IIOC 2013 for helpful discussions and comments.
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1 Introduction

In most companies, internal forecasts of key financial and operational indicators provide a

crucial performance metric and input into strategic planning decisions and managing market

expectations. Typically, these forecasts are derived from the analysis of in-house experts,

collecting dispersed information from disparate sources in a process consisting of as much

art as science. In this paper, we study the use of a completely different type of procedure

– an information aggregation mechanism based on decentralized competition, motivated by

economic theory, and refined and tested through experimental economics. The mechanism

has been shown to work well in the simple and special cases of laboratory settings. The

challenge is to test the robustness of the same mechanism when operating in the much more

complex environment of a Fortune 500 company. Will it work at all? Will it be useful for

improving the internal forecasting process used in the company?

The goal of an information aggregation mechanism is to collect and aggregate the infor-

mation held in the form of the subjective intuitions from a disperse collection of people. This

task requires developing instruments to quantize information while setting proper incentives

that balance the reward of revealing information with the hazards of free riding on others

information and thus might lead to successful information aggregation. In a break from more

traditional, theory-derived, approaches to mechanism design, the IAM was formulated and

refined in a series of complex laboratory experiments. The study of information aggrega-

tion in experimental economics laboratories has a long history, providing a valuable base on

which to build. The ability of markets to perform the information collection and aggregation

functions and also the sensitivity of such performance to the details of the market institution

were first observed experimentally by Plott and Sunder (1982, 1988). Similarly, the possi-

bility that markets might be designed to perform the aggregation function and implemented

inside a business is well known (Chen and Plott (2002); Plott (2000)).

The mechanism studied in this paper shares some institutional features with some betting

processes as well as markets. Because some features are taken from parimutuel betting

systems, we call it a Parimutuel Information Aggregation Mechanism (IAM). Major features

of this mechanism were developed as a response to shortcomings revealed in laboratory

experiments of information aggregation. At the same time, the design of the mechanism

also reflects an attempt to avoid features that might inhibit the application of information

aggregation mechanisms inside a business environment. Such features are not relevant in

most betting systems, which have a goal of entertaining participants rather than aggregating
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their private information.

We report results from a field experiment in which the IAM is implemented to forecast

unit sales activity by Intel. As an international market leader in the hi-tech sector with

annual revenues over $50 billion, Intel has one of the most recognizable brand names among

American companies and its products are found in virtually all households in the country.

Accurate forecasts of product sales are incredibly important both operationally, ensuring

sufficient inventory is available for distribution, and financially, managing market expecta-

tions for shareholder value. With myriad distribution channels, forecasting product sales for

the organization is an incredible task requiring analysts to aggregate information from sales

reports, partner forecasts, and management guidance. As such, the requisite information

for forecasting is dispersed through the firm among a variety of stakeholders. Adapting a

parimutual IAM to this environment provides a more “scientific” approach to consolidating

this information.

At Intel, we set up a collection of parimutuel mechanisms to characterize uncertainty

in future realizations of units sold for key products. The range of values that possible sale

quantities can take is partitioned into a set of non-overlapping intervals, or “buckets.” The

analysts participating in each mechanism are asked to purchase “tickets” that pay off when

the variable of interest takes a value within a given bucket. Analysts are allowed to buy

as many tickets as they wish (up to a budget limit described below) and place them freely

in any of the buckets. In this way, the distribution of tickets placed across the different

buckets yields a natural measure of analysts’ beliefs regarding the future realization of the

variable of interest. The information aggregation mechanism automatically aggregates these

beliefs across analysts, allowing decision makers to easily form “consensus” forecasts while

also obtaining a glimpse into the uncertainty underlying these forecasts. In addition to the

IAM’s aggregated forecasts, we also have access to an internally-prepared “official” forecast

that can serve as a benchmark against which to evaluate the mechanism’s performance.

Comparing the relative effectiveness of these mechanisms provides a novel validation of the

IAM in an incredibly complex field setting.

Our main findings are summarized as follows:

• The degree to which the beliefs recovered from the IAM are consistent with ratio-
nal expectations depends on the amount of noise and information in the forecasting
environment.

– The IAM beliefs over unit sales matches the distribution of realized sales at short
forecast horizons where individual information is relatively rich.
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– At longer horizons, the mechanism’s forecast distribution tends to understate the
dispersion of uncertainty in sales, underweighting low probability events. Bor-
rowing terminology from the literature on parimutuel markets, we find a “reverse
favorite-longshot bias” in the beliefs derived from the mechanism.

• Using tests based on rational forecasting, we show that both the official and IAM point
forecasts appear reasonably free of systematic distortions, though the last forecast
revision before sales are announced is systematically understated.

• In statistical comparisons, the mechanism’s expected outcome outperforms the official
sales forecast at short horizons and in direct distribution product channels.

– The ex-post optimal combination of the two forecasts heavily weights the IAM at
short horizons and the official forecast at long horizons.

– The IAM is particularly helpful at controlling loss when decision makers have an
asymmetric loss from forecast errors. For example, if realized unit sales falling
short of expectations has a greater impact on loss than exceeding expectations
has on gains.

The appealing performance of the IAM is apparent not only in its empirical properties,

but also in the degree to which Intel has expanded its utilization of the IAM in its forecasting

and planning process. Starting from an initial pilot of the mechanism, Intel has continued

to expand its implementation of the mechanism to several markets that target an important

piece of the business. Further, the organization has explored using IAMs beyond forecasting

sales itself, such as mechanisms suited to evaluating new ventures in research and devel-

opment, project management risks, and a variety of other business problems that rely on

information dispersed among a number of stakeholders.

2 Information Aggregation Mechanisms: Building on

Experimental Success

The purpose of an IAM is to quantify and collect information that might be held, in the form

of vague and subjective intuitions, by dispersed individuals. The hope is that the collection

and aggregation of this information produces a combined signal that has more information

content than any single signal. A connection between markets and information transmission

dates back to the foundations of economics (see Allen and Jordan (1998) for a review of

this early development). These theoretical results suggested that markets are capable of
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collecting and aggregating information, though exactly how that might happen was an open

question.

Motivated by this theoretical suggestion, Plott and Sunder (1982, 1988) looked to exper-

iments as tools for examining the possibility. Plott and Sunder (1982) first demonstrated

the ability of continuous double auction markets to transfer information from “insiders”

who have information about the state to non-insiders who do not. Plott and Sunder (1988)

builds on this initial finding, demonstrating further that the information transmission and

collection can go beyond the simple transfer of information to a process of aggregating the in-

formation contained in multiple, independent sources. That is, market-based systems could

effectively transfer “soft” information that exists in the form of intuitions into a quantitative

signal consistent with Bayes Law. Of significance to the current design of an IAM, they

demonstrated that the ability of markets to perform this task is dependent on the trading

instruments available. In particular, markets perform the collection and aggregation well if

populated by a complete set of Arrow-Debreu securities.1.

The first application of a market based IAM inside a business was conducted by Chen

and Plott (2002) inside Hewlett Packard Corporation. They implemented a complete set

of Arrow-Debreu securities to aggregate information about future sales. The possible sales

were divided into states, each state supporting an Arrow-Debreu security, and a continuous

double auction market was opened for each of the securities. Since the payoff of the winning

security was one and the payoff of losing securities was zero the prices of the complete set of

securities could be interpreted as a probability distribution over the states. The mechanism

was reported as successful but its use was limited due to the cost of managing and difficulties

related to coordinating the markets. However, Plott (2000) developed ideas about how an

IAM might be designed to perform information collection and aggregation functions inside

organizations.

The design of the IAM reported and studied here is similar to parimutuel betting pro-

cesses - hence the name parimutuel IAM. In a parimutuel betting system participants buy

tickets on states of nature, such as the winner of a horse race, and tickets are sold at a

fixed price. The revenue from all ticket sales are accumulated, called the purse, and paid

1Information aggregation does not necessarily happen if the market has a single compound security and
all agents do not have the same preferences. However the prices in a single compound security are related
to the competitive equilibrium based on private information. This property, which is common to a private
information equilibrium, was demonstrated experimentally by Plott and Sunder, characterized theoretically
by Manski (2006), and appears in complex field applications in the Iowa Electronic Markets reviewed by
Berg et al. (2008)
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to the holders of tickets on the winning bucket. The odds computed from this process re-

flect the number of tickets sold for a bucket divided into the size of the purse. There is a

strong tendency for the odds to be related to the frequency with which the winner occurs.

That tendency, which suggested a principle for a new type of IAM, was clearly established

experimentally by Plott et al. (2003).

However, the parimutuel IAM implemented at Intel differs from partimutuel betting

systems in important ways. First, tickets are not sold at a fixed price, but rather prices

evolves with an exogenous trend, in order to encourage a timely completion of the process.

This timing setup is informed by the experiments in Axelrod et al. (2009) that demonstrate

the importance of structuring the process to encourage participants to buy their tickets early

rather than waiting until the last second in an attempt to free ride on information supplied

by others.2 Second, for purchasing the tickets, participants are allocated a fixed budget of

a synthetic currency that had no value other than to buy tickets in the designated IAM.

The use of a synthetic currency follows Plott and Roust (2009), and works to mitigate the

negative impact of risk aversion on information aggregation.3 Finally, the mechanism is not

self-financing, with management providing a fixed cash prize distributed in proportion to the

number of tickets in the winning bucket.

The IAM which we ran in Intel also differs in important ways from prediction markets,

which have flourished in recent years.4 First, and foremost, the tickets placed by IAM

participants are not securities, and cannot be traded. Price speculation, which takes place

in markets, cannot take place here. This payoff structure differs from prediction markets,

2Plott et al. (2003) demonstrated that the tendency to wait until the last second to buy tickets inhibited
contributed to the creation of bubbles and retarded successful information aggregation. This property was
replicate by Kalovcova and Ortmann (2009). The importance of observing others in a parimutuel betting
system context is examined by Koessler et al. (2012). In a very simple parimutuel betting system information
is transferred through a process of observing betting. In addition elicitation of formed beliefs through a
process of placing bets results in greater accuracy in the sense of a reduction in a long shot bias than does
a process of reporting beliefs. Koessler et al. (2008) find that level-k models are helpful in identifying the
process.

3Risk aversion has a tendency to inhibit participation even though an agent is informed and thus prevents
information from getting into the system. Plott and Roust (2009) demonstrate that poor performance of the
mechanism is closely related to poor information and to the extent that risk aversion diminishes the quality
of information the removal of risk aversion is important.

4 The Iowa Electronic Markets constituted the first “prediction markets” in the sense that the price of
a binary security can be viewed as a probability and used to predict elections. The success of the IEM
in predicting elections around the world is very convincing and set the stage for a growing field called
prediction markets. Prediction market applications (both existing and potential) are surveyed in Wolfers
and Zitzewitz (2006) and Arrow et al. (2008). Internal prediction markets have recently been deployed inside
large corporations, including Google (Cowgill et al. (2009)), to gauge employees sentiments on everything
from companys performance to general industry issues.
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where securities are traded by market participants over time, generating an endogenous

price path which conveys the information privately held by the participants.5 Second, in

continuous markets there is no institution to coordinate the timing of trades and, thus, to

maximize the information flow among participants. Thin trading in the market can hinder

aggregation.6 The timing features of our IAM (described above) were adopted to mitigate

these problems. As such, our IAM is more of a non-trading communication protocol, rather

than an asset market. Indeed, the timing of the IAM is coordinated to be compatible with

the busy schedules of participants. There is a fixed, pre-announced start and end time so

that people know when to log in to actively participate. The sessions themselves are timed

to hit key points of the Intel Business cycle. By design, the output of the IAM is freshly

available to other business processes that use it.

Third, prediction markets typically rely on self-selection of participants into the mar-

ket, guided by the principle that increasing the size of the crowd maximizes its wisdom

though suffering the costs of a biased sample of participants.7 In the Intel IAM, however,

management invited participants chosen for the information to which they had access given

their position in the organization. Finally, we set up IAM’s for sales forecasting which can

elicit participants’ beliefs about variables (unit sales) which can take many (>>2) values;

specifically, we set up a complete set of simultaneous instruments, one for each value that

the variable can take. This contrasts with many prediction markets, in which the outcome

of interest is binary (or otherwise takes a small number of values); for instance, whether

Obama or Romney would win the latest presidential election. Our approach operationalizes

a general principle (see Plott (2000)) that the extent of information aggregation is limited

by the dimensionality of the “message space” in which market participants operate. Taken

as a whole, the activity in all these markets yields a complete probability distribution over

the event space that, ideally, will reflect the aggregation of private information about the

various possible outcomes.

5See Manski (2006) for a discussion of the difficulties of interpreting prediction market prices when
participants may have heterogeneous beliefs. Moreover, with heterogeneous beliefs, trade may be curtailed
or even eliminated for information reasons (Milgrom and Stokey (1982)). Since our IAM is not a trading
market, we avoid these possibilities.

6This was an issue encountered in the Hewlett-Packard IAM implemented by Chen and Plott (2002).
7This phenomenon may be accentuated in horse-racing parimutuel markets, in which individual decisions

may be directed by the thrill of uncertainty and surprise rather than the desire to profit from exclusive
information. While Woodland and Woodland (1994) and Gray and Gray (1997) find that thick betting
markets for professional sports tend to satisfy market efficiency, a host of papers have explored potential
cases of inefficiencies in recreational betting markets. Jullien and Salanie (2000) and Chiappori et al. (2009)
discuss the identification and estimation of risk preferences using data from parimutuel markets.
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3 The IAM inside Intel

For description purposes we will consider a single variable, say unit sales for product i in

quarter t, that we denote by Yi,t. The positive real line is partitioned into K intervals, or

“buckets,” where each interval represents a range of possible values for sales that will be

officially reported at the end of the sales period. The leftmost and rightmost buckets are,

respectively, [0, x1) and [xK−1,∞).

Participants interact with the mechanism in the form of an on-line interactive program.

Mechanism organizers invite participants, who securely log in to their own account to access

the IAM program. The mechanism makes “tickets” available for sale to participants, who

spend an endowment of Francs (our synthetic experimental currency) on tickets and allocate

them across the buckets. At the opening of each application all participants are given a fixed

budget of 500 Francs. The Francs cannot be transferred among participants, used in other

applications, or assigned to buckets for another variable’s IAM. As quality controls over the

mechanism’s operation, the IAM operates at a fixed time and only those invited are able

to participate. The IAM program stores a wealth of data, including individual participant

actions and time-stamps indicating when each of these actions took place.

The tickets for all buckets are priced the same and that price will move up at a pre-

announced rate to ensure the mechanism closes in a reasonable time. For example, the

opening price would be constant for fifteen minutes and then go up at a rate of one Franc per

minute after that. These price changes discourage waiting until the last second to purchase,

helping to offset individual incentives to hold back their private information and to improve

their own information by herding on others’ allocations. All participants are aware that their

own information might be improved through seeing the purchases of others. They are also

aware that their own information might be communicated by their own purchase of tickets.

Inducing temporal discounting helps to mitigate these strategic incentives that otherwise

hinder successful information aggregation. The price increase is constant but sufficiently

substantial that by 40 minutes into the exercise the ticket prices are so high that the budget

has little purchasing power.

Throughout the operation of the mechanism, participants have a continuously available

record of the number of tickets that are currently placed in each of the buckets. At each

instant during the application as well as at its termination, the placements of all tickets

in all buckets are known. The individual participant also knows the proportion of tickets

he or she holds in each bucket, which is particularly important because these proportions
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are the foundations for incentives. When the actual winning bucket becomes known those

holding tickets in that bucket are given a part of a grand prize equal to the proportion of

the winning bucket tickets that he or she holds. If participant n holds z% of the tickets sold

for the winning bucket then participant n gets z% of the incentive prize. For example, if the

incentive prize was $10,000 and the individual held 10% of the tickets sold for that bucket

then the payment to participant n would be $1,000.8

Participants depend on the nature of the forecasting exercise. For forecasts that have

significant influence on financial performance, only insiders, those with access to limited

financially relevant information, are permitted; forecasts that are not considered material

to earnings reports may include a wider group. Typically, the forecasters are insiders with

direct access to the most the information relevant to the forecasting problem, either directly

involved in management or sales. Data already available (to the insiders), including current

signals and historical results, are packaged for all participants to study in preparation for

the IAM exercise, establishing a base of relevant information to provide an underlying dis-

tribution of common knowledge. As such, it is important to synchronize the start time so

that those individuals with appropriate information could participate.

A typical IAM exercise involves forecasting for the current quarter plus the three upcom-

ing quarters. The exercise takes place once a month and requires on the order of 30 minutes.

Each participant is given a separate Franc budget for each item they forecast. All budgets

are the same size and the budgets are not fungible across the items forecast. The number of

participants varies from ten to twenty-five and each operates from a secure computer located

wherever the participant happened to be located, home, office, traveling, etc. Typically the

users are anonymous within the mechanism: both the list of participants and the winners

are secret. Of course, the total of tickets purchased in each bucket of each forecast is public

and known in real time as the tickets are purchased. Interestingly, anonymity can be at

odds with culture/tradition of openness and cooperation in matters of corporate decisions

and that was the case with this application but the resistance dissolved with experience and

success.

From an organizational perspective, Intel uses the IAM as an input to its official forecast.

As such, the horizon h IAM forecast is released shortly before the horizon h − 1 official

forecasst. While the timing does not affect any analysis in evaluating the internal consistency

8The use of incentives inside a business reflected a belief and experience for experiments that incentives are
central to the successful operations of information aggregation mechanisms. The performance of a mechanism
without incentives (cheap talk) is explored by Bernnouri et al. (2011) as are the success of different measures
of information aggregation.
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of each forecast, it provides an important consideration in comparing forecasts.

4 Testing Rational Expectations and Information Ag-

gregation

In the IAM, participants are incentivized to reveal their beliefs, or probabilities, that future

unit sales will be realized within different ranges of values (the “buckets”). For each bucket

xk in the set of K buckets, x1, . . . , xK , let ĝi,t|t−h (xk) denote the proportion of tickets in

the mechanism at time t− h participants place in bucket k. We then define the cumulative

conditional distribution Ĝi,t|t−h (y) =
∑max{κ|xκ≤y}

k=1 ĝi,t|t−h (xk) as representing the aggregated

IAM forecast of the conditional distribution for Yi,t given the information available at time

t−h. In this section, we test whether these manifested beliefs are rational, in the sense that

these distributions coincide with the distribution of realized sales.

Mechanically, this exercise is complicated by the effect of conditioning information that

ought to be incorporated in the mechanism’s distributions at different horizons. For each

product-period, let Yi,t denote the actual realization of unit sales from an unconditional

distribution Fi,t. Under the null hypothesis that beliefs are correct, the actual outcome

would be distributed according to G(i,t|t−h), the distribution of elicited beliefs conditional on

information up to t− h. To operationalize the test we transform the realized outcome Y(i,t)

into its corresponding quantile in the conditional belief distribution:

Ûi,t,h ≡ Ĝi,t|t−h (Yi,t) ∼H0 U [0, 1] (1)

Accordingly, we can simply use a Kolmogorov-Smirnov test to evaluate whether we can

reject that our sample of
{
Ûi,t,h

}T
t=1

are uniformly-distributed i.i.d. draws. By analyzing

the conditional quantile, such a test is robust to heterogeneity in the distributions across

products, time, and the information available.9

Figure 1 presents the empirical distribution for Ûi,t,h plotted against the uniform distri-

9While robust, note that various features of our data, especially the panel structure coupled with multiple
horizons, induce correlation across draws. As such, the p-Values of the Kolmogorov-Smirnov test are likely
to be distorted with a downward bias. When the number of degrees of freedom for the Kolmogorov-Smirnov
test is reduced by a factor of 4, the p-Value increases to 6.7%. While this correction is not valid, it does
indicate a lack of robutstness for the results rejecting rational expectations. Unfortunately, allowing for
correlated sampling structures in the Kolmogorov-Smirnov test is an intractable problem beyond our scope.
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Figure 1: Quantile Plots for the Information Aggregation Mechanism
This figure presents the distribution of realized quantiles from the information aggregation mechanism in

equation 1 against the theoretically accurate uniform distribution. The KS p-Value is reports the result for

a Kolmogorov-Smirnov test of equality of the distributions.

bution quantiles pooled across all products, periods, and forecast horizons. Visual inspection

indicates two features the mechanism’s distribution appears to distort in the realized distri-

bution over outcomes. First, the S-shape of the graph indicates a “reverse favorite-longshot

bias”; that is, the beliefs from the mechanism understate the likelihood of extreme outcomes.

Second, the quantiles for the mechanism’s distribution appear slightly to the left of the uni-

form, indicating the IAM distribution is a bit conservative at the median. Because of these

two distortions, the Kolmogorov-Smirnoff test rejects the null hypothesis that the empirical

distribution of outcomes matches the IAM’s forecasted distribution for outcomes.

Given that we observe conditional forecast distributions at different horizons, we can

empirically evaluate how improved information affects the reverse FLB. That is, we’d like to

test if the forecast distribution accuracy improves as the forecast horizon shortens. To that

end, instead of pooling the Ûi,t,h across horizons, we can perform the Kolmogorov Smirnov
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test from equation 1 for each horizon sub-sample.10 Figure 2 plots the quantiles of the

forecast quantile distribution against the uniform distribution at horizons 1, 3, 5, 7, and 9.

Notably, the plots appear to approach the 45 degree line as the horizon drops, as indicated

by the pattern of Kolmogorov-Smirnov test statistics and p-Values. Hence, the reverse

favorite-longshot bias described previously disappears as the forecasting horizon shrinks.
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Figure 2: Quantile Plots for the Information Aggregation Mechanism by Horizon
This figure presents the distribution of realized quantiles from the information aggregation mechanism

against the theoretical uniform distribution for horizon subsamples of the IAM. The KS p-Value reports

the result for a Kolmogorov-Smirnov test of equality of the distributions.

Our finding that, at least for long horizons, the beliefs elicited from the mechanism sys-

tematically understate tail probability events, is related to phenomena which have been much

studied in the literature on betting markets. Specifically, the “favorite-longshot bias (FLB)”

10Considering sub-samples also helps mitigate the effect of correlation in the sampling process for Ûi,t,h.
In particular, one would expect a significant correlation in the conditional quantiles across horizons for a
given product and period. Performing the test horizon-by-horizon prevents this distortion from affecting
inference at the cost of weaker power due to fewer degrees of freedom. However, it doesn’t fully control for
the temporal autocorrelation in Ûi,t,h at fixed horizon and across products for a fixed time period.
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is an oft-reported empirical property in studies on betting markets.11 In data patterns char-

acterized by the FLB, the parimutuel odds on high probability events understate the realized

probabilities (e.g., the parimutuel odds on a horse “favored” to win the race understates the

true odds of that horse winning). By contrast, we find a “reverse favorite-longshot bias,” in

which elicited beliefs understate the realized probabilities for low-probability (tail) events.

A number of explanations have been proposed for the FLB, including probabilistic misper-

ceptions, risk preferences, belief heterogeneity, and information incentives (see Ali (1977)).12

The fact that the reverse-FLB disappears as the forecast horizon narrows (as in Figure 2)

casts doubt on the risk explanation, because these preferences should not change with the

forecast horizon. If risk aversion is driving the reverse-FLB, then the extent of the reverse-

FLB would be primarily driven by the likelihood of the outcome itself. Importantly, the

bias is driven by the likelihood of the event, rather than the uncertainty in the forecast

distribution. That is, risk aversion would cause the likelihood of low-probability tail events

to be understated in the forecast distribution, regardless of the forecast horizon – this is not

what we see.

Ottaviani and Sørensen (2010) propose an alternative model of biases in parimutuel

betting systems based on strategic information revelation rather than misperceptions or risk

preferences. In this model, parimutuel betting participants are partially informed about

the realization of a random variable but aggregate uncertainty about the outcome persists.

Rational behavior in their model allows for a FLB or a reverse-FLB in the aggregated

distribution depending on the ratio of privately-held information to noise in the forecast

variable. Specifically, the reverse-FLB arises when information is very diffuse. To see the

intuition, consider the case of Lotto, a purely random parimutuel market. Since each number

has an equal probabaility of being a winning number, any “favorites” which arise during

the betting process must underpay, and “longshots” must overpay: that is, a systematic

underweighting of low-probability events arises in the parimutuel odds.

This explanation implies that at long horizons, the noisiness of the information leads

to a reverse-FLB, which goes away as the horizon narrows and the quality of information

improves: this is what we see in Figure 2. Such an explanation is partly corroborated by

11There are four full chapters dedicated to its review alone in the Handbook of Sports and Lottery Markets
(Hausch and Ziemba (2008a)).

12For instance, Snowberg and Wolfers (2010) compare the relative likelihood of risk preferences and prob-
abilistic misperception in betting markets, finding probabilistic misperceptions to be relatively more likely,
but are silent on the role of strategic considerations. Gandhi and Serrano-Padial (2012) show that belief
heterogeneity among racetrack bettors can also induce a longshot bias in prices.
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some limited analyst-level data which was available to us. In one sample, we found that

transactions for instances of the mechanism corresponding to longer-horizon forecasts took

place about 25% later than in shorter-horizon sessions. This willingness of participants

to delay their transactions may reflect the noisiness of participants’ information at distant

horizons, and hence their willingness to sacrifice costs to learn the information revealed

within the IAM by earlier participants.

5 Testing Forecast Rationality

Having characterized the IAM’s ability to aggregate information within the firm, we now

ask how the mechanism can improve internal forecasts and decision-making. Many decisions,

such as communicating expectations to Wall Street analysts or setting sales incentive quotas,

require management to determine a point forecast for unit sales. In these settings, we are

less interested in the full conditional distribution of sales than in a central measure of the

distribution.

In this section, we evaluate the degree to which the official forecast and forecasts derived

from the mechanism are internally consistent as rational forecasts. In addition to the canon-

ical Mincer and Zarnowitz (1969) regressions testing forecast rationality at each individual

horizon, we can exploit our forecast panel to implement more powerful multiple-horizon tests

of forecast revision proposed by Patton and Timmermann (2012). We find little evidence

that the available forecasts fail to satisfy rationality overall, suggesting only that revisions

in the period before unit sales are realized appear to be understated.13

5.1 Forecast Data

We observe data from 2007 through 2010 across five major product lines. These forecasts

are made in a dynamic business envornment where expectations rapidly shifted from growth

to stagnation. With the Lehman brothers crash occuring half-way through the sample, the

forecasting exercise is particularly challenging at longer horizons. For proprietary reasons,

Intel has requested we mask the actual values of units sold as well as the names of the

13Unfortunately, this analysis suffers from the major limitation that findings consistent with rationality are
largely negative results. Importantly, we fail to reject the null hypothesis that the forecast is not distorted,
rather than rejecting the null that the forecast is distorted. Nonetheless, the evidence provided in favor of
well-behaved forecasts is encouraging. For more discussion of the methodology of forecast evaluation, we
refer interested readers to the excellent survey by West (2006).
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products themselves. As all of our comparative analyses are insensitive to the numeraire,

this masking has no effect on the results.

To consolidate the distributional information from the mechanism into point forecasts,

we propose two natural point-forecast estimates. The Mean forecast is taken as the expected

value of the outcome under the forecasting distribution. The Mode forecast is taken as the

outcome with maximal probability under the forecasting distribution. Due to the buckets in

the mechanism, these forecasts are effectively interval-censored. To address this censoring,

we take the mid-point of the bucket as representing the value for all forecast mass placed

within that bucket.14 Recalling the definition of actual unit sales for product line i in quarter

t by Yi,t, we refer to the official, mean, and mode forecasts at horizon h ∈ {1, 2, . . . , 0}months

by Ŷ
(Official)
i,t|t−h , Ŷ

(Mean)
i,t|t−h , and Ŷ

(Mode)
i,t|t−h respectively. For each k ∈ {Official, Mean, Mode}, we can

then define the forecast error as e
(k)
i,t|t−h from which we can compute forecast performance

statistics such as the Root Mean Square Forecast Error (RMSFE).

Table 1 reports summary statistics for the point forecasts and actual unit sales, including

a break down by product lines. Realized quarterly sales, averaging 21 million in the full

sample, have a standard deviation over $7 million, indicating a highly variable forecasting

environment. On average, the forecasts slightly overstate average revenue, with the Mean and

Mode average forecast improving upon the Official forecast bias by less than 100,000. Still,

the IAM mean and mode forecasts deliver a root mean square error almost 10% lower than

that of the the Official forecast. Within individual product lines, the RMSFE improvement

is even more significant, ranging from 21% to 37%. By comparing the RMSFE with the

standard deviation of sales within each product line, though, we see the forecasts in general

perform quite poorly relative to the ex-post sample average. This poor performance may call

into question the validity of any of the forecast mechanisms, a topic we consider empirically

in Section 5.2.

Direct comparison of the forecasts is somewhat complicated by the timing of the IAM

vis-a-vis the official forecasts. Since the mechanism takes place with a significant lag after the

official forecast is released, the horizon t official forecast is most comparable to the horizon t+

1 IAM forecast. Operationally, this implementation allows the analysts preparing the official

forecast to observe the mechanism’s distribution before announcing their forecast. When the

last (most inaccurate) horizon is dropped from the official forecast and the nearest (most

accurate) horizon is dropped from the IAM forecasts, the differential RMSFE is negligible

14The first and last buckets representing ranges [0, x1) and [xK−1,∞) are assigned values x1, and xK−1,
respectively.
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Table 1: Summary Statistics for Forecast Data
This table presents summary statistics characterizing the average and standard deviation of unit sales, the

target variable to be forecast, and the different forecasts available to decision makers. Due to variation in

timing of the horizon forecasts relative to realized sales, the full-sample Root Mean Square Forecast Error

is not directly comparable between the official and IAM forecasts. As such, the official RMSFE is also

reported excluding the least-informed (9 month) horizon forecast and the IAM RMSFE is also reported

excluding the most-informed (1 month) horizon forecast. The columns report results broken down by the

product line for which forecasts are obtained to characterize heterogeneity.

Full Business Product Line
Sample Disti 1 Disti 2 Direct 1 Direct 2 Direct 3

First Sales Period Quarter 2007Q1 2008Q1 2007Q2 2008Q3 2007Q1 2009Q1
Last Sales Period Quarter 2010Q1 2010Q1 2010Q1 2010Q1 2010Q1 2010Q1
Number of Forecast-Period-Product Obs 414 81 108 63 117 45
Number of Sales-Product Periods 46 9 12 7 13 5
Number of Forecasts per Product-Period 9 9 9 9 9 9

Average Unit Sales 2.95 1.94 1.97 3.77 3.69 4.00
Std Dev of Unit Sales 1.02 0.21 0.16 0.36 0.74 0.56

Average Official Forecast 2.99 2.01 2.00 3.84 3.71 4.07
Std Dev of Official Forecasts 1.03 0.18 0.18 0.43 0.79 0.39
Official Root Mean Square Fcst Error 0.48 0.26 0.22 0.54 0.63 0.65
Official RMSE excluding 9th Horizon 0.45 0.25 0.20 0.51 0.60 0.60

Average Parimutuel Mean Forecast 2.98 1.99 1.98 3.88 3.71 4.03
Std Dev of Parimutuel Mean Forecasts 1.04 0.18 0.16 0.41 0.78 0.39
Parimutuel Mean Root Mean Square Fcst Error 0.43 0.25 0.18 0.51 0.58 0.54
Mean RMSE excluding 1st Horizon 0.46 0.26 0.19 0.54 0.61 0.57

Average Parimutuel Mode Forecast 2.98 1.99 1.98 3.89 3.70 4.04
Std Dev of Parimutuel Mode Forecasts 1.04 0.19 0.16 0.42 0.78 0.41
Parimutuel Mode Root Mean Square Fcst Error 0.43 0.26 0.18 0.52 0.59 0.52
Mean RMSE excluding 1st Horizon 0.46 0.27 0.19 0.55 0.62 0.55

in aggregate. However, we will evaluate this hypothesis more formally in Section 6.

While there is some apparent heterogeneity across product lines, the magnitudes of re-

alized unit sales are of the same order. Notably, though, all the tests we use are robust to

product-line heterogeneity subject to appropriate clustering for computing standard errors.

This robustness allows us to enhance the power of our tests by pooling the data across prod-

uct lines, which is particularly helpful given the limited sample size we have available. In

our statistical tests, we cluster our observations to correct for any autocorrelation introduced

by the pooling and also analyze subsamples to ensure robustness of the findings from the

pooled sample.
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5.2 Testing Individual Forecasts

At each horizon, we can evaluate the degree to which each of the available forecast mech-

anisms is “rational” given observed unit sales by testing whether a transformation of that

forecast could reduce loss. We first consider simple transformations to the location and scale

of the forecast using the standard Mincer and Zarnowitz (1969) (henceforth, MZ) regression

tests for forecast rationality. For forecast mechanism k, we consider the following regression:

Yi,t = αk + βkŶ
(k)
i,t|t−h + εi,t|t−h,k (2)

We then test the joint null hypothesis that αk = 0 (the forecast location is unbiased)

and βk = 1 (the forecast scale is unbiased) using the standard F-Test with appropriately

robust standard errors.15 For example, if αk is significantly positive, the forecast systemat-

ically understates expected sales. Similarly, if βk is significantly less than one, the forecast

is systematically too far away from the unconditional average, essentially overstating the

variability in sales implied by the available information.

In Table 2, we report the results of the MZ regressions and F-tests at each horizon from

the official and IAM forecast models. At short horizons and especially one month from the

end of the quarter, each of the forecasts are remarkably consistent with theory, with the

estimated model nearly exactly matching the restricted model. At longer horizons, there is

some evidence of forecast distortion. Though this distortion is not statistically significant,

it does appear that long-horizon forecasts could be improved by shifting them towards the

unconditional average forecast.

The MZ regression tests can be pooled across horizons after making a multiple-comparisons

adjustment for critical values. We use a Bonferroni correction for these nine tests, which is

quite conservative in contexts where the tests themselves are based on correlated samples

across experiments, but simple and easy to implement. This pooled regression specification

gives an overall perspective of forecast performance that can yield improved power. How-

ever, not being able to reject rational forecasting in any of the individual subsamples, it’s no

surprise that the pooled test estimates are also consistent with the restrictions implied by

theory.

15Optimal forecast errors for an h step ahead forecast are generally autocorrelated at up to h − 1 lags,
requiring HAC standard errors for regression 2. In addition, we cluster observations for each quarter of
unit sales and across product lines to ensure robustness to common temporal shocks and product-level
heterogeneity.
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Table 2: Mincer-Zarnowitz Tests for Point Forecast Accuracy
This table shows parameter estimates and clustered (across products) standard errors for the

Mincer-Zarnowitz regression (Equation 2) for the official and IAM point forecasts at each horizon (Panel

A) and pooled across horizons (Panel B). We also report the F-Statistic and p-Value for testing the joint

null hypothesis of zero intercept with unit coefficient. The p-Values reported in Panel B test the

hypotheses that the intercept equals zero and the coefficient equals unity individually and jointly using an

F-test and are Bonferroni-corrected for testing across multiple horizons. All standard deviations are robust

to autocorrelation up to the forecast horizon and clustered by forecasting quarter and product line.

Panel A: Horizon-by-Horizon Mincer-Zarnowitz Tests
Official Forecast Mean Forecast Modal Forecast

Alpha Beta F-Test Alpha Beta F-Test Alpha Beta F-Test
(StDev) (StDev) (p-Val) (StDev) (StDev) (p-Val) (StDev) (StDev) (p-Val)

1 Month 0.01 1.00 0.02 0.03 0.99 0.57 0.01 1.00 0.30
(0.05) (0.02) (98%) (0.02) (0.01) (57%) (0.03) (0.01) (75%)

2 Months 0.12 0.96 0.47 0.08 0.97 0.41 0.08 0.97 0.57
(0.16) (0.07) (63%) (0.10) (0.05) (66%) (0.09) (0.04) (57%)

3 Months 0.16 0.95 0.60 0.13 0.96 0.49 0.15 0.95 0.77
(0.15) (0.08) (55%) (0.12) (0.06) (61%) (0.10) (0.05) (47%)

4 Months 0.17 0.94 0.48 0.15 0.95 0.49 0.18 0.94 0.71
(0.25) (0.12) (62%) (0.18) (0.10) (62%) (0.15) (0.08) (50%)

5 Months 0.31 0.88 1.46 0.23 0.92 0.95 0.27 0.91 1.22
(0.30) (0.15) (24%) (0.24) (0.12) (40%) (0.25) (0.12) (30%)

6 Months 0.33 0.87 1.47 0.31 0.88 1.45 0.31 0.88 1.82
(0.31) (0.16) (24%) (0.27) (0.14) (24%) (0.25) (0.13) (17%)

7 Months 0.42 0.84 2.48 0.37 0.86 2.17 0.41 0.85 2.04
(0.29) (0.16) (10%) (0.29) (0.15) (13%) (0.30) (0.16) (14%)

8 Months 0.49 0.80 4.15 0.42 0.83 3.20 0.43 0.83 3.32
(0.26) (0.15) (2%) (0.27) (0.15) (5%) (0.26) (0.14) (5%)

9 Months 0.51 0.79 4.48 0.50 0.80 4.05 0.52 0.80 3.75
(0.24) (0.14) (2%) (0.24) (0.14) (2%) (0.25) (0.15) (3%)

Num of Obs 46
Panel B: Joint MZ Tests

Official Forecast Mean Forecast Modal Forecast
Alpha Beta F-Test* Alpha Beta F-Test* Alpha Beta F-Test*

Pooled Sample 0.29 0.89 14.69 0.25 0.90 13.34 0.27 0.90 14.05
(0.17) (0.09) (0%) (0.15) (0.08) (0%) (0.15) (0.07) (0%)

Num of Obs 414
*Bonferonni corrected p-Values

5.3 Multiple-Horizon Tests of Forecast Revisions

With forecasts available at multiple horizons, we can impose a stronger form of rationality.

In addition to testing whether the forecasts themselves could be improved by a simple trans-

lation of location and scale, we can also evaluate whether the revisions made at each horizon

could be similarly improved. These additional restrictions admit much more powerful tests

of forecast rationality that indicate some potential inefficiencies in the revisions to forecasts

from both the official and the IAM. In particular, the last revision made to the forecast one

month prior to the realization of unit sales tends to be understated and overall forecasting

could be improved by amplifying that revision.

Define the forecast revision from a long horizon (hL) to a short horizon (hS) as d
(k)
i,t|hL→hS =
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Ŷ
(k)
i,t|t−hS − Ŷ

(k)
i,t|t−hL for each k ∈ {Official, Mean, Mode}, product, and revenue period. Then

letting H denote the longest horizon at which a forecast is available, the natural extension to

the MZ regression is the “optimal revision” regression proposed by Patton and Timmermann

(2012):

Yi,t = αk + βk,H Ŷi,t|t−hL +
H−1∑
j=1

βk,jd
(k)
i,t|hL→hS + εk,i,t (3)

As in the standard MZ regression, if the forecast is rational at all horizons, then it will

be unbiased across horizons (i.e., αk will be zero). Additionally, if each period’s forecast

revision has the correct scale given the amount of information revealed between each of the

long and short horizons. As such, under rational forecasting, the regression 3 will satisfy the

joint restrictions:

H0 : αk = 0 ∩ βk,1 = 1 ∩ · · · ∩ βk,H = 1 (4)

We test these restrictions using an F-test, with the results appearing in Table 3. Here, we

see that most of the forecast revisions (the coefficients for periods greater than one month)

are all statistically near unity. However, the last forecast revision at a one month horizon

seems to be typically understated, particularly for the Official forecast but also for the Mean

forecast, both of which reject the MZ restriction at almost any size. As a result, we can reject

the null hypothesis that the forecasts are perfectly rational in their revisions with essentially

a zero p-value.16

In addition to the restrictions implied by the hypothesis 4, Patton and Timmermann

(2012) present a number of additional restrictions the multiple-horizon setting imposes on

second moments for forecasts, revisions, errors, and realized unit sales. In our implementation

of these tests, we found no further evidence of forecast breakdown, so we refer interested

readers to the results and further discussion in Appendix A1.

16 One potential explanation for this systematic “understatement” of the final forecast revision may be
found in Brandenburger and Polak (1996), who show that managers interested in maximizing the share price
of their company may take actions which contradict their private information, but are in line with the prior
expectations of market watchers. In our setting, such an effect can arise if IAM participants do not want to
appear to be overly contradicting their earlier forecasts.
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Table 3: Mincer-Zarnowitz Optimal Forecast Revision Tests
This table shows the results of the Mincer-Zarnowitz Optimal Revision regression 3 for the Official and

IAM Forecasts. Standard Errors are HAC and clustered for individual products and revenue periods.

Official Forecast Mean Forecast Mode Forecast
Standard Standard Standard

Estimate Error Estimate Error Estimate Error
Intercept (0.01) 0.05 0.04 0.03 0.02 0.05
1 Month 1.50** 0.10 1.31** 0.06 1.16 0.10
2 Months 1.05 0.30 0.89 0.12 1.06 0.15
3 Months 0.87 0.15 0.80 0.14 0.84 0.13
4 Months 0.99 0.14 1.01 0.10 0.94 0.07
5 Months 0.92 0.14 1.15* 0.07 1.19* 0.10
6 Months 1.07 0.15 0.92 0.16 0.90 0.11
7 Months 0.75 0.14 0.96 0.08 1.02 0.04
8 Months 1.19 0.14 0.94 0.11 0.94 0.09
9 Months 1.00 0.02 0.99 0.01 1.00 0.02

F-Test Statistic 6.15** 15.68** 2.67**
p-Value 0% 0% 1%
Number of Obs 46 46 46
*,** denote significance at the 5% and 1% levels, respectively

6 Comparing the Information Aggregation Mechanism

to Official Forecasts

Having established that the IAM and official forecast are both rational forecasts in the

previous section, we now evaluate their relative performance. We begin by directly comparing

the loss due to forecast errors, finding the IAM forecasts outperform the official forecast under

quadratic loss in those settings where high-quality individual information may be dispersedly

held. For example, the IAM performs particularly well at short forecast horizons and in direct

distribution channels where internal participants are likely to have useful information for the

forecasting exercise. In contrast, at long horizons and in channel distributor based product

lines, the official forecast based on more structured models proves to be more informative.

6.1 Predictive Accuracy with Quadratic Loss

Diebold and Mariano (1995), henceforth DM, tests provide the benchmark for directly com-

paring the predictive accuracy of two forecasts under a variety of possible loss functions.

While we later consider a broader class of asymmetric loss functions in section 7.2, here we
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simply define forecast loss as the square error of the forecast:

l
(k)
i,t|t−h =

(
Ŷ

(k)
i,t|t−h − Yi,t

)2

(5)

We can then compare the loss between two corresponding forecasts j and k:

δ
(j,k)
i,t,h = l

(j)
i,t|t−h − l

(k)
i,t|t−h (6)

The DM test statistic corresponds to the t-statistic for the average δ
(j,k)
i,t,h , using a robust

estimator of the variance allowing for auto-correlation of loss differentials within product lines

and clustering for each revenue period. While DM’s initial derivation of the test establishes

its asymptotically normality, Harvey et al. (1997) show that Student’s t distribution better

controls for size.

We present the results of these tests in Table 4, comparing the loss of the horizon h

IAM forecast with the horizon h − 1 official forecast. Given the differential timing of the

official forecast release and the mechanism, this treatment cedes a slight information advan-

tage to the official forecast, which is always released after the mechanism has concluded.

Despite this informational advantage, the full sample results indicate the point forecasts

taken from the mechanism nonetheless deliver lower square loss than the official forecasts.

This outperformance is especially surprising given that the offical forecasters know the IAM

distribution before releasing their forecast. That is, the analysts’ deviation from the IAM

forecast actually worsens the forecast error.

Using DM tests to evaluate the mechanism’s performance in subsamples, we find the IAM

perform particularly well in exactly those contexts where individuals within the organization

are likely to have disparate information. Conversely, the official forecast performs well in

those settings that are conducive to high-level modeling and analysis based on historical and

macroeconomic trends.

The root mean forecast improvement is monotonically declining in forecast horizon, with

the official forecast outperforming the information aggregation mechanism at the 8 and 9

month horizons. The official forecast is also more likely to incorporate higher-level infor-

mation regarding macroeconomic conditions that is especially relevant to long-horizon fore-

casting. Given that individual sales representatives and partner managers are unlikely to

have materially relevant information about unit sales at these horizons, the official forecast’s

outperformance is to be expected here.
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Table 4: Comparing Forecast Loss Across Mechanisms
This table presents Diebold-Mariano tests comparing the point forecasts from the official forecast and the

mean and mode information aggregation mechanism forecast. Panel A uses the full sample of all forecasts

and horizons, with Panels B and C reporting results for horizon and product subsamples. The Root Mean

∆ Square Error reports the square root of the absolute average difference in the square error for the official

and IAM forecasts, signed negatively for cases where the official forecast outperforms the IAM. The

Outperformance Frequency captures the frequency with which the IAM forecast was more accurate than

the official forecast. The DM-Statistic and p-Value report the Diebold-Mariano test statistic and p-Value

using standard errors robust to autocorrelation up to the maximum horizon included in the sample,

clustered by period and product.

Panel A: Pairwise Diebold Mariano Tests
Mean Forecast Mode Forecast

Root Mean ∆ Outperf DM Root Mean ∆ Outperf DM Num
Square Error Freq Stat p-Val Square Error Freq Stat p-Val of Obs

Overall 0.45 61% (2.20)* 3% 0.45 60% (2.13)* 3% 368

Panel B: Pairwise Diebold Mariano Tests by Horizon
Mean Forecast Mode Forecast

Root Mean ∆ Outperf DM Root Mean ∆ Outperf DM Num
Horizon Square Error Freq Stat p-Val Square Error Freq Stat p-Val of Obs
2 Months 0.69 78% (2.18)* 3% 0.70 78% (2.19)* 3% 46
3 Months 0.66 80% (1.90) 6% 0.66 76% (1.89) 6%
4 Months 0.63 80% (1.68) 10% 0.63 76% (1.68) 10%
5 Months 0.49 70% (1.57) 12% 0.49 63% (1.57) 12%
6 Months 0.42 54% (1.42) 16% 0.43 61% (1.44) 16%
7 Months 0.19 48% (0.55) 59% 0.10 50% (0.16) 88%
8 Months (0.22) 39% 1.12 27% (0.22) 41% 1.24 22%
9 Months (0.25) 35% 1.48 15% (0.27) 35% 1.67 10%

Panel C: Pairwise Diebold Mariano Tests by Product Line
Mean Forecast Mode Forecast

Root Mean ∆ Outperf DM Root Mean ∆ Outperf DM Num
Product Line Square Error Freq Stat p-Val Square Error Freq Stat p-Val of Obs
Disti 1 (0.21) 36% 1.03 31% (0.22) 35% 1.07 29% 72
Disti 2 (0.07) 50% 0.47 64% (0.07) 50% 0.47 64% 96
Direct 1 0.70 75% (1.56) 12% 0.69 77% (1.54) 13% 56
Direct 2 0.63 75% (1.65) 10% 0.62 71% (1.54) 13% 104
Direct 3 0.54 73% (1.02) 32% 0.57 78% (1.07) 29% 40

Similarly, the official forecast outperforms the mechanism’s expectation in products

distributed through channel sales operations. These distribution networks correspond to

smaller-sized transactions and, as such, are driven primarily by trends in consumer spending

best analyzed in aggregate. Further, these sales operations generate only about 10% of total

corporate profits. In contrast, for the direct channels that generate about 90% of firm profits,

the IAM performs exemplary at aggregating the information held by individual agents.

On the whole, this analysis indicates the information aggregation mechanism performs

well at forecasting in exactly those settings that economic theory indicates its usefulness.

Overall, the mechanism outperforms the official forecast and it does so by dramatically

reducing forecast loss in those settings where individually held information is likely to be
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particularly valuable.

6.2 Forecast Combination and Encompassing Tests

Instead of just choosing one forecast, we may wish to combine the information from the

mechanism with the official forecasts into a single aggregated forecast. A robust literature

considers optimal forecast combination, with the survey by Timmermann (2006) providing

a good entry point. For the aggregated forecast to improve upon the IAM forecast, however,

there must be some information in the official forecast that isn’t already incorporated into the

mechanism’s expectations. As such, we’d like a test to make sure the mechanism’s forecast

doesn’t encompass the official forecast before introducing it into a forecast combination

exercise.

Following the approach of Fair and Shiller (1990), one way to implement such a test

would be to buld on the MZ tests from section 5.2 for the IAM forecast by adding the

Official forecast as an additional explanatory variable. Among the most basic results from

the forecast combination exercise, it’s straightforward to show that the optimal weights

with which to form a linear combination of forecasts can be calculated using the following

regression.

Yi,t = α + ωIAM Ŷ
(IAM)
i,t|t−h + ωOfficialŶ

(Official)
i,t|t−h (7)

For instance, one way to evaluate whether the official forecast encompasses the Mean

forecast is to test the null hypothesis that α = 0, ωIAM = 0, and ωOfficial = 1. If we reject

this null hypothesis using an F-test, then we can be confident that the mechanism’s forecast

has additional information beyond that which is contained in the Official forecast. Similarly,

if we reject the null hypothesis that α = 0, ωIAM = 1, and ωOfficial = 0 then we will be

able to say that the Official forecast contains information beyond that which is available

from the mechanism’s point forecast. Slightly less restrictive forms of these tests can also

be formulated by dropping the condition on α and still simpler tests can just evaluate the

one-sided hypotheses that ωOfficial ≥ 0 and ωIAM ≥ 0.17

Table 5 summarizes the results of these regressions for the Mean and Mode forecast.

17These regression-based tests have been further generalized by Harvey et al. (1998), whose approach
mirrors that of Diebold and Mariano (1995). We implement the Harvey, Leybourne, and Newbold tests in
Appendix A2 with largely the same results presented here. We only present the results using the Fair and
Shiller (1990) test here for brevity and ease of interpretation in relation to forecast combinations.
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Table 5: Forecast Combination Regressions
This table presents estimates from the forecast combination regressions 7. Panel A uses the full sample of

all forecasts and horizons, with Panels B and C reporting results for horizon and product subsamples. The

test F(0, 1, 0) tests the hypothesis that α = 0, ωIAM = 1, and ωOfficial = 0, similarly, F(0, 0, 1) tests α = 0,

ωIAM = 0, and ωOfficial =. The tests F(., 0, 1) and F(., 0, 1) test the analogous restrictions without the

zero-intercept condition. All tests use standard errors robust to autocorrelation up to the maximum

horizon included in the sample, clustered by period and product.

Panel A: Full-Sample Regressions
Parimutuel Official

Intercept Forecast Forecast F(0, 1, 0) F(0, 0, 1) F(., 1, 0) F(., 0, 1)
St Dev St Dev St Dev p-Value p-Value p-Value p-Value

Mean Fcst 0.26 0.76 0.14 12.80 144.82 17.63 215.78 368.00
0.16 0.14 0.08 0% 0% 0% 0%

Mode Fcst 0.27 0.75 0.15 14.08 145.06 19.67 216.13 368.00
0.15 0.14 0.08 0% 0% 0% 0%

Panel B: Mean Forecast by Horizon
Parimutuel Official

Horizon Intercept Forecast Forecast F(0, 1, 0) F(0, 0, 1) F(., 1, 0) F(., 0, 1)
St Dev St Dev St Dev p-Value p-Value p-Value p-Value

h = 1 0.06 0.95 0.03 0.40 143.88 0.57 215.82 46.00
0.11 0.04 0.02 75% 0% 57% 0%

h = 2 0.10 0.90 0.07 0.68 73.79 1.01 110.67
0.12 0.07 0.04 57% 0% 37% 0%

h = 3 0.12 0.88 0.08 0.68 45.96 1.01 68.93
0.18 0.12 0.05 57% 0% 37% 0%

h = 4 0.22 0.85 0.07 0.74 20.01 1.06 29.47
0.24 0.21 0.11 54% 0% 36% 0%

h = 5 0.29 0.71 0.18 1.52 12.52 2.16 18.35
0.28 0.26 0.15 22% 0% 13% 0%

h = 6 0.37 0.48 0.38 3.11 5.29 4.33 7.85
0.31 0.26 0.13 4% 0% 2% 0%

h = 7 0.48 0.07 0.75 6.38 3.25 8.75 4.39
0.31 0.30 0.25 0% 3% 0% 2%

h = 8 0.54 (0.03) 0.82 6.48 3.06 8.75 4.23
0.34 0.25 0.17 0% 4% 0% 2%

Panel C: Mean Forecast by Product
Parimutuel Official

Product Intercept Forecast Forecast F(0, 1, 0) F(0, 0, 1) F(., 1, 0) F(., 0, 1)
St Dev St Dev St Dev p-Value p-Value p-Value p-Value

Disti 1 1.05 (0.23) 0.70 72.74 12.00 104.04 17.68 72
0.13 0.10 0.13 0% 0% 0% 0%

Disti 2 1.15 0.06 0.36 22.85 15.01 33.98 20.69 96
0.29 0.26 0.18 0% 0% 0% 0%

Direct 1 4.53 0.09 (0.29) 35.70 125.75 49.72 188.61 56
0.28 0.09 0.06 0% 0% 0% 0%

Direct 2 1.34 0.66 (0.02) 8.96 53.23 13.35 79.57 104
0.80 0.23 0.09 0% 0% 0% 0%

Direct 3 2.59 0.41 (0.06) 1.92 14.50 2.82 13.69 40
3.34 0.47 0.49 14% 0% 7% 0%
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These regressions show that the optimal combination of these forecasts negatively weight

the official forecast. The F-Tests indicate that we can reject the null hypothesis that the

IAM forecast encompasses the official forecast, as the Official forecast contains information

that can be used to moderate errors in the IAM forecast estimates. Indeed, even considering

just the coefficient on the Official forecast, we can reject the minimally restrictive hypothesis

that ωOfficial ≥ 0.

The subsample results for Table 5 in panels B and C focus on just combining the mecha-

nism’s Mean forecast with the Official forecast at each horizon, though the results are similar

although slightly weaker for the Mode forecast. The evidence in these subsamples is broadly

consistent with the full-sample results. The significance of the results drops somewhat in

the horizon-based subsamples, particularly at the longer horizons. Also, as in the Mincer-

Zarnowitz regressions, the estimated coefficients for the product subsamples occasionally

deviate widely from the values hypothesized by the encompassing tests.

7 Higher Moments in the IAM and Forecasting

The tests in the previous sections focus on the performance of point forecasts extracted from

the mechanism’s distribution of outcomes in comparison to the official forecast. However,

this focus disregards much of the information available in the mechanism, specifically any

higher moments from the distribution that characterizes uncertainty in the forecast itself.

We now focus on this additional information and how it might be used to improve the official

forecast either under quadratic or under asymmetric forecast loss functions. As would be

expected under quadratic loss, we find that higher moments do not assist in forecasting unit

sales themselves. Still, in settings a forecast that overstates realized sales is asymmetrically

worse than a forecast that understates sales, we find that the IAM performs distinctly well.

7.1 Higher Moments in Forecasting Sales under Quadratic Loss

While the mechanism’s mean and mode forecasts both perform well and encompass one

another, we might ask whether higher moments of the forecast distribution could also im-

prove forecast performance. Denoting the mth central moment from a given IAM forecast
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distribution by ˆµm,i,t|t−h, we could form a hybrid forecast:

Ŷ Hybrid,M
i,t|t−h = θ

(M)
0 +

M∑
m=1

θ
(M)
0 µ̂m,i,t|t−h + ε

(M)
i,t|t−h (8)

Note that here, we are not considering the significance of the θ parameters, rather only

the degree to which we can credibly improve our sales forecast using additional information

from the IAM distribution. Consolidating this additional information requires specifying

a model for doing so, an exercise that would typically be estimated using a pre-sample to

fit a current period’s forecast. To model this feature, we use a blocked cross-validation

approach whereby we estimate the model using a “leave-one-t-out” approach.18 Denoting

these estimated parameters for the forecasting model as θ̂
(M)
0,−t, . . . , θ̂

(M)
M,−t, we estimate the

forecasts for period t across all horizons and all products as:

Ỹ Hybrid,M
i,t|t−h = θ̂

(M)
0,−t +

M∑
m=1

θ̂
(M)
m,−tµ̂m,i,t|t−h + ε

(M)
i,t|t−h (9)

That done, we can then define the estimated forecast error for the hybrid forecasts and

compare this to the IAM Mean’s forecast errors. The results from this analysis are reported

in Table 6.

Perhaps surprisingly, we find the hybrid forecast models almost uniformly underperform

the mechanism’s mean forecast. Though estimation error is well known to have an adverse

impact on forecast combination, the IAM mean forecast delivers less error than any statis-

tically fitted model in any subsample. Looking to higher moments from the distribution

to refine the hybrid forecast improves the hybrid forecasts’ performance slightly. In many

cases, this effect is not statistically significant, but the cumulative evidence indicates that

the forecast mean does contain most of the relevant information for estimating final unit

sales.

18Specifically, for each quarter (e.g., 2009Q2) we estimate the regression 8 for M = 1, 2, 3, 4 using all
forecast data except the data for that quarter (e.g., all data for revenue quarters up to 2009Q1 and af-
ter 2009Q3, inclusively). Arguably, this blocking structure may retain some autocorrelation in the error
structures between the training and testing samples, a conservative treatment in the context of the results.
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7.2 Optimal Forecasts under Asymmetric Loss

Forecast errors are often associated with asymmetric loss functions since failing to meet

market expectations commonly has a much larger effect on a firm’s valuation than exceed-

ing those expectations. In this context, a conservative forecast that’s biased downward to

under-promise and over-deliver could be optimal for the organization even though it appears

suboptimal from the perspective of symmetric loss functions. Analyzing models with asym-

metric costs for forecast errors have long been a concern in evaluating forecast rationality,

with references going back to Granger and Newbold (1986). Diebold and Mariano (1995)

show their test is consistent under any well-behaved loss function as long as the loss function

being known by the econometrician. Elliott et al. (2005, 2008) propose consistent tests of

forecast rationality under unknown loss functions given instruments that characterize the

forecaster’s contemporaneous information set.

For our application, we simply modify the quadratic loss function to allow for asymmet-

ric quadratic loss with a kink at zero imposing a higher cost to forecasts that are overly

optimistic.

l
(
Ŷ , Y ; γ

)
=
(

1 + γ1
{
Ŷ > Y

})(
Ŷ − Y

)2

(10)

This specification restricts the set of loss functions somewhat, but has the benefit of being

controlled by a single parameter. In this way, we can easily evaluate the forecasts in a

reasonably flexible class of asymmetric loss functions by varying the downside loss aversion

parameter, γ.

Given the proposed loss function, the IAM mean no longer gives an optimal forecast con-

ditional the distribution of forecast uncertainty. Rather an optimal forecast would minimize

expected loss under the mechanism’s distribution:

Ŷ ∗i,t|t−h (γ) = arg min
Ŷ

∫
l
(
Ŷ , z; γ

)
dĜi,t|t−h (z) (11)

Being able to provide a forecast that optimizes asymmetric loss is an important feature

available in the mechanism that cannot be readily captured in any other type of prediction

market that delivers only point forecasts. Using the aggregated information from the mech-

anism, where we wouldn’t expect participants to incorporate asymmetries into their bidding

behavior, we get an unbiased estimate of the distribution Ĝi,t|t−h. We can then account for

asymmetries in the loss function to aggregate the information into a point forecast.

Using the asymmetric quadratic loss function defined in equation 10, we calculate the
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Table 7: Diebold-Mariano Tests for Optimal Forecasts under Asymmetric Loss
This table presents Diebold-Mariano tests comparing the point forecasts from the official forecast and the

IAM Mean forecast with the optimal forecast implied by the mechanism’s distribution using asymmetric

loss functions parameterized by γ as in equation 10. Panel A uses the full sample of all forecasts and

horizons, with Panels B and C reporting results for horizon and product subsamples. The DM-Statistic

and p-Value report the Diebold-Mariano test statistic and p-Value using standard errors robust to

autocorrelation up to the maximum horizon included in the sample, clustered by period and product.

Panel A: Pairwise Diebold Mariano Tests
Asymmetric Optimal vs Official Asymmetric Optimal vs Mean Num

γ 0.1 1 10 100 0.1 1 10 100 of Obs
Overall DM Statistic (2.17) (1.97) (1.83) (1.99) (0.51) (1.25) (1.97) (2.09) 368

p-Value 3% 5% 7% 5% 61% 21% 5% 4%

Panel B: Pairwise Diebold Mariano Tests by Horizon
Asymmetric Optimal vs Official Asymmetric Optimal vs Mean Num

γ 0.1 1 10 100 0.1 1 10 100 of Obs
1 Month DM Statistic (2.17) (2.01) (1.65) (1.56) (0.28) (0.82) (1.33) (1.43) 46

p-Value 4% 5% 11% 13% 78% 42% 19% 16%
2 Months DM Statistic (1.89) (1.79) (1.55) (1.50) (0.02) (0.49) (1.04) (1.13)

p-Value 7% 8% 13% 14% 98% 63% 31% 27%
3 Months DM Statistic (1.67) (1.59) (1.42) (1.42) 0.08 (0.46) (1.02) (1.09)

p-Value 10% 12% 16% 16% 94% 65% 31% 28%
4 Months DM Statistic (1.57) (1.51) (1.45) (1.49) (0.13) (0.69) (1.13) (1.19)

p-Value 12% 14% 15% 14% 89% 49% 27% 24%
5 Months DM Statistic (1.41) (1.35) (1.35) (1.46) (0.34) (0.83) (1.19) (1.24)

p-Value 17% 18% 18% 15% 74% 41% 24% 22%
6 Months DM Statistic (0.51) (0.39) (0.75) (1.21) (0.60) (0.99) (1.26) (1.29)

p-Value 61% 70% 46% 23% 55% 33% 21% 20%
7 Months DM Statistic 1.13 1.09 (0.42) (1.49) (0.50) (0.95) (1.29) (1.33)

p-Value 27% 28% 68% 14% 62% 35% 20% 19%
8 Months DM Statistic 1.49 1.48 (0.49) (1.18) (0.64) (1.07) (1.34) (1.37)

p-Value 14% 15% 63% 24% 52% 29% 19% 18%

Panel C: Pairwise Diebold Mariano Tests by Product Line
Asymmetric Optimal vs Official Asymmetric Optimal vs Mean Num

γ 0.1 1 10 100 0.1 1 10 100 of Obs
Disti 1 DM Statistic 1.03 1.03 0.95 0.82 (0.51) (0.97) (1.33) (1.34) 72

p-Value 31% 30% 35% 41% 61% 34% 19% 19%
Disti 2 DM Statistic 0.55 0.84 0.91 0.16 0.53 (0.51) (1.30) (1.36) 96

p-Value 59% 40% 36% 87% 60% 61% 20% 18%
Direct 1 DM Statistic (1.57) (1.62) (1.51) (1.45) (0.52) (0.94) (1.28) (1.32) 56

p-Value 12% 11% 14% 15% 60% 35% 20% 19%
Direct 2 DM Statistic (1.61) (1.45) (1.33) (1.42) (0.37) (0.82) (1.25) (1.32) 104

p-Value 11% 15% 18% 16% 71% 41% 21% 19%
Direct 3 DM Statistic (1.02) (1.03) (1.14) (1.25) (0.20) (0.58) (1.04) (1.13) 40

p-Value 32% 31% 26% 22% 85% 56% 31% 26%

asymmetric-loss-optimal forecast from the mechanism’s distribution, denoted Ŷ
(γ)
i,t|t−h for

γ ∈ {0.1, 1, 10, 100}. We compare these asymmetric loss optimal forecasts with the official

and the symmetric-loss-optimal mean forecasts using Diebold-Mariano Tests. The results

in Table 7 confirm that the asymmetric-loss optimal forecasts continue to outperform the

official forecast. Perhaps more interesting, though, is the extent to which an asymmetric-

loss-optimal forecast outperforms the mean of the forecast distribution. This advantage in
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forecasting under asymmetric loss is unique to the information aggregation mechanism as

implemented here and not available in any other prediction market mechanism.

8 Conclusion

In this paper, we introduce a new information aggregation mechanism in a novel field ap-

plication forecasting practical business information needs. This implementation provides a

testbed for evaluating the theory and refining the practice of information aggregation. We

find such mechanisms are capable of capturing the true uncertainty of forward business indi-

cators such as future sales and yield forecasts that are not only rational, but improve upon

the forecast generated by internal processes. Further, by providing decision makers with

a richer characterization of operational uncertainty, the mechanism can help them address

problems with potentially asymmetric forecast loss and better control risks. As such, it is

not surprising that Intel has extended its implementation beyond forecasting sales volumes

but also to applications in evaluating research and development expenditures and tracking

project management.

Field applications of information aggregation mechanisms also provide economists with

valuable evidence for evaluating competing economic theories outside of tightly controlled

laboratory settings. The IAM’s successful implementation here further confirms the broad

experimental evidence that such a mechanism can effectively aggregate information. A long

process of testing and refining information aggregation mechanisms in the lab has borne

real-world validation and value.
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Not for Publication: Web Appendix

A1. Monotonicity Tests across Forecast Horizons

One interesting feature apparent in the forecasts, after correcting for scale distortion, they

tend to be conservative on average despite the overall positive bias we observe in the summary

statistics from table 1. Though this feature is not statistically significant, it is widespread

across forecast horizons and product lines, indicating forecasting loss may have some asym-

metric properties. Another interesting feature from these results finds the location distortion

decreases in the horizon, as illustrated in Figure 3.

Figure 3: Mincer-Zarnowitz Location Distortion by Forecast Horizon
This figure summarizes the intercept coefficients estimated from the Mincer-Zarnowitz regressions in table

2.

Beyond the pooled MZ test, rational forecasting across multiple horizons imposes a num-

ber of additional testable restrictions on the second moments of forecasts, forecast revisions,

and forecast errors. Several of these restrictions take the form of monotonicity restrictions

in the forecast horizon. For example, the mean square forecast error should be increasing

in the horizon h as there is greater uncertainty with longer horizons. Similarly, the covari-
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Table 8: Forecast Rationality Tests of Multiple Horizon Restrictions
This table presents the p-Values for hypothesis tests that evaluate the null hypothesis that the population

restriction in the row holds under the forecast identified in each column.

Official Forecast Mean Forecast Mode Forecast
9 Month 9 Month 9 Month

vs 1 Month Overall vs 1 Month Overall vs 1 Month Overall
Increasing MSFE 93% 100% 93% 100% 95% 100%

Decreasing Cov(Y, Yh) 64% 35% 49% 34% 27% 34%
Decreasing MSF 53% 30% 32% 19% 16% 15%
Increasing MSFR 66% 70% 69% 65% 75% 60%

Bonferonni Combined Test 60% 26% 35% 16% 12% 12%

Number of Obs 46

ance between forecasted sales and actual sales should be decreasing in the forecast horizon

as increased uncertainty allows a larger wedge to form between the forecasted and realized

outcome.

Patton and Timmermann (2012) (PT) provide a detailed analysis of these restrictions and

propose a suite of tests to evaluate their validity. Indeed, they show that rational forecasting

imposes restrictions that almost every pairwise relationship of outcomes, forecasts, forecast

errors, and forecast revisions be either monotonic in forecast horizon or bounded by fixed

values. We focus on four of these monotonicity restrictions, namely that the Mean Square

Forecast Error (MSFE) should increase for longer horizons. Also, if long horizon forecasts

are less accurate, we should see a decrease in the covariance between the forecast and the

outcome. Similarly, larger forecast revisions should be required at these longer horizons and

the overall magnitude of the forecasts should diminish.

We follow PT in constructing sample analogs to the population moments and calculate

p-Values using the bootstrap test proposed by Patton and Timmermann (2008) for testing

monotonic conditional expected returns across a set of sorted portfolios. We report the p-

Values for the four relevant restrictions and Bonferroni-corrected p-Values for a combined

test of all restrictions in Table 8.

These tests do not reject the null hypothesis of forecast monotonicity, however it’s difficult

to evaluate the extent to which this failure is due to insufficient power rather than well-

ordered forecast behavior. Since the overall tests seek to evaluate eight restrictions using

only 46 observations, absent severe forecast inefficiencies, we’d be surprised to find high levels

of significance.
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A2. Harvey, Leybourne, and Newbold Encompassing Tests

To test the robustness of the results from the encompassing tests in section 6.2, we implement

a set of pairwise encompassing tests as proposed by Harvey, Leybourne, and Newbold (1998,

henceforth HLN). The HLN encompassing test modifies the DM test of forecast comparison

to test if the difference in the errors for the reference and alternative forecasts is correlated

with the errors in the reference forecast. If this correlation is non-zero, then a forecast user

could exploit that correlation to reduce their loss by combining the two forecasts, though

when the HLN statistic is negative, the optimal forecast requires forming a “hedge” that

weights the reference forecast positively while negatively weighting the alternative.

As in developing the DM test statistic, we start by defining a pairwise measure of covari-

ance between forecast error and the difference in forecast error at each period:

η
(j,k)
i,t,h =

(
e

(j)
i,t|t−h − e

(k)
i,t|t−h

)
e

(j)
i,t|t−h (12)

Then, in parallel to the DM test statistic, the HLN statistic is the t-statistic for testing

whether the average η
(j,k)
i,t,h differs from zero. Of course, the studentization requires an estimate

of the variance robust to autocorrelation in errors and allowing for clusters by period. As

with the DM test statistic, the finite-sample properties of the HLN test statistic are better

modeled using the Student’s t-Distribution.

In the table 9, we present the HLN Test statistics and p-Values for each pairwise com-

bination of tests. The first two columns test the null hypothesis that the Mean Forecast

does not encompass the Official Forecast and Mode Forecast, respectively. In these results,

it is apparent that the Official Forecast typically does not encompass the Mean or Mode

Forecast. Similarly, the Mean and Mode forecasts fail to encompass by the official forecast,

indicating that the mechanism is not simply restating the official forecast but incorporates

additional information. As should be expected, we cannot reject the hypothesis that the

Mean and Mode forecasts are encompassed by each other. This overall pattern of relation-

ships between forecasts is fairly robust to forecast horizon and product line subsamples.

A3. Experimental Instructions
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Table 9: Encompassing Tests across Forecast Mechanisms
This table presents Harvey, Leyborne, and Newbold (1998) tests comparing the point forecasts from the

official forecast and the mean and mode parimutuel mechanism forecast. Panel A uses the full sample of all

forecasts and horizons, with Panels B and C reporting results for horizon and product subsamples. The

HLN Statistic and associated p-Value use standard errors robust to autocorrelation up to the maximum

horizon included in the sample, clustered by period and product.

Panel A: Full Sample Harvey, Leybourne, Newbold Tests
Reference Official Mean Mode Num of
Alternative Mean Mode Official Mode Official Mean Obs
HLN Statistic 7.20*** 7.19*** 3.96*** 0.87 4.06*** 1.57 414
p-Value 0% 0% 0% 38% 0% 12%

Panel B: Harvey, Leybourne, Newbold Tests by Forecast Horizon
Reference Official Mean Mode
Alternative Mean Mode Official Mode Official Mean
h = 1 3.50*** 3.54*** 1.23 1.11 1.29 (0.42) 46.00***

0% 0% 23% 27% 20% 68%

h = 2 3.32*** 3.29*** 1.68* 1.39 1.45 0.88
0% 0% 10% 17% 15% 38%

h = 3 3.16*** 3.15*** 1.17 1.67 1.37 (0.52)
0% 0% 25% 10% 18% 60%

h = 4 3.37*** 3.33*** 0.50 0.16 0.52 0.39
0% 0% 62% 87% 60% 69%

h = 5 3.05*** 3.05*** 1.19 1.50 0.89 (0.64)
0% 0% 24% 14% 38% 52%

h = 6 1.95* 1.80* 1.62 (1.43) 2.00* 1.98*
6% 8% 11% 16% 5% 5%

h = 7 0.91 1.02 1.95* 0.45 1.98* 0.63
37% 31% 6% 66% 5% 53%

h = 8 0.63 0.50 2.48 ** (0.05) 2.48 ** 0.82
53% 62% 2% 96% 2% 41%

Panel C: Harvey, Leybourne, Newbold Tests by Product Line
Reference Official Mean Mode
Alternative Mean Mode Official Mode Official Mean
Disti 1 2.23 ** 1.74* 3.92*** (0.80) 3.86*** 1.67* 72
p-Value 3% 9% 0% 43% 0% 10%

Disti 2 2.67*** 2.63*** 3.93*** 1.04 3.88*** 0.81 96
p-Value 1% 1% 0% 30% 0% 42%

Direct 1 3.46*** 3.45*** 1.49 (0.70) 1.84* 2.01 ** 56
p-Value 0% 0% 14% 48% 7% 5%

Direct 2 5.76*** 5.69*** 1.74* 0.26 2.02 ** 1.34 104
p-Value 0% 0% 8% 79% 5% 18%

Direct 3 4.34*** 4.59*** 1.96* 2.01* 1.46 (1.10) 40
p-Value 0% 0% 6% 5% 15% 28%

*, **, *** indicates significance at the 10%, 5%, and 1% confidence levels, respectively.
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Forecasting Instructions –  (date and time) 
Forecasting (variable to be forecast)  

 
 
 
 
 
 

 
 

Strategy: 
1. You start with 500 units of house money for each quarter.  Spend it all – but not 
on one forecast range unless you are certain. 
2. Watch what others are doing.  The objective is to win money, not simply to record 
your beliefs. 
3. Prices will start at 5 units/ticket and not change for the first 15 minutes.  Then 
they will go up by one unit per minute for 45 minutes.  Do not wait too long to buy.  

To purchase a ticket: 
1. Click the white box of the 
range you choose 
2. Enter the number of tickets 
3. Click Purchase 

The price of a 
ticket will start to 
increase 15 minutes 
into the session 

Your unspent cash used to 
purchase tickets – compare to 
ticket price – separate budget 
for each quarter/column 

Total tickets sold to all 
participants for all quarters 

Your chances of winning 
prizes are determined by the 
percentage of tickets in the 
correct forecast held by you 

Each column lists 
the set of forecasts 
for one quarter and 
total tickets sold 

Practice: 
http://location and time 
Real Deal: 
Time and location 
 



Procedure 
Step 1: Register 
Register yourself in the system database.  If you are not in the database the system 
will force you to register when you try to log into the Real Deal. 
 
Go to (at any time including now) http://xxxx.caltech.edu/xxx 
Select “Sign up as a new user”.  Choose an ID, a password, and enter a number into 
the “SS Number” field.  We are not using real social security numbers – just pick a 
number with 9 digits that you can remember (or write down).  Part of a phone 
number might be a good idea. 
 
Everyone should enter the following information.  It will not be used for anything 
but is required in the stock application we are using. 
 
University = “Company A” and Class = “Company A” 
Street = “123 Main Street” City = “Anytown” 
State = “CA”  Zip = “12345” Country = “USA” 
Enter your real e-mail address and phone number.  (Enter area code “123” and 
then your real seven digit Intel phone number.) 
 
Step 2: Practice 
Go to the practice page http://xxxx.caltech.edu/Sales-practice/ prior to the Real Deal 
to become familiar with the forecasting application.  Buy tickets for a few different 
forecasts and observe how the application responds. 
 
Step 3: Get your secure ID 
On the day of the Real Deal, ideally a few minutes before the start time, go to the 
Real Deal location, http://xxxxcaltech.edu/BusinessUnitYearQ#Date/.  It will ask 
you for the user name and password that you used in Step 1.  It will then give you 
your secure ID, which disguises your identity.  Click the “Login” button to enter the 
Real Deal.  You will not be able to use the application until the session begins. 
 
Step 4: Participate in the Real Deal 
The session will be held on November 7 at 4:00 PM Pacific Time.  Be on time – a few 
minutes early would be wise.   The trial will start exactly on time, allowing for clock 
differences, and move very quickly.  It will likely be over in 30 minutes even though 
it will remain open for an hour. 
 
Panics or problems: e-mail or call Mister X at ###-###-####.  He will be working 
with Caltech to manage the trial and solve any problems. 
 
We will put general announcements (if needed) on the Real Deal screens. 
 



Determining Winners 
Four prizes will be awarded for each of the three quarters forecast 
during the trial – see details below.  We will know which forecast is 
correct once actual Q4 2006 and Q1, Q2 2007 Business Unit Billings are 
available.  Prizes for each quarter will be awarded after the close of that 
quarter.  All tickets in the correct forecast are considered winning 
tickets and will be entered into a drawing for prizes.  After each prize 
drawing the winning ticket will be put back in the hopper, so each ticket 
may win more than one prize. 

 
Q4 2006 
Drawing 1: $100 
Drawing 2: $100 
Drawing 3: $50 
Drawing 4: $50 

Q1 2007 
Drawing 1: $100 
Drawing 2: $100 
Drawing 3: $50 
Drawing 4: $50 

Q2 2007 
Drawing 1: $100 
Drawing 2: $100 
Drawing 3: $50 
Drawing 4: $50 

 
These prizes will be distributed as an employee recognition award in the 
near term.  Alternative payment methods may be developed in the long 
term. 
 
 

Privacy 
Participants will remain completely anonymous except to the research 
team at Caltech and to Mister X, the research manager at Company A.  
No one else participating in the trial will know for certain who is 
participating, so they certainly will not know which forecasts you 
choose.  The final forecast generated by all participants will be 
published, but your personal forecast will be held in confidence by the 
research team.  We will award prizes to the winners, but even the 
winners will not be announced. 
 
We expect that participants will not share information with one another 
before, during or after the trial.  Past research has shown that the best 
results are achieved when participants do not share information. 
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