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Abstract

We consider a production function model that transforms worker inputs into outputs through

peer effect networks. The distinguishing features of this production model are that the network

is formal and observable through worker scheduling, and selection into the network is done by a

manager. We discuss identification and suggest a variety of estimation techniques. In particular,

we tackle endogenity issues arising from selection into groups and exposure to common group

factors by employing a polychotomous Heckman-type selection correction. We illustrate our

method using data from the Syracuse University Men’s Basketball team, where at any point in

time the coach selects a lineup and the players interact strategically to win games.
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1 Introduction

Endogeneity in production function estimation is not a new issue. Endogeneity of inputs can arise

for a variety of reasons: input measurement error, simultaneity of unobservables and inputs, and

endogeneity of "explanatory" outputs in multiple-output distance function analysis (to name a few).

In service industries, these problems are exacerbated in obvious ways. However, one could imagine

that the main challenge in estimating a service production function is the speci�cation of the function

itself. In particular, the way that labor is transformed into output may be unclear. Production

in a service industry is typically not "serial" as it might be on a manufacturing assembly line,

where productivity of worker A may only a¤ect the productivity of worker B, who (in turn) only

a¤ects worker C.1 Service industries may be characterized by teams of workers whose individual

productivities are interrelated in complex ways and (in particular) through networks. Consider an

architectural �rm which simultaneously produces design plans for a variety of projects with teams

of architects and draftsmen, who may work across multiple projects in a given workday. In this

setting worker interrelatedness may be determined by networks established by a single manager, who

assigns workers to teams based on both observable and unobservable characteristics of workers. This

implies formal and measurable time-varying networks which may be endogenous due to selectivity.2

Understanding network e¤ects in production may be important for worker scheduling and design of

worker incentive schemes.

The purpose of this paper is to specify an econometric model that incorporates peer e¤ects on

worker productivity (output).3 That is, a worker�s productivity is a function of the productivities

of the co-workers on her team, where teams are assigned by managers. Individual team members

interact through time-varying interaction schemes which serve as proxies for the managerial decision

and which function as the mechanism for group formation and individual interrelatedness. In most

econometric network models, selection into groups is as much an individual choice as is the behavior

that stems from a given network structure.4 In this setting endogeneity problems may arise if the

1This is not to suggest that a manufacturing process could not be more complicated, but the traditional assembly
line process possesses this feature.

2There may also be informal networks, but they are not the focus here. Informal networks may arise through
a principle-agent problem of imperfect montioring. A manager may order a worker to split her time evenly on the
two projects, but she may not, in practice. An alternative way to conceptualize this phenomenon is that the formal
network is measured with error.

3Peer e¤ects have been indicated as one of the main empirical determinants of several important social phenomena
(see Jackson and Zenou, 2013, part III, for a collection of recent studies ).

4Some studies exploit random assignement. For example, in lab experiments or (infrequently) in �eld experiments
a scientist or social planner determines groupings (see, e.g., Falk and Ichino, 2006, or Guryan et al., 2009).
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model does not account for unobserved individual characteristics driving both network formation and

behavior over networks. We consider the unique situation where a manager selects workers into teams

(networks) to produce output, and we call this model a Network Production Function Model. In the

model, network connections are captured by a binary adjacency matrix, where adjacency is speci�ed

as a binary indicator of team membership. The salient feature of this model is that team membership

is perfectly observable.5 ;6 In this model, the manager�s selection decisions depend on the combination

of individual characteristics at the team level, rather than individual-level characteristics. Such

team-level factors contribute to the so called "correlated e¤ects" (Manski, 1993), which could be

confounded with peer e¤ects and lead to identi�cation problems.

We use a polychotomous Heckman-type correction to address this problem in the context of

production networks. In team projects, the probability of selecting a worker for the project is not

independent across workers. We exploit this interdependency for the identi�cation and estimation

of peer e¤ects in network production functions. This is the main contribution of the paper.

More speci�cally, we consider productivity of a single project, involving a two-stage process.

First, the manager chooses a team (lineup) of m workers (m is predetermined) from a population

of n workers to work on the project of interest. Residual workers are assigned to other projects.7

Next, workers work on the project to produce output for a given time period. For the population of

n workers, the n� n adjacency matrix across all projects is potentially endogenous. By focusing on

a single project of interest, we have an m�m submatrix of the adjacency matrix which is exogenous

conditional on selection into the speci�c project. Thus, the network endogeneity is reduced to a

selectivity bias, which can be corrected using a �xed e¤ect estimator or a polychotomous Heckman-

type bias correction procedure due to Lee (1983) and Dahl (2002).8

The resulting selectivity bias term is an inverse mills ratio (in the case of the Lee�s parametric

estimate) or a single index (in the case of the Dahl�s semi-parametric estimate), varies across lineups

and time, and can be interpreted in two interesting ways. First, it can be thought of as a �xed e¤ect

5Manski (1993) suggests that it is not possible to identify network e¤ects if researchers do not know how networks
or reference groups are formed by individulas in the network.

6 It is also possible for adjacency to be measured as cumulative time that individuals worked together on a project.
This would be directly measurable from time-cards, but we do not explore it here.

7We note that, in any period the n �m residual workers are assigned to other projects, and lags of the output
from these projects (as well as the project of interest) are treated as explanatory variables in the output and selection
equations. In this sense our speci�cation is not unlike the multiple-output distance function (Fare and Primont, 1990)
where a single output is modeled as functions of the remaining outputs.

8 It is also interesting to note that the word "lineup" evokes an image of workers standing in a line. Our notion
of lineup allows us to abstract from the complicated endogenous network for all the workers to a simple, �xed and
complete network of workers in a project.
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that purges and quanti�es the correlated e¤ects of Manski (1993). That is, Manski noted that there

may be unobserved e¤ects, "wherein individuals in the same group tend to behave similarly because

they have similar individual characteristics or face similar institutional environments."9 In this case

the group is the observed lineup, and the "institutional environment" is the manager�s selection

of the lineup into the project of interest. In this sense we use Heckman (1979) to solve Manski�s

correlated e¤ects problem. In fact, in terms of estimation, we employ a �xed e¤ect estimator in

the style of Lee (2007) that di¤erences out the correlated e¤ect. Second, the selection bias term

is loosely interpretable as managerial competence or e¢ ciency. That is, all things being equal and

averaging out luck, it is the manager�s lineup selection that produces any unobserved team e¤ect

and, hence, variability of worker output. This is similar to the notion of ine¢ ciency in the stochastic

frontier literature (Aigner et al., 1977; and Meeusen and van den Broeck, 1977), so our selectivity

bias term can be thought of as e¢ ciency if it increases output and as ine¢ ciency if it lowers it. Also,

insofar as our bias term may be estimated from a �rst-stage selection equation, it is interpretable as

x-e¢ ciency in the stochastic frontier literature (Alvarez et al., 2006).10

Our empirical example is the network production function for college basketball. While this may

only loosely represent a service industry production process, it is su¢ cient for the purpose of illus-

tration. In this setting there are n players on a team engaged in two projects at any given period

of time: �ve players interact to produce o¤ense and defense, and n � 5 players sit on the bench

to produce rest (which is inversely correlated with fatigue).11 Our measure of active player pro-

ductivity is e¢ ciency, which aggregates time-averaged performance statistics on points, rebounds,

blocks, steals, misses, assists, and other measures of o¤ensive and defensive activity for each player.

We include a measure of lagged fatigue as an explanatory variable to control for the productivity

of benched players. Our data are all player substitutions during the regular 2011-2012 season of

the Syracuse University men�s college basketball team. We �nd statistically signi�cant positive pro-

duction spillovers across players in the same category (guards or forwards), but insigni�cant e¤ects

across players in di¤erent categories. When selectivity bias is taken into account, our estimate of

peer e¤ects in productivity is 0.0534. That is, a one unit increase in the average e¢ ciency of the

other active guards (forwards) induces a 0.0534 increase in the e¢ ciency of an individual guard

9Manski (1993) page 533.
10More generally, it is interpretable as another source of heterogeneity. However, it is still interesting to speculate

on the ways it may embody (in)e¢ cienecy.
11We take the managerial decisions and performance of the opposing team as exogenous. In this sense our notion

of strategic equlibrium is only partial.
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(forward) once selectivity bias taken into consideration.

The rest of the paper is organized as follows. The next section reviews the related literature, while

highlighting the contribution of our paper. Section 3 introduces the econometric speci�cation of a

network production model, while Section 4 considers the speci�cation and estimation of a network

production model with selectivity. Section 5 provides an empirical example, using data from the

2011-12 Syracuse University Men�s basketball team. Section 6 concludes.

2 Related Literature

Our paper lies at the intersection of di¤erent literatures. We brie�y review them below, while

highlighting our contribution.

2.1 Econometrics of network models

A number of papers have dealt with the identi�cation and estimation of peer e¤ects with network data

(see Blume et al., 2011 for an excellent survey). There are three main methodological approaches.

(i) The network is assumed exogenous. Identi�cation relies on network topology and estimation is

performed using 2SLS or GMM. The possible presence of unobserved factors responsible for network

endogeneity is treated by network �xed e¤ects (see, e.g., Lee, 2007; Bramoullé et al., 2009; Calvó-

Armengol et al., 2009; Lee et al., 2010; Liu and Lee, 2010).

(ii) Self-selection of individuals into groups is explicitly taken into account. A selection equation

based on individual decisions is added in approach (i) to treat possible network endogeneity. An

individual-level selection correction term is then added in the outcome equation. This approach is

considered in Liu et al. (2012).

(iii) Parametric modeling assumptions and Bayesian inferential methods are employed to inte-

grate a network formation model with the model of behavior over the formed networks. The selection

equation is based on individual decisions as in approach (ii). The network formation and the outcome

equation are estimated jointly (see, e.g., Mele, 2013; Goldsmith-Pinkham and Imbens, 2013; Hsieh

and Lee, 2013).

In our network production function model selection is done by a social planner (manager), rather

than being the result of individual decisions. Hence, the possible network endogeneity can be treated

by a group-level selection correction term. We show in this paper that the group-level selection

correction term can either be treated as a group �xed e¤ect as in approach (i) or be directly estimated

as in approach (ii). Either approach is computationally simple, and thus we do not rely on Bayesian
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methods.

2.2 Network e¤ects in productivity

There is a limited literature on networks in production processes. Guryan et al. (2009) consider

performance of professional gol�ng pairs, but their parings are randomly assigned and the pairings

are competitors not teammates. Bandiera et al. (2009) analyze the productivity of fruit pickers,

but their networks are based on worker characteristics, and not on managerial formation of teams.

Mas and Moretti (2009) consider peer e¤ects in the performance of supermarket cashiers, but do

not speci�cally employ teams or networks in their analysis. Hamilton et al. (2003) analyze the e¤ect

of teams on clothing manufacturing, but do not exploit team composition in a network analysis

framework. In all these studies, when production networks or pairings are employed, they are

assumed exogenous. Here, we specify a model where endogeneity is assured but replaced with

team-level selectivity bias, which can be corrected using a �xed e¤ect estimator or a polychotomous

Heckman-type bias correction procedure.

2.3 Production function literature

Our focus is a single �rm where the unit of observation is the worker who is observed over time.

This is in contrast to the spatial production function work of Druska and Horrace (2004) or Glass

et al. (2013), where the unit of observation is the �rm, and exogenous networks are conceptualized

as output/input spillovers across �rms (or countries) measured as geographic distances or contiguity

in a spatial estimation framework, and where consistency arguments are for large numbers of �rms

(or countries). In these papers it is not easy to conceptualize the network (spillover) mechanism

or to argue that the adjacency matrix is the correct proxy for the mechanism.12 In our case (the

single �rm) the network mechanism is clearly based on labor force peer-e¤ects (e.g., Kandel and

Lazear, 1992), and the adjacency matrix, based on the manager�s assignments, would seem to be

an excellent proxy for this mechanism.13 The downside to our approach is that employee-level

data (administrative data) may not be available to the econometrician. However, the methods

considered herein could be used by managers, and the data available to them on employee and

project characteristics would be quite detailed. Fortunately for us, the econometric model is also

12 In their defense Druska and Horrace�s distance and contiguity networks are a proxy for infrastructure (roads
and bridges) on the island of Java. They �nd strong output spillovers across rice farms in the dry season and weak
spillovers in the rainy season, when travel between villages on the island may be di¢ cult.
13Manski (1993) argues that the spatial correlation model "makes sense in studies of small-group interactions, where

the sample is composed of clusters of friends, co-workers, or household members... But it does not make sense in
studies of neighborhood and other large-group e¤ects, where the sample members are randomly chosen individuals."
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suited for estimation of peer e¤ects in sports teams, where all networks (the coach�s decisions)

are observed and where performance is directly measurable by the econometrician. Therefore, we

illustrate our model using data from the Syracuse University Men�s College Basketball team.

3 A General Network Production Model

Consider a �rm with n workers and a manager that allocates workers to various projects (peer

groups) in each time period t = 1; ::; T . The number and composition of projects is unimportant

to the econometric speci�cation, but they may have implications for identi�cation and estimation.

When the manager allocates workers to projects she explicitly speci�es an n � n adjacency matrix

which determines the interrelatedness of the workers�productivity. Let the adjacency matrix be

denoted by Aot = [a
o
ij;t], where a

o
ij;t = 1 if workers i and j are assigned to the same project in period

t and aoij;t = 0 otherwise. We set aoii;t = 0. Let the row-normalized Aot be At = [aij;t], where

aij;t = a
o
ij;t=

Pn
k=1 a

o
ik;t.

14 Then productivity of the worker i in period t is given by

yit = �
Pn

j=1 aij;tyjt + xit� + uit: (1)

In this model, the dependent variable yit is the productivity of worker i in period t. The termPn
j=1 aij;tyjt is the average productivity of worker i�s co-workers assigned to the same project as i in

period t, with its coe¢ cient � capturing the peer e¤ect. xit is a 1�kx vector of exogenous variables.

uit is the regression disturbance. In matrix form, (1) can be written as

Yt = �AtYt +Xt� + Ut; (2)

where Yt = (y1t; � � � ; ynt)0, Xt = (x01t; � � � ; x0nt)0, and Ut = (u1t; � � � ; unt)0.

If we assume that At is exogenous so that E(UtjAt; Xt) = 0, then model (2) can be estimated

using spatial panel data methods (see Lee and Yu, 2010 for a survey). However, it is reasonable to

believe that the manager may have some information about Ut and her choices of how to allocate

workers to projects may be correlated with Ut. If this is the case, then E(UtjAt; Xt) 6= 0 and At is

endogenous.

To �nd a remedy for the problem of endogenous adjacency matrix, we focus on the workers

allocated to a speci�c project. Let dit be an indicator variable such that dit = 1 if worker is assigned

14For simplicity, we assume no worker is assigned to a project alone so that
Pn
k=1 a

o
ik;t > 0 for all i.

7



to the project in period t and dit = 0 otherwise. Suppose mt workers are allocated to the project.

Then, for worker i assigned to the project (i.e. dit = 1), (1) can be written as

yit = �
1

mt

Pn
j=1;j 6=i djtyjt + xit� + E(uitjDt) + u

�
it; (3)

where Dt = (d1t; � � � ; dnt)0 and u�it = uit �E(uitjDt). By construction, E(u�itjDt) = 0 and, thus, the

weights djt in the peer e¤ect regressor can be considered exogenous. We refer to E(uitjDt) as the

selectivity bias.

Note, as mt is often predetermined (e.g., in sports games, the number of active players mt is

�xed), dit is not independent across i. Hence, in the our econometric model, instead of modeling the

probability of a certain worker is assigned to a project (i.e. Pr(dit = 1)), we consider the probability

of a set of workers (a lineup) is assigned to a project.

4 A Network Model with Selectivity

4.1 The econometric model

In time period t, the manager allocates a lineup of mt workers from a set of n workers to a project.15

Suppose there are qt possible lineups, with a lineup denoted by Ls for s = 1; � � � ; qt. Then, the

manager allocates lineup Ls to the project in period t if and only if d�st > maxr 6=s d
�
rt, where

d�st = �st + �st; for s = 1; � � � ; qt: (4)

In (4), �st is the deterministic component of d�st and �st is a scalar random innovation with zero mean

and unit variance. Let dst be a dummy variable such that dst = 1 if the lineup Ls is chosen to play

in period t and dst = 0 otherwise. Then, dst = 1 if and only if �st < 0 where �st = maxr 6=s d�rt � d�st.

The productivity of lineup Ls in period t is given by the following model

Yst = �WtYst +Xst� + Ust: (5)

In (5), Yst = [yit]i2Ls is an mt � 1 vector of observations on the dependent variable of the workers

in lineup Ls in period t. Wt is a constant weighting matrix given by Wt =
1

mt�1 (1mt
10mt

� Imt
).

WtYst measures the average productivity of a worker�s co-workers in lineup Ls in period t, with

15mt is assumed to be predetermined.
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its coe¢ cient � capturing the peer e¤ect. Xst = [xit]i2Ls is an mt � kx matrix of observations

on kx exogenous variables of the workers in lineup Ls in period t. Ust is an mt � 1 vector of

regression disturbances such that Ust � i:i:d:(0;�). We allow for possible correlation between Ust

and �t = (�1t; � � � ; �qt;t) such that

E(Ustjdst = 1; �t) = �s(�t)1mt
; (6)

where �t = (�1t; � � � ; �qt;t).

A possible speci�cation of Ust that leads to (6) is given by

Ust = �st1mt
+ Vst; (7)

where �st is an i.i.d. time-varying lineup-speci�c error component with mean zero and variance

�2�, and Vst is an mt � 1 vector of i.i.d. random innovations with mean zero and variance �2v. The

error component �st can be interpreted as a random shock in period t that may a¤ect di¤erent

lineups di¤erently. Suppose the manager has some information about the realization of �st but no

information about that of Vst when she chooses a lineup. Then,

E(Ustjdst = 1; �t) = E(�stj�st < 0; �t)1mt
=
R R 0

�1
�stgst(�st; �stj�t)
Pr(�st < 0j�t)

d�std�st1mt
= �s(�t)1mt

;

where gst(�st; �stj�t) is the conditional joint density of �st and �st.16

Let U�st = Ust � �s(�t)1mt . (5) can be written as

Yst = �WtYst +Xst� + �s(�t)1mt
+ U�st: (8)

The selectivity bias �s(�t) introduces a group correlated e¤ect (Manski, 1993) to the model. As

pointed out by Dahl (2002), semi-parametric estimation of � and � along with the unknown function

�s(�) would face the �the curse of dimensionality�due to the presence of a large number of alter-

natives. To make the estimation feasible, restrictions need to be imposed on �s(�). In the following

subsections, we consider three di¤erent approaches for estimation of (8).

16The speci�cation given by (7) is merely an example to motivate the assumption (6). The validity of the proposed
estimators does not rely on this speci�cation.
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4.2 The parametric selection correction approach

Let Fst(�j�t) denote the conditional distribution function of �st � maxr 6=s d
�
rt � d�st. Let �(�) and

�(�) denote the standard normal distribution and density respectively. Lee (1983) suggests using the

transformation Jst(�) � ��1(Fst(�j�t)) to reduce the dimensionality of the selectivity bias. In terms

of Jst(�st), the selectivity bias is given by

E(Ustjdst = 1; �t) = E[UstjJst(�st) < Jst(0); �t]:

Note, by construction, Jst(�st) is a standard normal random variable and its marginal distribution

does not depend on �t. However, the joint distribution of Ust and Jst(�st) may still depend on �t.

As pointed out by Dahl (2002) and Bourguignon et al. (2007), the following assumption is implicitly

imposed in Lee (1983).

Assumption 1 The joint distribution of Ust and Jst(�st) does not depend on �t.

Assumption 1 implies that E[UstjJst(�st) < Jst(0); �t] = E[UstjJst(�st) < Jst(0)]. Furthermore, to

obtain an explicit functional form of the selectivity bias, we make the following assumption that is

widely used in empirical studies.

Assumption 2 Ust and Jst(�st) are i.i.d. with a joint normal distribution given by17

264 Ust

Jst(�st)

375 � N(
264 0

0

375 ;
264 � �121mt

�121
0
mt

1

375): (9)

Given Assumption 2, the selectivity bias is given by

E(Ustjdst = 1; �t) = ��12
�(Jst(0))

Fst(0j�t)
1mt : (10)

Let Pst = Pr(dst = 1j�t) be the probability of choosing lineup Ls in period t given �t. As E(Ustjdst =

1; �t) = �s(�t)1mt
, Jst(0) = ��1(Fst(0j�t)) and Pst = Fst(0j�t), it follows from (10) that

�s(�t) = ��12
�(��1(Pst))

Pst
: (11)

17The likelihood function of the model based on the joint normal distribution (9) is given in Appendix A.
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The transformation using Jst(�) greatly reduces the dimensionality of the multiple index function

�s(�t) because it allows �s(�t) to depend on �t only through Pst with a single unknown parameter

�12. Substitution of (11) into (8) gives

Yst = �WtYst +Xst� � �12
�(��1(Pst))

Pst
1mt + U

�
st: (12)

For the network model, Lee�s approach can be implemented as follows.

Step 1: Let �st = zst
, where zit is a 1 � kz vector of exogenous variables. Then, 
 can be

estimated by maximizing the likelihood function

lnL =
TP
t=1

qtP
s=1

dst lnPst: (13)

It proves convenient to assume that �st is independently and identically Gumbel distributed so that

Pst = exp(zst
)=
Pqt

r=1 exp(zrt
) (McFadden, 1974). Then, 
 can be estimated by a conditional

logit estimator 
̂.

Step 2: With the predicted probabilities P̂st = exp(zst
̂)=
Pqt

r=1 exp(zrt
̂) obtained in the �rst

step, we consider the feasible counterpart of (12)

Yst = �WtYst +Xst� � �12
�(��1(P̂st))

P̂st
1mt

+ U��st ; (14)

and estimate (�; �0; �12)0 by the two-stage least squares (2SLS) estimator with linearly independent

columns in WtXst as instruments for WtYst. The correct asymptotic covariance matrix of the 2SLS

estimator can be derived in a similar way as in Lee et al. (1980) with appropriate modi�cations.

4.3 The semi-parametric selection correction approach

Dahl (2002) proposes an alternative selection correction approach based on the index su¢ ciency

assumption that the joint distribution of Ust and �st depends on �t only through Pst = Pr(dst =

1j�t). Based on this idea, we impose the following assumption to reduce the dimensionality of the

selectivity bias.

Assumption 3 �s(�t) = �(Pst).

11



Assumption 3 implies that the multiple index selectivity bias E(Ustjdst = 1; �t) depends on �t

only through Pst, and, thus, equation (8) becomes

Yst = �WtYst +Xst� + �(Pst)1mt
+ U�st: (15)

For the parametric approach, Assumption 2 implies that the functional form of �(�) is given by

�(Pst) = ��12�(��1(Pst))=Pst. For the semi-parametric approach, we approximate �(Pst) by series

expansions (see, Andrews, 1991; Newey, 1997) without imposing functional form assumptions on

�(�).

Thus, the semi-parametric selection correction approach can be implemented in a similar two-step

procedure as the parametric approach.

Step 1: We obtain the predicted probabilities P̂st from, say, a conditional conditional logit

regression.

Step 2: We replace �(Pst) in (15) by its (feasible) series approximation
PK

k=1 �kbk(P̂st), where

the functions bk(�) are referred to as the basis functions,18 and estimate (�; �0)0 together with the

series expansion coe¢ cients �k by the 2SLS estimator with linearly independent columns in WtXst

as instruments for WtYst.19

4.4 The �xed-e¤ect approach

From a di¤erent perspective, the selectivity bias �s(�t) in (8) can be considered as a time-varying

lineup-speci�c �xed e¤ect. To avoid estimating the unknown function �s(�), we can apply a within

transformation to eliminate this term from (8).

Suppose Xst = [X1;st; 1mtx2;st], where X1;st is anmt�k1 matrix of observations on k1 individual-

varying exogenous variables and x2;st is a 1 � k2 vector of individual-invariant exogenous variables

(k1 + k2 = kx). Then, equation (8) can be written as

Yst = �WtYst +X1;st�1 + 1mtx2;st�2 + �s(�t)1mt + U
�
st: (16)

Let Qt = Imt � 1
mt
1mt

10mt
denote the within-transformation projector. Then, as Qt1mt

= 0 and

18Dahl (2002) �nd similar results in his application using either polynomial or Fourier series as basis functions.
19For consistency and asymptotic normality, the number of basis functions should increase with the sample size

(see, Andrews, 1991; Newey, 1997). In practice, the number of basis functions is chosen by the researcher.
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QtU
�
st = QtUst, pre-multiplication of (8) by Qt gives

QtYst = �QtWtYst +QtX1;st�1 +QtUst: (17)

Then, � and �1 can be estimated from the within model (17) by the conditional maximum likelihood

(CML) approach in Lee (2007).20

The �xed-e¤ect approach does not impose any restrictions on �s(�t). However, given the special

structure of the weighting matrix Wt, the workers in the chosen lineup form a complete network.

The within transformation may cause an identi�cation problem similar to the one studied in Lee

(2007). This can be seen from the reduced form equation of (17). Suppose j�j < 1, then it follows

from (5) that

Yst = (Imt
� �Wt)

�1X1;st�1 + (Imt
� �Wt)

�1Ust: (18)

ForWt =
1

mt�1 (1mt
10mt

�Imt
), we have Qt(Imt

��Wt)
�1 = mt�1

mt�1+�Qt. Therefore, pre-multiplication

of (18) by Qt gives

QtYst =
mt � 1

mt � 1 + �
QtX1;st�1 +

mt � 1
mt � 1 + �

QtUst: (19)

From (19), we can see that the within model (17) can be identi�ed if mt varies over t. On the other

hand, if mt = m for all t, then the peer e¤ect coe¢ cient � cannot be identi�ed from �1 after the

within transformation.

To identify the peer e¤ect whenmt = m for all t, we need to introduce some exclusion restrictions.

One possibility is to introduce heterogenous peer e¤ects. Let W o
1s = [w

o
ij;1s] be an adjacency matrix

with woij;1s = 1 if the ith and jth workers in the lineup s are of the same type and w
o
ij;1s = 0 otherwise.

Let W o
2s = [w

o
ij;2s] be an adjacency matrix with w

o
ij;2s = 1 if the ith and jth workers in the lineup s

are of di¤erent types and woij;2s = 0. By construction,
1

m�1 (W
o
1s +W

o
2s) = W � 1

m�1 (1m1
0
m � Im).

Let W1s and W2s be row-normalized W o
1s and W

o
2s respectively, such that W1s1m =W2s1m = 1m.21

20The CML estimator is consistent and asymptotically normal as in Lee (2007) as the sample size
PT
t=1mt goes

to in�nity.
21Sometimes, W 0

s1 (or W
0
s2) may have a row of zeros. For example, if worker i has no co-worker of the same type in a

lineup, then woij;1s = 0 for all j. Then, the corresponding row ofWs1 (orWs2) is also zero. As a result, Ws11mt 6= 1mt

(or Ws21mt 6= 1mt ), and the likelihood function cannot be derived for the transformed dependent variable QtYst (see
Liu and Lee, 2010). In this case, the model after within transformation given by (21) can be estimated by the GMM
approach in Liu and Lee (2010).
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Then, (16) can be generalized to a model with heterogenous peer e¤ects given by

Yst = �1W1sYst + �2W2sYst +X1;st�1 + 1mtx2;st�2 + �s(�t)1mt + U
�
st; (20)

where �1 captures the same-type peer e¤ect and �2 captures the cross-type peer e¤ect. Pre-

multiplying (20) by Q = Im � 1
m1m1

0
m, we have

QYst = �1QW1sYst + �2QW2sYst +QX1;st�1 +QUst: (21)

As (Im��1W1s��2W2s)
�1 = �1W1s(Im��1W1s��2W2s)

�1+�2W2s(Im��1W1s��2W2s)
�1+Im,

it follows from the reduced form equation of (20) that

QYst = Q(Im � �1W1s � �2W2s)
�1X1;st�1 +Q(Im1

� �1W1s � �2W2s)
�1U�st (22)

= �1QW1s(Im � �1W1s � �2W2s)
�1X1;st�1 + �2QW2s(Im � �1W1s � �2W2s)

�1X1;st�1

+QX1;st�1 +Q(Im1
� �1W1s � �2W2s)

�1U�st

= �1E(QW1sYstjXst; dst) + �2E(QW2sYstjXst; dst) +QX1;st�1

+Q(Im1 � �1W1s � �2W2s)
�1U�st:

Therefore, (�1; �2; �
0
1) can be separately identi�ed if E(QW1sYstjXst; dst), E(QW2sYstjXst; dst), and

columns in QX1;st are linearly independent for some t.

To better understand this identi�cation condition, we consider a special case that �1 = �2 = 0

in the data generating process. In this case, it follows from the reduced form equation of (20) that

E(QW1sYstjXst; dst) = QW1sX1;st�1 and E(QW2sYstjXst; dst) = QW2sX1;st�1. Thus, a necessary

condition for E(QW1sYstjXst; dst), E(QW2sYstjXst; dst), and QX1;st to be linearly independent is

that QW1s, QW2s and Q are linearly independent. Although QW 0
1s +QW

0
2s = (m� 1)QW = �Q,

for the row normalized adjacency matrices W1s and W2s, QW1s, QW2s and Q can still be linearly

independent in general. Therefore, model (21) can be identi�ed. The CML estimator in Lee et al.

(2010) can be easily generalized to estimate (21).

To summarize, for model (16), the �xed-e¤ect approach can be implemented by the following

steps.

Step 1: We estimate the within equation (17) by the CML estimator in Lee (2007).

14



Step 2: We obtain the predicted probabilities P̂st from, say, a conditional logit regression.

Step 3: Let r̂st = 1
m1

0
m(Yst� �̂WtYst�X1;st�̂1), where �̂ and �̂1 are the �rst-step estimates. We

consider the regression

r̂st = x2;st�2 + �(P̂st) + �st; (23)

where the selectivity bias �(P̂st) is either given by ��12�(��1(P̂st))=P̂st in the parametric approach

or approximated by
PK

k=1 �kbk(P̂st) in the semi-parametric approach, and �st is the error term. We

estimate �2 together with the unknown parameters in �(P̂st) by the OLS estimator.

4.5 Comparison of the estimation approaches

Like other Heckman-type two-step selection bias correction procedures, the two approaches proposed

in Sections 4.2 and 4.3 have the advantage of computational simplicity. However, both approaches

impose strong restrictions on the selectivity bias �s(�t) to reduce its dimensionality.22 Furthermore,

because of the endogeneity of the peer e¤ect regressor, the model needs to estimated by the 2SLS

estimator that relies on the existence of valid and relevant instruments. This may be quite challenging

in empirical applications. In our empirical example, for instance, the valid instruments are quite

weak, although we experimented with several sets of instruments. Therefore, the 2SLS estimates

may not be reliable.

On the other hand, the �xed e¤ect approach proposed in Section 4.4 does not impose any

restrictions on the selectivity bias �s(�t). After we eliminate the selectivity bias using the within

transformation, we can use the CML or GMM estimator to estimate the peer e¤ect. The CML and

GMM exploit both linear and quadratic moment conditions, and, thus, may outperform the 2SLS

estimator that only uses linear moment conditions, when the linear moment conditions are weak (see,

Lee et al., 2010; Liu and Lee, 2010). However, as shown in Section 4.4, the within transformation

makes the identi�cation of the peer e¤ect more challenging because the workers in the chosen lineup

form a complete network. In particular, we show that the within equation is not identi�ed if mt

does not vary over time. In this case identi�cation can be achieved by imposing exclusion restrictions

through heterogenous peer e¤ects.

22See Assumptions 1 and 2 for the parametric approach and Assumption 3 for the semi-parametric approach.
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5 An Empirical Illustration

As an empirical illustration, we estimate a network production function for a basketball team, where

a coach selects lineups of players over the course of a game. As the valid instruments turn out to be

quite weak in the empirical example, with the �rst stage F statistic lower than 5 (J. and Yogo, 2005),

estimators that leverages 2SLS may not be reliable for this data. Hence, we use the �xed e¤ect

estimation approach. As the number of active players is constant over time (i.e., mt = m), we split

players into two types, guards and forwards, to identify the peer e¤ects. We detail the application

of the �xed e¤ect estimator for the speci�cation considered in the empirical example in Appendix

B.

5.1 Data

Our data are for the Syracuse University Men�s Basketball team over the 2011-2012 season. The

team played 33 games during the regular season (we exclude March Madness games). We de�ne

a time period as the time interval between two consecutive substitutions.23 We removed overtime

periods from the data, since the manager�s allocation strategy may be di¤erent in overtime. We

removed time periods of less than 30 seconds, since there might not be enough observations on

players�productivities in those extremely short periods. We thus observe 79 di¤erent lineups (of 5

active players) over 448 time periods, in total 2,240 observations.24

There are two outputs in a basketball game: the production of o¤ense/defense (some measure

related to the "on court" productivity of active players) and rest (players sitting on the bench).25

We take the opposing team�s strategy as exogenous, using only a measure of the team�s Rating

Percentage Index (RPI) from the previous year which we describe below.

5.2 Variable de�nition

The dependent variable Yst of equation (20) is measured using using the e¢ ciency statistic EFFit:

EFFit = (PTit +REBit +ASTit + STLit +BLKit �MFGit �MFTit � TOit)=Minsit
23Our time periods have irregular length.
24An important problem, which is common to most existing empirical studies, is a possible misspeci�cation of the

network structure. The main threats are sampling issues due to the fact that only a subset of connections are observed
(see, e.g., Chandrasekhar and Lewis, 2011; Lin, 2013; Liu et al., 2013). In our case, the coach selects lineups to produce
output, so that networks are accurately measured.
25 It could be argued that there a multiple o¤ensive outputs (points, rebounds, assists, etc.) and multiple defensive

outputs (steals, blocks, rebounds, etc.). However our purpose is to illustrate the econometric contribution, and not
to perform a comprehensive empirical analysis.

16



where PTit is points, REBit is rebounds, ASTit is assists, STLit is steals, BLKit is blocks, MFGit

is missed �eld goals, MFTit is missed free throws, TOit is turn overs, and Minsit is minutes played

for player i in period t.26 These are period-by-period statistics and not season-long aggregates.

Over the course of the entire season and across players the average e¢ ciency is 0.37 with a standard

deviation of 1.07, a minimum of -3.75, and a maximum of 8.28. This is not calculated when a player

is on the bench.

The individual-varying exogenous variables in the main equation (the X1;st�s) are Experienceit

and Fatigueit. Experienceit is minutes played from the start of the game to the end of period t�1.

It has and average of 9.91 minutes, a standard deviation of 7.81, a minimum of 0, and a maximum

of 37.58 minutes. For active player i in period t� 1, Fatigueit is minutes continuously played until

the end of period t� 1; for inactive players in period t� 1, fatigue is 0. The average fatigue across

the entire season is 3.78 minutes with a standard deviation of 5.09 minutes. The high variance is

due to the fact that there are players who almost always continuously play and those who almost

never play.

The exogenous variables that do not vary over i in the main equation (the x2;st�s) are the opposing

team�s Rating Percentage Index (RPIt), Homet, a dummy variable equal to 1 if the game is played

in the Syracuse University Carrier Done (two-thirds of the games were played at home in the 2011-

2012 season), and 2nd-Halft, a dummy variable equal to 1 if the current period is in the second

half of the game. The rating percentage index is one of the systems used to rank NCAA teams and

is based on a teams wins, losses and its strength of schedule. This system has been in use in college

basketball since 1981 to aid in the selecting and seeding of teams appearing in the 68-team men�s

tournament (March Madness). The index is based on a team�s winning percentage, its opponents�

winning percentage, and the winning percentage of those opponents�opponents. For the teams in

our data the average RPI from the 2010-11 season is 0.55 with a standard deviation of 0.08.

The exogenous variables in the selection equation are lineup-level aggregations of variables from

the main equation. Lineup-efficiencyst is the total e¢ ciency score of the lineup s from the start

of the game until the end of period t � 1. It has an average of 1.63 and a standard deviation of

1.22. Lineup-experiencest is the total minutes played by the lineup at the end of period t � 1. It

has an average of 49.57 minutes and a standard deviation of 34.03 minutes. Lineup-fatiguest is

26This assumes equal weights for each individual productive activities. Other weighting schemes could be considered,
but a similar e¢ ciency measure is employed by the National Basketball Association to rank player productivity, so
we use it as a matter of convenience.
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the total minutes continuously played by the lineup at the end of period t� 1. It has an average of

18.92 minutes and a standard deviation of 14.06 minutes. Lineup-foulsst is the total fouls by the

lineup at the end of period t � 1. It has an average of 3.13 fouls and a standard deviation of 2.77

fouls. One-substitutiont is a dummy variable equal to 1, if one player was substituted to achieve

the lineup at time t. It has an average of 0.68 and a standard deviation of 0.46. Two-substitutiont

is a dummy variable equal to 1, if two players were substituted to achieve the lineup at time t. It

has an average of 0.22 and a standard deviation of 0.42. The omitted category is three or more

players were substituted. Variable de�nitions and descriptive statistics are summarized in Appendix

C (Table C.1).

5.3 Estimation results

5.3.1 Results without selectivity bias correction

Let us start by presenting the ML estimation results without accounting for selectivity bias (Lee,

2004). As the number of time periods (T = 448) is much larger than the number of players in

the Syracuse University Men�s Basketball team (n = 19), we can use player dummies to control for

unobserved player-speci�c characteristics. Results are contained in Table 1.

[insert Table 1 here]

Model 1 considers the benchmark outcome equation (5) with homogenous peer e¤ects.27 The

estimation results are reported in column 1 of Table 1. In line with expectations, it appears that

player�s experience is positively correlated with his productivity (0:0154 e¢ ciency units per minute

played), and the e¤ect of fatigue is negative (�0:0083 e¢ ciency units per minute continuously

played), although it is not statistically signi�cant. The quality of the opposing team plays a strong

role in decreasing player�s productivity (statistically signi�cant �1:1677), and the second-half of a

game seems to be less productive that the �rst half (signi�cant �0:2159). Peer e¤ects in productivity

appear positive and statistically signi�cant. In terms of magnitude, an unit increase in the average

e¢ ciency of the teammates induces a 0:0841 increase in the e¢ ciency of the individual player.

Model 2 of Table 1 considers heterogenous peer e¤ects. We split players into two types, guards

and forwards (no di¤erentiation of centers from forwards), and distinguish between peer e¤ects

arising from "same-type" teammates and peer e¤ects arising from "cross-type" teammates. The

estimation results are reported in column 2 of Table 1. It appears that the peer e¤ects are mostly
27We assume normality of the error distribution so that Ust � i:i:d:N(0; �2Im):
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due to interactions between players of the same type. The same-type peer e¤ect is 0:0638 (signi�cant)

and the cross-type peer e¤ect is 0:0345 (insigni�cant). It appears that once we condition on observed

and unobserved player characteristics, there are no endogenous e¤ects at work between players of

di¤erent types.

Model 3 of Table 1 is the restricted heterogenous peer e¤ects where we only consider the same-

type peer e¤ect. The estimation results reported in column 3 of Table 1 remain roughly unchanged

from Model 2.

5.3.2 Results with selectivity bias correction

As explained in Section 4.4 and detailed in Appendix B, the �xed-e¤ect approach can be implemented

in three steps. First, we use a within transformation to eliminate selectivity bias and estimate the

transformed outcome equation by the CML approach (detailed in Section B.2). Covariates that do

not vary at the individual level (RPI, Home and 2nd-Half) are eliminated by the within group

transformation. As the number of active players is constant over time (i.e. mt = m), the transformed

outcome equation is not identi�ed for Model 1. Hence, we have to exploit heterogenous peer e¤ects

to achieve identi�cation. The �xed-e¤ect CML estimation results are reported in Table 2.

[insert Table 2 here]

With both same-type and cross-type peer e¤ects in Model 2, the peer e¤ects are not signi�cant

due to multicollinearity of those two e¤ects in our data. When we only consider the same-type peer

e¤ect in Model 3, the peer e¤ect is positive and statistically signi�cant, but lower in magnitude than

the corresponding estimate in Table 1 without selectivity bias correction. In line with the estimates

in Table 1, a player�s experience is positively associated with her performance. The e¤ect of fatigue

is negative and becomes statistically signi�cant once selectivity bias is corrected. Furthermore, the

likelihood ratio test (test statistic is 0:96) fails to reject the restriction that cross-type peer e¤ect is

zero at conventional signi�cance levels.

[insert Table 3 here]

Table 3 reports the second step conditional logit estimation of the selection equation.28 The

estimates reveal the factors that are important when the coach selects the lineup. In particular, the

28To reduce the total number of alternatives, we restrict the set of possible lineups to the lineups that actually
employed by the coach in a game.
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past productivity, fatigue and number of fouls of the players in a lineup play important roles in the

coach�s lineup choices.

[insert Table 4 here]

Table 4 reports the third step, where the e¤ects of the individual-invariant regressors are recovered

and the selectivity bias is estimated. The estimation procedure is detailed in Section B.3. For the

parametric approach, the joint normality assumption (9) implies the selectivity bias has a speci�c

functional form (11) with a single unknown parameter �12. For the semiparametric approach, the

selectivity bias is approximated by a series expansion. For the parametric approach, the estimate of

�12 is insigni�cant. When parametric restrictions are removed, the Wald test suggests the coe¢ cients

of the series expansion are jointly signi�cant and hence selection does play a role in the outcome

equation. The estimated e¤ects of the individual-invariant regressors are in line with the estimates

in Table 1 except the coe¢ cient of the home game dummy is now positive.

6 Conclusion

This paper makes contributions to both the network and production function literatures. The pro-

posed network production function mitigates traditional problems in the identi�cation and estima-

tion of peer e¤ects, including endogenous network formation and network topology misspeci�cation.

In our proposed model, the network is (and peer groups are) well-de�ned, and selection into groups

is not an individual choice but the decision of a manager (social planner) who has historical infor-

mation on the observable and unobservable characteristics of the workers. This allows selection into

a single project to be at the team-level, and allows the network structure to be �xed by the manager

(predetermined for the workers), who selects teams (lineups) into the set structure. The selection

process can be modelled in a Heckman-type framework (Heckman, 1979). Being at the team level,

the selection correction term captures the "correlated e¤ects" of Manski (1993). Thus, our approach

tackles in a single step the selection and the corrected e¤ects problems in the network literature.

The solution comes at a cost of the need for administrative data on each worker�s history which may

not be readily available.

Regarding the production function literature, our analysis considers issues related to the esti-

mation of managerial e¢ ciency (the managerial selection bias correction term), the determinants of

e¢ ciency through the selection equation, and multi-output (project) distance functions.
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Our empirical example suggests that peer e¤ects exist among players in a basketball game and

that a selectivity bias correction matters.
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Appendices

A The Likelihood Function under Joint Normality

If Ust � N(0;�), the density function of Yst is

f(Yst) = (2�)
�mt=2j�j�1=2jI � �Wtj exp(�

1

2
(Yst � �WtYst �Xst�)0��1(Yst � �WtYst �Xst�)):

Furthermore, if Ust and Jst(�st) are i.i.d. with a joint normal distribution given by (9), the conditional

distribution of Jst(�st) given Yst is

Jst(�st)jYst � N(�1210m��1(Yst � �WtYst �Xst�); 1� �21210m��11m):

Then, the log-likelihood function of equations (4) and (5) is given by

lnL =
TP
t=1

ptP
s=1

dst[ln f(Jst(�st)jYst) + ln f(Yst)]

=
TP
t=1

ptP
s=1

dst[ln�(
Jst(zst
)� �1210m��1(Yst � �WtYst �Xst�)p

1� �21210m��11m
)

�mt

2
ln 2� � 1

2
ln j�j+ ln jImt

� �Wtj �
1

2
(Yst � �WtYst �Xst�)0��1(Yst � �WtYst �Xst�)]:

B The Empirical Model and the Fixed E¤ect Estimator

In this appendix, we detail the �xed e¤ect estimator for the speci�cation considered in the empirical

example.

B.1 The empirical model

In the empirical application, we assume the manager chooses lineup s in period t (i.e., dst = 1), if

d�st > maxr 6=s d
�
rt, where

d�st = zst
 + �st; for s = 1; � � � ; qt:

We assume �st is independently and identically Gumbel distributed so that Pst = Pr(dst = 1) =

exp(zst
)=
Pqt

r=1 exp(zrt
).
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The outcome equation of the chosen lineup s in period t is given by

Yst = �1W1sYst + �2W2sYst +X1;st�1 + 1mx2;st�2 + Ust; (24)

where Ust = �st1m+Vst with �st � N(0; �2�) and Vst � N(0; �2vIm). We assume, when the manager

chooses a lineup, she has no information about the realization of individual random innovations Vst

but may has some information about the random shock �st. Thus,

E(Ustjdst = 1; �t) = E(�stjdst = 1; �t)1m = �s(�t)1m;

where �t = (�1t; � � � ; �qt;t) and �st = zst
. Then, the selection bias corrected outcome equation is

Yst = �1W1sYst + �2W2sYst +X1;st�1 + 1mx2;st�2 + �s(�t)1m + U
�
st;

where U�st = Ust � �s(�t)1m. By construction, E(U�stjdst = 1; �t) = 0.

B.2 Estimation of the peer e¤ect

To estimate the peer e¤ect coe¢ cients (�1; �2), we �rst eliminate the selectivity bias using a within

transformation. Premultiplying (24) by Q = Im � 1
m1m1

0
m, we have

QYst = �1QW1sYst + �2QW2sYst +QX1;st�1 +QVst: (25)

To estimate (25), we generalize the CML approach in Lee, Liu and Lin (2010). The transformed

disturbances QVst in (25) are linearly dependent because its variance matrix �2Q is singular. Fol-

lowing Lee, Liu and Lin (2010), we consider an equivalent but more e¤ective transformation. Let

the orthonormal matrix of Q be [P; 1m=
p
m]. The columns in P are eigenvectors of Q corresponding

to the eigenvalue one, such that P 01m = 0, P 0P = Im�1 and PP 0 = Q. Therefore, premultiplying

(24) by P 0 gives

P 0Yst = �1P
0W1sYst + �2P

0W2sYst + P
0X1;st�1 + P

0Vst: (26)

Let �Yst = P 0Yst, �X1;st = P 0X1;st, �Vst = P 0Vst, �W1s = P 0W1sP , and �W2s = P 0W2sP . As
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P 0W1s = �W1sP
0 and P 0W2s = �W2sP

0, (26) can be rewritten as

�Yst = �1 �W1s
�Yst + �2 �W2s

�Yst + �X1;st�1 + �Vst; (27)

where �Vst � N(0; �2vIm�1). Hence, (�1; �2; �01; �2v) can be estimated by maximizing the conditional

likelihood function is given by

lnL =
TP
t=1

qtP
s=1

dst[�
m� 1
2

ln(2��2v) + ln jIm�1 � �1 �W1s � �2 �W2sj

� 1

2�2v
( �Yst � �1 �W1s

�Yst � �2 �W2s
�Yst � �X1;st�1)

0( �Yst � �1 �W1s
�Yst � �2 �W2s

�Yst � �X1;st�1)]:

B.3 Estimation of the selectivity bias

Let rst = 1
m1

0
m(Yst � �1W1sYst � �2W2sYst �X1;st�1). Then,

rst = x2;st�2 + �s(�t) + �st; (28)

where �st = ��s(�t)+�st+ 1
m1

0
mVst. Then, �2 and unknown parameters in �s(�t) can be estimated

from (28) with rst replaced by r̂st = 1
m1

0
m(Yst � �̂1W1sYst � �̂2W2sYst �X1;st�̂1), where (�̂1; �̂2; �̂

0
1)

are the CML estimates. In this appendix, we give the asymptotic covariance of the OLS estimator for

the parametric selection-bias correction approach. The asymptotic covariance of the semiparametric

estimator can be derived in a similar way with appropriate modi�cations (see Dahl, 2002, footnote

24).

Under the joint normality assumption

264 �st

Jst(�st)

375 � N(
264 0

0

375 ;
264 �2� �12

�12 1

375);
we have �s(�t) = E(�stjdst = 1; �t) = E(�stjJst(�st) < Jst(0)) = ��12'(Jst(0)) = ��12'(��1(Pst)),

where '(�) = �(�)=�(�). Hence, (28) can be written as

rst = x2;st�2 � �12'(��1(Pst)) + �st:

Let 'st = '(�
�1(Pst)) and '̂st = '(�

�1(P̂st)), where P̂st = exp(zst
̂)=
Pqt

r=1 exp(zrt
̂) and 
̂ is the
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conditional logit estimator. The (infeasible) OLS estimator of � = (�02; �12)
0 is given by

~� = (
TP
t=1
ĥ0tĥt)

�1
TP
t=1
ĥ0t

qtP
s=1

dstrst = � + (
TP
t=1
ĥ0tĥt)

�1
TP
t=1
ĥ0t

qtP
s=1

dst[�st + �12('̂st � 'st)];

where ĥt =
Pqt

s=1 dst(x2;st;�'̂st). Let Ast = ��1(Pst)'st + '2st and

�t =
qtP
s=1

dst
@'(��1(Pst))

@
0
= �

qtP
s=1

dstAst
1

�(��1(Pst))
(Pst � P 2st)zst:

Let A = diagf
Pqt

s=1 dstAstgt=1;��� ;T , H = (h01; � � � ; h0T )0, and � = (�01; � � � ;�0T )0. We have
p
T (~� �

�)
d! N(0;plim( 1TH

0H)�1
( 1TH
0H)�1), where


 =
1

T
H 0(�2�IT � �212A+ �212��
�0)H;

with �
 = [
PT

t=1

Pqt
s=1 Pst(zst�

Pqt
s=1 Prtzrt)

0(zst�
Pqt

s=1 Prtzrt)]
�1.29 Furthermore, under certain

regularity conditions, we can show that the feasible OLS estimator

�̂ = (
TP
t=1
ĥ0tĥt)

�1
TP
t=1
ĥ0t

qtP
s=1

dstr̂st

is asymptotically equivalent to ~�.

C Data Description

[insert Table C.1 here]

29As Var(�stjdst = 1) = �2���212Ast, �2� can be estimated by �̂
2
� =

1
T

PT
t=1

Pqt
s=1 dstf�̂

2
st��̂212[��1(P̂st)'̂st+'̂2st]g,

where �̂st is the OLS estimation residual.
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Table C.1: Description of Data 

  Label Variable Definition Mean SD Min Max 
y Efficiency Current period efficiency score that is given by 

(points+rebounds+assists+steals+blocks-misses-turnovers)/minutes. 
 

0.37 1.07 -3.75 8.28 

x1 Experience Minutes played from the start of the game till the end of period t-1. 
 

9.91 7.81 0 37.58 

  Fatigue  Minutes continuously played at the end of period t-1. 
 

3.78 5.09 0 37.58 

x2 RPI The previous year RPI of the opposing team. 
 

0.55 0.08 0.38 0.66 

  Home 
 

A dummy variable taking value one if it is a home game. 
 

0.67 0.47 0 1 

 2nd Half A dummy variable taking value one if it is the second half. 
 

0.41 0.49 0 1 

 z Lineup efficiency 
 

The total efficiency score of the players in the lineup from the start of 
the game till the end of period t-1. 
 

1.63 1.22 -2.65 5.04 

 Lineup experience The total minutes played by the players in the lineup from the start of 
the game till the end of period t-1. 
 

49.57 34.03 0 152.78 

 Lineup fatigue The total minutes continuously played by the players in the lineup at 
the end of period t-1. 
 

18.92 14.06 0 91.70 

 Lineup fouls The total number of fouls of the players in the lineup at the end of 
period t-1. 

3.13 2.77 0 15 

       
 One-substitution A dummy variable taking value one if it takes one substitution from 

the lineup in period t-1 to reach this lineup. 
0.68 0.46 0 1 

       
 Two-substitution A dummy variable taking value one if it takes two substitutions from 

the lineup in period t-1 to reach this lineup. 
0.22 0.42 0 1 

Number of observations: 2240; number of periods: 448 



Table 1: ML Estimation of the Outcome Equation without Selectivity Bias Correction 

Dep. Var.: Player Efficiency Model 1 Model 2 Model 3 
Peer effects   0.0841***   
  (0.0279)   
Same-type peer effects    0.0638***   0.0651*** 
    (0.0175)  (0.0175) 
Cross-type peer effects    0.0345  
    (0.0216)  

Experience   0.0154***   0.0154***   0.0156*** 
   (0.0053)  (0.0053)  (0.0053) 
Fatigue  -0.0083  -0.0084  -0.0083 
   (0.0059)  (0.0058)  (0.0058) 
RPI  -1.1677***  -1.1538***  -1.1914*** 
   (0.3043)  (0.3035)  (0.3028) 
Home  -0.0030  -0.0034  -0.0031 
  (0.0490)  (0.0489)  (0.0489) 
2nd Half  -0.2159***  -0.2142***  -0.2197*** 
  (0.0683)  (0.0681)  (0.0680) 
Player dummies Yes Yes Yes 
Log likelihood  -3294.83  -3291.17  -3292.47 
Sample size   2240   2240   2240 

Model 1: the outcome equation with homogenous peer effects  
Model 2: the outcome equation with both same-type and cross-type peer effects 
Model 3: the outcome equation with only cross-type peer effects 
Standard errors in parentheses. 
Statistical significance: ***p<0.01 ; **p<0.05 ; *p<0.1. 

  



Table 2: Fixed Effect ML Estimation of the Outcome Equation 

Dep. Var.: Player Efficiency Model 2 Model 3 
Same-type peer effects   0.1432   0.0534*** 
   (0.1000)  (0.0220) 
Cross-type peer effects   0.1532  
   (0.1655)  

Experience   0.0337***   0.0316*** 
   (0.0098)  (0.0091) 
Fatigue  -0.0198***  -0.0186*** 
   (0.0075)  (0.0070) 
Player dummies Yes Yes 
Log likelihood   -2590.55   -2591.03 
Sample size   2240   2240 

Model 2: the outcome equation with both same-type and cross-type peer effects 
Model 3: the outcome equation with only cross-type peer effects 
Standard errors in parentheses. 
Statistical significance: ***p<0.01 ; **p<0.05 ; *p<0.1. 

 

  



Table 3: Conditional Logit Estimation of the Selection Equation 

Dep. Var.: Probability of Lineup Selection 
Lineup efficiency   0.1565* 
   (0.0829) 
Lineup experience  -0.0268*** 
   (0.0071) 
Lineup fatigue  -0.0766*** 
  (0.0129) 
Lineup fouls  -0.1199*** 
  (0.0512) 
One-substitution   4.4993*** 
   (0.2712) 
Two-substitution   2.2187*** 
   (0.2439) 
Player dummies Yes 
Log likelihood   -755.94 
Sample size   448 

Standard errors in parentheses.  
Statistical significance: ***p<0.01 ; **p<0.05 ; *p<0.1. 

 

  



Table 4: OLS Estimation of Individual-Invariant Regressors in the Outcome Equation 

Dep. Var.: Lineup-Averaged  Model 2 Model 3 
Estimation Residuals from Table 2  Parametric Series Parametric Series 
RPI  -1.0734***  -1.0157***  -1.3081***  -1.2369*** 
   (0.2339)  (0.2331)  (0.3100)  (0.3094) 
Home   0.0080   0.0151   0.0067   0.0157 
  (0.0388)  (0.0386)  (0.0515)  (0.0512) 
2nd Half  -0.3526***  -0.3557***  -0.3570***  -0.3597*** 
   (0.0360)  (0.0362)  (0.0477)  (0.0480) 
σ12  -0.0325   -0.0234  

   (0.0324)   (0.0429)  

Wald test for selectivity bias   11.1764**    9.1486* 
   [0.0247]   [0.0575] 
Sample size   448  448   448   448 

Model 2: the outcome equation with both same-type and cross-type peer effects 
Model 3: the outcome equation with only cross-type peer effects 
Standard errors in parentheses; p values in brackets 
Statistical significance: ***p<0.01 ; **p<0.05 ; *p<0.1. 
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