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1 INTRODUCTION

It is widely believed that the recession that hit the US economy in 2008 originated in the financial

sector. The years previous to the crisis were characterized by a rapid increase in the private produc-

tion of assets considered safe, mostly through securitization. Many of the markets for these assets

then collapsed, marking the starting point of the deepest recession in the post-war era. The extent

to which this boom sowed the seeds of the posterior crisis is an important open question. While

many scholars have pointed at adverse selection to explain the observed collapse in these markets

(e.g., Kurlat (2013), Chari, Shourideh and Zetlin-Jones (2014), Guerrieri and Shimer (2014a), Bigio

(2015)), important remaining questions are where the asset heterogeneity comes from, how it relates

to the underlying state of the economy, and how it interacts with other sources of liquidity. These

are the questions I seek to explore in this paper.

Safety refers to a characteristic of assets that are perceived as high quality, have an active (liquid)

market, and facilitate financial transactions (as collateral or media of exchange more generally).1

While traditionally this characteristic was mostly limited to government bonds and bank deposits,

there has been a large increase in the use of other privately produced assets, such as asset- and

mortgage-backed securities.2 Securitization was the instrument used by the private sector to pro-

vide the market with the safe assets it was demanding. This expanded the type of loans that were

made, and riskier and more opaque borrowers were accepted. This process was particularly stark

in the mortgage market, which saw an explosion in non-standard, low-documentation mortgages

and low credit score borrowers.3 In fact, Bank for International Settlements (2001) states an early

warning about the deterioration of the quality of assets used as collateral.

This paper presents a theory of asset quality determination, in which the ex-ante production of

assets interacts with ex-post adverse selection in financial markets. Assets in the economy derive

their value from the dividends they pay and the liquidity services they provide. Better quality assets

pay higher dividends, but due to adverse selection in markets they sell at a pooling price with

lower-quality assets. This cross-subsidization between high- and low-quality assets introduces a

motive for agents to produce relatively more lemons when they expect prices to be high, since they

expect to sell the assets rather than keep them until maturity. As a consequence, the theory predicts

that the production of low-quality assets is more sensitive to market conditions than that of high-

quality assets. Therefore, shocks that improve the functioning of financial markets exacerbate the

production of lemons and may even increase the exposure of the economy to a financial market

collapse, disrupting liquidity.

Moreover, the supplies of privately produced tradable assets and government bonds (private

and public liquidity) interact through the liquidity premium. When the supply of public liquidity

1This has been recently emphasized for instance by Calvo (2013), Gorton, Lewellen and Metrick (2012) and Gorton
(2016).

2See Gorton, Lewellen and Metrick (2012).
3See Ashcraft, Schuermann et al. (2008). While origination of non-agency mortgages (subprime, Alt-A and Jumbo)

was $680 billion in 2001, it increased $1, 480 billion in 2006, representing a 118% growth. On the other hand, origination
of agency (prime) mortgages decreased by 27%, from $1443 billion in 2001 to $1040 billion in 2006. Moreover, while only
35% of non-agency mortgages were securitized in 2001, that figure grew to 77% in 2006.
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is low, the private sector’ incentives to produce close substitutes increase.4 But because low-quality

assets are more sensitive to changes in the value of liquidity services, their production increases

proportionally more, reducing the average quality composition in the economy. Indeed, my model

predicts that the reductions in US government bonds in the late 90s due to sustained fiscal sur-

pluses, as well as the increased foreign demand for US-produced safe assets in the early 2000s (a

consequence of the so called ”savings glut”), both generated perverse effects on the quality compo-

sition of privately produced assets.5

While the theory presented is silent about the specifics of the asset production process, I believe

that the economic forces that it highlights are common to the full process of transforming illiquid

assets into liquid ones. In particular, I interpret the production process as representing both the

origination process of loans (e.g., mortgages) and the posterior securitization process (e.g., AAA-

rated private-label mortgage-backed securities).6 In both cases the ”producers” know more than

other market participants about the underlying quality of these products, because they have col-

lected information that cannot be credibly transmitted, or because they know how much effort they

put into the process. Hence, quality production and adverse selection can be a problem present in

the whole intermediation chain.

The mechanics of the model hinge upon the behavior of the shadow valuation of different

qualities. Suppose there are only two qualities. Agents with high-quality assets sell them only if

their liquidity needs are high enough compared to the price discount they suffer in the market due

to the adverse selection problem. On the other hand, agents with low-quality assets always sell

their holdings. Anticipating that this will be their strategy in the market, agents adjust their quality

production decisions to the expected market conditions. If markets’ expectations are high, in the

sense that volume traded is high, agents anticipate that the probability they will sell their assets

is relatively high, independent of their quality. In this case, it is less attractive to exert effort to

produce high-quality assets, so more low-quality assets are produced. That is, low-quality assets

are produced for speculative motives: not for their fundamental value but for the profit the agent can

make just from selling in the market. In this sense, good times can sow the seeds of a future crisis

by providing the incentives that lead to asset quality deterioration.

I consider two comparative statics that improve the functioning of financial markets: an im-

provement in the expected payoff of bad assets (or a reduction in their default probability) and an

increase in the liquidity needs (which can derive from increased productivity in the real economy

or changes in the supply of public liquidity). I show that in both cases there is an increase in the

production of assets and a deterioration of the asset quality composition, and can even lead to an

increased exposure of the economy to a financial market collapse. While the direct effect of the ex-

ogenous shocks tends to increase financial stability, the endogenous response of the economy through

4This channel has been found empirically for example by Greenwood, Hanson and Stein (2015) and Krishnamurthy
and Vissing-Jorgensen (2015).

5See Caballero (2006) and Caballero (2010) for a discussion of safe asset shortages.
6An important question is the role of tranching in avoiding adverse selection. I believe there are two reasons why

tranching can have a limited effect. First, if balance sheets of financial intermediaries are difficult to monitor, then inter-
mediaries can always go back to the market to sell any remaining fraction of assets. Second, certification by third parties
(e.g., rating agencies) can have limited success if players learn how to game the rating models or if the incentives of the
third party are compromised.

2



a worsening of the asset quality composition tends to increase financial fragility. To understand the

importance of this result, consider what would happen if the asset quality distribution were ex-

ogenously given. A positive shock would improve market conditions, which would increase the

volume traded and equilibrium prices. Since this quality composition would be fixed, this would

unambiguously reduce the probability that the market would collapse. Hence, when asset quality

is exogenous, positive shocks increase financial stability. However, when agents can react to the

improved conditions of the market, the quality distribution deteriorates, a force that increases fi-

nancial fragility. Which effect dominates depends on the relative size of each force. Moreover, I

show that if the shock is transitory, as the shock dies out financial fragility increases, independently

of its effect on impact. Hence, booms can set the stage for a financial crisis.

I also consider the effects of a reduction in transaction costs. Financial innovation can reduce

the cost of trading financial assets by facilitating the transformation of illiquid assets (e.g., mort-

gages) into liquid ones (e.g., MBS, ABS, CDOs). I show that if transaction taxes are high, then the

market for trees remains inactive and agents produce only good trees. As transaction costs decrease,

agents who have high enough liquidity needs find it optimal to sell their trees. Interestingly, while

transaction costs remain relatively high, the presence of a secondary market is not enough to attract

the production of bad trees. Therefore, while transaction costs remain at middle-range levels, the

economy features a market for trees with a low volume traded and only good trees are produced.

Lastly, when transaction costs are low enough, production of bad trees becomes profitable and the

economy can enter into a state in which high volumes are traded but with significant financial risk.

These dynamics are consistent with the developments of the last 30 years in the US economy, where

in the early stages financial innovation improved the efficiency of the economy with no increased

exposure to risk, but further innovation created perverse effects in the early 2000s that culminated

with a complete financial collapse in 2008.

On a more technical note, I show a large amplification mechanism present in the model. Due

to the interaction between asset quality production and markets that suffer from adverse selection,

prices might not be able to perform their role of clearing markets and guiding incentives. Suppose

that the quality of bad trees is distributed uniformly with bounds given by ε of distance around

a mean. I show that there is a positive measure of parameter values such that as ε goes to zero

(that is, the exogenous risk goes to zero), the endogenous risk of the economy remains positive

and bounded away from zero. The reason for this is the discontinuity of market prices to state

variables in the presence of adverse selection. As the exogenous risk vanishes, the fundamentals of

the economy in all states of nature become very similar. However, it can happen that similar prices

in all states do not give the right incentives to agents in period 0, when they make their investment

decisions. If prices are low in all states, then agents have low incentives to produce bad trees,

which is inconsistent with prices being low. On the other hand, if prices are high, the incentives

to produce bad trees can be too high, which is inconsistent with prices being high. A fixed-point

type of logic would argue for middle-range prices. However, these prices can be inconsistent with

market clearing, due to the discontinuity of equilibrium market prices. Endogenous risk convexifies
the expected prices, so that while prices clear the markets in period 1, risk adjusts incentives in

period 0. Moreover, I show that the limit of the economy with vanishing exogenous aggregate
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risk is the unique equilibrium of an economy that has no exogenous aggregate risk but does have

sunspots.

Another important determinant of the dynamics of privately produced safe assets is the sup-

ply of public liquidity. A significant number of recent papers document that private production

of safe assets increases when the supply of government bonds is low (and viceversa). Gorton,

Lewellen and Metrick (2012) and Krishnamurthy and Vissing-Jorgensen (2015) show that the sup-

ply of government bonds and the production of private substitutes in general are negatively corre-

lated. Greenwood, Hanson and Stein (2015) find a negative correlation between the supply of US

Treasuries and the supply of unsecured financial commercial papers while Sunderam (2015) finds

a similar result but with respect to asset-backed commercial papers. Krishnamurthy and Vissing-

Jorgensen (2012) shows that an increase in the supply of government bonds reduces the liquidity

premium.

In my model, a higher volume of bonds increases the liquidity in the economy, which decreases

the liquidity premium. As a consequence, government bonds crowd out private liquidity, which

disproportionally reduces the incentives to produce low-quality assets. Hence, a shortage of safe

assets induces a deterioration of private asset quality. This result seems to suggest that the govern-

ment should provide all the liquidity the financial sector requires (a type of Friedman Rule applied to

this setting). This is an appealing solution, since it separates the liquidity value of assets from their

dividend value, so that assets are produced only for fundamental reasons. However, this policy

might not be feasible. First, the fiscal costs associated with it are likely to be large. Second, even

if costs were low, there is no guarantee that the government bonds would end up in the hands of

those who needed them the most. In fact, this points to a reason why securitization can have social

value: it allows investors to mitigate the trade-off they face between undertaking investment op-

portunities and keeping enough liquidity to satisfy future needs. Hence, any feasible intervention

would tend to complement the private markets rather than replace them. In such a case, the gov-

ernment faces a subtle trade-off. On the one hand, it wants to provide the agents with the liquidity

they need and reduce the production of bad assets. But on the other hand, by crowding out the

private markets, the government could exacerbate the adverse selection problem they suffer, since

agents are less willing to sell their good assets at a discount to satisfy their liquidity needs. In the

extreme case in which the quality distribution is exogenous, the presence of government bonds un-

ambiguously increases the adverse selection problem and hence fragility. On the other hand, if the

production elasticity of bad trees is high, government bonds can increase stability. Still, I find that

the government should issue more bonds when the liquidity premium is high and less when the

liquidity premium is low.

Ex-post policies could also be used. Tirole (2012) and Philippon and Skreta (2012) study how

to restart a market that has collapsed due to adverse selection. The optimal policy features the

government buying assets from some agents, possibly those with the worst quality. From an ex-ante

point of view, the anticipation of such policies exacerbates the production of lemons in the economy.

To compensate for this, the government could tax financial transactions (and hence, lower market

liquidity) in high-liquidity states.7

7This leaning against the wind logic for policy is similar to Diamond and Rajan (2012) with respect to monetary policy.
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Literature Review. This paper is most closely related to the literature that incorporates adverse

selection in financial markets into macroeconomic models. Adverse selection in financial markets

has recently gained attention as an explanation for the phenomena experienced during the Great

Recession, in particular the sudden collapse of the market of assets collateralized by mortgage re-

lated products. Eisfeldt (2004), Kurlat (2013) and Bigio (2015) are three prominent examples of this

literature. They build dyanamic general equilibrium models in which agents trade assets under

asymmetric information to obtain the resources to satisfy some liquidity needs (fund investment

projects in the case of Eisfeldt (2004) and Kurlat (2013), and obtain working capital in Bigio (2015)).

They show that adverse selection in financial markets can be an important source of amplification

of exogenous shocks. In particular, Bigio (2015) shows that it does a good job quantitatively in ex-

plaining the dynamics of the economy during the Great Recession. However, all of these papers

take the distribution of asset quality as exogenously given. This paper builds on their insights but

takes a step back and focuses on the endogenous determination of the asset quality distribution.

This extension is key to understanding the build-ups of risks emphasized in those papers. Also

in this literature, Guerrieri and Shimer (2014a) and Chari, Shourideh and Zetlin-Jones (2014) study

similar economies but where markets are exclusive. Still, they assume that the quality distribution

is exogenous.

Relatedly, Gorton and Ordoñez (2014) study a dynamic model of credit booms and busts that

emphasize the information-insensitivity of assets that serve as collateral, and how changes in the

incentives to produce information about the quality of the underlying assets can trigger a crisis. I

instead emphasize the role of positive shocks in reducing the incentives to produce good quality

assets. Gorton and Ordonez (2013) also study the interaction between public and private liquidity,

but the focus is in the production of information, unlike my model that highlights the production

of quality. Moreover, unlike Gorton and Ordonez (2013), I find that government bonds can increase

financial fragility by increasing the adverse selection problem in private markets.

On the normative side, the focus has been on how to deal with markets that collapsed. Tirole

(2012) and Philippon and Skreta (2012) study how to efficiently restore markets that suffer from

adverse selection. They take an ex-post point of view.8 My paper takes an ex-ante point of view

and studies two sets of policy instruments: government bonds and transaction taxes and subsidies

(or asset purchase programs).

In addition, there is an empirical literature that tries to measure the extent of adverse selection in

financial markets. Keys et al. (2010) use a regression discontinuity approach to determine whether

the quality of loans that had a lower probability of being securitized was higher than those that had

a higher probability. They find this to be the case. Loans with a low probability of being securitized

were about 10 − 25% less likely to default than similar loans with a higher probability of being

securitized, suggesting that originators screened more carefully those loans they assigned a higher

chance they would keep. Other papers that show that asymmetric information could have been

relevant in the financial markets before the crisis are Demiroglu and James (2012), Downing, Jaffee

and Wallace (2009), Krainer and Laderman (2014), and Piskorski, Seru and Witkin (2015).

8Tirole (2012) presents an ex-ante analysis but does not study the possibility of manipulating incentives through a
combination of taxes and subsidies in different states of the economy.
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Closest to this paper, though developed independently, is Neuhann (2016). In his model,

bankers produce loans that are subject to aggregate risk. Because their funding ability is constrained

by their net worth and their risk exposure, a secondary market for loans allows them to reduce their

risk exposure and ultimately increase lending. The price in the market depends on the wealth in

the hands of the buyers, so that when buyers’ net worth is high, the market price is sufficiently

high that some bankers begin originating low-quality assets. Therefore, investment efficiency falls

and financial fragility grows in the aggregate. In my setup, this channel is absent. I show that

asset quality deteriorates after positive shocks such as an increase in the fundamental value of low-

quality assets, a reduction in trading costs, or an increase in the productivity in the real economy, or

after a reduction in the supply of government bonds. This difference is important for our normative

analysis. While Neuhann (2016) argues for controlling the growth of the buyer’s net worth, I study

the optimal supply of government bond and transaction taxes (and subsidies).

This paper also connects to the literature that emphasizes the importance of public liquidity in

facilitating financial transactions. Woodford (1990) shows that when agents face binding borrowing

constraints, a higher supply of government bonds can increase welfare. Government bonds supply

the agents with the instruments necessary to respond to variations in income and spending oppor-

tunities through trade in secondary markets, which improves allocation of resources. Holmström

and Tirole (1998) also highlight the role of tradable instruments when agents cannot fully pledge

their future income. They show how government bonds can complement private liquidity when

the latter is not enough to satisfy all the demand.

Gorton, Lewellen and Metrick (2012), Greenwood, Hanson and Stein (2015), Sunderam (2015),

and Krishnamurthy and Vissing-Jorgensen (2015) document the negative relation between the pri-

vate and public supply of money-like assets. Finally, Moreira and Savov (2016) emphasize the role

of ”shadow-banking” in supplying ”money-like” assets. They show that ”shadow-money” allows

for higher growth but exposes the economy to aggregate risk. However, there is no asymmetric

information problem in the economy.

Outline The rest of the paper is organized as follows. In section 2 I present a simple three-period

model with linear demand for liquidity to show the main forces of the model. Section 3 extends

the basic model to incorporate decreasing returns to liquidity and analyzes the interaction between

the real economy and financial markets. Section 4 studies the effects of government bonds on the

production of private assets. This section also explores the role of transaction taxes and subsidies.

In section 5 I extend the model to an infinite horizon setting. Section 6 concludes. All the proofs are

in the appendix.

2 BASIC MODEL

In this section I present a simple three-period model that highlights the main forces of the economy.

In the first period, agents choose the quality of the assets they produce anticipating that in the future

they will face a ”liquidity shock” that affects their intertemporal preferences for consumption, and

a market for assets that suffers from adverse selection.
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2.1 The Environment

Agents. There are three dates, 0, 1, and 2, and two types of goods: final consumption good, and

Lucas (1978) trees. The economy is populated by a measure one of agents, i ∈ [0, 1]. Agents receive

an endowment of final consumption good of W0 in period 0, and W1 in period 1.9 In period 0 they

operate a technology that transforms final consumption goods into trees, which pay a dividend in

period 2.

Agents’ preferences are given by

U = d0 + E0 [µ1d1 + d2] ,

where dt is consumption in t = 0, 1, 2, µ1 is a random idiosyncratic ”liquidity shock” (uncorrelated

across agents), which is private information of the agents, and the expectation is taken with respect

to µ1 and an aggregate state of the economy, described below. The liquidity shock affects the agent’s

marginal utility of consumption in period 1. From period 0 point of view, µ1 is distributed accord-

ing to the cumulative distribution function G(µ1) in [1, µmax]. I assume that G is such that with

probability π, µ1 = 1, and with probability 1− π, µ1 has a continuous cumulative distribution Gµ

in [1, µmax]. The mass of probability in µ1 = 1 simplifies the analysis of equilibrium prices below. In

the extension of the model presented in the next section, π arises endogenously in equilibrium.

Technology. Agents have access to a technology to produce trees in period 0. This technology

is idiosyncratic to each agent. There are two types of trees. An agent of type ξ can transform

qG(ξ) units of the consumption good into 1 unit of high quality, ”good”, tree (denoted by G), and

qB(ξ) units of the consumption good into 1 unit of low quality, ”bad”, tree (denoted by B), and

ξ is distributed in the population uniformly in [0, 1].10 The distribution of liquidity shocks in the

population is independent of the types in period 0, ξ. I make the following assumptions.

Assumption 1. The functions qG(ξ) and qB(ξ) are such that

1. qG(ξ) and qB(ξ) are continuous and increasing in ξ, with qG(0) = qB(0) = 1,

2. qG(ξ) ≥ qB(ξ) for all ξ,

3. qG(ξ)
qB(ξ)

is increasing in ξ.
9I assume that all agents receive the same endowment. As I show later, policy functions are linear in agents’ wealth,

so the assumption is without loss of generality.
10This assumption is WLOG since ξ affects the economy only through qG and qB. In particular, for any continuous

cumulative distribution function Ω(ξ̃) with support in [0, 1] and associated density ω(ξ̃), and differentiable functions q̃G
and q̃B satisfying Assumption 1, it is possible to find differentiable functions qG and qB such that the distributions of q̃G
and q̃B under ξ̃ coincide with the distribution of qG and qB under ξ ∼ U[0, 1]:

Prob(q̃j(ξ̃) ≤ q) =
∫ q̃−1

j (q)

1
ω(ξ̃)dξ̃ =

∫ q−1
j (q)

1
dξ = Prob(qj(ξ) ≤ q)

if and only if qj satisfies
ω(q̃−1

j (q))

q̃′j(q̃
−1
j (q))

=
1

q′j(q
−1
j (q))

,

for j ∈ {G, B}.
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The first assumption implies that the cost of producing each type of tree is positively correlated,

and that the agent with the lowest cost faces the same cost of producing good and bad trees (nor-

malized to 1). The second assumption implies that producing bad trees is cheaper than producing

good trees for every agent, which is needed so that bad trees have a chance of being produced. Fi-

nally, the third assumption implies that the cost of producing good trees grows faster than the cost

of producing bad trees. That is, high (low) cost agents have a comparative advantage in producing

bad (good) trees. Thus, one can interpret qB(ξ) as the efficiency type of the agent, and the difference

qG(ξ)− qB(ξ) as the effort cost required to obtain a good tree. Thus, for less efficient agents, the cost

of increasing the quality of the tree produced is higher. Later I discuss the robustness of my results

to these assumptions.

Trees deliver fruits in final consumption good in period 2. A unit of good tree pays Z with

certainty at maturity. On the other hand, only a fraction α of bad trees deliver fruit in period 2, so

that one unit of bad tree in period 0 pays αZ in period 2. The fraction of bad trees that deliver fruit

is known one period in advance. Thus, in period 1 the fraction α is common knowledge. However,

in period 0 agents believe that α is a random variable distributed according to the cumulative dis-

tribution function F in the interval [α, α] ⊆ [0, 1]. One can interpret α as an aggregate shock to the

productivity of bad trees, so that higher α implies higher quality of bad trees, or 1− α as a default

rate of bad trees in period 2. Initially I assume that F is continuous and non-degenerate. I analyze

what happens if this assumption is violated later in this section.

Finally, I assume that the investment opportunities are private information of the agents. More-

over, only the owner of a tree can determine its quality. These elements will be important when I

describe the financial markets below.

Denote by HG
t and HB

t the total amount of good and bad trees in the economy in period t,
respectively. Let λE

t denote the fraction of good trees in the economy in t, that is λE
t ≡ HG

t
HG

t +HB
t

.

Financial Markets. Due to the idiosyncratic liquidity shocks in period 1, there are gains from trade

among agents. I assume that financial markets are incomplete. In particular, I limit the financial

markets to trade of existing trees. This market is meant to be a metaphor of collateralized debt

markets, like ”repos” or short-term commercial papers.11

I follow Kurlat (2013) and Bigio (2015) and assume that there is one market in which trees are

traded, that buyers cannot distinguish the quality of a specific unit of tree but can predict what

fraction of each type there is in this market, and that the market is anonymous, non-exclusive and

competitive. These assumptions imply that the market features a pooling price, PM
1 .12 Buyers get a

diversified pool of trees from the market, where λM
1 is the fraction of good trees in the pool. Note

that since agents don’t hold any trees initially, there is no trade in period 0.

In order to make the distinction between good and bad trees stark, I make the following as-

sumptions.

11Bigio (2015) presents an equivalence result between a market for trading assets and a repo contract when there is no
cost of defaulting besides delivering the collateral to the creditor. This is a standard assumption in papers of collateralized
debt. See for example Geanakoplos (2010) and Simsek (2013).

12There is a literature that assumes exclusive markets and assets of different qualities can trade at different prices. See
for example Chari, Shourideh and Zetlin-Jones (2014) and Guerrieri and Shimer (2014a).
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Assumption 2. The expected payoff of each type of tree satisfies

1. Z > 1 = qG(0),

2. E[µ1αZ] < 1 = qB(0),

3. E[µ1Z] < qB(1) < qG(1).

The first assumption states that at least some agents will always find it profitable to produce

good trees, even if there were no market for trees in period 1. The second assumption states that if

the quality of trees was observable in the market, the net present value of bad trees would be lower

than the production cost of the most efficient agent. This implies that in an economy with perfect

information bad trees would never be produced. The third assumptions implies that the agents

with the highest costs do not produce trees.

Aggregate State and Timing. In period 1, the exogenous state of the economy is given by the

distribution of liquidity shocks in the population and the realized quality of bad trees, α. The en-

dogenous state is given by the cross-section distribution of trees and shocks across agents. Hence

the aggregate state of the economy in period 1 is X1 ≡ {α, Γ1} ∈ X1, where Γ1(hG, hB, µ1) is the

cumulative distribution of agents over holdings of each type of tree and liquidity shocks. In period

2, the state of the economy is given by the quality of bad trees in the current period, and the cross-

section distribution of trees across agents, X2 ≡ {α, Γ2} ∈ X2, where Γ2(hG, hB) is the cumulative

distribution of agents over holdings of each type of tree.

To summarize, the timing of the economy is as follows. Agents start period 0 with an en-

dowment of final consumption good W0. At the beginning of the period they are assigned a type,

indexed by ξ, which determines their cost of producing trees of different qualities. Given the pro-

duction costs they face, agents decide whether to produce trees, and in case they do, of what quality,

or consume.

In period 1, agents receive an endowment of final consumption good W1. The aggregate shock

α is realized, and agents receive an idiosyncratic liquidity shock. Since some agents may hold trees

that they produced in period 0, the secondary market in period 1 may be active. Agents choose

among two possible uses of the consumption goods they hold, which I call liquid wealth: consume

or buy trees in the secondary market.

Finally, in period 2 all good trees pay Z, a fraction α of bad trees pays Z, and agents consume.

Figure 1 summarizes the timing.

I find the equilibrium of this economy in steps. First, I solve the agents’ problem. I show

that the policy functions are linear in both the quantity of good and bad trees. This implies an

aggregation result by which equilibrium prices and aggregate quantities are independent of the

portfolio distribution of the agents in period 1. Second, I study the market for trees in period 1

and define a partial equilibrium for this market, which is an intermediate step for solving the full

equilibrium of the economy. I show that finding an equilibrium of the economy simplifies to solving

a fixed point problem in the fraction of good trees in the economy in period 1, λE
1 . Finally, I study

the equilibrium properties of the model, and some comparative statics.

9
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• receive endowment W0

• receive type ⇠

• consume, produce trees

• dividends paid
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• receive endowment W1

• aggregate state ↵ realized

• receive liquidity shock µ1

• buy/sell trees

• consume

FIGURE 1: Timing

2.2 Agents’ Problem

The problem the agents face in period 2 is very simple. They just collect the dividends from the

trees they own and consume. Their value function is given by

V2(hG, hB; X2) = ZhG + αZhB, (P2)

where hG and hB are their holdings of good and bad trees, respectively.

Let’s turn to period 1. Denote purchases of trees in secondary market by m. If an agent buys m
units of trees, a fraction λM

1 of them is good, while a fraction 1− λM
1 is bad. Let sB denote sales of

bad trees and sG sales of good trees. The agents’ problem in state X1 is given by:

V1(hG, hB; µ1, X1) = max
d,m,sG ,sB,

h′G ,h′B

µ1d + V2(h′G, h′B; X2), (P1)

subject to

d + PM
1 (X1)(m− sG − sB) ≤W1, (1)

h′G = hG + λM
1 (X1)m− sG, (2)

h′B = hB + (1− λM
1 (X1))m− sB, (3)

d ≥ 0, m ≥ 0, sG ∈ [0, hG], sB ∈ [0, hB].

Constraint (1) is the agent’s budget constraint, that states that consumption plus net purchases of

trees cannot be larger than the endowment W1. Constraints (2) and (3) are the laws of motion

of good and bad trees respectively, which are given by the agents’ initial holdings of trees plus a

fraction of the purchases they make (where the fraction is given by the market composition of each

type) minus the sales they make.

Given the linearity of the budget constraint and the utility function, both in current consump-

tion, d, and the holdings of each type of trees for period 2, h′G and h′B, the agents’ decisions are

characterized by two thresholds on µ1: µB
1 , that determines when to consume or buy trees, and µS

1 ,

that determines when to sell good trees.

Lemma 1 (Agents’ Choice in Period 1). Consider an agent with liquidity shock µ1. There exists thresholds
µB

1 and µS
1 that may depend on the state of the economy, X1, such that

10
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FIGURE 2: Agents’ Choice in period 1

• if µ1 ≤ µB
1 , then the agent buys trees (m > 0), keeps all his good trees (sG = 0), and if µ1 < µB

1 his
consumption in period 1 is zero (d = 0);

• if µ1 > µB
1 and µ1 ≤ µS

1 , then the agent’s consumption in period 1 is positive (d > 0), and he does not
buy trees nor sells good trees (m = sG = 0);

• if µ1 > µS
1 , then the agent’s consumption is positive (d > 0), his purchases of trees are zero (m = 0),

and he sells all his good trees in order to consume the proceeds (sG = hG).

All agents always sell their holding of bad trees, i.e. sB = hB. If π is sufficiently big, then µB
1 = 1.

The result in Lemma 1 is fairly straightforward. First, all agents sell their holdings of bad trees

because there is an arbitrage opportunity. By selling one unit of bad tree they get PM
1 units of final

good, which they can use to by trees in the secondary market to obtain λM
1 units of good trees and

1− λM
1 units of bad trees. Since λM

1 ∈ [0, 1], this strategy is always weakly optimal.13 Second, the

return from buying trees in the market is given by µB
1 ≡

λM
1 Z+(1−λM

1 )αZ
PM

1
, which is the same for all

agents. Because the utility from consuming in period 1 and the return from the market are both

linear, agents just compare µ1 and µB
1 to decide whether to use their liquid wealth to consume or to

buy trees. If µ1 > µB
1 agents strictly prefer to consume, while they prefer to buy trees if µ1 < µB

1 .

If π is sufficiently big, there are enough agents with µ1 = 1 so that they have enough wealth to

purchase all the trees in the market, pushing the market price up until the return is equal to 1. In

what follows, I will proceed under the assumption that µB
1 = 1. Note that in this case, µ1 is also

the marginal utility of liquid wealth, that is, the marginal utility of holding an extra unit of final

consumption good, in contrast to just holding wealth in illiquid form, like trees.

The decision to sell good trees involves similar calculations. The market price of trees is always

below the fundamental value of good trees, Z. This implies that the market price is lower than the

payoff the agent would obtain if he kept the good tree until maturity. Hence, the only reason the

agent would sell his good trees is if the utility derived from consuming in period 1 instead of period

2 compensates for the loss. This happens if µ1 ≥ µS
1 , where µS

1 ≡ Z
PM

1
≥ µB

1 . Figure 2 summarizes

these choices.

An important result that will greatly simplify the analysis that follows is the linearity of the

agents’ value function with respect to their holdings of each type of tree.

13Note that the arbitrage opportunity is independent of the price level. It does not rely on the market price being higher
than the bad trees fundamental value αZ, but on the fact that the market composition cannot be worse than getting only
bad trees.
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Lemma 2. The value function in period 1, V1(hG, hB; µ1, X1), is linear in each type of tree:

V1(hG, hb; µ1, X1) = µ1W1 + γ̃G
1 (µ1, X1)hG + γ̃B

1 (µ1, X1)hB,

where

γ̃G
1 (µ1, X1) = max{µ1PM

1 (X1), Z}, (4)

γ̃B
1 (µ1, X1) = µ1PM

1 (X1). (5)

This result follows directly from the linearity of the objective function and the budget constraint,

and it is already using that µB
1 (X1) = 1. For the agents, the marginal utility of an extra unit of

consumption good is given by µ1. If µ1 > 1, this utility comes from consuming in period 1. If

µ1 = 1, the agent is indifferent between consuming and buying trees in order to consume in period

2, which report a utility of 1. Since agents always sell their holdings of bad trees, their liquid wealth

is no less than W1 + PM
1 (X1)hB. As described above, agents might not be willing to sell their good

trees unless their preference for consumption in period 1 is high enough. By selling a unit of good

tree and consuming the proceeds, the agent gets µ1PM
1 (X1) in period 1. On the other hand, by

keeping the tree until maturity, the agents gets Z in period 2. Since there is no extra discounting

between periods 1 and 2, the value of an extra unit of good tree is given by max{µ1PM
1 (X1), Z}.

Note that the coefficient on bad trees does not directly depend on its payoff in period 2. This is

because no agent that starts the period owning bad trees, holds them until maturity.

As a consequence of the linearity of the value function, prices and aggregate quantities do not

depend on the distribution of portfolios in the population. Therefore, the relevant state in periods

1 and 2 is X = {λE
1 , H1, α} ∈ X.

Finally, the problem of an agent in period 0 is given by

V0(ξ) = max
d,iG ,iB,
h′G ,h′B

d + E0[V1(h′G, h′B; µ1, X)], (P0)

subject to

d + qG(ξ)iG + qB(ξ)iB ≤W0, (6)

h′G = iG, h′B = iB. (7)

d ≥ 0, iG ≥ 0, iB ≥ 0.

Constraint (6) is the agent’s budget constraint, that states that consumption plus expenditures in

the production of trees cannot be larger than the endowment W0, and constraint (7) are the laws of

motion of good and bad trees respectively, which are simply given by the investment agents make.

In order to decide whether to invest or not, agents compare their cost of production and their

shadow valuation of holding trees in period 1, with the utility they get from consumption, which is

equal to 1. Next, I define the shadow value of trees in this economy.

12



Definition 1 (Shadow Value of Trees). The shadow value of trees are given by

γG
0 ≡ E0

[
γ̃G

1 (µ1, X)
]
= E0

[
max

{
µ1PM

1 (X), Z
}]

,

γB
0 ≡ E0

[
γ̃B

1 (µ1, X)
]
= E0

[
µ1PM

1 (X)
]

.

The shadow value of trees is just the expected value of the marginal utility of each type of tree in

period 1, given by (4) and (5). They can be decomposed in three different elements: a fundamental

value, a liquidity premium, and an adverse selection tax/subsidy. That is:

γG
0 = E[ Z︸︷︷︸

fund. value

+ (µ1 − 1)Z︸ ︷︷ ︸
liq. premium

−min{µ1 (Z− PM
1 (X))︸ ︷︷ ︸

adv. sel. tax

, (µ1 − 1)Z}], (8)

γB
0 = E[ αZ︸︷︷︸

fund. value

+ (µ1 − 1)αZ︸ ︷︷ ︸
liq. premium

+µ1 (PM
1 (X)− αZ)︸ ︷︷ ︸
adv. sel. subs.

]. (9)

First, the fundamental value is given by the dividends each type of tree pays in period 2, given by

Z for good trees, and αZ for bad trees. Second, trees in this economy derive value from the fact

that they can be traded in period 1, transforming some payoff in period 2 into resources in period

1, when they are more valuable. The liquidity premium is a consequence of the liquidity services
tradable assets provide in economies with incomplete markets, as emphasized by Holmström and

Tirole (2001). Finally, the asymmetric information problem in the market for trees introduces a

wedge in the market price that is negative for good trees and positive for bad trees. Let’s focus on

the shadow value of good trees first, given by (8). As I show below, the market price of trees is

always between the fundamental value of good and bad trees, that is, PM
1 (X) ∈ [αZ, Z]. Therefore,

the adverse selection tax is always weakly positive. This tax is charged only if the tree is sold.

Hence, the agents have a choice: sell the tree and pay the tax, generating a utility loss of µ1(Z −
PM

1 (X)), or keep the tree and give up the liquidity services associated to it, generating a utility

loss of (µ1 − 1)Z. The agent optimally chooses the option that generates the smallest loss. On the

other hand, the pooling price implies an implicit subsidy for bad trees, as the last term in (9) shows.

It is the size of this cross-subsidization between good and bad trees that shapes the incentives to

produce different qualities. Moreover, note that all agents have the same ex-ante valuation for an

extra unit of tree (good or bad) in the following period. This result relies mainly on the linearity of

the agents’ problem and greatly simplifies the analysis.14

A consequence of these expressions is that the shadow values have heterogeneous elasticities

to market prices. Let γi
0(PM

1 ) be the shadow value of type i ∈ {G, B} as a function of future prices

{PM
1 (X)}X∈X, and let Dκγi

0(PM
1 ) be the associated directional derivative with respect to future

prices in the direction κ(X).

Proposition 1 (Sensitivity of Shadow Values to Prices). The shadow price of bad trees is more sensitive

14It also depends on the fact that liquidity shocks in period 1 are independent of the types in period 0. However,
allowing for correlation would not complicate the analysis, since at the individual level the shadow values would still be
independent of the individual portfolio, which is the key property for tractability.
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to future prices than the shadow value of good trees, that is

DκγB
0 (PM

1 + κ)

γB
0 (PM

1 )
>

DκγG
0 (PM

1 + κ)

γG
0 (PM

1 )
> 0,

for κ(X) > 0 ∀X ∈ A with ν(A) > 0 for some A ⊆ X, where ν is the measure associated to X.

This is the key result of the model. It says that the private valuation of bad trees is more sensitive

to changes in expected market prices than that of good trees. Or put differently, the private valua-

tion of good trees is more insulated to shocks from the market than that of bad trees. As explained

above, and explicit in equation (8), good trees have the option value of being kept until maturity if

market conditions are not good enough or if liquidity needs are low, while this strategy is always

dominated for bad trees. Bad trees are produced only to be sold in the future, that is, for speculative
motives. Since the fundamental value of bad trees is lower than its cost, it is never profitable to

produce bad trees in order to keep them until maturity. The only reason to produce bad trees is the

expectation of high prices in the secondary market, that can produce high returns when bad trees

are sold as good ones. On the other hand, good trees have a high fundamental value. Since their

market price is always below the discounted value of its dividends, agents only sell their good trees

if their liquidity shock is high enough, that is, if the benefits of current consumption are sufficiently

attractive so as to compensate for the loss from selling good trees below their private valuation.

Thus, there are states of nature in which agents strictly prefer not to sell their good trees, isolating

its value from price changes. This channel is at the core of the positive and normative analysis that

follows. Moreover, it is important to note that this result is independent of Assumption 1. It only

relies on the different motivations to produce trees of different qualities, independent of their costs.

Now I’m ready to characterize the agents’ choice in period 0. As in period 1, the linearity of

the agents’ problem implies that their decisions are characterized by cutoffs. Given the shadow

valuation of trees, γG
0 and γB

0 , agents decide whether to produce trees or not by comparing the

return per unit invested of each option (good or bad) and the utility of consumption (which is 1).

Since agents with low ξ have a comparative advantage in producing good trees, there always exists

a threshold ξG such that agents with ξ ≤ ξG produce good trees. Agents with ξ > ξG have a

comparative advantage in producing bad trees. However, the cost of production might not be low

enough to compensate for the opportunity cost of consuming immediately. If γB
0

qB(ξG)
≤ 1, then the

shadow value of bad trees is too low compared to the cost of production. In this case, the marginal

investor equalizes the return from producing trees with the utility of consuming immediately, that

is, γG
0

qG(ξG)
= 1. Agents with ξ ∈ (ξG, 1] consume all their endowment.

On the other hand, if γB
0

qB(ξG)
> 1, then there are agents with ξ ∈ (ξG, ξG + ε), for some ε > 0,

that face a cost of producing good trees that is too high, but have a positive return if they produce

bad trees. Hence, there exists ξB > ξG such that if ξ ∈ (ξG, ξB] the agent produces bad trees. The

marginal investors of each type are determined as follows. The marginal investor of good trees is

indifferent between producing good trees and bad trees, so ξG satisfies γG
0

qG(ξG)
=

γB
0

qB(ξG)
. The marginal

investor of bad trees is indifferent between producing bad trees and consuming in period 0, thus

ξB satisfies γB
0

qB(ξB)
= 1. Finally, all agents for which γB

0
qB(ξ)

< 1 do not produce trees but consume. In
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order to simplify notation, I set ξB = ξG whenever γB
0

qB(ξG)
< 1 (that is, there is no production of bad

trees). The next lemma summarizes this result.

Lemma 3. There exists ξG ∈ (0, 1) such that iG(ξ) = W0
qG(ξ)

if and only if ξ ≤ ξG. If γB
0

qB(ξG)
≤ 1, then

ξG satisfies γG
0

qG(ξG)
= 1, and iB(ξ) = 0 for all ξ. On the other hand, if γB

0
qB(ξG)

> 1, then ξG is such that
γG

0
qG(ξG)

=
γB

0
qB(ξG)

. In this case, there exists ξB ∈ (ξG, 1] such that iB(ξ) =
W0

qB(ξ)
if and only if ξ ∈ (ξG, ξB],

where ξB satisfies γB
0

qB(ξB)
= 1.

Define aggregate investment in good and bad trees as IG
0 =

∫ 1
0 iG(ξ)dξ and IB

0 =
∫ 1

0 iB(ξ)dξ,

respectively. Then

IG
0 =

∫ ξG

0

W0

qG(ξ)
dξ,

IB
0 =

∫ ξB

ξG

W0

qB(ξ)
dξ.

In Proposition 1 I showed that the shadow value of bad trees is more sensitive to changes in the

market conditions than the shadow value of good trees. Now, I extend the result to the behavior of

aggregate investment.

As future prices increase, both the shadow value of good and bad trees increase. However, the

shadow value of bad trees increases proportionally more. If IB
0 > 0, then ξG is defined such that

γG
0

qG(ξG)
=

γB
0

qB(ξG)
, or γG

0
γB

0
= qG(ξG)

qB(ξG)
. When expected prices increase, the left hand side of the expression

decreases, since the shadow value of bad trees increases by more than the shadow value of good

trees by Proposition 1, hence ξG decreases and the production of bad trees partially crowds out the

production of good trees. The intuition is simple. Before the change in prices, the marginal agent

was indifferent between producing good and bad trees. Now that prices increased, the production

of bad trees is more profitable, hence the production of bad trees partially crowds out the production

of good trees. Moreover, ξB, the type of the marginal investor of bad trees, increases, reinforcing the

increase in the production of bad trees. Thus, an increase in expected prices reduces the production

of good trees while increases the production of bad trees.

On the other hand, if γB
0

qB(ξG)
< 1, so there is no production of bad trees, then ξG is defined so

that γG
0 = qG(ξG). Therefore, a small increase in expected prices increases ξG. Therefore, when

IB
0 = 0, an increase in expected prices increases the production of good trees. The next proposition

summarizes this result.

Proposition 2. Let IG
0 (PM

1 ) and IB
0 (PM

1 ) be the aggregate investment functions of good and bad capital,
respectively, as a function of future prices {PM

1 (X)}X∈X. If IB
0 (PM

1 ) = 0, then Dκ IG
0 (PM

1 + κ) > 0. If
IB
0 (PM

1 ) > 0, then
Dκ IB

0 (PM
1 + κ) > 0 > Dκ IG

0 (PM
1 + κ),

for κ(X) > 0 ∀X ∈ A with ν(A) > 0 for some A ⊆ X, where ν is the measure associated to X.

While the result on the sensitivity of shadow values in Proposition 1 does not depend on As-

sumption 1, the result in Proposition 2 does. For the result in shadow valuations to translate into a
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result on quantities produced, some structure is necessary on the mass of agents that change their

behavior after expected prices change. In particular, for Proposition 2 to hold, it is necessary that

when the shadow value of bad trees moves more than that of good trees, a bigger mass of agents

decide to produce bad trees than good trees. The perfect correlation of the cost functions and the

comparative advantage assumptions are sufficient conditions for that. Moreover, the result that the

production of good trees decreases because of the crowding-out effect is a partial equilibrium one.

In general equilibrium, shocks that increase market prices can generate an increase in the produc-

tion of both types of trees. I will analyze general equilibrium effects later in this section.

Proposition 2 implies that the production of lemons is more elastic to future prices than the pro-

duction of non-lemons. It is an extension of the result in Akerlof (1970), who shows that the decision

to sell non-lemons is more sensitive to prices than the decision to sell lemons. In my model, this re-

sult still holds in the secondary market for trees. But the lower exposure of the private valuation of

good trees to market shocks reverts the result when considering production.

An immediate corollary of Proposition 2 is that the fraction of good trees in the economy in

period 1, λE
1 , decreases when agents expect higher market prices in the future. Moreover, the total

amount of trees in the economy, H1 = HG
1 + HB

1 , increases.

Corollary 2.1. Let λE
1 (PM

1 ) be the fraction of good trees in the economy in period 1, and H1(PM
1 ) the total

amount of trees in period 1, as a function of future prices {PM
1 (X)}X∈X. Then,

DκλE
1 (PM

1 + κ) ≤ 0, with strict inequality if IB
0 > 0,

and
Dκ H1(PM

1 + κ) > 0,

for κ(X) > 0 ∀X ∈ A with ν(A) > 0 for some A ⊆ X, where ν is the measure associated to X.

Next, I turn to the equilibrium in the secondary market for trees.

2.3 Market for Trees

The economy features a unique market in which all trees for sale are traded, as in Kurlat (2013) and

Bigio (2015). By assuming that π is big, the market for trees becomes a market with a demand and

supply of quality, rather than quantity, in which agents with µ1 = 1 are willing and able to buy all

the trees in the market as long as the price is fair. The inverse demand of tree quality is then given

by

PM
1 = λM

1 Z + (1− λM
1 )αZ,

and hence the demand is

λM
1 =

PM
1 − αZ
(1− α)Z

. (10)

On the other hand, Lemma 1 states that there exists µS
1 such that agents with µ1 = µS

1 are

indifferent between selling their good trees and keeping them. All agents with µ1 > µS
1 sell their

holdings of good trees (recall that all agents sell their bad trees). Therefore, the supply of trees is
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given by

S =
∫ µ

µS
1

HG
1 dG(µ1) + HB

1 =
[
1− G

(
µS

1

)]
HG

1 + HB
1 .

Using that µS
1 = Z

PM
1

, the implied fraction of good trees supplied is given by

λM
1 =

[
1− G

(
Z

PM
1

)]
HG

1

S
,

=

[
1− G

(
Z

PM
1

)]
λE

1[
1− G

(
Z

PM
1

)]
λE

1 + (1− λE
1 )

. (11)

In order to organize the analysis of the equilibrium of the economy, it is useful to define the

partial equilibrium of this market for each state, taking λE
1 as given.

Definition 2 (Partial Equilibrium in the Market for Trees). A partial equilibrium in the market for trees
in state X is a price PM

1 and a fraction of good trees in the market λM
1 such that, given λE

1 and α, the demand
for tree quality (10) equals the supply of tree quality (11).

There are two well-known characteristics of the set of partial equilibria in markets that suffer

from adverse selection. The first one is what I call a market collapse, also known as market unraveling.

If at every price greater than αZ the fraction of good trees supplied by sellers is too low compared

to the break-even condition of buyers given by (10), then the only possible partial equilibrium has

PM
1 = αZ and λM

1 = 0. Because bad trees are inefficient (Assumption 2), if agents expected the

price to be αZ in all states of the economy, no one would have incentives to produce bad trees.

Since this paper studies how the incentives to produce different qualities varies with the underlying

conditions of the economy, I will restrict the analysis to parameter values and functional forms such

that for any realization of the exogenous state α ∈ [α, α], there exists a threshold λ
E
1 (α) ∈ [0, 1) such

that if the fraction of good trees in the economy is greater than λ
E
1 (α), then (10) and (11) intersect at

an interior point with λM
1 > 0. A necessary condition for this is that Gµ is convex at least over some

interval of its support [1, µmax
1 ]. In order to simplify exposition, I make the following assumption.

Assumption 3. The distribution function Gµ is (weakly) convex in all its support [1, µmax
1 ].

The second characteristic of markets that suffer from adverse selection is the multiplicity of par-

tial equilibria. Consider figure 3. The panel (a) shows a market in which the quality of bad trees is

high and there are multiple partial equilibrium. The literature has adopted the convention of select-

ing the partial equilibrium that features the highest volume of trade (see Kurlat (2013), Bigio (2015),

Chari, Shourideh and Zetlin-Jones (2014)). Later in this section I discuss the microfoundations of

this selection criterion and how it affects the equilibrium of the economy. For now, I make the same

selection.

As the quality decreases, the demand function (10) moves down. When α is low enough, the

economy transitions to the market depicted in figure 3(b). In this case, the highest volume of trade

equilibrium disappears, generating a market collapse. This has two implications. First, there exists

a threshold α∗(λE
1 ) such that if α < α∗, then the market collapses and only bad trees are traded.
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FIGURE 3: Market Equilibrium in period 1. (a) Multiple Equilibria: Maximal Volume of Trade Selected. (b)
Unique Equilibrium: Market Collapse.

On the other hand, if α ≥ α∗, then both good and bad trees are traded in the market. Second, as

λE
1 increases, the threshold α∗ decreases, meaning that the set of states such that there is a market

collapse shrinks. This leads to the following definition of market fragility.

Definition 3. Define market fragility as

MF1(λ
E
1 ) ≡ Prob(α ≤ α∗(λE

1 )).

Market fragility is the probability of a market collapse, that is, the probability that the economy

features a market in which only bad trees are traded. It is straightforward to see that market fragility,

MF1(λ
E
1 ), is decreasing in λE

1 .

Even though market fragility is not a direct measure of welfare, it is a property that is tightly

connected to the efficiency of the economy. The collapse of a market is the extreme case in which

the flow of resources is severely impaired.

2.4 Equilibrium

Let’s define an equilibrium for this economy.

Definition 4 (Equilibrium). An equilibrium in this economy consists of prices {PM
1 (X)}; fraction of good

trees in the market {λM
1 (X)}; decision rules {d0(ξ), d1(hG, hB; µ1, X1), d2(hG, hB; X)}, {iG(ξ), iB(ξ)},

{h′G(hG, hB; µ1, X), h′B(hG, hB; µ1, X)}, {m(hG, hB; µ1, X), sG(hG, hB; µ1, X), sB(hG, hB; µ1, X)}; a fraction
of good trees in the economy, λE

1 , and a total amount of trees H1, such that

1. {d0(ξ), d1(hG, hB; µ1, X), d2(hG, hB; X)}, {iG(ξ), iB(ξ)}, {h′G(hG, hB; µ1, X), h′B(hG, hB; µ1, X)},
{m(hG, hB; µ1, X), sG(hG, hB; µ1, X), sB(hG, hB; µ1, X)} solve the agents’ problems (P0), (P1) and
(P2), taking {PM

1 (X)}, {λM
1 (X)}, λE

1 and H1 as given;

2. {PM
1 (X)} and {λM

1 (X)} are the maximum volume of trade partial equilibrium state by state;
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3. λE
1 and H1 are consistent with individual decisions.

Because of the linearity of the agents’ problem in period 1, prices are independent of the total

amount of trees, H1, while aggregate variables are linear in H1. Hence, in order to complete the

characterization of the equilibrium, I just need to determine the fraction of good trees in period 1,

λE
1 , which is given by

λE
1 =

IG
0

IG
0 + IB

0
.

Note that the decision to produce trees in period 0, and of what quality, depends on market prices in

period 1. But prices in period 1 depend on the fraction of good trees in the economy, which in turn

are determined by aggregate investment in period 0. It is useful to define the following mapping

T(λE
1 ) =

IG
0 (λ

E
1 )

IG
0 (λ

E
1 ) + IB

0 (λ
E
1 )

. (12)

An equilibrium of this economy requires that T(λE
1 ) = λE

1 . The mapping T is decreasing in λE
1 ,

since higher λE
1 implies higher expected prices, and the result follows from Proposition 2. When the

distribution of α, F, is continuous, then IG
0 (λ

E
1 ) and IB

0 (λ
E
1 ) are continuous, and hence T is contin-

uous. Therefore, the equilibrium of the economy exists and is unique. The following proposition

summarizes these results.

Proposition 3. An equilibrium of the economy always exists and is unique.

Next, I study some properties and comparative statics of the economy. Propositions 4 and 5

formalize the idea that positive shocks to fundamentals distort the quality production decisions,

since they increase the production of bad trees relative to that of good trees so that the average

tree quality in the economy decreases. Next, I show that a reduction of transaction costs has a

similar effect, and I lay out a plausible story for the development of the US financial sector in the

last 30 years that could have led to the financial crisis of 2008. Finally, I show that the endogenous

production of asset quality can interact with markets that suffer from adverse selection in such a

way that the amplification of risk in the economy can be very large, to the extreme that endogenous

risk remains positive and bounded away from zero even as exogenous risk vanishes away.

The Quality of Bad Trees

Consider the effect of an anticipated (from period 0 point of view) increase in the expected quality

of bad trees (or an expected reduction of default rates).15 In particular, suppose that the distribution

of α is indexed by a parameter θ : F(α|θ), where a higher θ means a better distribution in the sense

of first-order stochastic dominance. It can be shown that an increase in θ is equivalent to an increase

in prices for all states under the initial distribution. From Proposition (2) we know that the partial

equilibrium effect is an increase in the investment of bad trees, a reduction in the investment of

good trees, and a reduction in the fraction of good trees in the economy, λE
1 . This reduction in λE

1

feeds back to the prices, through a general equilibrium effect. This partially offsets the increase in

15Or equivalently, consider two economies with different distributions of bad tree quality.
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production of bad trees and the reduction in production of good trees. However, the overall effect is

an increases in the investment in bad trees, a reduction in the fraction of good trees in the economy,

an ambiguous effect on the investment in good trees, but an increase in the total production of trees,

H1 = IG
0 + IB

0 .

Since λE
1 decreases, the market price for each realization of α decreases, so the threshold α∗ in-

creases. This endogenous adjustment of the economy is a force towards more fragility. However,

the direct effect of the shock is an improvement in the distribution of shocks, which is a force to-

wards less fragility. In general the result is ambiguous and depends on the nature of the shock and

the elasticities of production of trees. Recall that market fragility is the probability that the quality

of bad trees, α, is below the threshold, α∗, that is MF = F(α∗(λE
1 )|θ). Differentiating this expression

with respect to θ we get
dMF

dθ
=

∂F(α∗|θ)
∂θ

︸ ︷︷ ︸
≤0

+ f (δ∗; θ)
∂α∗(λE

1 )

∂λE
1︸ ︷︷ ︸

<0

∂λE
1

∂θ
︸︷︷︸
<0

.

For example, suppose the change in F is concentrated in very high values of α, so that ∂F(α∗|θ)
∂θ = 0.

Then, the effect of the endogenous adjustment mechanism of the economy dominates, and market

fragility increases. On the other hand, consider what would happen if the fraction of good trees in

the economy was exogenously given, as in Eisfeldt (2004) and Kurlat (2013). In that case, ∂λE
1

∂θ = 0, so

that market fragility would decrease after the shock. The next proposition summarizes these results.

Proposition 4 (Increase in Bad Trees’ Expected Quality). Consider an anticipated increase in θ, so that
F(α|θ) increases in FOSD sense. Then,

1. total investment in trees, IG
0 + IB

0 , increases;

2. the fraction of good trees in the economy, λE
1 , decreases;

3. market prices in period 1, PM
1 , decrease in every state;

4. the threshold α∗ increases;

5. the effect on market fragility is ambiguous.

This is an important result since it states that a ”positive” shock to the economy can endoge-

nously increase the fragility of its financial markets, in the sense that the probability of a market

collapse is higher. Thus, it formalizes the idea that positive shocks can set the stage for a financial

crisis. Next, I show that changes to the agents’ liquidity needs have similar effects.

Liquidity Shocks

An increase in the distribution of liquidity shocks increases the value of trees coming from their

medium of exchange role. This is a positive shock in the sense that it improves the functioning of the

market for trees.16 Since liquidity shocks and market prices enter symmetrically in the expressions
16In this model liquidity shocks are ”good” shocks in the sense that they increase the agents’ valuation for consumption.

Similarly one could assume that the shocks are ”bad” and they reduce the utility of consumption in period 2. In both
cases, an increase in the distribution of liquidity shocks are good news for the functioning of the market.
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for the shadow value of trees, an increase in liquidity shocks triggers a qualitatively similar response

from period 0.

Proposition 5 (Increase in Liquidity Shocks). Consider an anticipated change in the distribution of µ1

from G(µ1) to G̃(µ1) such that G̃ > G in FOSD sense. Then,

1. total investment in trees, IG
0 + IB

0 , increases;

2. the fraction of good trees in the economy, λE
1 , decreases;

3. the effect in market prices in period 1, PM
1 , is ambiguous;

4. the effect on the threshold α∗ is ambiguous;

5. the effect on market fragility is ambiguous.

The incentives to produce lemons increase with the value of liquidity services. However, the

effect on market fragility is again ambiguous. On the one hand, as G increases, more agents sell

their good trees so market fragility decreases. On the other hand, the endogenous response of the

economy reduces the average quality of trees, increasing fragility. The overall effect depends on the

interaction between these two forces.

Note that if the change in expectations does not reflect a change in the actual distributions (in

the sense that it is just unfounded optimism) then fragility always increases for both types of shocks.

Moreover, even though the effect of shocks to the economy’s fundamentals on market fragility is

ambiguous on impact, in the infinite horizon extension I show that if the shock is transitory, then

market fragility increases as the shock dies out. This is the sense in which good times sow the seeds

of the next crisis.

Finally, in the next section I extend the model of this section and microfound these shocks so

that changes in the distribution of G arise from shocks to the ”real economy”, or shocks to the

supply of government bonds. This introduces a new set of comparative statics and sources of risk

build-up in the economy.

Transaction Costs

Financial innovation can reduce the cost of trading financial assets. Many scholars argue that in the

last 30 years the financial sector underwent a process that facilitated the transformation of illiquid

assets (e.g. mortgages) into liquid ones (e.g. MBS, ABS, CDOs).17 Securitization and repo contracts

seem to have been some of the stars of this process. Here I show that a reduction in transactions

costs naturally leads to a deterioration of the quality of assets in the economy.

Consider a variant of the economy described before in which sellers receive PS
1 = PM

1 − c per

tree sold, where PM
1 is the price payed by buyers, an c is a pecuniary cost that summarizes all the

costs the seller has to incur in order to be able to transfer property of the tree to another agent.

The main characteristics of the equilibrium with trading costs follow from the previous discussion,

in particular existence and uniqueness. An important difference is that the market for trees can

17See for instance Adrian and Shin (2010)
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be inactive for some values of c, or have only good trees being traded. Obviously, if c = 0 the

equilibrium is exactly the one described above.

Suppose c ≥ Z. Since prices cannot be higher than Z, agents get no net resources from the sale

of trees. Therefore, there will be no active market for trees in this economy, and producers of trees

keep them until maturity. Since E[µ1αZ] < 1 by assumption, no agent produces bad trees, and the

economy has λE
1 = 1. Since the maximum utility agents can get from consumption is µmax

1 , this

result holds for all c ∈ (c1, ∞), where c1 ≡ µmax
1 −1
µmax

1
Z.

For a cost c slightly lower than c1, one of two things can happen, depending on parameter

values. If µmax
1 is relatively high, then the cost c can be high and still incentivize some agents with

high µ1 to sell their good trees. But if c is high, then the price the sellers receive is low, so the returns

from selling trees are not sufficiently high to incentivize speculative production of bad trees. In that

case, there exists a c2 < c1 such that if c ∈ (c2, c1) there is an active market of trees in period 1,

λE
1 = 1, and PM

1 = Z in all states of the economy. Also note that IG
0 increases as c decreases in this

region. The reason is that the liquidity premium increases as the cost of trading trees decreases, and

while the production of bad trees is inefficient, the incentives of producing good trees increases.

On the other hand, if c < c2, the transaction cost is sufficiently low to attract the production of bad

trees, so λE
1 ∈ (0, 1).

If µmax
1 is relatively low, then the cost c has to be low in order to incentivize agents with good

trees to sell in the market. Thus, the price sellers get from selling trees, PS
1 = Z− c is relatively high

when there are no bad trees. Thus, if c is low enough, some agents will have incentives to produce

bad trees. Therefore, when µmax
1 is low, if c < c1 there is an active market in period 1 and λE

1 ∈ (0, 1).

For notational convenience I set c2 = c1 when this happens.

Finally, the fraction of good trees in the economy decreases as c decreases in the region c ∈
[0, c2). The next proposition summarizes these results.

Proposition 6. Suppose sellers receives PS
1 = PM

1 − c per tree sold, where c is a transaction cost. There
exists c1 and c2 with c1 ≥ c2 such that

• if c > c1, there is no market for trees and IB = 0,

• if c ∈ (c2, c1), there is an active market for trees in period 1, IB = 0, and ∂IG
∂c < 0,

• if c < c2, there is an active market for trees in period 1, IB > 0, and ∂λE
1

∂c > 0.

This result introduces a plausible story for the development of the US financial sector in the

last 30 years. When the main financial innovations were introduced, the cost of trading certain

assets (e.g., ABS, MBS, CDOs) decreased. However, if the reduction in costs was gradual, then

the economy could have spent some time in the range at which there was an active market but no

production of low quality assets, since the market return did not make their production profitable.

Hence, the economy completely benefited from further innovation and cost-reductions, increasing

the high-quality asset production and volume traded, and improving the allocation of resources.

However, at some point the transaction costs could have decreased so much that some agents found

it profitable to produce low quality assets to take advantage of the market. Further reductions of
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the transaction tax further reduced the average quality of the assets, which exposed the economy to

financial risk, as experienced in 2008.

Financial Risk

The previous exercises were meant to convey the idea that ”positive” shocks give bad incentives in

terms of asset quality production, since they improve the functioning of markets and increase prices,

which in turn reduces the incentives to produce high quality assets. Here I make a digression in

order to show that the interaction between the production of asset quality and the presence of mar-

kets that suffer from adverse selection can generate a large amplification of exogenous shocks, to the

point that endogenous risk can remain positive and bounded away from zero even as exogenous

risk vanishes away.

Consider an economy in which the distribution of bad tree quality is given by

α = α̃ + u, u ∼ U [−ε, ε], (13)

for some ε > 0, and where U denotes the uniform distribution. Let PM
1 (α|ε) denote the equilib-

rium price in period 1 when the exogenous state is α and the bounds of the uniform distribution is

given by ε. I want to determine what happens with the variance of the price as the exogenous risk

vanishes away, that is, as ε→ 0.

In order to understand how the economy behaves as exogenous risk vanishes away it is useful

to note that prices perform two roles in this economy. First, they clear markets, which in this case

means that the quality supplied has to be consistent with the quality demanded. Second, prices

send signals to the agents and shape investment decisions in period 0. Note that this dual role of

prices is not special to this economy but it appears every time agents have investment opportuni-

ties and there is a market for that investment (think of physical capital in a standard neoclassical

model, in which the rental rate clears the market for available capital but also gave incentives to

produce capital in the past). What is special about markets that suffer from adverse selection is that

prices can be discontinuous in state variables. In particular, the market price in a given state α is

discontinuous in the fraction of good trees in the economy, λE
1 . This discontinuity will be key to

understand the role of risk in the economy.

As ε→ 0, the fundamentals of the economy in every state get very similar to each other. If prices

were continuous, the prices in different states would also get closer to each other. At what level

should they be? If prices were low in every state, such that markets collapse for every realization

of α, then no agent would produce bad trees, contradicting that the prices in period 1 are low. On

the other hand, if all prices are high, then it might be that too many bad trees are produced so

that it is inconsistent with prices being high. Hence, in order for prices to give the right incentives

to invest, they should be of a ”middle” range. However, those prices can be inconsistent with

market clearing. Does this mean that there is no equilibrium for some pair α̃ and ε, with ε small

but positive? We already know the answer is no because Proposition 3 guarantees existence for any

continuous distribution function of the aggregate shock α. Hence, what this is saying is that the

equilibrium cannot feature prices that are continuous in the aggregate state. Hence, even though
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the difference between between the lowest state α̃ − ε and the highest state α̃ + ε can be made

arbitrarily small, the economy might need discontinuous prices to give the right incentives to the

agents in period 0. The risk introduced by market fragility allows the economy to obtain a ”middle

range” price on average, when that price is not consistent with market clearing in any state in period

1. The next proposition summarizes this result.

Proposition 7. Consider an economy in which α is distributed according to (13). There exists an open set
B ⊂ [0, 1] such that if α̃ ∈ B then

lim
ε→0

Var[PM
1 (α|ε)] = σ2(α̃),

for some σ2(α̃) > 0.

Finally, the result in Proposition 7 is related to what happens to the economy if the distribution

of α, F, has atoms. As noted above, the proof of existence of equilibrium uses the fact that F is

continuous so that the mapping T is continuous, which guarantees that a fixed point exists. I now

show that the limit σ2(α̃) is the variance of the price in an economy with no exogenous aggregate

risk, that is, F is degenerate at α = α̃, and an equilibrium definition that allows for sunspots.

In order to explain the role of sunspot in the perfect foresight economy, it is useful to take a step

back and study the theoretical justifications for the selection of the maximal volume of trade partial

equilibrium I made before. The choice of the maximal volume of trade equilibrium can be justified

as being the generic outcome of a game in which buyers can make different offers but choose not to

in equilibrium (see Mas-Colell, Whinston and Green (1995), or Attar, Mariotti and Salanié (2011)).

Consider the cases depicted in figure 4. Figure 4(a) shows the case in which the game-theoretic

approach selects the highest volume of trade equilibrium. The intuition is fairly simple: if the

equilibrium featured prices P∗1 or P∗2 , some buyer could offer a price slightly higher than P∗2 , and

attract a relatively large number of sellers of good trees, and make a profit. P∗3 is the only price at

which there is no profitable deviation. On the other hand, figure 4(b) shows a case in which both

P∗1 and P∗2 are consistent with equilibrium. Suppose the equilibrium has P∗1 . There is no deviation

for buyers that can get them positive profits. The same happens with P∗2 . Hence, both prices are

consistent with agents optimization. This case is not relevant when the distribution of exogenous

aggregate risk F is continuous, since given λE
1 there is only one state α in which the multiplicity can

arise. Since that state has probability zero from the point of view of period 0, selecting the maximal

volume of trade had no impact on agents choices in period 0. However, this logic doesn’t hold

when F has atoms.

Consider the case in which F is degenerate in some α̃, so the economy does not face any exoge-

nous aggregate risk (agents still face idiosyncratic liquidity shocks). As before, an equilibrium of

the economy requires that T(λE
1 ) = λE

1 , with the mapping T defined in (12). However, the mapping

T can be discontinuous in λE
1 . Let λE∗

1 ≡ sup{λE
1 ∈ [0, 1] : PM

1 (λE
1 ; α̃) = α̃Z}, that is, the threshold

fraction of good trees in the economy such that if λE
1 < λE∗

1 the market in period 1 collapses. Note

that λE∗
1 corresponds to figure 4(b), so that both prices can be part of an equilibrium. The key to

finding an equilibrium in this economy is to determine what happens when λE
1 = λE∗

1 . Since bad

trees are inefficient, I already know that if the low price equilibrium is selected, T(λE∗
1 ) = 1. If the

high price is selected, then existence depends on whether T(λE∗
1 ) is greater or smaller than λE∗

1 . If
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FIGURE 4: Market Equilibrium in period 1. (a) Unique Equilibrium. (b) Multiple Equilibria.

T(λE∗
1 ) ≥ λE∗

1 , the discontinuity in T does not prevent a fixed point from existing, so the equilibrium

of the economy has the same properties as the economies with continuous F. This case is depicted

in figure 5(a).

On the other hand, if T(λE∗
1 ) < λE∗

1 , then a fixed point does not exist. In order to obtain existence

of equilibrium in this case as well, I need to modify the definition of equilibrium. Motivated by the

fact that the economy in the limit to perfect foresight featured positive endogenous risk, I define

a Sunspot Equilibrium (SE) in which there is a random variable that selects a partial equilibrium

in period 1. Note that when the fixed point of T exists (that is, cases like figure 5(a)), then the SE

coincides with the previous equilibrium definition. But when the mapping T does not have a fixed

point, the sunspot convexifies the mapping T so that it crosses the 45◦ line, as shown in figure 5(b).

Moreover, the SE is unique.

When the sunspot is not trivial, the economy faces strictly positive endogenous aggregate risk

even though the exogenous aggregate risk is zero. The reason for this result is the tension between

the discontinuity of prices with respect to λE
1 and the endogenous production decisions/portfolio

choices of the agents, as in the limit above. When prices cannot align agents’ incentives, risk helps,

and that is what the sunspot is doing. In this sense, I view the financial markets as not just amplify-

ing exogenous risk but as creating endogenous risk. Moreover, it turns out that

Var[PM
1 (α̃)] = σ2(α̃).

That is, the limit of the variance of an economy with exogenous risk vanishing away coincides with

the variance introduced by the sunspot in a perfect foresight equilibrium.

The next proposition summarizes these results.

Proposition 8 (Fundamental Endogenous Financial Risk). A Sunspot Equilibrium (SE) always exists
and is unique. It coincides with the maximal volume of trade equilibrium whenever the latter exists. If it
doesn’t, the SE features strictly positive randomization. Moreover, the SE is the limit of the maximal volume
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of trade equilibrium with uniform exogenous aggregate risk and vanishing volatility, in the sense that

lim
ε→0

Var[PM
1 (α|ε)] = σ2(α̃) = Var[PM

1 (α̃)].

3 EXTENDED MODEL AND POSITIVE IMPLICATIONS

The analysis in the previous section shows that it is the dual role that trees play that exposes the

economy to financial risk. On the one hand, they are a form of real investment, in the sense of being

a technology that transforms units of goods in one period into units of goods in others. On the other

hand, they facilitate transactions in period 1, so that resources can flow among agents even if the

tree did not produce any dividend. In reality the government is an important provider of instru-

ments that perform the second role through government bonds. There are both theoretical (see for

example Woodford (1990), Holmström and Tirole (1998)) and empirical work (see for example Kr-

ishnamurthy and Vissing-Jorgensen (2012), Greenwood, Hanson and Stein (2015), Sunderam (2015),

Krishnamurthy and Vissing-Jorgensen (2015)) that study the interaction between private and pub-

lic liquidity. On the theoretical side they show that government bonds can be welfare enhancing

when the economy cannot produce enough financial instruments to optimally transfer resources

among agents (for example, because markets are incomplete or there is limited pledgeability of fu-

ture income). On the empirical side, they show that the production of private liquid instruments

increases when the supply of government bonds decreases, which seems to be driven by changes

in the liquidity premium.

In this section I extend the basic model and incorporate decreasing returns to liquidity in order

to obtain a more stable demand for liquid assets and be able to study the interaction between private

and public liquidity in a meaningful way. To do so, I change the source of the liquidity risk that

agents face. In particular, I now assume that instead of receiving a shock to preferences, agents are

endowed with a technology that transforms final consumption good into physical capital (denoted

by k), and the marginal rate of transformation is random and idiosyncratic. The agents’ preferences
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are now given by

d0 + E[d1 + d2].

Moreover, agents operate a linear technology that transforms final consumption good into capital

at a rate A, where A is distributed independently across agents according to the cumulative distri-

bution function G in [0, Amax].

In period 2, agents then rent the capital they own to a representative firm that operates the

following technology

Y = ZY f (K),

where f ′(K) > 0, f ′′(K) < 0, and it satisfies the Inada conditions, K is the amount of capital

operated by the firm, and ZY is the TFP level. I assume that the market for renting capital is com-

petitive, hence the rental rate is r(K) = ZY f ′(K). Moreover, I assume that the profits of the firm,

Π = f (K)− r(K)K, are transferred to the agents uniformly in period 2. The state of the economy

in period 1 is given by X1 = {λE
1 , H1, α} ∈ X1, and the state of the economy in period 2 is given by

X2 = {λE
1 , H1, K, α} ∈ X2.

This extension allows me to study the interaction between private and public liquidity in a

model that is only a small departure from the one in the previous section. The specific modeling

choices rely on two main reasons. First, they incorporate decreasing returns to liquidity in a way

that keeps the linearity of the agents’ problem, so that cross-section distributions of agents’ port-

folios are not necessary to determine aggregate allocations.18 Second, they incorporate a different

sector of the economy in a parsimonious way, and formally establishes the connection between fi-

nancial markets and the ”real economy”. Better functioning markets imply a better allocation of

resources and hence a higher efficiency of investment, but also higher productivity of the real econ-

omy implies a higher demand for liquidity and hence affects the quality production decisions of the

agents.

Because of the intertemporal linkages between period 1 and 2 that capital introduces, the model

requires a modification of the definition of equilibrium. It turns out that all it is needed is to allow

for a richer set of markets. Instead of forcing that all transactions take place in the same market, I

allow for the existence of many markets that operate simultaneously.19 Each market ω is defined

by a positive price PM
1 (ω) ∈ R+. Without loss of generality I assume that if ω′ > ω then PM

1 (ω′) >

PM
1 (ω). The set of all markets is denoted by Ω. As in the previous section, only sellers know the

quality of the asset they hold. Buyers do not observe the quality of a tree being offered, and they

can only form some expectation about the quality distribution in each market. Moreover, markets

need not clear. A fraction of the trees offered in a specific market may remain unsold.

Importantly, I keep the assumption that markets are non-exclusive. Sellers can offer the same

unit of tree for sale in any subset of markets simultaneously. They are only restricted not to sell more

trees than they own. From the seller’s point of view, markets are characterized both by their prices,

18A different approach would have been to incorporate decreasing marginal utility of consumption at the individual
level in the basic model. However, this would have implied that the agents’ problem is not linear, hence losing some
tractability of the problem.

19See for example Guerrieri and Shimer (2014a), Guerrieri and Shimer (2014b), and Kurlat (2016) for models with
adverse selection and many markets.
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P1(ω), as well as an amount of rationing, η(ω). The amount of rationing specifies the fraction of

supplied trees a seller will be able to sell in market ω. I assume that trees are perfectly divisible, so

η(ω) is the fraction of trees the seller actually sells rather than being the probability of selling an

indivisible unit. The amount of rationing η is an equilibrium object that results from the equilibrium

supply and demand decisions of the agents in each market and state of the economy. Finally, let ΩB

be the set of markets with positive supply.

Next I state the agents’ problem for this economy. I show that the main features of the equilib-

rium are isomorphic to the basic economy of the previous section, so the main insights still hold.

The main difference is that the marginal utility of liquid wealth is now decreasing in total liquid-

ity, creating a two-way feedback effect between the financial markets and the real economy. In the

next section I use this result to study the effect of the supply of public liquidity on the incentives to

produce tree quality.

3.1 Agents’ Problem

The problem agents’ face in period 2 now is

V2(hG, hB, k; X2) = ZhG + αZhB + r(X2)k + Π(X2). (P2’)

The only difference between (P2’) and (P2) is that in (P2’), besides the dividend from the trees,

agents receive the rental rate r(X2) for their holdings of capital k, and the profits of the representa-

tive firm, Π(X2).

The problem that agents face in period 1 is slightly more complicated. The program they solve

has to accommodate for the new investment opportunities and the availability of many markets.

Therefore, the agents solve the following program:

V(hG, hB; A, X1) = max
d,iK ,m,sG ,
sB,h′G ,h′B,k′

d + V2(h′G, h′B, k′; X2), (P1’)

subject to

d + iK + ∑
ω∈ΩB

PM
1 (ω)m(ω) ≤W1 + ∑

ω∈Ω
PM

1 (ω)(sG(ω) + sB(ω))η(ω; X1), (14)

h′G = hG + ∑
ω∈ΩB

λM
1 (ω; X1)m(ω)− ∑

ω∈Ω
sG(ω)η(ω; X1), (15)

h′B = hB + ∑
ω∈ΩB

(1− λM
1 (ω; X1))m(ω)− ∑

ω∈Ω
sB(ω)η(ω; X1), (16)

k′ = AiK, (17)

∑
ω∈Ω

sG(ω)η(ω; X1) ≤ hG, and ∑
ω∈Ω

sB(ω)η(ω; X1) ≤ hB, (18)

d ≥ 0, iK ≥ 0,

28



m(ω) ≥ 0, sG(ω) ∈ [0, hG], sB(ω) ∈ [0, hB], ∀ω ∈ Ω.

Constraint (14) is the agent’s budget constraint, that sates that consumption plus investment in cap-

ital and purchases in all markets cannot be larger than the endowment W1 plus the sale of trees in

different markets. Constraints (15) and (16) are the laws of motion of good and bad trees respec-

tively, while constraint (17) is the law of motion of capital. Finally, constraint (18) establishes that

agents cannot sell more trees than they hold. Note that the measure used is η(m; X1), implying that

the restriction is over the actual sales, not on the number of trees the agents send to the market. This

is the non-exclusivity assumption.

Following Kurlat (2016), I focus on solutions to this problem that are robust to small pertur-

bations of η, in order to rule out self-fulfilling equilibria in which sellers do not supply in certain

markets because there are no buyers, and buyers do not demand in some markets because there are

no sellers, even though a small amount of trade would trigger a response from them. See Appendix

B for the details.

It is useful to define ω̃(X) as the market with the lowest price such that if an agent sends his

trees to all markets with prices at least as high, they would be able to sell all their holdings in

equilibrium. Formally,

ω̃(X) ≡ max

{
ω′ ∈ Ω : ∑

ω≥ω′
η(ω; X) ≥ 1

}
. (19)

The interpretation of ω̃(X) is that it is the market with the lowest price that can have active trading,

given the rationing in the other markets.

The solution to (P1’) is the analogous of Lemma 1 in the previous section.

Lemma 4 (Agents’ Choice). Consider an agent with investment opportunity A. There exists thresholds
AB

1 and AS
1(ω) (with AS

1(ω) decreasing in ω) that may depend on the state of the economy, X1, such that

• if A ≤ AB
1 , then the agent does not produce capital (iK = 0), consumes or buys trees in some markets

(d ≥ 0, m(ω) ≥ 0) and does not sell his good trees (sG(ω) = 0 for all ω ∈ Ω);

• if A > AB
1 , then the agent produces capital (ik > 0), does not consume (d = 0), does not buy trees

(m(ω) = 0 for all ω ∈ Ω), and might sell his good trees in some markets (sG(ω) = hG for all ω ∈ Ω

such that A > AS
1(ω) and sG(ω) = 0 for all ω ∈ Ω such that A < AS

1(ω)).

All agents always sell their holding of bad trees in the markets with the highest prices, i.e. sB(ω) = hB for all
ω > ω̃ and sB(ω) = 0 for all ω < ω̃.

The decisions of the agents are very similar to the ones in the basic model. First, they compare

their productivity A with the return from buying trees in the market and the utility from consump-

tion (which is equal to 1). Since all agents face the same alternatives to investing, there is a threshold

AB
1 common to all agents such that only those with productivity higher than AB

1 produce capital.

Those with productivity below AB
1 use their liquid wealth to buy trees in the market and consume,

whichever provides the highest utility. Moreover, while all agents sell all of their bad trees, only

agents with high enough productivity sell their good trees. Since there are many markets, they
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choose in which market to sell given their productivity. The thresholds {AS
1(ω)}ω∈Ω determine

exactly that.

In the previous section, the marginal utility of liquid wealth coincided with the liquidity shocks

µ1. Now, it is given by the Lagrange multiplier associated to the agents’ budget constraint

µ1(A, X1) = max

{
1, Ar(X2),

{
λM

1 (ω; X1)Z + (1− λM
1 (ω; X1))αZ

P1(ω)

}

ω∈ΩB

}
.

It represents the utility derived from the use of resources that provides the maximum return in the

margin. Agents have three possible uses. They can consume and obtain 1 unit of utility; they can

produce capital at a rate A and obtain a payoff Ar(X2) in period 2 per unit invested; or they can

buy trees in some markets and obtain a return of λM
1 (ω;X1)Z+(1−λM

1 (ω;X1))αZ
P1(ω)

.

Even though the model is richer, the mapping between the liquidity shocks of the previous

section and the liquidity services of this section is very direct. Let µB
1 (X1) be the return from buying

trees in the secondary market.20 Agents with low A have a marginal utility of liquid wealth of

µ1(A, X1) = max{1, µB
1 (X1)}. Following the same logic as in the previous section, if W1 is high

enough, then there are enough agents willing to buy trees rather than invest in capital, so that

µB
1 (X1) = 1. Thus, liquidity services simplify to

µ1(A, X1) = max {1, Ar(X1)} . (20)

Therefore, there is a mass of agents with low enough A such that µ1(A, X) = 1, analogous to the

mass π of agents with µ1 = 1 in the previous section. Note that this case implies that aggregate

consumption is positive in period 1, hence restricting parameter values so that there is positive

aggregate consumption every period leads to the same result. Moreover, as A increases, µ1(A, X1)

increases, and the cross-section distribution of µ1(A, X1) is ultimately governed by the distribution

of A, and the value of r(X2).

In order to maintain the assumption that bad trees are an inefficient investment, I assume that

the amount of investment in period 1 that would prevail in an economy with no markets for trees

would be such that the liquidity services are not too large. Let µ̃1(A, X) denote the liquidity services

that would prevail in such economy.

Assumption 4. The payoff of bad trees is such that

E[µ̃1(A, X)αZ] < 1.

This assumption holds if W1 is large enough.

Finally, the program the agents solve in period 0 does not change except that V1 is now given by

(P1’). Next I briefly describe the determination of partial equilibria in the markets for trees, define

the equilibrium of the full economy and characterize it.

20That is

µB
1 (X1) ≡ max

ω∈ΩB

λM
1 (ω; X1)Z + (1− λM

1 (ω; X1))αZ
P1(ω)

.
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3.2 Equilibrium

Most of the analysis in the previous section follows through after these modifications. The main

difference is that more than one market may be active in equilibrium. It turns out that under my

assumptions, at most two markets can be active: a high price market in which good and bad trees

are traded, and a low price market in which only bad trees are traded. The low price market can

have positive volume of trade only if there is rationing in the high price market (market collapse is

an extreme case in which there is 100% rationing in the high price market). Moreover, the structure

of active markets follows very closely the discussion on the multiplicity of partial equilibria of the

previous section when the economy was forced to have only one active market, as depicted in figure

4.

Consider once again the demand and supply of trees studied in the previous section, modified

to the specifics of the economy in this section. The demand in each market is given by

λM
1 (P1) =

P1 − αZ
(1− α)Z

, (21)

while the supply is given by

λM
1 (P1) =

[
1− G

(
Z

r(K)P1

)]
λE

1[
1− G

(
Z

r(K)P1

)]
λE

1 + (1− λE
1 )

. (22)

Given λE
1 and K, the partial equilibrium of the markets for trees can take 3 different forms:

1. if one of the intersections between (21) and (22) happens at a point in which λM
1 > 0 and the

game-theoretic foundation developed in the previous section selects the maximal volume of

trade partial equilibrium, then the economy with many potential markets has only one active

market in equilibrium which corresponds to the maximal volume of trade equilibrium and

there is no rationing in the market;

2. if there is only one intersection between (21) and (22) and happens at λM
1 = 0, then there is

also only one active market in equilibrium, which corresponds to a market collapse;

3. if one of the intersections between (21) and (22) happens at a point in which λM
1 > 0 and the

game-theoretic foundation developed in the previous section does not select the maximal vol-

ume of trade partial equilibrium, then there can be two active markets in equilibrium, which

correspond to the two intersections of (21) and (22), as in figure 4(b). Sellers of bad trees send

their trees to both markets. They sell all they can in the high price market and then sell the rest

in the low price market. Sellers of good trees only send their trees to the high price market. If

there is rationing, then they keep the units they were not able to sell.

See Appendix B for details.

Therefore, the equilibrium is pooling when there is only one active market, and semi-separating

when there are more than one active markets. In both cases, there is some degree of cross-subsidization

among types of trees. Since the low price market is active only when there is rationing in the high
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price market, and all agents try to sell their trees in the high price market before trying to sell in the

low price market, I denote by η(X1) the rationing in the high price market and 1− η(X1) the fraction

of trees sold in the low price market. Note that η(X1) indexes all the possibilities described above.

Moreover, I denote by PM
1 (ωH; X1) and PM

1 (ωL; X1) the high price and the low price, respectively.

Let’s define an equilibrium for this economy.

Definition 5 (Equilibrium). An equilibrium in this economy consists of prices {PM
1 (ωH; X1), PM

1 (ωL; X1)};
fraction of good trees in the market ωH {λM

1 (ωH; X1)}; a rationing function η(X1); decision rules {d0(ξ),

d1(hG, hB; A, X1), d2(hG, hB, k; X2)}, {iG(ξ), iB(ξ), iK(hG, hB; A, X1}, {h′G(hG, hB; A, X1), h′B(hG, hB; A, X1)},
{m(hG, hB; ωH, A, X1), m(hG, hB; ωL, A, X1), sG(hG, hB; A, X1), sB(hG, hB; A, X1)}; a fraction of good trees
in the economy, λE

1 , a total amount of trees H1, and aggregate capital {K(X1)}, such that

1. {d0(ξ), d1(hG, hB; A, X1), d2(hG, hB, k; X2)}, {iG(ξ), iB(ξ), iK(hG, hB; A, X1}, {h′G(hG, hB; A, X1),

h′B(hG, hB; A, X1)}, {m(hG, hB; ωH, A, X1), m(hG, hB; ωL, A, X1), sG(hG, hB; A, X1), sB(hG, hB; A, X1)}
solve the agents’ problems (P0), (P1’) and (P2’), taking {PM

1 (ωH; X1), PM
1 (ωL; X1)}, {λM

1 (ωH; X1)},
η(X1), λE

1 , H1, and {K(X1)} as given;

2. {PM
1 (ωH; X1), PM

1 (ωL; X1)}, {λM
1 (ωH; X1)} and η(X1) are the partial equilibrium of the markets

for trees state by state;

3. λE
1 , H1 and {K(X1)} are consistent with individual decisions.

It is important to note that the change in the definition of equilibrium does not imply a funda-

mental change in the functioning of the economy. In particular, if I used this definition of equilib-

rium in the previous section, all the results when the distribution F is continuous would hold. This

is reassuring in the sense that the main forces of the economy do not change by allowing for a richer

set of markets.

Finding an equilibrium involves similar steps than in the previous section. In particular, shadow

prices are defined following the same logic. There are two differences. First, the investment in phys-

ical capital in period 1 connects the outcomes of period 1 and period 2, so finding an equilibrium

of the economy starting in period 1 is a little more involved than before. Second, the economy does

not scale linearly in H1, so the fixed point I will need to solve is two dimensional in λE
1 and H1.

I solve for the equilibrium by backward induction. First, I find an equilibrium of the economy

starting in period 1. Then, I move to period 0 and solve for the equilibrium of the full economy.

Define aggregate investment in physical capital as

IK
1 (X1) =

∫ Amax

0
AiK(hG, hB; A, X1)dΓ1(hG, hB, A),

where Γ1(hG, hB, A) is the cross section distribution of portfolio holdings and investment opportu-

nities. Then

IK
1 (X1) =

∫ Amax

AB
1 (X1)

A[W1 + [η(X1)PM
1 (ωH; X1) + (1− η(X1))PM

1 (ωL; X1)]HB
1 ]dG(A)+

∫ Amax

AS(X1)
Aη(X1)PM

1 (ωH; X1)HG
1 dG(A). (23)
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Since the return on capital that the agents get depends on the aggregate capital of the economy,

AM(X1) and AS(X1) depend on K, which in turn affect the market prices and rationing functions.

Hence, it is useful to define the mapping TK(K; X1) = IK
1 (K; X1). An equilibrium of the economy

in period 1 requires that TK(K; X1) = K. If I didn’t allow for multiple markets and rationing, the

mapping TK could be discontinuous in K. Hence, the extension in the market for trees guarantees

that there is a fixed point for any value of X1.

Let’s turn to period 0. In the previous section finding an equilibrium involved finding a fixed

point of a mapping that depended on λE
1 , but not on H1. The reason for this was that the economy

starting in period 1 was linear in H1 since the economy had constant returns to liquidity. Now,

because f has decreasing returns in capital (i.e., r is decreasing in K), this is not true anymore.

Therefore, I define a vector mapping T(λE
1 , H1) given by

T(λE
1 , H1) =




IG
0 (λE

1 ,H1)

IG
0 (λE

1 ,H1)+IB
0 (λ

E
1 ,H1)

IG
0 (λ

E
1 , H1) + IB

0 (λ
E
1 , H1)


 (24)

An equilibrium requires that

T(λE
1 , H1) =

[
λE

1

H1

]

The next proposition establishes existence of the equilibrium of the full economy.

Proposition 9. An equilibrium of the economy always exists.

While the equilibrium may not be unique, I will focus on the equilibrium with the highest

fraction of good trees. This equilibrium is stable.

Next, I use the model to characterize the interaction between the financial markets and the

real economy. On the one hand, better functioning markets increase the flow of resources to those

with the best investment opportunities, hence aggregate capital in the economy increases. Second,

higher productivity in the real economy, both through higher TFP of the representative firm, ZY, and

investment opportunities, A, increase market prices and hence worsens the tree quality production

in period 0.

Interaction Between Financial Markets and Real Investment

Real investment and the financial markets relate to each other through two channels. First, if there

is more liquidity in the market then agents with good investment opportunities can invest more and

aggregate capital in the economy goes up. Second, if TFP of the firm in period 2 goes up, investment

opportunities are more profitable so more agents sell their good trees, which improves liquidity of

the market. For future reference, define investment efficiency as

K(X1)∫ Amax

0 iK(hG, hB; A, X1)dΓ1(hG, hB, A)

where the denominator is the total amount of resources used in the production of K.

Consider first how the functioning of the secondary markets affects the real economy.
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Lemma 5 (Contagion). Aggregate capital and investment efficiency are increasing in α and in HG
1 .

Even though the two sectors of the economy are not directly related, the efficiency of the econ-

omy’s investment depends on how well the secondary markets function. If the liquidity in the

market is high, agents with good investment opportunities will be able to invest their endowment

and obtain funds from the market. This implies that the total amount of capital they produce is

relatively high, which crowds out low productivity agents. Hence, the efficiency of investment in-

creases. Interestingly, if the crowding-out effect is strong enough, the aggregate consumption in

period 1 may also increase. This is because the low productivity agents that switch from investing

to not investing will now consume and buy trees. Hence, if the flow of new consumers is larger

than the increased expenditures due to the price increase, total consumption in the economy goes

up.

Next, I study the interaction between the real sector and the incentives to produce asset quali-

ties. In particular, I consider the effects of an increase in the TFP level of the representative firm, ZY,

and an increase in agents’ investment opportunities, from A to φA, for some φ > 1.

Lemma 6 (Shocks to the Real Economy). An increase in ZY or in the investment opportunities from A to
φA, increases µ1(A, X1) for every state (A, X1). This increases the production of trees, H1, and reduces the
fraction of good trees in the economy, λE

1 .

This lemma is an extension of Proposition 5 in the previous section. A higher demand for

intermediation driven by a stronger real sector increases the liquidity premium and the incentives

to produce low quality assets. Conditional on λE
1 and H1, PM

1 and λM
1 are increasing in ZY and φ

for every realization of α. Hence, λE
1 decreases in equilibrium. This result can be quantitatively

important to understand the build-up to the crisis. Bigio (2015) finds that in the years previous

to the crisis the measured TFP for the US economy was above trend, and the crisis is triggered

by a substantial drop in TFP followed by an increase in the adverse selection problem in financial

markets. An interpretation of the data through the lens of my model is that the abnormally high

TFP worsened the asset quality distribution in the years previous to the crisis, which was latent

while TFP remained high but generated a collapse in financial markets when TFP declined.

4 NORMATIVE IMPLICATIONS

In this section I use the model to analyze how the economy interacts with government intervention.

First, I study how the economy reacts to changes in the public supply of liquidity, with particu-

lar interest in how it affects the incentives to produce tree quality. Then, I analyze the role that

transaction taxes and purchase programs play in shaping incentives and improve liquidity.

4.1 Government Bonds

Government bonds contribute to the total amount of liquidity in the economy. Intuitively, a higher

volume of bonds allows for a greater volume of transactions, which increases investment. However,

because of the decreasing returns to capital, this in turn reduces the marginal return to liquidity,
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reducing the liquidity premium on all tradable assets. Therefore, the incentives to produce trees

decreases. Because bad trees are more sensitive to changes in the value of liquidity services, an in-

crease in the supply of government bonds reduces the shadow value of bad trees disproportionally

more than that of good trees, so that the fraction of good trees in the economy increases. However,

government bonds can also have negative effects. For a given fraction of good trees in the economy,

a larger supply of government bonds increases the adverse selection problem in the market. The

reason is that government bonds crowd out private markets. Since bad trees are always sold, it is

some of the good trees that leave the market, increasing the adverse selection wedge. Which effect

dominates depends on the relative strength of each channel.

Consider the following timing. As before, agents start with an endowment W0 of final goods.

Agents receive a type ξ and decide whether to produce trees or not. But now, agents have a different

alternative to consumption. They can buy government bonds at price PGB
0 . Government bonds pay

one unit of final good in period 2. I still want to focus on economies that have positive consumption

in all periods and states, so I assume that the supply of government bonds, B0, is not too large

compared to W0 and W1. In that case,

PGB
0 = γGB

0 = E[µ1(A, X1)].

That is, the price is equal to the liquidity services the bonds provide in period 1. Note that I am

already imposing that the market price in period 1 is equal to one. The reason for this is that as long

as aggregate consumption is positive, the return of bonds between periods 1 and 2 has to be equal

to the intertemporal marginal rate of substitution of the buyers (who are the non-investors), which

is equal to one.

For simplicity, I assume that the government rebates the proceeds of selling bonds in period 0 to

the agents lump-sum, and then taxes agents lump-sum in period 2. In order to keep the mechanics

of the model as close as possible to the previous sections, I assume that the government’s transfers

in period 0 occur after investment takes place, so that they cannot be used for investment. I make

this assumption to isolate the market incompleteness in period 0 from the market incompleteness

in period 1. Allowing the alternative would not change the main message, but incorporate a dis-

tributive role of government bonds that is unlikely to be relevant in reality.21 Figure 6 summarizes

the new timing.

The quantity of government bonds affects the liquidity services and hence the risk free interest

rate of the economy, which is given by

i0 ≡
1

E[µ1(A, X1)]
− 1.

The first result shows that incomplete reallocation pushes interest rates down.

Lemma 7 (Laissez-faire Interest Rates). Consider an equilibrium with positive consumption in every pe-
riod and state. The interest rate in the laissez-faire equilibrium is lower than in first best.

21I could alternatively assume there is a different set of agents with linear preferences and no liquidity needs that
receive the transfers. The result would be the same. This is the assumption in Holmström and Tirole (1998).
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• receive endowment W1

• aggregate state realized

• receive investment opp. A

• buy/sell trees

• buy/sell government bonds

• consume, invest

• dividends paid

• pay government taxes

• consume

• receive endowment W0

• receive type ⇠

• produce trees, buy
government bonds

• receive government transfer

• consume

FIGURE 6: Timing with government bonds.

In first best, µ(A, X1) = 1 in all states if aggregate consumption is positive, since there is no

limitation to the reallocation of resources among agents. As long as there is incomplete reallocation,

µ1(A, X1) > 1 for some A, hence the interest rate is lower.

Government bonds affect the economy through the quantity of liquid instruments, which in

turn affects the liquidity premium of assets. This has three effects: the direct effect is to increase

the flow of resources in the economy, since more government bonds implies more instruments to

trade for goods, that is, more liquidity; second, it reduces the incentives to sell good trees, reducing

both the quantity of assets traded as well as their price in the secondary market, which increases the

adverse selection wedge for a given λE
1 ; last, in period 0, anticipating the effect government bonds

have in period 1, it reduces the incentives to produce bad trees, hence increasing the equilibrium

fraction of good trees in the economy. Next, I formally study these effects.

Consider the economy in period 1. Suppose that agents hold a total of B0 > 0 of government

bonds, distributed uniformly among all agents.22 These bonds pay one unit of consumption good

in period 2. How does the equilibrium in period 1 change with an increase in B0? Assuming that

B0 is not too large, the price of government bonds between period 1 and 2 is equal to one. Keeping

everything else fixed, an increase in B0 increases investment:

IK
1 (X1) =

∫ Amax

AB
1 (X1)

A[W1 + [η(X1)PM
1 (ωH; X1) + (1− η(X1))PM

1 (ωL; X1)]HB
1 + B0]dG(A)+

∫ Amax

AS
1 (X1)

Aη(X1)PM
1 (ωH; X1)HG

1 dG(A).

However, as K increases, r(K) decreases. This has two separate effects. On the one hand, AB
1 (X1)

increases. As the return on capital decreases, investment becomes less attractive, so the agents that

have the marginal productivity AB
1 (X1) decide not to invest under the new conditions. That is, the

presence of government bonds improves the flow of resources so that high productivity agents are

able to invest more, while low productivity agents choose not to invest. Hence, a higher supply of

government bonds increases investment efficiency.

On the other hand, AS
1(X1) also increases. Since the return of investing in capital decreases, less

agents are willing to sell their good trees to produce capital. Note that this can have perverse effects

22Because of the linearity of the value function and the iid assumption on investment opportunities, this is without loss
of generality.
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in the secondary market for trees. While the demand for trees is not affected, the supply of trees

decreases. Hence, the market price or the rationing η decrease.

It is useful to define the total amount of liquidity in the economy. Total liquidity is the value of

all the assets available for trade. In this economy it is given by

TL(X1) ≡ B0︸︷︷︸
public liquidity

+

η(X1)PM
1 (ωH; X1)

[
[1− G(AS

1(X1))]HG
1 + HB

1

]
+ (1− η(X1))PM

1 (ωL; X1)HB
1

︸ ︷︷ ︸
private liquidity

.

Hence, a higher volume of government bonds in period 1 increases the investment in the econ-

omy and its efficiency, but it partially crowds out the market for trees, increasing the adverse selec-

tion wedge for a fixed λE
1 . The next proposition summarizes these results.

Proposition 10. Consider an economy in period 1 with some fraction of good trees, λE
1 , and total amount of

trees, H1. Suppose the total amount of government bonds in the hands of agents increases. Then

1. the total amount of liquidity in the economy increases;

2. aggregate capital and investment efficiency increase;

3. the volume traded in the market for trees decreases;

4. liquidity services, µ1(A, X1), decreases for every state (A, X1).

Now, let’s switch to period 0. The government sells government bonds to agents. Agents an-

ticipate that more public liquidity in period 1 reduces the liquidity premium and hence the shadow

value of trees in period 0. This has a bigger impact on the shadow value of bad trees, so produc-

tion of bad trees, IB
0 , decreases, and the fraction of trees in the economy, λE

1 , increases. Moreover,

because the liquidity premium decreases, the risk-free interest rate of the economy increases. The

next proposition summarizes the results.

Proposition 11. An increase in the supply of government bonds reduces the production of bad trees IB
0 and

increases the fraction of good trees in the economy, λE
1 . The equilibrium interest rate in period 0 increases.

The overall effect of B0 on market fragility is ambiguous. On the one hand the incentives to

sell good trees decreases, but on the other hand the fraction of good trees in the economy increases.

If the asset quality composition of the economy is sufficiently inelastic (exogenously given qual-

ity distribution is an extreme case), then a higher supply of government bonds increases fragility.

However, below I describe an example that shows the forces at play, and why a reduction in market

fragility is a plausible outcome.

But first consider an extension of the model in which an external agent demands domestic gov-

ernment bonds. Even though the model is of a closed economy, one could easily extend it to incor-

porate international financial transactions. Suppose there is a foreign agent that buys government

bonds. This reduces the local supply of government bonds (while increasing current consumption).
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The effect over the production of trees is analogous to a reduction in the supply of government

bonds.

Corollary 11.1. If a foreign agent buys government bonds, λE
1 falls. The risk free interest rate also falls.

This result also connects to stories of safe asset shortages due to the world’s savings glut in the

early 2000s, which put excessive pressure on the US financial sector to produce safe assets (see, for

instance, Caballero (2006)).

Next I consider a particular technology for the representative firm that shows that government

bonds can reduce financial fragility.

Example: Government Bonds Reduce Financial Fragility

Suppose the production function in period 2 is given by

f (K) = ZY max{K, K∗}, (25)

where K∗ is a technological parameter. This production function has the special feature of being

linear in the region [0, K∗), and the marginal product of capital drops to zero when K ≥ K∗. In

order for the concave part of the production function to affect the economy I assume that K∗ is such

that if α is high, K(α) = K∗. That is, I assume that when the liquidity in the market is high, the

economy achieves the first best quantity of capital (note that this does not imply that the allocation

is first best for two reasons: first, bad trees were produced, which is socially inefficient; second, the

composition of the investment in capital is also inefficient since some investment is undertaken by

low productivity agents). If α is low, then K(α) < K∗. Moreover, K∗ is high enough so that the

threshold α∗ is such that K(α∗) < K∗.
Consider an increase in B0. In low α states, K increases but there is no impact on r(K), hence the

market is not affected. In high α states, government bonds partially crowd out the private market,

in this extreme case by increasing rationing. Hence, the direct effect of the increase in supply of

public liquidity is a reduction in the shadow value of trees, with the shadow value of bad trees

decreasing more than that of good trees. Therefore, the production of bad trees decreases and

the fraction of good trees in the economy, λE
1 , increases. Since the state α∗ features K < K∗, the

overall effect of an increase in government bonds is a drop in the probability of a market collapse,

that is, market fragility decreases when the supply of public liquidity increases. The reason why

market fragility unambiguously decreases here is that with this production function government

bonds crowd out private liquidity in high liquidity states, but complement private liquidity in low

liquidity states. While this sounds like a reasonable result, it does not immediately hold for more

general production functions. In those cases, the overall effect also depends on the elasticity of

production of tree quality. This will be particularly interesting in the infinite horizon version of

the model, where the elasticity of the fraction of good trees in the economy does not only depend

on the elasticity of production but also on the stock and composition of trees in the economy from

previous periods’ production.
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Optimal Policy

It is well known that allocations in economies with markets that suffer from adverse selection are

usually interim constrained Pareto Optimal, since it is not possible to improve efficiency in the

economy without lowering the well-being of those benefiting from the asymmetric information.23

However, here I am interested in aggregate allocations rather than distributional concerns. There-

fore, in order to study optimal policy I assume that the planner maximizes a utilitarian welfare

function that puts equal weight to all agents. Hence, the planner maximizes:

W = D0 + E0[D1(X1) + D2(X2)], (26)

subject to the equilibrium conditions

γG
0

qG(ξG)
=

γB
0

qB(ξG)
,

γB
0

qB(ξB)
=

γGB
0

PGB
0

= 1,

where D0, D1 and D2 are the aggregate consumption functions. This program is isomorphic to one

in which the planner maximizes the expected utility of the representative agent before its type ξ is

realized in period 0.

From the previous analysis one could conclude that the optimal policy should involve issuing

enough government bonds so as to completely crowd out the private market. That is, the govern-

ment could use its taxing power to become the monopolist producer of liquid instruments in the

economy. This is an appealing solution since it separates the liquidity value of assets from their

dividend value, so that assets are produced only for fundamental reasons. This logic resembles the

Friedman Rule for monetary policy, that is, the government should completely satiate the liquidity

needs of the agents.

However, there are at least two problems with this solution. First, the amount of bonds needed

can be very large, so that the fiscal cost of the intervention can be unbounded. In order for the

liquidity premium to be equal to zero, the agents with A = Amax need to hold enough liquidity to

invest the optimal amount in period 1. Since investment opportunities are random, all agents that

have a chance of getting the best investment opportunity need to be holding enough government

bonds in advance. Moreover, the smaller the set of agents that can get the best shock, the larger

the reallocation that is needed in period 1, so the larger the supply of bonds needed. In the limit in

which the measure of agents with A = Amax is zero, the amount of bonds the government has to

issue in period 1 is infinite.

Second, even if the fiscal cost was zero, the dynamics of the economy might cause the bonds

to end up in the wrong hands. Suppose the government is willing and able to issue all the bonds

needed to completely satiate agents’ liquidity needs in period 1. The problem is that some agents

will prefer to invest (because of fundamental reasons) instead of buying government bonds. And it

23See Bigelow (1990).
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is exactly because of this that securitization has a valuable social role. It allows investors to mitigate

the trade-off they face between undertaking investment opportunities and keeping enough liquid-

ity available to satisfy future needs. Hence, even if it wanted, it is unlikely the planner can satisfy

the full demand for liquidity with government bonds.

Given this discussion, I will continue my analysis under the assumption that if the government

issues bonds in period 0, in period 2 it has to pay a cost qGB per unit of bond issued (the shadow cost

of taxation). This is a similar strategy to the one adopted by Holmström and Tirole (1998) and Tirole

(2012). The benefit of this assumption, instead of using the model to determine the costs of taxation,

is that the model was not built to take a stand on the cheapest way of collecting revenue. However,

the exercise is still insightful to understand how optimal policy should look like. With this positive

cost, the government will choose to complement the market rather than fully substitute it.

In an interior solution, it must be that24

γGB
0 + E

[
∂γ̃G

1 (X1)

∂PM
1 (ωH; X1)

∂PM
1 (ωH; X1)

∂B0
+

∂γ̃G
1 (X1)

∂η(X1)

∂η(X1)

∂B0

]
HG+

E

[
∂γ̃B

1 (X1)

∂PM
1 (ωH; X1)

∂PM
1 (ωH; X1)

∂B0
+

∂γ̃B
1 (X1)

∂η(X1)

∂η(X1)

∂B0

]
HB = 1 + qGB. (27)

The LHS is the sum of the liquidity value of an extra unit of government bond, γGB
0 , and the change

in the value of private liquidity for a fixed level of K. The first term is analogous to the force that

justifies government intervention in Woodford (1990) and Holmström and Tirole (1998). This effect

would still be there even if there was perfect information in private markets.

But government bonds affect the functioning of private markets. The change in the value of pri-

vate liquidity depends on how prices and rationing react to government bonds. For a fixed fraction

of good trees in the economy, λE
1 , both prices and rationing decrease because of the crowding-out

effect of government bonds. Moreover, the drop in the liquidity premium disproportionally re-

duces the incentives to produce bad trees, so the average asset quality in the economy increases.

Hence, while previous work suggested that optimal policy should equalize the liquidity premium

to the shadow cost of taxation, when private markets are fragile it should also take into account

potentially negative crowding-out effects.

Still, the government should try to smooth the changes of the liquidity premium to shocks. To

see this, note that in an optimum the second order condition (SOC) has to be negative. But the effect

of B0 over the variables in the SOC works indirectly through the liquidity premium. The quantity

of bonds affects the amount of investment and hence the amount of capital for period 2, which

determines the rate of return of capital, r(K), and hence the liquidity services µ1(A, X1). And it is

the change in µ1(A, X1) that affects γB
0 , AS

1(X1), HG
1 , HB

1 , and PM
1 (ωh; X1). This is important because

then I can sign the effect of any shock that affects the FOC only through the liquidity premium by

determining if its effect has the same or opposite sign to the SOC. For example, an increase in ZY

has the opposite effect than government bonds, hence the FOC increases with ZY, and optimal B0

increases with ZY.
24See the details of the derivation in Appendix C.
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The next proposition summarizes this result.

Proposition 12. Optimal policy takes the form of increasing the supply government bonds when the liquidity
premium is high, and lowering it when the liquidity premium is low.

4.2 Transaction Tax

An alternative policy tool the government could use are transaction taxes and subsidies (or pur-

chase programs). In fact, the government used purchase programs to improve liquidity in financial

markets after the crisis hit. Tirole (2012) and Philippon and Skreta (2012) study how to optimally

intervene in markets that collapse due to adverse selection from an ex-post point of view. Here,

I analyze the problem from an ex-ante perspective. Since subsidies and purchase programs are

equivalent in this setting, I assume that the government uses subsidies for notational convenience,

even though purchase programs are better from a practical point of view.25

Suppose the price the sellers receive is PS
1 (X) = PM

1 (X) + c(X), where PM
1 (X) is the price paid

by the buyers and c(X) is the government’s subsidy (or tax if negative).26 By manipulating the

price, the government is effectively doing two things. First, given H1 and λE
1 , it is deciding how

much liquidity there is in the market. Second, it shapes the incentives to invest in period 0. While

the government wants the highest possible liquidity in the markets and the highest possible quality

production in period 0, transaction taxes and subsidies trade-off one for the other. So the question

is what is the optimal way to balance these forces. In particular, what states should be taxed and

what states should be subsidized. Below I show that the answer depends on whether the marginal

value of liquidity in low liquidity states is high enough compared to the marginal value in high

liquidity states. In the likely case that the value of liquidity in low liquidity states is sufficiently

higher than in high liquidity states, then optimal policy requires that taxes are pro-cyclical (and

potentially subsidize low liquidity states), in a leaning against the liquidity type of policy.

For simplicity suppose that the quality of bad trees can only take two values: αH and αL, with

αH > αL. The probability that α = αH is denoted by ζH. Moreover, assume that the production

function is given by

f (K) =





ZYK if K ≤ K∗

ZY(K∗ + δK) if K > K∗
(28)

with δ ∈ [0, 1]. Note that (25) is a particular case of (28) with δ = 0. For this exercise it is more

convenient to work with this form. I choose K∗ such that if the state is αH, in the laissez-faire

equilibrium K > K∗. On the other hand, if the state is αL, then K < K∗.This implies that r(K(αH)) =

ZYδ < ZY = r(K(αL)).

25With subsidies to transactions, agents could just buy and sell the same asset from one another repetedely only to
receive the subsidy. By buying the asset, the government avoids this type of behavior. However, the two policies differ
with respect to the timing of payments, even though they have the same net present value.

26I use this notation instead of the more standard ad-valorem subsidy/tax for analytical convenience. It is always

possible to define the implicit ad-valorem subsidy/tax as τ(X) ≡ PM
1 (X)+c(X)

PM
1 (X)

− 1.
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Maximizing (26) by choosing the values for {c(α)} gives the following FOC

∂W

∂c(α′)
= E

[[∫ Amax

AB
1 (α)

Ar(K(α))dG(A) + G(AB
1 (α))

] [
∂PM

1 (α)

∂c(α′)
+

∂c(α)
∂c(α′)

]]
HB

1 +

E

[∫ Amax

AS
1 (α)

Ar(K(α))dG(A)

[
∂PM

1 (α)

∂c(α′)
+

∂c(α)
∂c(α′)

]]
HG

1 = E
[

∂T(α)
∂c(α′)

]
,

where T(α) = c(α)
[
[1− G(AS

1(α))]H
G
1 + HB

1

]
, is the fiscal cost (revenues if negative) of the policy

{c(α)}.
So, should taxes be pro-cyclical or counter-cyclical? The answer depends on the value of δ

and ζH. If δ = 1, it could be optimal to subsidize the high α state and tax the low α state. The

reason is that market liquidity is convex in the selling price. When the production function is linear,

AB
1 (αH) = AB

1 (αL), since r(K(αH)) = r(K(αL)), but AS
1(αH) < AS

1(αL), since PM
1 (αH) > PM

1 (αL).

Therefore, the direct benefits from the subsidy E
[[∫ Amax

AB
1 (α)

Ar(K(α))dG(A) + G(AB
1 (α))

]
∂c(α)
∂c(α′)

]
HB

1 +

E
[∫ Amax

AS
1 (α)

Ar(K(α))dG(A) ∂c(α)
∂c(α′)

]
HG

1 are higher for the high liquidity state. If ζH is not too high,
∂PM

1 (α)
∂c(αL)

<
∂PM

1 (α)
∂c(αH)

< 0, since a one unit increase in the price of the low α state induces a higher

production of lemons that a unit increase in the price of the high α state. Therefore, the optimal

policy would require to increase liquidity in high liquidity states and lower it in low liquidity states.

This result is counter-intuitive and an artifact of the fact that agents are risk neutral, so that the

elasticity of substitution across states of nature is infinite. Moreover, it goes in the opposite direction

than the result in Tirole (2012), who finds that subsidies should be higher for low liquidity states.

Even though Tirole (2012) also has agents with linear preferences, the production function has an

extreme form of concavity at the individual level. I can achieve a similar result by choosing a δ that

is low enough. In that case, extra liquidity in the high liquidity state is less valuable than in the

low liquidity state because in the former it gives a return of AZYδ while in the latter the return is

AZY. It is straightforward to see that as δ goes to zero, the benefits from extra liquidity in the high

liquidity state vanish away. In that case, the optimal policy prescribes a pro-cyclical transaction tax

(whether it implies subsidizing the low state depends on parameter values). The next proposition

summarizes these results.

Proposition 13. There exists δ∗ ∈ (0, 1] such that if δ < δ∗, the optimal transaction tax is pro-cyclical.

5 INFINITE HORIZON

In the previous sections I presented a three-period model which allowed me to study the interaction

between the incentives to produce assets of different qualities and changes in the economy’s fun-

damentals and government policy. This section builds a tractable extension to an infinite horizon

model in order to get some insights about the dynamic behavior of these mechanisms.
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5.1 The Environment

The model is analogous to the three-period version with two main differences. First, agents operate

the technology to produce trees and physical capital every period. Second, there are markets for

trees every period.

There is a continuum of infinitely lived agents. There are three types of goods: final consump-

tion good, Lucas (1978) trees (which can be good, or bad), and physical capital. Agents maximize

utility:

Ut = Et

[
∞

∑
s=t

βsds

]
,

where ds is consumption in s = {t, t + 1, t + 2, ...}, β is the agents’ discount factor, and the expecta-

tion is taken with respect to their idiosyncratic investment opportunities and an aggregate state of

the economy, both described below. For convenience I assume that agents receive and endowment

W of final goods every period. This will give me a flexible way of guaranteeing that there is positive

aggregate consumption in every period, so that pricing is risk neutral like in the previous sections.

Agents have access to two technologies every period: one that produces trees and one that

produces physical capital. The technologies and payoff of trees and capital are a natural extension

of the ones described in the three-period models, with some simplifying assumptions.

I assume that trees are long lived and depreciate at a rate δH. While good trees pay a dividend

Z every period, bad trees pay αZ, where α ∼ F(α) with support in [0, 1], for some non-degenerate

continuous cumulative distribution F. For simplicity, I assume that α is iid over time. That is, trees

die at the same rate, but while good trees always pay Z, bad trees pay a fraction of that. Moreover,

I assume that all agents face the same cost of producing trees. I normalize the cost of producing

bad trees to one, so that qB = 1. On the other hand, the cost of producing good trees has two

components: producing one unit of good trees costs qGφ(IG), where IG is the aggregate production

of good trees. The term qG could be interpreted as the unit cost of production, with qG > qB. The

term φ(IG) is an investment adjustment cost, with φ(0) = 1, φ′ > 0, and φ′′ > 0. This avoids that

the stock of good trees grows without bound in this linear environment.27

I keep the production technology of physical capital from the previous section. That is, agents

receive a productivity A drawn from a convex and continuous cumulative distribution function G
with support [0, Amax]. However, in order to simplify the dynamic interactions of the economy, I

assume that physical capital fully depreciates after use. Thus, available capital in a given period

is fully determined by the previous period’s investment. I assume that the representative firm

operates a concave production function f (K) and it rents capital from the agents in competitive

markets, so that the rental rate of capital is given by r(K) = f ′(K). Firms profits are distributed

uniformly across all agents.

The structure of the market for capital is analogous to the extended three-period model from

the previous section. Every period there could be up to two markets active. In one market, the price

27There are different assumptions that would bound the amount of trees in equilibrium, and convex investment ad-
justment costs is a very tractable one. Note that by making the adjustment cost depend on aggregate investment, the
problem of the agents remains linear, so there is no need to keep track of cross-section distribution of agents’ portfolio
holdings to determine aggregate allocations.
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FIGURE 7: Within Period Timing

is given by the shadow value of bad trees, only bad trees are traded, and there is no rationing. In

the other market, good and bad trees are traded, the price is the expected value of a representative

tree bought (due to risk neutral pricing), and there can be rationing in equilibrium. For tractability,

I assume that both trees and capital pay their dividend after trade and production takes place. This

assumption makes each period in the infinite horizon model be as close as possible to the timing

in the three-period economy from the previous sections and greatly simplifies the dynamics of the

economy, as descried below. Figure 7 depicts the timing within a period.

Finally, the government supplies an amount B of one-period bonds every period, that pay 1

unit of final good at maturity. The per-period budget constraint of the government is given by

B− PGBB = T,

where PGB is the price at which the government sells the bonds, and T is a lump-sum tax to the

agents.

I will look for a recursive competitive equilibrium of the economy with X ≡ {λE, H, K, B; α)

as a state variable, where λE is the fraction of good trees, H is the total amount of trees, K is the

amount of physical capital, and B is the supply of government bonds.

5.2 Agents’ Problem

Agents start the period with a portfolio of trees (good and bad), capital, and government bonds. An

agent’s investment opportunity is given only by A, since all agents face the same cost of producing

trees. Every period there can be two markets active. The first features a price PM(ωH, X) and both

good and bad trees are traded. However, only a fraction η(X) of the trees supplied are actually sold.

In the second market, the price is PM(ωL, X) and only bad trees are sold. Since a fraction η(X) of

the bad trees are sold in the high price market, only the remainder 1− η(X) is sold in this low price

market. Moreover, buyers can decide in which market to trade. Let m(ωH) denote the purchases in

the high price market, and m(ωL) denote the purchases in the low price market (where they know

they are getting bad trees with probability one).

Agents face a per-period budget constraint given by

d + φ(IG)qGiG + iB + iK + PM(ωH, X)m(ωH) + PM(ωL, X)m(ωL) + PGB(X)b′ ≤W+

(hG + λM(X)m(ωH)− sG)Z + (hB + (1− λM(X))m(ωH) + m(ωL)− sB)αZ + r(X)k+

PM(ωH, X)η(X)(sG + sB) + PM(ωL, X)(1− η(X))sB + b + Π− T, (29)

44



which states that expenditures in consumption, investment, and purchases of trees and government

bonds cannot exceed the sum of endowment, the dividends received (from trees, capital, firms and

government bonds), trees sold, and government transfers.

On top of that, agents face a restriction on when the resoruces are available. The timing in figure

7 imposes the following constraint

φ(IG)qGiG + iB + iK + PM(ωH, X)m(ωH) + PM(ωL, X)m(ωL) + PGB(X)b′ ≤W+

PM(ωH, X)η(X)(sG + sB) + PM(ωL, X)(1− η(X))sB + b, (30)

which states that expenditures in investment and purchases of trees cannot exceed the sum of the

endowment, the proceeds from selling trees, and the dividends from government bonds.

Finally, agents face the following laws of motion of their portfolio holdings

h′G = (1− δH)[hG + λM(X)m− η(X)sG] + iG, (31)

h′B = (1− δH)[hB + (1− λM(X))m(ωH) + m(ωL)− sB] + iB, (32)

k′ = AiK. (33)

Therefore, the problem of an agent with investment opportunity A is given by

V(hG, hB, k, b; A, X) = max
d,iG ,iB,iK ,m,

sG ,sB,h′G ,h′B,k′,b′

d + βE[V(h′G, h′B, k′, b′; A′, X′)|X], (34)

subject to (29), (30), (31), (32) and (33), and

d ≥ 0, iG ≥ 0, iB ≥ 0, iK ≥ 0, m ≥ 0, b′ ≥ 0,

sG ∈ [0, hG], sB ∈ [0, hB].

The agents’ choice follows the same logic as before. If an agent has a low investment opportu-

nity, then it will not invest but buy assets (trees and government bonds) in the market and consume.

If the investment opportunity has a high return, the agent chooses to invest. If the return in the in-

vestment opportunity is high enough, then the agent even sells its holdings of good trees to be able

to invest the proceeds.

As in the three period models, it is possible to show that the value function V is linear on each
element of the agents’ portfolio:

V(hG, hB, k, b; A, X) = γ̃G(A, X)hG + γ̃B(A, X)hB + γ̃K(A, X)k + γ̃GB(A, X)b,

where γ̃j(Φ, X) for j ∈ {G, B, K, GB} are defined in the appendix.

The liquidity services are given by

µ(A, X) = max
{

1,
γG(X)

φ(IG)qG
, γB(X), AγK(X)

}
, (35)
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where I am already using the fact that the return in the markets equals to 1, and the shadow prices

are given by

γj(X) = βE[γ̃j(A′, X′)|X], j ∈ {G, B, K, GB}.

Since the return from producing trees is one, no agents sells good trees to produce new trees

and only agents with high enough productivity A will sell their good trees. Therefore, the demand

and supply for trees is given by

PM = λM(X)[Z + (1− δH)γG(X)] + (1− λM(X))[αZ + (1− δH)γB(X)],

and

λM =
[1− G(As(X))]λE

[1− G(As(X))]λE + (1− λE)
.

5.3 Stochastic Steady State

I look for a stochastic steady state of the economy in which λE and H are constant over time. This

is a natural starting point, and as I will show, provides a tractable laboratory to study the dynamics

of the economy. I guess and verify that such equilibrium exists.

The law of motion of the fraction of good trees in the economy is given by

λ′E = λEθ(λE, H) +
IG

IG + IB
(1− θ(λE, H)), (36)

where θ(λE, H) ≡ (1−δH)H
(1−δH)H+IG+IB

, and the law of motion of the total amount of trees is

H′ = (1− δH)H + IG + IB. (37)

This implies that λE and H are constant if and only if IG and IB are constant. Moreover, if W is large

enough, aggregate consumption is positive in every state, which implies that producers of trees are

indifferent between investing and consuming, which derives a utility of one. Therefore, it must

hold that
γG

φ(IG)qG
= γB = 1,

and both γG and γB are constant over time. Two things remain to be shown. First, that constant γG

and γB are consistent with the definitions of the shadow values. Second, that there exists λE and H
consistent with this equilibrium.

The shadow values are given by

γG(X) = βE[max{µ(A′, X′)η(X′)PM(ωH, X′) + (1− η(X′))[Z + (1− δH)γG(X′)],

Z + (1− δH)γG(X′)}|X], (38)

γB(X) = βE[µ(A′, X′)[η(X′)PM(ωH, X′) + (1− η(X′))PM(ωL, X′)]|X], (39)
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and

γK(X) = βE[r(X′)|X], (40)

where µ(A, X) is given by (35).

Since PM and λM only depend on the shadow values and the current realization of α, and α is

iid, I just need to show that K(X) does not depend on past information to guarantee that there exists

a solution to (38) and (39) that is constant when λE and H are constant. Capital is given by

K(X) =
∫ Amax

1
γK (X)

A[W + [η(X)PM(ωH, X) + (1− η(X))PM(ωL, X)HB + PGB(X)B]dG(A)+

∫ Amax

γG(X)

γK (X)PM(ωH ,X)

Aη(X)PM(ωH, X)HGdG(A). (41)

Note that (41) is the analogous to its three-period counterpart (23). Hence, since K(X) does not

depend on past variables except for λE and H (through HB and HG), there exists a constant solution

to (38), (39) and (40) when λE and H are constant. Note that this result relies on three assumptions:

first, aggregate shocks are iid; second, capital fully depreciate after use; third, trees and capital pay

their dividend after trade and investment (in trees and capital) takes place. Below I discuss how

changing these assumptions would change the results.

Finally, I need to show that there exists a pair (λE, H) consistent with the equilibrium. From

(36) and (37), a constant path of λE and H solves

λE =
IG

IG + IB
, (42)

and

H =
IG + IB

δH
. (43)

These two equations determine two curves in the space (λE, H). A steady state is characterized

by an intersection of these curves. It can be seen that at least one intersection exists. On the one

hand, (42) is strictly greater than zero when H = 0, and has a limit λ̃E < 1 when H → ∞. On the

other hand, (43) is greater than zero when λE = 0, and finite when λE = λ̃E (while maintaining

risk neutral pricing if W is high enough). Since they are both continuous functions, an intersection

exists. Moreover, there exists an intersection in which (42) crosses (43) from below in the space

(λE, H). This implies that there exists a stable steady state.

Hence, changes in α affect the liquidity in the market and hence the production of capital.

Higher α implies higher volume traded and therefore more reallocation towards the agents with

the highest productivities. Therefore, this infinite horizon extension keeps the main insights from

the previous sections while remaining tractable. Next, I study the dynamic response of the economy

to a transitory shock.
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5.4 Transitory Shock

When studying the effect of shocks on market fragility, a general result stated that the overall effect

was ambiguous. While the fundamental shock reduces the fragility of the system, the endogenous

response generates an opposite effect. The overall result depends on functional forms and parame-

ter values. A natural question is what happens if the economy goes back to its initial value or trend,

in a impulse response type of exercise.

Here I study a transitory increase in the distribution of the quality of bad trees, α. Suppose

the economy is in its stochastic steady state in period T and the distribution of α in T + 1 increases

from F to F̃ such that F̃ > F in first order stochastic dominance sense, and then it goes back to F in

T + 2. On impact, this generates an increase in the shadow value of trees, with the shadow value of

bad trees increasing proportionally more than that of good trees. Therefore, production of bad trees

increases and the fraction of good trees in the economy decreases. This is the same effect I found

in the three-period model. In T + 1, the agents anticipate that fundamentals go back to their initial

level, so their incentives to produce bad trees decreases. Moreover, the incentives to produce good

trees is also lower than in the steady state. To see this note that

λ′E = λEθ(λE, H) +
IG

IG + IB
(1− θ(λE, H)).

Therefore, if λE is lower, IG
IG+IB

has to be higher. But for each level of investment, the shadow value

of good trees is lower than in the stochastic steady state, since it results in a lower fraction of good

trees and hence in lower expected prices. Therefore, market fragility in T + 2 is higher than in the

stochastic steady state. The next proposition states the main result of this section.

Proposition 14. Consider an economy that starts in its stochastic steady state. Suppose in period T the
economy is hit by a shock that increases the distribution of the quality of bad trees α in FOSD sense for one
period. Then, the fraction of good trees in T + 1 decreases and market fragility in period T + 2 is higher than
in the stochastic steady state.

This result is important because it shows that a transitory shock sows the seeds of the a crisis

by generating perverse incentives in the boom that exposes the economy to a bust when conditions

go back to ”normal”. The result can also be extended to the other sources of risk studied before, like

a transitory increase in the TFP of the representative firm or a transitory reduction in the supply

of government bonds. Note that the intuition is a natural extension from the insight gained in the

three period models: a positive shock worsens the composition of assets in the economy, and since

assets are long lived, when the shock vanishes away the fraction of good assets in the economy is

smaller than before the shock, while the exogenous state goes back to its initial level, so fragility

increases.

Moreover, this setting allows me to study the effects of the timing of government intervention.

The government could issue bonds as soon as the shock hits or wait until the economy goes back

to its trend. If the issuance occurs when the shock hits, higher public liquidity reduces the liquidity

premium, which reduces the incentives to produce bad trees. Therefore, a small increase in govern-

ment bonds reduces market fragility with respect to a situation of no government intervention. On

48



the other hand, if the intervention occurs when the shock dies out, the increase in public liquidity

crowds out the production of good trees, increasing market fragility even more. Hence, it is better

for the government to intervene when the shock hits and potentially step back when the economy

goes back to trend.

Proposition 15. A small increase in government bonds in T reduces market fragility. An increase in gov-
ernment bonds in T + 1 increases market fragility.

5.5 Discussion

In order to keep the tractability of the infinite horizon model I made several assumptions about

the fundamentals and the timing of the economy. Without them, the steady state I analyzed would

not exist, and both λE and H would fluctuate with the realization of the aggregate shock α. Here I

briefly discuss what would change in the more general setting.

If shocks were not iid and capital did not fully depreciate after use, shocks in one period would

carry information about the economy in future periods. I conjecture that under different assump-

tions, as long as the aggregate shock has positive auto-correlation, the main results should not

change. That is, a positive transitory shock would disproportionally increase the production of bad

trees and, thus, reduce the fraction of good trees in the economy. As the shock vanishes away, the

economy faces the same conditions than in my simplified economy: the same fundamentals than

before the shock (for a given path of realizations of the aggregate state) but a worse asset quality

composition in the economy. Therefore, market fragility would increase.

Moreover, I assumed that trees and capital pay after the market for trees close and investment is

undertaken. Each assumption performs a different role. Trees need to pay after the market closes so

that with iid aggregate shocks there is some risk in the market. On the other hand, if the dividends

from capital were used for investment, it would introduce a term that connects past shocks with

current control variables, so that a steady state with constant λE and H would not exist. However,

the main forces of the economy do not change, so the results are likely to survive. But more research

is needed to fully understand the implications of the infinite horizon economy.

6 CONCLUSION

I have developed a model in which ex-ante production of assets interacts with ex-post adverse se-

lection in financial markets. The production of low-quality assets is more sensitive to changes in

markets conditions and the value of liquidity services than that of high-quality assets. Therefore,

shocks that improve market functioning, such as reductions in the ”default rate” of low-quality as-

sets, increases in the productivity of the real economy, or reductions in transaction taxes, deteriorate

the asset quality composition of the economy and can even increase the probability of a financial

crisis, defined as an event in which the financial markets collapse. Moreover, the supply of pub-

lic liquidity also affects the private incentives to produce asset quality. I show that an increase in

government bonds increases the total liquidity available in the economy and reduces the incentives

to produce low-quality assets, but it can also exacerbate the adverse selection problem in private
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markets. If the production of trees is sufficiently elastic, then a reduction in government bonds can

increase market fragility.

All these comparative statics point to plausible sources of risk build-up in the US before the

Great Recession: perceived low risk on subprime mortgages that ended when house prices started

to decrease; strong growth rates at the wake of the ”dot-com” crisis; financial innovation that re-

duced the costs of trading illiquid assets; safe asset shortage due to fiscal surpluses in the late 90s

as well as foreign demand in the early 2000s (the ”savings glut”).

Moreover, I study optimal policy in this setting. I find that the government should take into ac-

count the crowding-out effect on private markets when choosing the supply of bonds. Still, supply

should increase when the liquidity premium increases (and viceversa). Moreover, I show that if the

liquidity in low-liquidity states is sufficiently more valuable than in high-liquidity states, transac-

tion taxes (or subsidies) that ”lean against liquidity” are optimal.

Finally, I extend the insights from the basic models to an infinite horizon setting. I show that

financial fragility is a natural outcome after transitory shocks, and that government intervention

through the issuance of bonds should take place when the shock hits rather than when it dies out,

since in the latter it can exacerbate the negative effects of the lower asset quality distribution. In the

analysis I had to make strong assumptions in order to keep the model tractable. A natural next step

would be to study whether these results survive in more realistic models (which would probably

need to be solved numerically).
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A BASIC MODEL

Proof of Lemma 1. Let κ1(hG, hB; µ1, X1) be the Lagrange multiplier associated to the budget

constraint of program (P1). The FOC with respect to d is

µ1 − κ1(hG, hB; µ1, X1) ≤ 0.

Moreover, the FOC with respect to m is

−κ1(hG, hB; µ1, X1)PM
1 (X1) + λM

1 (X1)Z + (1− λM
1 (X1))αZ ≤ 0.

Therefore,

κ1(hG, hB; µ1, X1) = max

{
µ1,

λM
1 (X1)Z + (1− λM

1 (X1))αZ
PM

1 (X1)

}
.

Define µB
1 (X1) ≡ λM

1 (X1)Z+(1−λM
1 (X1))αZ

PM
1 (X1)

. This is the return from the market, which is the same for all

agents. Therefore, if µ1 < µB
1 (X1), then m > 0 and d = 0. If µ1 = µB

1 (X1), the agent is indifferent

between consuming and buying trees in the market. On the other hand, if µ1 > µB
1 (X1), then m = 0

and d > 0.

Moreover, the FOC with respect to sG is

κ1(hG, hB; µ1, X1)PM
1 (X1)− Z.

Therefore, if µ1 ≤ µB
1 (X1), κ1(hG, hB; µ1, X1) = µB

1 (X1), and hence κ1(hG, hB; µ1, X1)PM
1 (X1)− Z < 0

as long as λM
1 (X1) < 1, and sG = 0. Let µS

1(X1) ≡ Z
PM

1 (X1)
. If µ1 > µS

1(X1), then sG = hG, and zero

otherwise. It is straightforward to see that sB = hB for all µ1.

Finally, note that the demand for trees is

M(X1) =
∫ µB

1 (X1)

1

W1

PM
1 (X1)

dG(µ1),

while the supply is

S(X1) =
∫ µmax

1

µS
1 (X1)

HGdG(µ1) + HB.

As π increases, M increases for all prices, while S decreases. If π is high enough, agents with µ1

have enough wealth to buy all the trees in the market and also consume. Therefore, they have to be

indifferent between the return from the market, µB
1 (X1) and the utility from consumption, 1. Hence,

µB
1 (X1) = 1 and PM

1 (X1) = λM
1 (X1)Z + (1− λM

1 (X1))αZ.

Proof of Lemma 2. Since agents always sell their bad trees, and agents with µ1 > 1 consume,

while agents with µ1 = 1 consume and buy trees in the market (with a return of one), the utility

from a unit of good tree is given by µ1PM
1 (X1). Similarly, the utility from the endowment W1 is

given by µ1. On the other hand, only agents with µ1 > µS
1(X1) sell their good trees, in which

case the get a utility of µ1PM
1 (X1). If they don’t sell, they a utility of Z in period 2. Note that
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µ1 > µS
1(X1) ⇔ µ1PM

1 (X1) > Z. Hence, the utility from holding one unit of good tree un period 1

is given by max{µ1PM
1 (X1), Z}. Therefore, the value function in period 1 is

V(hG, hB; µ1, X1) = µ1W1 + max{µ1PM
1 (X1), Z}hG + µ1PM

1 (X1)hB.

Proof of Proposition 1. First, let’s calculate DκγB
0 (PM

1 + κ):

DκγB
0 (PM

1 + κ) = lim
ε→0

γB
0 (PM

1 + εκ)− γB
0 (PM

1 )

ε
= E0[µ1κ(X)] > 0.

On the other hand, DκγG
0 (PM

1 + κ) is given by:

DκγG
0 (PM

1 + κ) = E0,α

[
E0,µ1

[
µ1κ(X)|µ1 ≥

Z
PM

1 (X)

] [
1− G

(
Z

PM
1 (X)

)]]
> 0.

Hence, DκγB
0 (PM

1 + κ) > DκγG
0 (PM

1 + κ) > 0 as long as PM
1 (X) < Z in some states with positive

measure. Moreover, since γB
0 < γG

0 , then

DκγB
0 (PM

1 + κ)

γB
0 (PM

1 )
>

DκγG
0 (PM

1 + κ)

γG
0 (PM

1 )
> 0.

Proof of Lemma 3. Let κ0(ξ) be the Lagrange multiplier associated to the budget constraint of

program (P0). The FOC with respect to d is

1− κ0(ξ) ≤ 0.

Moreover, the FOCs with respect to iG and iB are

κ0(ξ)qG(ξ) + γG
0 ≤ 0,

κ0(ξ)qB(ξ) + γB
0 ≤ 0.

Therefore

κ0(ξ) = max

{
1,

γG
0

qG(ξ)
,

γB
0

qB(ξ)

}
.

First, note that by Assumption 2, Z > 1 and so γG
0 ≥ Z > 1 = qG(0). Second, since γB

0 > γB
0 , then

γG
0

qG(0)
>

γB
0

qB(0)
. By continuity of qG and qB, there exists ξG(0, 1) such that max

{
1, γG

0
qG(ξ)

, γB
0

qB(ξ)

}
=

γG
0

qG(ξ)
,

and hence iG(ξ) = W0
qG(ξ)

if and only if ξ ≤ ξG. Agents with ξ > ξG will choose to consume or

produce bad trees. If γB
0

qB(ξG)
≤ 1 then max

{
1, γG

0
qG(ξ)

, γB
0

qB(ξ)

}
= 1 for all ξ > ξG, and ξG is defined such

that the marginal investors is indifferent between producing trees and consuming, γG
0

qG(ξG)
= 1. If

γB
0

qB(ξG)
> 1, then there exists ξB ∈ (ξG, 1) such that max

{
1, γG

0
qG(ξ)

, γB
0

qB(ξ)

}
, and iB(ξ) =

W0
qB(ξ)

if and only
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if ξ ∈ (ξG, ξB]. In this case, ξG is defined so that the marginal investor of good trees is indifferent

between producing good and bad trees, γG
0

qG(ξG)
=

γB
0

qB(ξG)
, and the marginal investor of bad trees is

indifferent between producing bad trees and consuming, γB
0

qB(ξB)
= 1.

Proof of Proposition 2. From Proposition 1 we know that shadow values increase, but γB
0 increases

by more than γG
0 when prices increase. If IB

0 = 0, then optimality implies that γG
0

qG(ξG)
= 1. Since γG

0

increases, ξG has to increase, so IG increases.

On the other hand, if IB
0 > 0, the optimality conditions are γG

0
qG(ξG)

=
γB

0
qB(ξG)

and γB
0

qB(ξB)
= 1. Hence,

as prices increase, ξG decreases and ξB increases, giving the desired result.

Proof of Corollary 2.1. That λE
1 decreases with prices is immediate from Proposition 2. To see that

H1 increases note two things. First, the mass of agents that invests increases since it is given by ξB.

Second, since qB(ξ) < qG(ξ) ∀ξ ∈ [0, 1], when ξG decreases to ξG − ∆ for some δ > 0, investment of

the agents in ξ ∈ (ξG, ξG − ∆] goes up, since W0
qG(ξ)

< W0
qB(ξ)

.

Proof of Proposition 3. Since the cdf of α, F is continuous, the shadow values of good and bad

trees are continuous in λE
1 even if market prices are discontinuous in the state of the economy.

Because IG
0 and IB

0 are continuous functions of the shadow values, the mapping T is continuous in

λE
1 . Moreover, since prices are increasing in λE

1 , Proposition 2 implies that IG
0 is decreasing in λE

1

while IB
0 is increasing, so the mapping T is decreasing in λE

1 . Therefore, a fixed point of T exists and

is unique.

Proof of Proposition 4. Note that the change in the distribution of F has no effect on the equilibrium

in period 1 as long as λE
1 doesn’t change. So the key is to see how λE

1 changes, which reduces to

determining how the mapping T defined in (12) changes.

First note that since PM
1 is increasing in α for any value of λE

1 and H1, the increase in F to F̃ is

mathematically equivalent to an increase in prices in each state α by φ(α) ≥ 0. To see this note that

ProbF̃(PM
1 (X) ≤ P) ≤ ProbF(PM

1 (X) ≤ P)⇒ ProbF̃(PM
1 (X) ≤ P) = ProbF(PM

1 (X) + φ(X) ≤ P).

By Proposition 2, an increase in prices reduces IG
0 and increases IB

0 as functions of λE
1 , so that the

mapping T decreases for all λE
1 . Hence, the fixed point λE∗

1 = T(λE∗
1 decreases. Note that the sign

of the change in IG
0 is ambiguous since the partial equilibrium effect of prices reduces it but the

endogenous change in λE
1 increases it.

Because ξB increases and ξG decreases, total investment increases (recall that those who switch

from producing good trees to bad trees face a lower cost, so they produce more trees). Moreover,

because λE
1 decreases, equilibrium prices decrease in all states, so the threshold α∗ increases.

Finally, market fragility is ambiguous since the change in F reduces it but the endogenous

change in λE
1 increases it. The overall effect depends on parameters and functional forms.

Proof of Proposition 5. The change in the distribution G is equivalent to an increase in µ1 to
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µ1 + φ(µ1) with φ(µ1) ≥ 0. Keeping the prices fixed, the change in the shadow values are given by

∆γG
0 =E[max{(µ1 + φ(µ1))PM

1 , Z}]− E[max{µ1PM
1 , Z}],

=E0,α

[
E0,µ1

[
φ(µ1)PM

1 |µ1 ≥
Z

PM
1

] [
1− G

(
Z

PM
1

)]
+

E0,µ1

[
(µ1 + φ(µ1))PM

1 − Z|µ1 <
Z

PM
1

& µ1 + φ(µ1) ≥
Z

PM
1

] [
G

(
Z

PM
1

)
− G̃

(
Z

PM
1

)]]
,

∆γB
0 =E[(µ1 + φ(µ1))PM

1 ]− E[µ1PM
1 ] = E[φ(µ1)PM

1 ].

Since (µ1 + φ(µ1))PM
1 − Z < φ(µ1)PM

1 when µ1 < Z
PM

1
, then ∆γB

) > ∆γG
0 and hence ∆γB

0
γB

0
>

∆γG
0

γG
0

.

Therefore, IG
)

decreases and IB
0 increases as functions of λE

1 , so the mapping T decreases for all λE
1 .

Hence, λE∗
1 = T(λE∗

1 decreases.

Note that now the effect on PM
1 is ambiguous since more agents want to sell good trees, but there

is a smaller fraction of good trees in the economy. Hence the effect on α∗ and MF are ambiguous.

Proof of Proposition 6. Let c1 ≡ µmax
1 −1
µmax

1
Z. Therefore, if c > c1, the price sellers get is PS

1 <

Z− µmax
1 −1
µmax

1
Z = Z

µmax
1

. Hence, no agent sells their good trees.

Consider now c ≤ c1. If c = c1, and only good trees were produced, the shadow value of bad

trees would be

γB
0 = E

[
µ1

Z
µmax

1

]
= E[µ1]

Z
µmax

1
.

Fixing E[µ1], note that if µmax
1 ≥ ZE[µ1], then γB

0 ≤ 1 even when λE
1 = 1, so no agent will produce

bad trees when the cost is in the neighborhood of c1. On the other hand, note that as mumax
1 →

E[µ1], then γB
0 → Z > 1 when λE

1 = 1. Hence, there exists µmax
1 such that if µmax

1 ≥ µmax
1 , there

exists c2 ≤ c1 such that if c ∈ (c2, c1), only good trees are produced and there is some trade in the

secondary market. On the other hand, if µmax
1 < µmax

1 , γB
0 > 1 and there is some production of bad

trees.

Moreover, since an increase in c is equivalent to a reduction in prices, it is straightforward to

see that if c ∈ (c2, c1), then ∂IG
0

∂c < 0. If c < c2, note that a reduction of c moves the mapping T down,

so ∂λE
1

∂c < 0.

Sketch of Proof of Proposition 7. Consider an economy with F degenerated at α̃. I choose α̃

such that T(λE∗
1 ) < λE∗

1 , where λE∗
1 is the fraction of good trees such that if λE

1 < λE∗
1 the market

collapses. Denote the associated price at λE∗
1 as PM∗

1 .

Now consider another economy in which α is distributed according to

α = α̃ + u, u ∼ U [−ε, ε],

where U denotes the uniform distribution. The objective is to show that as ε→ 0, Var(PM
1 (α|ε)) 9

0.
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Suppose Var(PM
1 (α|ε))→ 0 as ε→ 0. This means that PM

1 (α|ε)→ P̃M
1 , for some P̃M

1 . Note that

PM
1 (α|ε) needs to be higher than αZ for all α as ε → 0, since otherwise agents would not produce

bad trees, which cannot be an equilibrium. Moreover, the mapping T(λE
1 |ε) is continuous in ε and

converges pointwise to T(λE
1 ) (the mapping of an economy with F degenerate at α̃), except at λE∗

1 .

Therefore, P̃M
1 = PM∗

1 . But then T(λE∗
1 (ε)|ε) < λE∗

1 (ε), so this cannot be an equilibrium. Therefore,

PM
1 (α|ε) 9 P̃M

1 and Var(PM
1 (α|ε)) 9 0. In particular, there exists α∗(ε) such that PM

1 (α|ε) = αZ for

all α < α∗(ε), and PM
1 (α|ε) > αZ for all α ≥ α∗(ε).

Moreover, since λE∗
1 and market prices in period 1 are continuous in α̃, there exists an open set

B ⊂ [0, 1] such that if α̃ ∈ B, then Var(PM
1 (α|ε)) 9 0.

Sketch of Proof of Proposition 8. I need to show that MF(ε)→ ζ as ε→ 0, where ζ is the sunspot.

Since λE
1 (ε)→ λE∗

1 , it holds that E[PM
1 (λE

1 (ε), α)]→ E[PM
1 (λE∗

1 , α̃)]. Note that

E[PM
1 (λE

1 (ε), α)] =
∫ α̂+ε

α∗(ε)

PM
1 (λE

1 (ε), α)

2ε
dα +

∫ α∗(ε)

α̂−ε

αZ
2ε

dα.

Hence,

E[PM
1 (λE

1 (ε), α)] ≥ Prob(α ≥ α∗(ε))PM
1 (λE

1 (ε), α∗(ε)) + Prob(α < α∗(ε))(α̂− ε)Z,

and

E[PM
1 (λE

1 (ε), α)] ≤ Prob(α ≥ α∗(ε))PM
1 (λE

1 (ε), α̂ + ε) + Prob(α ≥ α∗(ε))α∗(ε)Z.

As ε goes to zero we get

lim
ε→0

E[PM
1 (λE

1 (ε), α)] = E[PM
1 (λE∗

1 , α)] = (1− ζ̃)PM
1 (λE∗

1 , α̃) + ζ̃ α̃Z.

Hence, ζ = ζ̃.

B EXTENDED MODEL AND POSITIVE IMPLICATIONS

Proof of Lemma 4.

First I formally define the robustness of the solution to (P1’) to small perturbations of η, which

is a modification of the analysis in Kurlat (2016) adjusted to the present setting.

Definition 6. A solution to (P1’) is robust if there exists a sequence of strictly positive real numbers {zn}∞
n=1

and a sequence of consumption, investment, buying and selling decisions
{dn, in

k , mn, sn
G, sn

b , h
′n
G , h

′n
B , k

′n} such that, defining

ηn(ω; X1) = η(ω; X1) + zn, ∀ω ∈ Ω

1. {dn, in
k , mn, sn

G, sn
b , h

′n
G , h

′n
B , k

′n} solve the program

V(hG, hB; A, X1) = max
d,iK ,m,sG ,
sB,h′G ,h′B,k′

d + V2(h′G, h′B, k′; X2), (P1’.A)
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subject to

d + iK + ∑
ω∈Ω

PM
1 (ω)m(ω) ≤W1 + ∑

ω∈Ω
PM

1 (ω)(sG(ω) + sB(ω))ηn(ω; X1),

h′G = hG + ∑
ω∈Ω

λM
1 (ω; X1)m(ω)− ∑

ω∈Ω
sG(ω)ηn(ω; X1),

h′B = hB + ∑
ω∈Ω

(1− λM
1 (ω; X1))m(ω)− ∑

ω∈Ω
sB(ω)ηn(ω; X1),

k′ = AiK,

∑
ω∈Ω

sG(ω)ηn(ω; X1) ≤ hG, and ∑
ω∈Ω

sB(ω)ηn(ω; X1) ≤ hB,

d ≥ 0, iK ≥ 0,

m(ω) ≥ 0, sG(ω) ∈ [0, hG], sB(ω) ∈ [0, hB], ∀ω ∈ Ω.

2. zn → 0

3. {dn, in
k , mn, sn

G, sn
b , h

′n
G , h

′n
B , k

′n} → {d, ik, m, sG, sb, h′G, h′B, k′}.

Let µ1(A, X1) be the Lagrange multiplier associated to the budget constraint in program (P1’).

The FOC with respect to d is

1− µ1(A, X1) ≤ 0.

Moreover, the FOC with respect to m(ω) is

−µ1(A, X1)PM
1 (ω) + λM

1 (ω; X1)Z + (1− λM
1 (ω; X1))αZ ≤ 0,

while the FOC with respect to iK and k′ combined is

−µ1(A, X1) + Ar(X2) ≤ 0.

Therefore

µ1(A, X1) = max

{
1, Ar(X2),

{
λM

1 (ω; X1)Z + (1− λM
1 (ω; X1))αZ

PM
1 (ω)

}

ω∈ΩB

}
.

Now, define µB
1 (X1) ≡ maxω∈Ω

λM
1 (ω;X1)Z+(1−λM

1 (ω;X1))αZ
PM

1 (ω)
. Moreover, define AB

1 (X1) ≡ max{1,µB
1 (X1)}

r(K(X1))
.

If A ≤ AB
1 (X1), the return from investing in capital, Ar(K(X1)) is too low compared to the return

of the best alternative between consuming and buying trees in some market. Hence, agents with

A ≤ AB
1 (X1) do not produce capital, and consume or buy trees. Moreover, since PM

1 < Z in all

markets in equilibrium, and ruling out arbitrage opportunities that are not consistent with equilib-

rium, agents do not sell good trees to consume or to buy trees in the markets, so that sG(ω) = 0 if

A ≤ AB
1 (ω).
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On the other hand, if A > AB
1 (X1), agents produce capital and do not consume or buy trees.

Now let’s switch to selling decisions. The decision to sell bad trees is straightforward: agents

offer bad trees in all markets with the highest prices until they all the holdings are sold. On the

other hand, the decision to sell is more involved and uses the definition of robust solution.

First, let’s show that optimality requires that if ω′ > ω, then if sG(ω) > 0, sG(ω
′) = hG. Suppose

this didn’t hold. Then, the agent can increase its utility by reducing sG(ω) by ε and increasing

sG(ω
′) by ε

η(ω;X1)
η(ω′;X1)

, for some ε > 0. This policy is feasible and non-trivial unless η(ω; X1) = 0 or

η(ω′; X1) = 0. So consider a sequence ηn(ω; X1) > 0 and ηn(ω′; X1) > 0. The solution to (P1’.A)

must satisfy that if sn
G(ω) > 0 then sn

G(ω
′) = hG from the previous argument. But then sn

G(ω
′)→ hG.

Hence, agents sell there good trees only in markets that feature a high enough price.

Second, the FOC with respect to sG(ω) is

µ1(A, X1)PM
1 (ω)η(ω; X1)− Zη(ω; X1).

Define Ã(ω; X1) ≡ Z
r(K(X1))PM

1 (ω)
. It is straightforward to see that ÃS

1(ω; X1) is decreasing in ω. Then,

an agent with productivity A sells in market ω if and only if A > ÃS
1(ω; X1) and ω ≤ ω̃, where ω̃

is defined in (19). Therefore

AS
1(ω) ≡





ÃS
1(ω; X1) if ω ≥ ω̃

Amax if ω < ω̃.

Partial Equilibrium

If W1 is sufficiently high, then buyers have enough wealth to drive down the return of the

markets in which they participate to 1, so that they both buy trees and consume. In that case, active

markets satisfy

PM
1 (ω) = λM

1 (ω; X1)Z + (1− λM
1 (ω; X1))αZ, (44)

with

λM
1 (ω; X1) =

[1− G(AS
1(ω; X1)]λE

[1− G(AS
1(ω; X1)]λE + (1− λE)

,

=

[
1− G

(
Z

r(K(X1))PM
1 (ω)

)]
λE

[
1− G

(
Z

r(K(X1))PM
1 (ω)

)]
λE + (1− λE)

. (45)

The intersection of these two curves defines the set of partial equilibria analogous to the previous

section. I will show that a subset of these partial equilibria will determine active markets. First,

recall that for each state X1, the set of intersections between (44) and (45) could be one of three

cases:

1. the two curves intersect only once, which can be at a price for which good and bad trees are

traded, or a price at which only bad trees are traded, as in figure 3(b);
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2. the two curves intersect three times, as depicted in figure 3(a);

3. the two curves intersect twice, as in figure 4(b).

First I show that active markets have to feature prices that belong to the set of partial equilibria.

Then I establish what subset of these prices are actually active markets in equilibrium.

Suppose there was an active market in which PM
1 (ω) > λM

1 (ω; X1)Z + (1 − λM
1 (ω; X1))αZ.

Then, buyers would get a higher utility from consuming than from buying in this market. Hence,

m(ω) = 0, which contradicts that the market was active. On the other hand, suppose that there are

some markets in which PM
1 (ω) < λM

1 (ω; X1)Z + (1− λM
1 (ω; X1))αZ. Define

ω ≡ maxω∈ΩB
λM

1 (ω;X1)Z+(1−λM
1 (ω;X1))αZ

PM
1 (ω)

. Then, buyers would want to spend all their liquid wealth

in buying trees from market ω, but because the endowment W1 is big, the demand for trees is

greater than the supply, which is inconsistent with equilibrium. Hence, only markets that satisfy

PM
1 (ω) = λM

1 (ω; X1)Z + (1− λM
1 (ω; X1))αZ can have active trading.

This immediately implies that in case 1., there is only one active market in equilibrium. Can

there be rationing? The answer is no. Suppose there were rationing. Then, there would be some

agents with high investment opportunity that were not able to sell all they wanted. Then, from

Lemma (4) we know that this agent will offer its trees in a market with a slightly lower price. Since

the rationing in the markets is uniform, the fraction of good trees offered at that price is still given by

λM
1 (ω; X1) =

[
1−G

(
Z

r(K(X1))PM
1 (ω)

)]
λE

[
1−G

(
Z

r(K(X1))PM
1 (ω)

)]
λE+(1−λE)

. But then, in that market PM
1 (ω′) <

[
1−G

(
Z

r(K(X1))PM
1 (ω′)

)]
λE

[
1−G

(
Z

r(K(X1))PM
1 (ω′)

)]
λE+(1−λE)

,

which we already know cannot be active in equilibrium. Hence, there cannot be rationing in this

case.

In case 2., I now show that only the market with the highest price can be active. Suppose

another market is active. Then, in a robust solution, seller are offering trees in markets with higher

prices also, even though they are inactive. There are markets with price just below the highest

partial equilibrium price such that PM
1 (ω) < λM

1 (ω; X1)Z + (1− λM
1 (ω; X1))αZ. But then buyers

would prefer to trade in this market instead, a contradiction. Hence, only the highest price market

is active. Moreover, for the same reasons as in case 1., there is no rationing in equilibrium.

Finally, in case 3. both markets can be active in equilibrium, since there is no possible deviation

of buyers and sellers that can rule out any of them. Moreover, the lower price market is active only

if there is rationing in the higher price market. In fact, any rationing level in the high price market

is consistent with partial equilibrium. However, no rationing can occur in the low price market,

since some rationed agents, those with high A, would be willing to sell at a slightly lower price, a

contradiction.

Sketch of Proof of Proposition 9.

The proof has two parts. First, I show that there is an equilibrium of the economy starting in

period 1 for any value of X1. Then, I move to period 0 and show that an equilibrium of the full

economy exists.

Given X1, the mapping TK(L; X1) has the following properties:

1. if K is ”low”, then the return on capital is ”high” so many agents sell their trees in order to
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TK

K̃

FIGURE 8: Mapping TK(K; X1)

invest. Then there is a unique active market that features a ”high” price, so TK is high;

2. if K is ”high”, then the return on capital is ”low” so few agents are willing to sell their trees in

order to invest, hence only the market that trades bad trees is active and the price is ”low”, so

TK is low;

3. there exists a unique K̃ such the economy is in case 3., and two markets can be active.

Figure 8 shows the mapping TK(K; X1). For K < K̃, TK is high. For K > K̃, TK is low. Note that

TK is always decreasing since the higher K is the lower the return on investment and hence total

investment. Finally, if K = K̃, TK can take a continuum of values indexed by η. This shows that

extending the definition of equilibrium is necessary to guarantee that the mapping TK is continuous

in K and an equilibrium of the economy starting in period 1 always exists.

So the equilibrium can take one of three forms. If the state α is high, then the market for trees is

liquid, so that the price is high and the equilibrium level of capital is high. This is the case depicted

in figure 9(a). If the state α is low, then the market for trees collapses, only bad trees are traded at

a low price, and the equilibrium capital is low. Figure 9(b) shows this case. Finally, if the state α

is ”middle-range”, then the economy features two markets and the high price market is rationed.

How is the amount of rationing determined? So that total investment is equal to K̃. Figure 10 shows

this case.

So I established that an equilibrium of the economy in period 1 always exists. Let K(λE
1 , H1; α)

denote the equilibrium capital as a function of the fraction of good trees in the economy, the total

amount of trees, and the aggregate state α. Note that K is increasing in H1. Now I switch to the

determination of equilibrium period 0.

Unlike in the basic model where the economy was linear in H1, finding an equilibrium of this

economy requires finding a fixed point of the two-dimensional mapping

T(λE
1 , H1) =




IG
0 (λE

1 ,H1)

IG
0 (λE

1 ,H1)+IB
0 (λ

E
1 ,H1)

IG
0 (λ

E
1 , H1) + IB

0 (λ
E
1 , H1)



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FIGURE 9: Equilibrium in period 1. (a) High state α: high price. (b) Low state α: low price.

0
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FIGURE 10: Mapping TK(K; X1)

Consider first the mapping TH(H1; λE
1 ) ≡ IG

0 (λ
,
1H1) + IB

0 (λ
E
1 , H1), which takes λE

1 as given. Since

higher H1 increases K, which reduces the liquidity services of trees, TH is decreasing in H1, so equi-

librium implies that H1(λ
E
1 ) is a continuous function of λE

1 . Hence, finding an equilibrium of the

economy reduces to finding a fixed point of the mapping Tλ(λ
E
1 ) =

IG
0 (λE

1 ,H1(λ
E
1 ))

IG
0 (λE

1 ,H1(λ
E
1 ))+IB

0 (λ
E
1 ,H1(λ

E
1 ))

. Since

Tλ is continuous in λE
1 and belongs to the compact space [0, 1], a fixed point exists. However, there

can be multiple fixed points. Though this could be a potentially interesting phenomena (generating

a channel for self-fulfilling equilibria), it is beyond the scope of the paper. I will select the equilib-

rium that features the highest fraction of good trees. Note that this equilibrium is stable, since Tλ

crosses the 45◦ from above.

Proof of Lemma 5. To prove this result it is enough to show that TK increases for all K.

First note that for a fixed K (and hence a fixed return on capital), the equilibrium price in market

ωH is increasing in α and HG. Consider two economies in period 1 with the same λE
1 and H1, but

one has quality of bad trees α and the other α′, with α′ > α. For a fixed K, the demand of trees is

higher in the economy with α′, while the supplies are the same. Moreover, since the supply of trees
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is decreasing in K (since r(K) is decreasing in K), K̃(α′) > K̃(α). Therefore, the equilibrium level of

capital is higher in the economy with state α′, strictly so if the market ωH is active.

Similarly, consider two economies with the same HB and α, but one has HG of good trees and

the other H′G, with H′G > HG. For a fixed K, market liquidity increases for two reasons. First, there

are more trees in the economy, so for the same price, volume traded is higher. Second, for a fixed HB,

the higher the fraction of good trees in the economy, and hence the higher the price in the market

ωH. Hence, the mapping TK increases with HG, so equilibrium capital increases.

Proof of Lemma 6.

First I need to show that increases in ZY and A increase µ1(A, X1). Then I show that this increase

in µ1(A, X1) generates a reduction in λE
1 and an increase in H1.

For a fixed level of capital, an increase in ZY increases investment, both because more agents

find it optimal to invest and because more agents sell their good trees to invest. Therefore, for each

state X1, TK increases and hence the equilibrium level of capital increases. However, what matters

for period 0 is what happens with the return on capital, since µ1(A, X1) = max{1, Ar(X2)}. Since

r(K(X1)) = ZY f ′(K(X1)), r increases because of ZY but decreases because of f ′(K(X1)). Suppose

r(K(X1)) decreases as a result, then less agents invest and less agents sell good trees to invest. But

then total investment decreases, which contradicts that K(X1) increases.

Note that an increase of A to φA for some φ > 1 has similar implications and enters the expres-

sion for µ1(A, X1) in an analogous ways as ZY, so µ1(A, X1) also increases when A increases to φA.

Moreover, PM
1 (X1) increases because more agents sell their good trees (for fixed λE

1 and H1).

Now let’s return to period 0. Recall that shadow values are given by

γG
0 =E[max{µ1(A, X1)PM

1 (ωH; X1)η(X1) + (1− η(X1))Z, Z}],
γB

0 =E[µ1(A, X1)[η(X1)PM
1 (ωH; X1) + (1− η(X1))PM

1 (ωL; X1)]].

For fixed λE
1 and H1, γG

0 and γB
0 increase when µ1 increases, but |gammaB

0 increases by more. There-

fore, H(λE
1 ) defined as the fixed point of TH(H1; λE

1 ) ≡ IG
0 (λ

E
1 , H1) + IB

0 (λ
E
1 , H1) taking λE

1 as given,

increases.

Finally, I need to show that Tλ(λ
E
1 ) ≡

IG
0 (λE

1 ,H(λE
1 ))

IG
0 (λE

1 ,H(λE
1 ))+IB

0 (λ
E
1 ,H(λE

1 ))
decreases as a function of λE

1 .

From previous analysis we know that if µ1 increases, then Tλ(λ
E
1 ) decreases. Hence, Tλ(λ

E
1 ) can

increase only if the increase in H(λE
1 ) provides so much liquidity in period 1 that µ1 decreases. But

a decrease in µ1 contradicts that H increases in the first place, hence Tλ decreases.

Finally, since I am selecting the equilibrium with the highest λE
1 , and this equilibrium happens

in the intersection of Tλ with the 45◦ line from above, a decrease in Tλ reduces the equilibrium λE
1 .
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C NORMATIVE IMPLICATIONS

Proof of Lemma 7. In first best, only agents with A = Amax invest and they do so until Amaxr(K(X1)) =

1. Therefore, µ1(A, X1) = 1 for all A, X1, and i0 = 0.

In laissez-faire, µ1(Amax, X1) > 1 for all X1, hence E[µ1(A, X1)] > 1 and i0 > 0.

Proof of Proposition 10.

It is straightforward to see that for state X1, the mapping TK(K; X1) increases with B0. Therefore,

K(X1) increases with B0 (this effect is strict except for states in which K = K̃). This immediately

implies that TL(X1) increases. However, because the return on capital decreases, the supply of

good trees decreases, so that PM
1 (ωH; X1) decreases, strictly so except of states in which K = K̃,

where η(X1) decreases. Therefore, µ1(A, X1) decreases for every state (A, X1), strictly so except for

states with K = K̃.

Proof of Proposition 11.

It follows directly from Lemma 6 since from the point of view of period 0 it only matters that

µ1(A, X1) decreased as a function of λE
1 and H1.

Proof of Corollary 11.1.

Let B̃0 < B0 be the amount of government bonds bought by the foreign agent. The government

collects revenues from selling to this agent of PGB
0 B̃0, which are distributed after investment takes

place. Hence, consumption in period 0 goes up and aggregate variables in period 1 are equivalent

to those in an economy in which the government issues B′0 ≡ B0 − B̃0 bonds.

Optimal Policy: Government Bonds

The planner solves

W = D0 + E0[D1(X1) + D2(X2)],

subject to

D0 =(1− ξB)W0,

D1(X1) =G(AB
1 (X1))W1 − PM

1 (ωH; X1)η(X1)
[
[1− G(AS

1(X1))]HG + [1− G(AB
1 (X1))]HB

]
−

PM
1 (ωL; X1)(1− η(X1))[1− G(AB

1 (X1))]HB,

D2(X2) =[HG + αHB]Z + f (K)− qGBB0,
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K(X1) =
∫ Amax

AB
1 (X1)

A[W1 + [PM
1 (ωH; X1)η(X1) + P− 1M(ωL; X1)(1− η(X1))]]HB + B0]dG(A)+

∫ Amax

AS
1 (X1)

APM
1 (ωH; X1)η(X1)HGdG(A),

HG =
∫ ξG

0

W0

qG(ξ)
dξ,

HB =
∫ ξB

ξG

W0

qB(ξ)
dξ,

and the equilibrium conditions

γG
0

qG(ξG)
=

γB
0

qB(ξG)
,

γB
0

qB(ξB)
=

γGB
0

PGB
0

= 1.

The first order condition is

∂D0

∂B0
+ E

[
∂D1(X1)

∂B0
+

∂D2(X2)

∂B0

]
= 0,

where
∂D0

∂B0
= −∂ξB

∂B0
W0,

∂D1(X1)

∂B0
= g(AB

1 (X1))
∂AB

1 (X1)

∂B0
W1 −

[
∂PM

1 (ωH; X1)

∂B0
η(X1) + PM

1 (ωH; X1)
∂η(X1)

∂B0

]

[[1− G(AS
1(X1))]HG + [1− G(AB

1 (X1))]HB]− PM
1 (ωH; X1)η(X1)

[
−g(AS

1(X1))
∂AS

1(X1)

∂B0
HG+

[1− G(AS
1(X1))]

∂HG

∂B0
− g(AB

1 (X1))
∂AB

1 (X1)

∂B0
HB + [1− G(AB

1 (X1))]
∂HB

∂B0

]
+

PM
1 (ωL; X1)

∂η(X1)

∂B0
[1− G(AB

1 (X1))]HB + PM
1 (ωL; X1)(1− η(X1))g(AB

1 (X1))
∂AB

1 (X1)

∂B0
HB−

PM
1 (ωL; X1)(1− η(X1))[1− G(AB

1 (X1))]
∂HB

∂B0
+ g(AB

1 (X1))
∂AB

1 (X1)

∂B0
B0 − [1− G(AB

1 (X1))],

∂D2(X2)

∂B0
=

[
∂HG

∂B0
+ (1− δ)

∂HB

∂B0

]
Z + r(K)

∂K
∂B0
− qGB,
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and

∂K(X1)

∂B0
= −∂AB

1 (X1)

∂B0
AB

1 (X1)[W1 + [PM
1 (ωH; X1)η(X1) + PM

1 (ωL; X1)(1− η(X1))]HB + B0]

g(AB
1 (X1)) +

∫ Amax

AB
1 (X1)

A

[[
∂PM

1 (X1)

∂B0
η(X1) + [PM

1 (ωH; X1)− PM
1 (ωL; X1)]

∂η(X1)

∂B0

]
HB+

[PM
1 (ωH; X1)η(X1) + PM

1 (ωL; X1)(1− η(X1))]
∂HB

∂B0
+ 1
]

G(dA)−

∂AS
1(X1)

∂B0
AS

1(X1)PM
1 (X1)η(X1)HGg(AS

1(X1))+

∫ Amax

AS
1 (X1)

A

[[
∂PM

1 (ωH; X1)

∂B0
η(X1) + PM

1 (ωH; X1)
∂η(X1)

∂B0

]
HG + PM

1 (ωH; X1)η(X1)
∂HG

∂B0

]
G(dA)

After some algebra, it simplifies to

∂W

∂B0
= E

[∫ Amax

AB
1 (X1)

Ar(K(X1))dG(A) + G(AB
1 (X1))

]
+

E
[[∫ Amax

AB
1 (X1)

Ar(K(X1))dG(A) + G(AB
1 (X1))

]

[
∂PM

1 (X1)

∂B0
η(X1) + [PM

1 (ωH; X1)− PM
1 (ωL; X1)]

∂η(X1)

∂B0

]]
HB+

E

[∫ Amax

AS
1 (X1)

Ar(K(X1))dG(A)

[
∂PM

1 (ωH; X1)

∂B0
η(X1) + PM

1 (ωH; X1)
∂η(X1)

∂B0

]
−

∂η(X1)

∂B0
[1− G(AS

1(X1))]Z
]

HG = 1 + qGB,

or

∂W

∂B0
= γGB

0 + E

[
∂γ̃G

1 (X1)

∂PM
1 (ωH; X1)

∂PM
1 (ωH; X1)

∂B0
+

∂γ̃G
1 (X1)

∂η(X1)

∂η(X1)

∂B0

]
HG+

E

[
∂γ̃B

1 (X1)

∂PM
1 (ωH; X1)

∂PM
1 (ωH; X1)

∂B0
+

∂γ̃B
1 (X1)

∂η(X1)

∂η(X1)

∂B0

]
HB = 1 + qGB.

D INFINITE HORIZON

It is possible to guess and verify that the value function of an agent with portfolio given by {hG, hB, k, b}
and investment opportunity A, when the aggregate state is X = {λE, H, K, B; α}, is given by

V(hG, hB, k, b; A, X) = γ̃G(A, X)hG + γ̃B(A, X)hB + γ̃K(A, X)k + γ̃GBb,
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where

γ̃G(A, X) = max {µ(A, X)η(X)PM(ωH; X) + (1− η(X))[Z + (1− δH)γG(X)], Z + (1− δH)γG(X)} ,

γ̃B(A, X) = µ(A, X)[η(X)PM(ωH; X) + (1− η(X))PM(ωL; X),

γ̃K(A, X) = r(X),

γ̃GB(A, X) = µ(A, X),

γj(X) = βE[γ̃j(A′, X′)|X] for j ∈ {H, B, K, GB},

and

µ(A, X) = max
{

1,
γG(X)

φ(IG)qG
, γB(X), AγK(X),

{
λM(ω; X)γG(X) + (1− λM(ω; X))γB(X)

PM(ω)

}

ω∈ΩB

}
.

Assuming that the endowment W is big, then the markets feature risk neutral pricing. Thus,

PM
1 (ωH; X) is determined by the intersection between

PM = λM[Z + (1− δH)γG(X)] + (1− λM)[αZ + (1− δH)γB(X)],

and

λM =

[
1− G

(
γG(X)

γK(X)PM

)]
λE

[
1− G

(
γG(X)

γK(X)PM

)]
λE + (1− λE)

,

and PM(ωL; X) is just the value of bad trees

PM(ωL; X) = αZ + (1− δH)γB(X).

Since all agents have the same cost of producing trees, it means that buyers, consumers and pro-

ducers of trees derive the same utility. This implies that it must hold

γG(X)

φ(IG)qG
= γB(X) = 1.

Moreover, capital is given by

K(X) =
∫ Amax

AB(X)
A[W + [η(X)PM(ωH; X) + (1− η(X))PM(ωL; X)]HB + PGB(X)B]dG(A)+

∫ Amax

AS(X)
Aη(X)PM(ωH; X)HGdG(A),

where AB(X) ≡ 1
γK(X)

and AS(X) ≡ γG(X)
γK(X)PM(ωH ;X)

. Note that this expression is analogous to (23).

Finally, the laws of motion of the fraction of good trees and the total amount of trees is given by

λ′E = λEθ(λE, H) +
IG

IG + IB
(1− θ(λE, H)),

H = (1− δH)H + IG + IB.
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I look for a stochastic steady state of the economy. I guess and verify that there exists an equilibrium

of this economy in which λE and H are constant over time.

The laws of motion of λE and H imply that

∆λE = 0⇔ λE =
IG

IG + IB
, (46)

∆H = 0⇔ H =
IG + IB

δH
. (47)

Hence, if λE and H are constant over time, IG and IB are constant over time. Moreover, the fact that

capital fully depreciates, that α is iid, and the timing assumption on the payout of dividends, imply

that K(X) is connected to past periods only through λE and H. Therefore, if λE and H are constant

over time, the distribution of K in the following period is constant over time. This means that γK(X)

is constant over time. But then, there is a solution to the recursive equations determining γG(X)

and γB(X) that is constant over time.

So it only remains to be shown that there exists λE and H such that this equilibrium exists. First

note that as H increases, K(X) increases so that µ(A, X) decreases. Since γB is more sensitive to

changes in the liquidity premium than γG, IG
IG+IB

increases. Hence,

lim
H→0

λE = lim
H→0

IG

IG + IB
> 0.

Second, as H → ∞, the liquidity premium goes to zero so µ(A, X)→ 1. But as long as there is some

trade in the market for trees, limH→∞ IB > 0, hence

lim
H→∞

λE = λ̃E < 1.

On the other hand, as λE → 0, production of good trees remains positive, hence

lim
λE→0

H = lim
λE→0

IG + IB

δH
> 0.

And as λE → λ̃E the production of trees remains finite, so

lim
λE→λ̃E

H < ∞.

Hence, (46) and (47) intersect at least once. Analyzing the possibility of multiple steady states is

beyond the scope of this paper, so I choose the equilibrium that features the maximum fraction of

good trees. It is possible to see that in that equilibrium (47) crosses (46) from above, which makes

the steady state stable.
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