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Abstract. We address the problem of estimating generalized linear models (GLMs) when

the outcome of interest is always observed, the values of some covariates are missing for
some observations, but imputations are available to fill-in the missing values. Under certain

conditions on the missing-data mechanism and the imputation model, this situation generates

a trade-off between bias and precision in the estimation of the parameters of interest. The
complete cases are often too few, so precision is lost, but just filling-in the missing values with

the imputations may lead to bias when the imputation model is either incorrectly specified

or uncongenial. Following the generalized missing-indicator approach originally proposed by
Dardanoni et al. (2011) for linear regression models, we characterize this bias-precision trade-

off in terms of model uncertainty regarding which covariates should be dropped from an

augmented GLM for the full sample of observed and imputed data. This formulation is
attractive because model uncertainty can then be handled very naturally through Bayesian

model averaging (BMA). In addition to applying the generalized missing-indicator method to
the wider class of GLMs, we make two extensions. First, we propose a block-BMA strategy

that incorporates information on the available missing-data patterns and has the advantage of

being computationally simple. Second, we allow the observed outcome to be multivariate, thus
covering the case of seemingly unrelated regression equations models, and ordered, multinomial

or conditional logit and probit models. Our approach is illustrated through an empirical

application using the first wave of the Survey on Health, Aging and Retirement in Europe
(SHARE).
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1. Introduction

In this paper we address the problem of estimating generalized linear models (GLMs) in the

empirically relevant case when the outcome of interest is always observed, the values of some

covariates are missing for some observations, but imputations are available to fill-in the missing

values. This situation is becoming quite common, as public-use data files increasingly include

imputations of key variables affected by missing data problems, and specialized software for

carrying out imputations directly is also becoming increasingly available.

Two standard approaches to the problem of missing covariate values are complete-case analysis

and the fill-in approach. The first approach drops all the observations with missing covariate

values ignoring the imputations altogether, while the second approach fills in the missing covariate

values with the available imputations without distinguishing between observed and imputed

values. Under certain conditions on the missing-data mechanism and the imputation model,

the choice between these two approaches generates a trade-off between bias and precision in the

estimation of the parameters of interest. The complete cases are often too few, so precision

is lost, but just filling in the missing values with the imputations may lead to bias when the

imputation model is either incorrectly specified or uncongenial in the sense of Meng (1994).

Following the generalized missing-indicator approach originally proposed for linear regression

models by Dardanoni et al. (2011), we transform this bias-precision trade-off into a problem

of uncertainty about which regressors should be dropped from an augmented GLM, or ‘grand

model’, which includes two subsets of regressors: the focus regressors, corresponding to the

observed or imputed covariates, and a set of auxiliary regressors consisting of binary indicators

for the various missing-data patterns plus their interactions with the focus regressors. Our

formulation of the bias-precision trade-off in terms of model uncertainty exploits the fact that

complete-case analysis and the fill-in correspond to using two extreme specifications of the grand

model. Complete-case analysis corresponds to using a fully unrestricted specification, while

the fill-in approach corresponds to using a restricted specification that includes only the focus

regressors.

A natural way of handling model uncertainty is Bayesian model averaging (BMA). In our

context, this implies considering all the intermediate specifications obtained by dropping from

the grand model alternative subsets of auxiliary regressors. In this way, we avoid restricting

attention to the complete cases but, at the same time, we exploit the available imputations in
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a sensible way by allowing the imputation model to be incorrectly specified or uncongenial with

the GLM of interest. The extreme choice of using the complete-case or the fill-in approach is

still available, but it is unlikely to emerge as the best one since all the intermediate models in

the expanded model space carry information about the parameters of interest.

In addition to applying the generalized missing-indicator method to the wider class of GLMs,

we make two important extensions. First, we propose a block-BMA strategy that incorporates

the information on the available patterns of missing data while being computationally simple.

Second, we allow the observed outcome to be multivariate, thus covering the case of seemingly

unrelated regression equations (SURE) models and ordered, multinomial or conditional logit and

probit models. STATA commands which implement our procedure are available upon request.

To illustrate our methods, we analyze how cognitive functioning varies with physical health

and socio-economic status using data from the first (2004) wave of the Survey on Health, Aging

and Retirement in Europe (SHARE), a multi-purpose cross-national household panel carried out

in 11 continental European countries. Like other household surveys, sensitive variables such as

household income, household net worth, and other objective health measures are affected by

substantial item nonresponse.

The remainder of the paper is organized as follows. Section 2 presents our statistical frame-

work. Section 3 discusses complete-case analysis and the fill-in approach. Section 4 describes

the generalized missing-indicator method. Section 5 discusses how to apply BMA to deal with

model uncertainty in the context of the grand model. Section 6 extends our results to the case

of multivariate outcomes. Section 7 presents an empirical application. Finally, Section 8 offers

some conclusions.

2. Statistical framework

We represent the available set of N observations on an outcome of interest as the realization

of a random vector Y = (Y1, . . . , YN ) whose components are independently distributed random

variables with mean µn and finite nonzero variance σ2
n, n = 1, . . . , N . We assume that the

distribution of each component of Y belongs to the (one-parameter) linear exponential family

with density function of the form

f(y; γn) = exp [ γn y − b(γn) + c(y) ] , n = 1, . . . , N, (1)
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where γn is a scalar parameter that may vary across observations depending on a K-dimensional

vector of covariates Xn (assumed to always include a constant term), b(·) is a known, strictly

convex and twice differentiable function, and c(·) is a known function. In the original formulation

of Nelder and Wedderburn (1972), the density function (1) includes an additional dispersion

parameter which, without loss of generality, we set equal to one. By the properties of the linear

exponential family, the mean and variance of Yn are equal to µn = b′(γn) and σ2
n = b′′(γn)

respectively (McCullagh and Nelder 1989).

In a GLM, the dependence of Yn on the vector of covariates Xn is modelled by assuming

that there exists a continuously differentiable and invertible function h(·), sometimes called the

inverse link, such that the mean of Yn is equal to µn = h(X>n β) for a unique value of the K-

dimensional parameter vector β. The linear combination ηn = β>Xn is called the linear predictor

associated with the nth observation. Collecting together the linear predictors associated with

the sample observations gives the N -dimensional vector η = Xβ, where X is the N ×K matrix

of observations on the covariates.

In the absence of missing data, the classical approach to estimating β is maximum likelihood

(ML). The sample log-likelihood for the missing-free data is

L(β) = c+
∑N

n=1
[ γn(β)Yn − b (γn(β)) ] ,

where γn(β) is the unique root of the equation b′(γ) = h(β>Xn), and the missing-free data ML

estimator of β is obtained by solving the system of K likelihood equations

0 = L′(β) =
∑N

n=1
v(β>Xn)

[
Yn − h(β>Xn)

]
Xn, (2)

where v(β>Xn) = h′(β>Xn)/b′′(γn(β)). Notice that β enters the above equations only through

the linear predictor ηn = β>Xn. This is the property that drives our main result in Theorem 1

below. If b′(·) = h(·) (the “canonical link” case), then γn(β) = β>Xn and the likelihood

equations (2) simplify considerably because v(β>Xn) = 1 for all n. When the GLM is correctly

specified, and the mild regularity conditions in Fahrmeir and Kaufmann (1985) hold, the missing-

free data ML estimator of β is unique, consistent, and asymptotically normal with asymptotic

variance equal to the inverse of the Fisher information matrix.

In this paper we depart from the standard GLM setup in two ways. First, we assume that

some covariate values are missing for some observations. Second, we assume that imputations

are available to fill-in the missing covariate values. Since the constant term is always observed,
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the number of possible subsamples with missing covariates is equal to 2K−1− 1 so, including the

subsample with complete data, the number of missing-data patterns is equal to 2K−1. Because

a particular data set need not to contain all the possible patterns, we index by j = 0, . . . , J the

patterns that are present in the data, with j = 0 corresponding to the subsample with complete

data and J ≤ 2K−1 − 1.

Let Nj be the number of observations, Kj the number of observed (non missing) covariates and

K̄j = K −Kj the number of missing covariates in the jth missing data pattern. By definition,∑J
j=0Nj = N , K0 = K, and 1 ≤ Kj ≤ K for j = 1, . . . , J . For each missing-data pattern, let Y j

be the Nj×1 vector of observations on the outcome of interest and let Xj be the Nj×K matrix

containing the values of the covariates, which could be either observed or missing. Clearly, X0

is always observed. To keep track of which covariate values are observed and which are missing,

we define the N ×K missing indicator matrix M , whose (n, k)th element is equal to one if the

kth covariate is missing for the nth observation, and is equal to zero otherwise. Finally, for each

subsample j = 1, . . . , J with missing covariates, we let W j be the Nj ×K matrix containing the

values of the Kj observed covariates and the imputed values of the K̄j missing covariates. We

shall refer to W j as the filled-in design matrix for the jth subsample.

3. Complete-case analysis and the fill-in approach

This section discusses two standard approaches to the problem of missing covariate values,

namely complete-case analysis and the fill-in approach.

3.1. Complete-case analysis. This approach amounts to estimating a GLM on the subsample

[X0,Y 0] without missing covariates ignoring the imputations altogether. Complete-case analysis

is a useful benchmark because it gives a consistent ML estimator of β under the following two

assumptions (Wooldridge 2010, p. 798).

Assumption 1. The Fisher information matrix for the subsample with complete data is positive

definite with probability approaching one as N →∞.

Assumption 2. Y and M are independent conditionally on X.

Assumption 1 guarantees that the model parameters are identified using only the information

in the subsample with complete data. Because the function b(·) is strictly convex, this assumption

holds if the matrix N−1X>0X0 converges in probability to a positive definite matrix as N →∞.
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Assumption 2 is an ignorability assumption on the missing-data process. It implies that

the conditional distribution of Y given X and M is the same as the distribution of Y given

X or, equivalently, the conditional distribution of Y given X is the same in subsamples with

and without missing covariates. Given the true values of the covariates, the pattern of missing

data can then be ignored when predicting Y . Notice that Assumption 2 is stronger than the

conditional mean independence assumption needed to ensure unbiasedness of the complete-case

OLS estimator of β in classical linear regression models, but is weaker than the missing completely

at random (MCAR) assumption which instead requires that the distribution of M does not

depend on Y and X. Also notice that Assumption 2 is not the same as the standard missing at

random (MAR) assumption, usually imposed when imputing missing values, which requires the

missing-data process to be independent of the missing covariates given the observed data (Rubin

1976). For example, suppose that health is the outcome of interest and the only covariate,

household income, is subject to missing data problems. If missing income depends on true

income but not on health, then Assumption 2 is satisfied but MAR is not, while if missing

income depends on health but not on true income then MAR is satisfied but Assumption 2 is

not. Thus, Assumption 2 is neither stronger nor weaker than MAR.

Although the asymptotic results implied by Assumptions 1 and 2 provide the main justification

for complete-case analysis, one cannot ignore the severe loss of precision that may result from

this approach when the fraction of missing data is not small.

3.2. Fill-in approach. Reordering the observations by stacking on top of each other the J + 1

available missing-data patterns gives

Y =


Y 0

Y 1

...
Y J

 , W =


X0

W 1

...
W J

 ,
where the N ×K matrix W is called the filled-in design matrix for the whole sample. The fill-in

approach consists of estimating a GLM for Y replacing X by W .

The validity of this approach requires two conditions: (i) the model used to create the im-

putations must be correctly specified (including the assumptions on the posited missing-data

mechanism); and (ii) the imputation model and the GLM for the filled-in data [Y ,W ] must be

congenial in the sense of Meng (1994), i.e., the imputation model cannot be more restrictive than

the model used to analyze the filled-in data). We say that the fill-in approach is valid when these
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two conditions hold, in which case the fill-in ML estimator of β is asymptotically equivalent to

the missing-free data ML estimator introduced in Section 2. Further, as shown in Appendix A,

this estimator is asymptotically more precise than the complete-case ML estimator introduced

in Section 3.1.

In general, little can be said about the finite sample properties of these two ML estimators.

Since the number of unknown parameters is the same in the complete-case and the fill-in ap-

proaches, but the number of observations is greater in the latter, the fill-in ML estimator is

expected to have higher precision than the complete-case ML estimator provided that the addi-

tional sampling variability induced by imputation is small. On the other hand, if the imputation

model is not correctly specified or is not congenial, then the fill-in estimator is likely to be biased

and inconsistent because it ignores the fact that the imputations are not the same as the missing

covariate values.

We would like to stress the importance of the assumption that the imputation model is con-

genial. If the model of interest and the imputation model are uncongenial, because they are

based either on different parametric assumptions or on different sets of explanatory variables,

then the fill-in approach may lead to inconsistent estimates. This is especially true in the case

of nonlinear estimators, such as ML estimators for GLMs. We refer to Nicoletti and Peracchi

(2006) for a simple test of congeniality.

An additional issue with the fill-in estimator is how to account for the additional variability

induced by the imputation process when assessing the precision of this estimator, a problem that

we ignore throughout this paper because it is easily handled by multiple imputation methods

(Rubin 1987; Dardanoni et al. 2012).

4. The generalized missing-indicator approach

The key idea of this approach is to augment the set of K observed or imputed covariates in the

filled-in design matrix W with a set of JK additional regressors corresponding to binary indica-

tors for the subsamples with missing covariate values and their interactions with the regressors

in W . Thus define the N × JK matrix

Z =


0 · · · 0
W 1 · · · 0

...
. . .

...
0 · · · W J

 .
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Our statistical model for the full sample is an augmented GLM where the conditional density

of Y given W and Z belongs to the exponential family (1) with linear predictor η = Wβ+Zδ.

The columns of W represent, in the terminology of Danilov and Magnus (2004), our focus

regressors, while the columns of Z represent the auxiliary regressors. Following Dardanoni et al.

(2011), we shall refer to this augmented GLM as the grand model. As shown in Appendix B,

the JK-dimensional vector of auxiliary parameters δ can be interpreted as the asymptotic bias

of the fill-in estimator of the focus parameter β when the imputations are not valid.

4.1. Equivalence theorem. The following theorem extends to GLMs the main result in Dar-

danoni et al. (2011).

Theorem 1. For any set of imputations, the ML estimator of β in the grand model with linear

predictor η = Wβ +Zδ is equal to the complete-case ML estimator of β.

Proof. Let

Y =

[
Y 0

Y ∗

]
, W =

[
X0

W ∗

]
, Z =

[
0
Z∗

]
,

where

Y ∗ =

Y 1

...
Y J

 , W ∗ =

W 1

...
W J

 , Z∗ =

W 1

. . .

W J

 .
The complete-case ML estimator β̂ of β solves the system of K likelihood equations

X>0 U0(β) = 0,

where U0(β) is the N0 × 1 vector of generalized residuals (Gourieroux et al. 1987) with generic

element equal to v(β>Xn) [Yn−h(β>Xn)]. On the other hand, the ML estimator (β̃, δ̃) of (β, δ)

in the grand model with linear predictor equal to Wβ + Zδ solves the system of K(1 + J)

likelihood equations

X>0 U0(β) +W>
∗ U∗(β, δ) = 0,

Z>∗ U∗(β, δ) = 0,
(3)

where U∗(β, δ) is the (N −N0)× 1 vector with generic element equal to v(β>Wn + δ>Zn) [Yn−

h(β>Wn + δ>Zn)]. Since Z∗ is a block-diagonal matrix, the last JK equations in (3) imply that

W>
∗ U∗(β, δ) = 0.

The ML estimator β̃ then solves X>0 U0(β) = 0, so it must coincide with the complete-case

estimator β̂. �
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Theorem 1 shows that the complete-case ML estimator of β coincides with the unrestricted

ML estimator of β in the grand model that places no restrictions on the vector δ of auxiliary

parameters. The intuition for this result is that estimating the grand model is essentially equiv-

alent to jointly estimating a set of unrestricted GLMs, one for each missing-data pattern. The

model for the subsample without missing covariates determines the estimate of β, which coin-

cides by construction with the complete-case ML estimate and is therefore consistent under the

assumptions in Section 3.1. Given the estimate of β, the various elements of δ are estimated

from the models for the subsamples with imputed covariates.

The fill-in estimator of β coincides instead with the restricted ML estimator when all elements

of δ in the grand model are set to zero. If the imputations are valid (that is, δ = 0), then the fill-

in estimator is asymptotically more precise than the complete-case estimator (see Appendix A).

However, if the imputations are not valid (that is, δ 6= 0), then the fill-in estimator is inconsistent.

Thus, testing the hypothesis that δ = 0 provides an alternative to the test for the validity of

imputations proposed by Nicoletti and Peracchi (2006).

The aim of the generalized missing-indicator approach is to handle the trade-off between bias

and precision in the estimation of β by considering all intermediate models obtained from the

grand model by setting to zero arbitrary subsets of elements in δ. This strategy has two advan-

tages. First, the original bias-precision trade-off is transformed into a problem of uncertainty

about a subset of covariates of the grand model, for which a variety of alternative strategies are

available. Second, instead of focusing on two extreme specifications of the grand model, any

intermediate model in the expanded model space may now play a role in constructing the best

available estimator of β in the asymptotic mean squared error sense.

4.2. A dual result. We now prove a result that may be regarded as a dual of Theorem 1. This

result provides the justification for the block-BMA approach presented in Section 5.4.

Theorem 1 says that the complete-case approach is equivalent, as far as estimation of β is

concerned, to using the grand model that includes all the observations (observed or imputed) and

all the auxiliary regressors. The next theorem shows that, more generally, pooling together the

subsample with complete data and arbitrary subsamples with missing covariates is equivalent to

removing blocks of auxiliary regressors from the grand model.

Given a collection J of subsamples with missing covariates, let Y + be the subvector of Y

obtained by stacking Y 0 and all Y j such that j ∈ J , and Y − be the subvector consisting of the
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remaining rows of Y ; let W+ be the submatrix of W obtained by stacking X0 and all W j such

that j ∈ J , and W− be the submatrix consisting of the remaining rows of W ; and let Z−∗ be

the submatrix obtained by dropping from Z∗ the rows and columns containing the elements of

W+. Finally, let

Y =

[
Y +

Y −

]
, W =

[
W+

W−

]
, Z− =

[
0
Z−∗

]
.

Theorem 1 can now be restated as follows: If J is the empty set, then the ML estimates of β

in the GLM for [Y +,W+] and in the GLM for [Y ,W ,Z−] coincide. Next theorem shows that

this is actually true if J is any collection of subsamples with missing covariates.

Theorem 2. For any collection J of subsamples with missing covariates, the ML estimates of

β in the GLM for [Y +,W+] and in the GLM for [Y ,W ,Z−] coincide.

Proof. Let U+(β) be the vector of dimension N0 +
∑
j∈J Nj with generic element U+

n (β) =

v(β>W+
n )[Y +

n −h(β>W+
n )]. Also let U−(β, δ−) be the vector of dimension N − (N0 +

∑
j∈J Nj)

with generic element v(β>Wn+δ−>Z−n ) [Yn−h(β>Wn+δ−>Z−n )], where δ− denotes the subvector

of δ obtained by deleting the coefficients associated with theW j , j ∈ J . The proof of the theorem

follows immediately from the proof of Theorem 1 after replacing X0, U0(β), W ∗, U∗(β, δ), and

Z∗ with W+, U+(β), W−, U−(β, δ−), and Z−∗ respectively. �

Thus, removing the vector δj from the grand model gives the same estimate of β that would

be obtained from the model without auxiliary regressors when using only the complete data and

the jth subsample with missing covariates. Therefore each δj controls for a particular subsample

with missing covariates, a feature that we exploit in our Bayesian model averaging procedure in

Section 5.4.

5. Estimation under model uncertainty

Model uncertainty can be handled by either model selection or model averaging. In model

selection one first selects the best model in the available model space and then estimates β

conditional on the selected model. A problem with this approach is pre-testing. As shown by

Magnus and Durbin (1999), Burnham and Anderson (2002) and Danilov and Magnus (2004), the

initial model selection step matters and is likely to have nonnegligible effects on the statistical

properties of the resulting estimates.
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Model averaging provides a more coherent approach to inference because it takes explicitly

into account uncertainty due to both the estimation and the model selection steps. In this case,

the parameters of interest are first estimated conditional on each model in the model space, then

an unconditional estimate is computed using a weighted average of these conditional estimates.

Suppose that the model space M includes R possible GLMs, that is, M = {M1, . . . ,MR}.

The rth model Mr is obtained by including in the linear predictor the K focus regressors in W

and only a subset of 0 ≤ Pr ≤ JK auxiliary regressors in Z. Thus, the linear predictor for the

rth model is equal to ηr = Wβ+Zrδr, where Zr is the matrix containing the N observations on

the included subset of Pr auxiliary regressors and δr is the corresponding vector of coefficients.

The model averaging estimates of β and δ are of the form

β̂ =
∑R

r=1
λrβ̂r,

δ̂ =
∑R

r=1
λrSr δ̂r,

(4)

where the λr are non-negative weights that add up to one, the β̂r and δ̂r are the estimates of

β and δr under the rth model, and the Sr are JK × Pr selection matrices that transform the

Pr-dimensional vectors of conditional estimate δ̂r into JK-dimensional vectors by setting to zero

the elements of δ which are excluded from the rth model.

5.1. Bayesian model averaging. In Bayesian model averaging (BMA) the conditional es-

timates β̂r and δ̂r are weighted by the posterior probability of the rth model to reflect our

confidence in that model based on prior beliefs and the observed data. Thus

λr = p(Mr | Y ) =
p(Y |Mr) p(Mr)∑R
r=1 p(Y |Mr) p(Mr)

, r = 1, . . . , R, (5)

where p(Mr) is the prior probability of model Mr,

p(Y |Mr) =

∫
p(Y | θr,Mr) p(θr |Mr) dθr (6)

is the marginal likelihood of the rth model, θr = (β, δr) the vector of its parameters, p(Y | θr,Mr)

its likelihood, and p(θr | Mr) the prior density of θr under the rth model. In this setting the

model averaging estimates in (4) can be interpreted as the posterior means of the distribution

of β and δ. The posterior variance-covariance matrix consists of the following blocks (Raftery
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1993; Draper 1995)

Var(β̂ | Y ) =
∑R

r=1
λr

[
Var

(
β̂r | Y ,Mr

)
+ β̂rβ̂

>
r

]
− β̂β̂>,

Var(δ̂ | Y ) =
∑R

r=1
λrSr

[
Var

(
δ̂r | Y ,Mr

)
+ δ̂r δ̂

>
r

]
S>r − δ̂δ̂>,

Cov(β̂, δ̂ | Y ) =
∑R

r=1
λr

[
Cov

(
β̂r, δ̂r | Y ,Mr

)
+ β̂r δ̂

>
r

]
S>r − β̂δ̂>.

The posterior variances Var(β̂ | Y ) and Var(δ̂ | Y ) consist of two components: the weighted

average of the conditional variances in each model and the weighted variance of the conditional

estimates across models. Thus, unlike pretest estimators, the posterior variance of the BMA

estimator incorporates the uncertainty due to both parameter estimation and model selection.

The choice between alternative BMA estimates depends on the strategies used to handle a

number of methodological and computational problem. The main problems are: (i) the specifi-

cation of the prior probabilities p(Mr) of the various models, (ii) the specification of the prior

distribution p(θr | Mr) for the parameters of each model, (iii) the procedure to evaluate the

integrals in (6), which do not usually have closed form solutions in the context of GLMs, and

(iv) the procedure to compute the posterior model probabilities in (5) when exploring all models

is infeasible due to the large dimension of the model space.

5.2. Choice of priors. As for problem (i), the assumption that all models are equally likely

a priori is a reasonable neutral choice when there is little prior information about the relative

plausibility of the models considered (Hoeting et al. 1999). This choice, which corresponds to

assuming a uniform prior distribution on the model space, implies that the posterior model

probabilities depend only on the marginal likelihoods of the various models but not on the prior

weight assigned to each of them.

As for problem (ii), our choice of prior distributions over the parameters in the rth model is the

family of calibrated information criteria (CIC) prior distributions introduced by Clyde (2000).

This is a family of uninformative priors derived from the following modification of Jeffrey’s prior

(Jeffreys 1961)

p(θr |Mr) = (2π)−dr/2
∣∣∣∣1c I(θ̂r)

∣∣∣∣1/2 ,
where dr = K + Pr is the number of parameters in the rth model, I(θ̂r) is the observed Fisher

information for the rth model evaluated at the ML estimate θ̂r, and c is a hyperparameter which

allows one to calibrate the posterior model probabilities to classical model selection criteria like

the Akaike Information Criterion (AIC; Akaike 1978), the Bayesian Information Criterion (BIC;
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Schwarz 1996), or the Risk Inflation Criterion (RIC; Foster and George 1994). The use of BMA

with a weighting scheme based on BIC was originally suggested by Raftery (1996), who showed

that BIC is an approximation to twice the logarithm of the Bayes factor for model Mr against

the restricted model with δ = 0. Clyde’s formulation of the CIC prior is attractive because it

provides a general Bayesian justification for the entire family of model selection criteria.

5.3. Evaluating marginal likelihoods. As for problem (iii), the integrals in (6) may be diffi-

cult to evaluate, except for linear regression models where closed form solutions are sometimes

available (see e.g. Magnus et al. 2010), so approximations to the marginal likelihood of each model

are typically used. Alternatively, the problem may be circumvented by directly estimating the

posterior probability of each model using Markov chain Monte Carlo (MCMC) methods.

For regular statistical models approximations to the marginal likelihoods may be obtained by

the Laplace method for integrals (Tierney and Kadane 1986). As suggested by Kass and Raftery

(1995), this method is reasonably accurate when the sample size is greater than 20 times the

number of covariates. Moreover, its use has been justified by several authors (Raftery 1995, 1996;

Hoeting et al. 1999; Clyde 2000; Volinsky and Raftery 2000; Clyde and George 2004). On the

basis of this approximation, Clyde (2000) shows that the posterior probability of model Mr is

p(Mr | Y ) ' exp [1/2 (Dr − dr log c)]∑R
h=1 exp [1/2 (Dh − dh log c)]

,

where Dr is the deviance of model Mr (-2 times the log-likelihood ratio between model Mr

and the restricted model with δ = 0). Hence, under CIC priors, the logarithm of the posterior

probability of each model is approximately proportional to its deviance minus a penalty for

complexity, which depends on the hyperparameter c. The posterior model probabilities can be

calibrated to classical model selection criteria by setting log c = 2 for AIC, log c = logN for

BIC, and log c = 2 logPr for RIC. Although debate over the choice of an optimal model-selection

criterion is still open, AIC and BIC are known to be two extreme strategies which tend to favor,

respectively, more and less complicated model structures. From this view point, CIC priors

represent an attractive family of prior distributions for sensitivity analysis in BMA estimation.

5.4. Block BMA. Our last issue is how to handle the case when the number of candidate

models in the model spaceM is large. If there are J subsamples with missing covariates and K

covariates, the number of models obtained by dropping alternative subsets of auxiliary regressors

is R = 2JK . Even for moderate values of J and K, exploring all these models is unfeasible.
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However, in the context of our generalized missing-indicator approach there are both theoretical

and computational reasons to confine model uncertainty to the J blocks of auxiliary variables

associated with the various missing-data patterns.

From a theoretical view point, the K auxiliary variables in a given block capture the asymp-

totic bias of the fill-in estimator of β due to the imputation of the missing covariate values. Thus,

instead of considering the separate contribution of the JK auxiliary variables in Z, we may just

consider the separate contribution of the J blocks of auxiliary variables corresponding to each of

the subsamples with missing covariate values.

From a computation view point, a great advantage of our block-BMA procedure is its simplic-

ity, as the dimension of the model space reduces to R = 2J . Thus, in typical applications where

J does not exceed 20, one may proceed by directly exploring all models. When J is large, our

block-BMA procedure may be combined with some deterministic or stochastic search method

over the space of 2J models. For example, deterministic search strategies such as the Occam’s

window of Madigan and Raftery (1994) and the leaps and bounds algorithm of Furnival and

Wilson (1974) may be used for moderately sized problems where J does not exceed 30. For

larger problems, these methods can be too expensive computationally or may not explore a large

enough region of the model space leading to poor predictive performances (Hoeting et al. 1999).

More accurate results can then be achieved by stochastic search strategies based on MCMC

methods, which allow exploring a considerably larger subset of models and proivide direct esti-

mates of the posterior model probabilities using the proportion of times the Markov chain visits

each model. We refer to Han and Carlin (2001) and Clyde and George (2004) for a review of the

methodological and computational issues arising with the various MCMC methods.

6. The multivariate case

The results of Section 4 extend to settings where there is more than one outcome of interest

and the nth observation Yn is a Q-dimensional vector whose distribution is assumed to belong to

the multivariate exponential family. These include models for ordered or unordered multinomial

outcomes where the outcome of interest can take Q + 1 possible values corresponding to Q + 1

mutually exclusive categories, leading to ordered, multinomial or conditional logit and probit

regressions.
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The expression for the density of Yn is now

f(y; γn) = exp
[
γ>n y − b(γn) + c(y)

]
, (7)

where γn is a Q-dimensional vector that may depend on covariates, and b(·) and c(·) are known

functions which satisfy the regularity conditions in Fahrmeir and Kaufmann (1985). The mean

and variance of Yn are equal to µn = b′(γn) and Σn = b′′(γn) respectively, where b′(·) is the

Q-dimensional gradient vector and b′′(·) is the Q×Q Hessian matrix of b(·).

Given a K-dimensional vector of covariates Xn, the linear predictor associated with the qth

component of Yn is β>q Xn, with βq ∈ RK . Stacking all the βq into the QK-dimensional vector

β = (β>1 , . . . , β
>
Q)>, the linear predictor associated with Yn is the Q-dimensional vector ηn =

(IQ ⊗X>n )β, where IQ is the Q × Q unit matrix and ⊗ is Kronecker’s product. As before, the

dependence of Yn on the covariates is modelled by assuming that there exists a continuously

differentiable and invertible function h : RQ → RQ such that the mean of Yn is equal to µn =

h((IQ ⊗X>n )β) for a unique value of β.

The missing-free data now consist of the Q-dimensional vectors Yn of observations on the

outcomes of interest and the K-dimensional vectors Xn of covariates, with n = 1, . . . , N , and

the sample log-likelihood is

L(β) = c+
∑N

n=1

[
γn(β)> Yn − b (γn(β))

]
,

where the vector γn(β) solves b′(γ) = h((IQ ⊗X>n )β). The missing-free data ML estimator of β

is obtained by solving the QK likelihood equations

0 = L′(β) =
∑N

n=1
(IQ ⊗Xn)Vn(β)

[
Yn − h

(
(IQ ⊗X>n )β

)]
,

where Vn(β) is the transpose of the Q×Q matrix [b′′(γn(β))]
−1
h′((IQ⊗X>n )β). The conditions

for uniqueness, consistency and asymptotic normality of this estimator are as before (Fahrmeir

and Kaufmann 1985).

With missing covariates, we consider a grand model that now includes, in addition to the filled-

in design matrix, a set of JK auxiliary regressors for each of the Q equations corresponding to

the individual components of Yn. The property that the vector β of parameters of interest enters

the likelihood equations only through the linear predictor ηn = (IQ ⊗ X>n )β is all we need to

adapt the proofs of the equivalence theorems in Section 4 to this case. To see this, is enough

to write the grand model as an augmented GLM with linear predictor equal to NQ-dimensional
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vector η = Wβ +Zδ, where

W =

IQ ⊗W
>
1

...
IQ ⊗W>N

 , Z =

IQ ⊗ Z
>
1

...
IQ ⊗ Z>N

 ,
and δ = (δ>1 , . . . , δ

>
q )> is a QJK-dimensional vector of auxiliary parameters. As before, our

block-BMA procedure considers all intermediate models obtained from the grand model by si-

multaneously restricting arbitrary blocks of K elements in δq to be equal to zero for all q. The

dimension of the model space is again R = 2J .

7. Empirical application

In this section we use data on the elderly European population to investigate how cognitive

functioning varies with physical health and socio-economic status. As argued by Mazzonna

and Peracchi (2012), cognitive functioning is fundamental for decision making, for it influences

individuals’ ability to process information and to make the right choices.

Our data are from release 2.4.0 of the first wave of the Survey of Health, Ageing and Retire-

ment in Europe (SHARE), a multidisciplinary and cross-national household panel survey which

provides information on cognitive abilities, physical health, socio-economic status, and social

networks for nationally representative samples of people aged 50 or more, plus their spouses

irrespective of age, in the participating countries. The data can be freely downloaded from the

SHARE web site (http://www.share-project.org). We refer to Börsch-Supan et al. (2005) for

detailed information on survey design, target population, response rates and other methodolog-

ical issues.

The first wave, conducted in 2004–05, covers about 28,500 individuals in 11 European coun-

tries (Austria, Belgium, Denmark, France, Germany, Greece, Italy, the Netherlands, Spain,

Sweden and Switzerland). To reduce the impact of cross-country differences in the fraction of

the institutionalized population we confine attention to people between 50 and 80 years of age.

The measures of cognitive ability available in SHARE are the outcomes of simple tests of

orientation in time, memory, verbal fluency and numeracy. Here we consider two dimensions

of cognitive functioning: verbal fluency and numeracy. The test of verbal fluency consists of

counting how many distinct members of the animal kingdom the respondent can name in one

minute, and the test outcome is an integer variable ranging from 0 to 90. The test of numeracy

consists instead of four possible questions involving simple arithmetical calculations based on
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real life situations, and the test outcome is an integer ranging from 1 (no correct answer) to 5

(correct answer to the most difficult question).

Our covariates include self-reported measures of physical health (number of limitations with

activities of daily living and number of chronic diseases), an objective measure of physical health

(hand grip strength), and a number of socio-economic variables (age, gender, an indicator for

educational attainments, per-capita household income and household net worth). To ensure

cross-country comparability, the information on educational attainments has been recoded us-

ing the 1997 International Standard Classification of Education (ISCED-97), while per-capita

household income and household net worth have been adjusted for differences in purchasing

power across countries. Summary statistics for the outcomes and the covariates are presented

in Table 1, separately for three regions: North (Denmark, the Netherlands, Sweden), Center

(Austria, Belgium, France, Germany, Switzerland) and South (Greece, Italy, Spain).

Among the selected covariates, hand grip strength, per-capita household income and household

net worth are affected by substantial item nonresponse. The item nonresponse rate for hand grip

strength is equal to 6 percent. Missing data occur either because respondents are excluded from

the grip strength test in case of swelling, inflammation, severe pain, recent injury or surgery

to both hands in the last 6 months, or because the measurements obtained during the test are

considered as unreliable. The item nonresponse rates for household income and household net

worth are much higher, and are equal to 62 and 64 percent, respectively. The substantial amount

of item nonresponse on these two variables reflects three problems. First, they are not directly

reported by the respondents but obtained by aggregating a large number of income and wealth

components. Second, information about incomes, assets, mortgages and other debts are asked

through open-ended and retrospective questions that are sensitive and difficult to answer. Third,

according to SHARE fieldwork rules, a household with two spouses is considered as interviewed

if at least one of them agrees to participate. If the other does not, then household income and

household net worth must be imputed because the individual components are missing for the

nonresponding spouse. In total, complete-case analysis would drop 83 percent of the sample.

To deal with the potential selectivity effects generated by missing data the public-use SHARE

data include imputations of key variables. As described in Christelis (2011), these imputations

are constructed using the multivariate iterative procedure of van Buuren et al. (2006), which

attempts to preserve the correlation structure of the imputed data. In our analysis, validity of
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the SHARE imputations for income and net worth may be questioned because verbal fluency,

number of chronic diseases and hand grip strength are not among the explanatory variables used

by the SHARE imputation model. Thus, even when correctly specified, the imputation model

is likely to be uncongenial with the models of interest as they are based on different sets of

explanatory variables. Finally, we produce our own imputations for the missing values on hand

grip strength using a simple hot-deck procedure.

Given the high level of cross-country comparability of SHARE, we pool data within each

region and estimate a Poisson regression model for verbal fluency and an ordered probit model for

numeracy, separately by region. The Poisson model for verbal fluency is an example of univariate

model with canonical inverse link functions, while the ordered probit model for numeracy is an

example of multivariate model with non-canonical inverse link function. The number of missing-

data patterns is J = 7 in both models. Thus, our block-BMA procedure requires to consider

R = 27 = 128 models for each outcome and region.

The estimates for the two models, obtained from STATA routines developed on purpose, are

presented in Tables 2 and 3. For each outcome and region we compare estimated coefficients

and standard errors for the complete-case ML estimator, the fill-in ML estimator, and the block-

BMA estimators based on AIC, BIC and RIC priors, respectively. Notice that interpretation

of the standard errors differs depending on the estimation strategy. For the complete-case and

fill-in approaches, they can be interpreted as classical standard errors that ignore the additional

sampling variability induced by the model selection step. For the generalized missing-data ap-

proach, the standard errors have the usual Bayesian interpretation of measuring the spread of

the posterior distribution of the parameters of interest given the data. As discussed in Section 5,

these standard errors take model uncertainty explicitly into account by construction.

Our results show little differences in the sign of the estimated associations across cognitive

dimensions, regions and estimation methods. In particular, we find that verbal fluency and

numeracy are negatively related to age, and positively related to self-reported and objective

physical health measures and to variables typically associated with higher socio-economic status.

On average, verbal fluency is higher for women than for men, while the opposite is true for

numeracy. The size of the coefficients and the standard errors are instead subject to non-

negligible differences across estimation method. Complete-case and fill-in ML estimates tend
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to be different, and one can notice the substantial loss of precision resulting from complete-

case analysis. As expected, block-BMA estimates based on AIC priors are closer to the less

parsimonious complete-case model, while those based on BIC and RIC priors are closer to the

more parsimonious fill-in model. The differences are particularly striking in the Poisson models

for fluency, especially for the Central and the Southern regions, possibly because this outcome is

not included in the set of explanatory variables used by the SHARE imputation model. Standard

errors of block-BMA estimators are often greater than those obtained with the restricted fill-in

ML estimator which ignores uncertainty due to the model selection step.

Overall, these results cast some doubt on the validity of the SHARE imputations when study-

ing cognitive functioning. The issue appears to be particularly important for verbal fluency and

for countries belonging to the Central and the Southern regions, where discrepancies between

standard approaches to the problem of missing covariate values and our generalized missing-data

approach are substantial independently of the chosen prior distribution.

8. Conclusions

This paper considers the problem of estimating GLMs in the empirically relevant case when the

values of some covariates are missing for some observations but imputations are available to fill-in

the missing values. Although using imputed covariates is quite common, researchers should not

take the validity of imputations for granted and should explicitly consider the trade-off between

bias and precision involved in their use. We address this problem by extending to the class of

GLMs the generalized missing-indicator approach, originally proposed for linear regression by

Dardanoni et al. (2011). Our approach reformulates the trade-off between bias and precision as

a problem of model uncertainty, which can be handled very naturally through Bayesian model

averaging. The particular structure of this problem allows us to adopt a block-BMA strategy

that is straightforward and makes it possible to explore all the relevant submodels.

An empirical application using the first wave of the Survey on Health, Aging and Retirement in

Europe (SHARE) illustrates the practical use of our approach for GLMs with both univariate and

multivariate observed outcomes. Our results show that inference based on standard approaches to

missing covariates and on our generalized missing-data approach may be substantially different.
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Table 1. Descriptive statistics for the outcomes and the covariates by region
(PPP-adjusted per-capita household income is in 10,000 Euro and household
net worth is in 100,000 Euro).

Region Variable Median Mean SD Min Max

North fluency 23.0 22.9 7.0 .0 53.0
numeracy 4.0 3.6 1.0 1.0 5.0
adl .0 .1 .5 .0 6.0
chronic 1.0 1.5 1.4 .0 9.0
grip strength 35.0 36.6 12.5 4.0 75.0
age 62.0 62.8 8.4 50.0 80.0
male .0 .5 .5 .0 1.0
education 1.0 .6 .5 .0 1.0
income 2.1 2.5 1.8 .0 47.5
net worth 1.2 2.3 4.9 -20.3 83.6
Complete obs. 813
Imputed obs. 4,088

Center fluency 20.0 20.3 7.1 .0 90.0
numeracy 4.0 3.5 1.1 1.0 5.0
adl .0 .1 .6 .0 6.0
chronic 1.0 1.4 1.3 .0 12.0
grip strength 35.0 36.1 12.2 1.0 92.0
age 62.0 63.1 8.4 50.0 81.0
male .0 .5 .5 .0 1.0
education 1.0 .6 .5 .0 1.0
income 1.7 2.4 2.6 .0 44.7
net worth 1.9 3.5 8.9 -20.7 291.1
Complete obs. 2,575
Imputed obs. 13,635

South fluency 14.0 14.6 5.5 .0 88.0
numeracy 3.0 3.0 1.1 1.0 5.0
adl .0 .2 .6 .0 6.0
chronic 1.0 1.6 1.5 .0 10.0
grip strength 30.0 31.7 11.7 3.0 80.0
age 63.0 63.3 8.4 50.0 81.0
male .0 .5 .5 .0 1.0
education .0 .3 .4 .0 1.0
income .9 1.3 1.4 .0 27.5
net worth 1.5 3.1 9.5 -22.5 260.9
Complete obs. 1,754
Imputed obs. 6,745
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Table 2. Estimated coefficients and standard errors (in parentheses) of Poisson
regression models for fluency by region. Results for the constant term and the
auxiliary regressors are omitted to save space.

Block BMA
Region Variable CC FI AIC BIC RIC

North adl -.0625 -.0525 -.0564 -.0525 -.0499
(.0147) (.0072) (.0134) (.0072) (.0073)

chronic -.0117 -.0162 -.0115 -.0162 -.0160
(.0058) (.0026) (.0058) (.0026) (.0026)

grip strength .0051 .0039 .0045 .0039 .0040
(.0010) (.0004) (.0011) (.0004) (.0005)

age -.0055 -.0049 -.0056 -.0049 -.0049
(.0011) (.0005) (.0011) (.0005) (.0005)

male -.0873 -.0817 -.0750 -.0817 -.0829
(.0238) (.0108) (.0235) (.0108) (.0108)

education .0406 .0794 .0389 .0794 .0780
(.0159) (.0070) (.0160) (.0070) (.0071)

income .0287 .0124 .0286 .0124 .0123
(.0054) (.0017) (.0062) (.0017) (.0017)

net worth .0061 .0032 .0060 .0032 .0032
(.0023) (.0006) (.0024) (.0006) (.0006)

Center adl -.0325 -.0561 -.0400 -.0611 -.0591
(.0097) (.0038) (.0094) (.0056) (.0071)

chronic -.0029 -.0031 -.0024 -.0042 -.0037
(.0036) (.0016) (.0030) (.0023) (.0025)

grip strength .0043 .0043 .0044 .0046 .0046
(.0006) (.0003) (.0005) (.0004) (.0006)

age -.0054 -.0058 -.0056 -.0055 -.0054
(.0006) (.0003) (.0005) (.0004) (.0006)

male -.0718 -.0770 -.0770 -.0846 -.0848
(.0134) (.0058) (.0116) (.0092) (.0115)

education .1388 .1574 .1438 .1540 .1527
(.0095) (.0041) (.0086) (.0060) (.0064)

income .0092 .0073 .0101 .0114 .0118
(.0021) (.0007) (.0018) (.0022) (.0022)

net worth -.0006 .0005 .0005 .0007 .0011
(.0009) (.0002) (.0010) (.0004) (.0009)

South adl -.0567 -.0567 -.0604 -.0526 -.0526
(.0131) (.0060) (.0122) (.0073) (.0073)

chronic .0073 .0128 .0068 .0011 .0011
(.0049) (.0024) (.0048) (.0036) (.0036)

grip strength .0063 .0067 .0060 .0059 .0059
(.0008) (.0004) (.0008) (.0006) (.0006)

age -.0069 -.0071 -.0072 -.0071 -.0071
(.0009) (.0005) (.0009) (.0007) (.0007)

male -.0488 -.0559 -.0441 -.0423 -.0423
(.0185) (.0091) (.0183) (.0135) (.0135)

education .1651 .1574 .1678 .1869 .1869
(.0158) (.0075) (.0157) (.0118) (.0118)

income .0105 .0059 .0095 .0005 .0005
(.0058) (.0021) (.0058) (.0041) (.0041)

net worth .0048 .0008 .0049 .0008 .0008
(.0017) (.0003) (.0017) (.0006) (.0006)
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Table 3. Estimated coefficients and standard errors (in parentheses) of ordered
probit models for numeracy by region. Results for the thresholds of the outcome
and the auxiliary regressors are omitted to save space.

Block BMA
Region Variable CC FI AIC BIC RIC

North adl -.1373 -.1138 -.1099 -.1138 -.1156
(.0631) (.0317) (.0512) (.0317) (.0373)

chronic -.0472 -.0327 -.0351 -.0327 -.0277
(.0282) (.0130) (.0204) (.0130) (.0160)

grip strength .0143 .0107 .0108 .0107 .0109
(.0051) (.0023) (.0037) (.0023) (.0029)

age -.0068 -.0061 -.0097 -.0061 -.0107
(.0053) (.0023) (.0038) (.0023) (.0029)

male .1458 .2071 .1907 .2071 .1903
(.1196) (.0544) (.0841) (.0544) (.0682)

education .1782 .4042 .2985 .4042 .3438
(.0801) (.0357) (.0662) (.0357) (.0445)

income .1055 .0472 .0688 .0472 .0447
(.0322) (.0096) (.0318) (.0096) (.0121)

net worth .0518 .0161 .0414 .0161 .0403
(.0150) (.0036) (.0122) (.0037) (.0065)

Center adl -.0386 -.1113 -.0411 -.1113 -.0959
(.0414) (.0160) (.0345) (.0160) (.0169)

chronic -.0281 -.0297 -.0406 -.0297 -.0312
(.0169) (.0073) (.0164) (.0073) (.0074)

grip strength .0138 .0137 .0131 .0137 .0141
(.0028) (.0012) (.0024) (.0012) (.0012)

age -.0084 -.0078 -.0061 -.0078 -.0076
(.0029) (.0012) (.0028) (.0012) (.0012)

male .1293 .1257 .1298 .1257 .1235
(.0637) (.0273) (.0526) (.0273) (.0278)

education .5447 .6315 .5549 .6315 .6316
(.0446) (.0196) (.0406) (.0196) (.0198)

income .0446 .0390 .0491 .0390 .0399
(.0107) (.0037) (.0095) (.0037) (.0038)

net worth .0072 .0029 .0073 .0029 .0035
(.0044) (.0010) (.0035) (.0010) (.0011)

South adl -.0179 -.0972 -.0522 -.0972 -.0972
(.0453) (.0213) (.0460) (.0213) (.0213)

chronic -.0358 -.0562 -.0426 -.0562 -.0562
(.0188) (.0097) (.0163) (.0097) (.0097)

grip strength .0177 .0185 .0171 .0185 .0185
(.0033) (.0017) (.0029) (.0017) (.0017)

age -.0152 -.0180 -.0172 -.0180 -.0180
(.0036) (.0018) (.0031) (.0018) (.0018)

male .1730 .2063 .2037 .2063 .2063
(.0720) (.0365) (.0599) (.0365) (.0365)

education .9448 .9430 .9334 .9430 .9430
(.0678) (.0328) (.0574) (.0328) (.0328)

income .0248 .0250 .0306 .0250 .0250
(.0241) (.0093) (.0210) (.0093) (.0093)

net worth .0007 .0019 .0022 .0019 .0019
(.0068) (.0014) (.0042) (.0014) (.0014)
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Appendix A. Asymptotic properties of complete-case and fill-in ML estimators

From Section 4.1, the complete-case ML estimator coincides with the ML estimator of β in

the grand model with linear predictor η = η = Wβ + Zδ. The ML estimator θ̂ = (β̂, δ̂) in

this model converges in probability to the true population value θ0 = (β0, δ0), which solves the

equation system

E sβ(β, δ;Wn, Zn) = 0,

E sδ(β, δ;Wn, Zn) = 0,

where sβ and sδ denote the elements of the score vector corresponding to β and δ respectively.

Further,
√
N(θ̂ − θ0)⇒ N (0, I0−1), where

I0 =

[
I0ββ I0βδ
I0δβ I0δδ

]
is the Fisher information matrix evaluated at θ0. Because the asymptotic variance of β̂ is the

top-left block of the inverse of I0, it follows that

√
N(β̂ − β0)⇒ N (0, (I0ββ − I0βδI0−1δδ I

0
δβ)−1).

The fill-in ML estimator β̃ solves the equation system

1

N

∑N

n=1
sβ(β, 0;Wn, Zn) = 0. (8)

Because the restriction that δ = 0 may be invalid, β̃ converges in probability to the pseudo-true

value β∗, defined as the root of the equation system

E sβ(β, 0;Wn, Zn) = 0,

which does not generally coincide with the true population value β0. A first-order Taylor expan-

sion of (8) around the pseudo-true value β∗ gives

√
N(β̃ − β∗) =

[
− 1

N

∑N

n=1
Sββ(β∗, 0;Wn, Zn)

]−1
1√
N

∑N

n=1
sβ(β∗, 0;Wn, Zn) + op(1),

where Sββ denotes the Hessian of the log-likelihood with respect to β. Under the regularity

conditions in Fahrmeir and Kaufmann (1985), as N → ∞, the Central Limit Theorem implies

that

1√
N

∑N

n=1
sβ(β∗, 0;Wn, Zn)⇒ N (0, V ∗ββ),

where V ∗ββ = Var sβ(β∗, 0;Wn, Zn), and the Law of Large Numbers implies that

plim
1

N

∑N

n=1
Sββ(β∗, 0;Wn, Zn) = H∗ββ ,
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a positive definite matrix. Therefore,

√
N(β̃ − β0)⇒ N (β∗ − β0, (H∗ββ)−1V ∗ββ(H∗ββ)−1).

A characterization of the asymptotic bias β∗ − β0 is given in Appendix B.

If the imputations are valid, then the restriction that δ = 0 is valid, so the fill-in ML estimator

β̃ is consistent and asymptotically more precise than the complete-case ML estimator β̂, that is

AV (β̃)−1 −AV (β̂)−1 ≥ 0.

In this case, the asymptotic variance of the fill-in ML estimator is equal to the inverse of the

Fisher information. Thus,

AV (β̃)−1 −AV (β̂)−1 = I0βδI0−1δδ I
0
δβ ,

which is a nonnegative definite matrix.

Appendix B. Asymptotic bias of the fill-in ML estimator

In this appendix, we focus on a GLM with canonical inverse link function in order to charac-

terize the asymptotic bias of the fill-in estimator of β in terms of the imputations. To keep the

notation simple, we drop the subscript n and only consider the case of a constant term and two

covariates X1 and X2. Without loss of generality, we focus on the components of the asymptotic

bias arising from one of the possible missing-data pattern, namely the case when X1 is missing,

X2 is fully observed, and the missing values of X1 are replaced by the imputations L1.

In this case, asymptotically, the fill-in ML estimator of β solves the following system of first-

order conditions
E [Y − h(β∗0 + β∗1L1 + β∗2X2)] = 0,

E [L1(Y − h(β∗0 + β∗1L1 + β∗2X2))] = 0,

E [X2(Y − h(β∗0 + β∗1L1 + β∗2X2))] = 0,

where the β∗k = βk + δk are the pseudo-true parameter values, the βk are the true parameter

values, and the δk are the asymptotic biases, k = 0, 1, 2. Approximating h(β∗0 +β∗1L1 +β∗2X2) by

a first-order Taylor expansion around the true linear index η = β0 + β1X1 + β2X2 and noticing

that E[Y − h(η)] = E[X2(Y − h(η))] = 0, we can rewrite the system of asymptotic first-order

conditions as
δ0m0 + β1(m̃1 −m1) + δ1m̃1 + δ2m2 ' 0,

m̃1u − δ0m̃1 − β1(m̃11 − m̃∗11)− δ1m̃11 − δ2m̃12 ' 0,

δ0m2 + β1(m̃12 −m12) + δ1m̃12 + δ2m22 ' 0,
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where m0 = E[h′(η)], mk = E[h′(η)Xk] (k = 1, 2), and m̃1 = E[h′(η)L1] are weighted first-

order moments, and m̃1u = E[L1(Y − h(η))], m̃11 = E[h′(η)L2
1], m12 = E[h′(η)X1X2], m̃12 =

E[h′(η)L1X2], m22 = E[h′(η)X2
2 ], and m̃∗11 = E[h′(η)X1L1] are weighted uncentered second-

order moments. Solving this system with respect to the components of the asymptotic bias

gives

δ0 '
{

(c̃1c22 − c2c̃12)c̃1u − β1
[
(c̃1c22 − c2c̃12)∆11 + (c̃1c̃12 − c2c̃11)∆12 − ρ̃212∆1

]}
/ρ̃212,

δ1 ' − [c22c̃1u − β1(c22∆11 − c̃12∆12)] /ρ̃212,

δ2 ' [c̃12c̃1u − β1(c̃12∆11 − c̃11∆12)] /ρ̃212,

(9)

where ck = mk/m0 and c̃1 = m̃1/m0 are rescaled first-order moments, c̃11 = m̃11/m0−(m̃1/m0)2,

c22 = m22/m0 − (m2/m0)2, c̃12 = m̃12/m0 − m̃1m2/(m0)2, and c̃∗11 = m̃∗11/m0 −m1m̃1/(m0)2

are weighted variances and covariances, c̃1u = m̃1u/m0 is the weighted covariance between L1

and the generalized residual U = Y − h(η), ρ̃212 = c̃212 − c̃11c22 is the coefficient of correlation

between L1 and X2, and ∆1 = c̃1 − c1, ∆11 = c̃11 − c̃∗11 and ∆12 = c̃12 − c12 are the differences

between the moments of the true and the imputed covariates.

The asymptotic bias of the fill-in ML estimator of β then depends on the asymptotic cor-

relation between the imputations and the generalized residual, and on the differences between

the weighted first- and second-order moments of the true and the imputed covariates. A suffi-

cient condition for the asymptotic bias to vanish is that the moments of the joint distribution

of (Y,L1, X2) converge to the moments of the joint distribution of (Y,X1, X2). If this condition

holds, then m̃1u, ∆11 and ∆12 converge to zero and β̃ is a consistent estimator of β. In general,

the fill-in ML estimator of β is consistent if the moments of the joint distribution of (Y j ,W j)

converge to the moments of the joint distribution of (Y j ,Xj), j = 1, . . . , J .

For a GLM with non-canonical inverse link function, the approximation to the asymptotic bias

is more complex because it involves the additional terms resulting from the first-order Taylor

expansion of v(η). The presence of these additional terms, however, does not change the sufficient

condition for consistency of the fill-in ML estimator.

In the linear regression case, our approximation to the asymptotic bias of the fill-in ML

estimator coincides with expressions for the asymptotic bias of the OLS estimator given in

(Dardanoni et al., 2011, p. 364). Assume for simplicity that all variables have been standardized

to have zero means and unit variances. Also assume, as in Dardanoni et al. (2011), that the

imputations are asymptotically uncorrelated with the regression error, so c̃1u = 0. Then the
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asymptotic biases of the OLS estimators of β1 and β2 are given by

δ1 = (Γ1 − 1)β1, δ2 = ∆1β1,

where

Γ1 =
c̃∗11 − c12c̃12

1− c̃212
, ∆1 =

c12 − c̃∗11c̃12
1− c̃212

,

are the coefficients in the best linear predictor of X1 given L1 and X2. In the linear regression

case, where h(·) is the identity function, m0 = 1 and the approximations in (9) are exact because

no Taylor expansion is needed. In this case, after imposing the restrictions c̃1u = 0, c̃11 = 1 and

c22 = 1, the asymptotic bias of the ML estimators of β1 and β2 reduces to

δ1 =

(
c̃∗11 − c12c̃12

1− c̃212
− 1

)
β1, δ2 =

c12 − c̃∗11c̃12
1− c̃212

β1.
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