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Abstract

This paper quantitatively assesses whether firm-specific shocks can drive the U.S. business cy-
cle. Under the granular hypothesis, firm-specific shocks can directly contribute to aggregate
fluctuations whenever the firm size distribution is fat-tailed. I use a novel, comprehensive data
set compiled from administrative sources that contains the universe of firms and trade trans-
actions, and find that the granular hypothesis accounts at most for 16 percent of the variation
in aggregate sales growth. This is about half of that found by previous studies that imposed
Gibrat’s law where all firms are equally volatile. Using the full distribution of growth rates
among U.S. firms, I find robust evidence of a negative relationship between firm-level volatility
and size, i.e. the size-variance relationship. The largest firms (whose shocks drive granularity)
are the least volatile under the size-variance relationship, thus their influence on aggregates is
mitigated. I show that by taking this relationship into account the effect of firm-specific shocks
on observed macroeconomic volatility is substantially reduced. I then investigate several plau-
sible mechanisms that could explain the negative size-variance relationship. After empirically
ruling out some of them, I suggest a demand-side channel in which large firms face smaller price
elasticities and therefore respond less to a given-sized productivity shock than small firms do.
I offer direct evidence for this mechanism by estimating demand elasticities among U.S. man-
ufacturers. Lastly, I construct an analytically tractable framework that is consistent with these
empirical regularities.
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1 Introduction

Can firm-specific shocks to large firms drive the business cycle? Modern economies feature large firms

whose size can be so overwhelming that shocks to these firms can lead to non-trivial aggregate movements

(Gabaix, 2011). Such a channel of “granularity” can thus provide the micro-level underpinnings of aggregate

fluctuations. In particular for the U.S. economy however, the empirical support for this channel is scarce.1

In this paper, I assess the quantitative role of firm-level idiosyncratic shocks on aggregate volatility in the

U.S. economy. I provide extensive evidence that the role of granularity is fairly limited in the U.S. economy

despite the presence of a fat-tailed firm size distribution. The granular channel can explain at most around 16

percent of the variation in aggregate sales growth. This is considerably less than previous studies that have

argued that the granular channel accounts for approximately one-third of aggregate fluctuations.

I argue that the gap between previous findings and mine can be fully explained by deviations from

Gibrat’s law. I show that the observed relationship between firm-level volatility and size is substantially

more negative than documented before. In other words, large firms are considerably less volatile than small

firms. As a result, the impact of shocks to the largest firms on macroeconomic volatility is reduced. To

rationalize my empirical findings, I construct a tractable framework of firm dynamics that is consistent with

several size-varying firm-level moments and the Pareto right tail of the firm size distribution. The key driving

force behind this model is that demand elasticities are decreasing in firm size which generate heterogeneous

responses to a given-sized productivity shock across firms of different sizes.

I start my analysis by decomposing firms’ annual sales growth into different components which include a

firm-specific one. I do so by merging the Census Bureau’s Longitudinal Business Database (LBD), Standard

Statistical Establishment List (SSEL) and Longitudinal Firm Trade Transactions Database (LFTTD) into

one novel, comprehensive data set. This database contains the universe of U.S. firms and trade transactions,

and allows me to observe revenue at the firm-destination-year level. Using this specific disaggregated level

of firm-level revenues allows me to relax the assumption that firms’ sales are perfectly correlated across

destinations. This is particularly important for the largest firms in the economy which are central under the

granular hypothesis. This approach is similar to the identification strategy of di Giovanni, Levchenko and

Mejean (2014) to extract the firm-specific component from firm’s annual sales growth. Using this large scale

data set, I find that the granular component explains about 16 percent of aggregate sales volatility.

In the second part of the analysis, I focus on the underlying reason for the apparent discrepancy between

the results found in this paper and the previous literature. I argue that the relatively small role of granularity in

the U.S. economy can be entirely rationalized by accounting for the negative power law relationship between

firm-level volatility and size, i.e. the size-variance relationship. The intuition behind this is simple: in a

granular economy, aggregate volatility is primarily affected by the largest firms. Because firm-level volatility

falls sufficiently fast in size, the volatility of the largest firms becomes small. Hence, their prominence in

terms of aggregate fluctuations declines substantially.

I formalize this intuition by estimating the size-variance relationship with data containing the universe
1The exceptions are Gabaix (2011) and Stella (2015) who both use data from Compustat. Gabaix (2011) finds that firm-level

idiosyncratic shocks can explain about one-third of the variation in output growth. Stella (2015) shows that firm-specific shocks can
explain 20 to 30 percent of aggregate sales dynamics, but there is little to no role for idiosyncratic shocks in explaining GDP growth
fluctuations.
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of U.S. firms. I show that it is explained by a power law and implement its estimates in a stylized model with

heterogeneous firms subject to firm-level idiosyncratic shocks alone. I find that the aggregate implications of

the size-variance relationship are substantial. The explanatory power of granular origins declines to roughly

15% whenever the size-variance relationship, as observed in the data, is taken into account.

My estimates on the size-variance relationship not only provide additional evidence on the violation of

Gibrat’s law, but also shed light on the underlying economic mechanisms that can explain it. The size-

variance relationship stays remarkably robust when controlling for output and product diversification (e.g.

Klette and Kortum, 2004) or age which rules out any form of learning (e.g. Jovanovic (1982) and Arkolakis,

Papageorgiou and Timoshenko (2015b)). Therefore to provide a explanation for the size-variance relation-

ship, I resort to demand-side fundamentals in which a firm’s demand elasticity varies in its size and develop

an analytical framework with random growth (Luttmer, 2007) and a Kimball demand aggregator (Kimball,

1995).

Under the Kimball demand structure of Klenow and Willis (2016), the framework becomes tractable.

Most importantly, the assumption of the Kimball demand aggregator implies that the price elasticity of

demand is decreasing in a firm’s size. The model predicts a size-variance relationship, because large firms

respond less to a given percentage change in productivity vis-à-vis small firms under this assumption. To

support the main assumption of the framework, I find direct evidence of size-decreasing price elasticities in

the Census of Manufactures (CM). Following Foster, Haltiwanger and Syverson (2008), I use a unique subset

of establishments producing physically homogeneous products. The availability of physical quantities allows

me to construct physical productivity which serves as a powerful instrument in dealing with the simultaneity

bias confronted in demand estimation. Moreover, by focusing on those products that are considered to be the

most physically homogeneous in the manufacturing sector, I avoid any biases due to variation in unobserved

product quality.

This framework has the additional feature of predicting a positive relationship between markups and size.

I verify this prediction of the framework by structurally estimating plant-level markups from the Annual Sur-

vey of Manufactures (ASM) using the methodology of de Loecker and Warzynski (2012). This approach has

the benefit of estimating markups without imposing parametric assumptions on demand specifications and

the nature of competition. I find a robust positive correlation between plant-level markups with size and

interpret this stylized fact as additional evidence in favor of my framework with respect to previous models

that deal with deviations from Gibrat’s law.2

CONTRIBUTION TO THE LITERATURE. This paper contributes to a number of strands of literature broadly

covering the research on granularity and firm dynamics. First, this paper quantifies the contribution of firm-

level idiosyncratic shocks to aggregate volatility. The current literature is characterized by two explanations

for why firm-specific shocks can matter in the aggregate. The standard diversification argument (Lucas,

1977) breaks down whenever the firm size distribution is fat-tailed. Then, firm-level idiosyncratic shocks can

provide a microfoundation for aggregate shocks. Thus, the magnitude of the granular channel has important

implications for understanding the nature of business cycles. This granular hypothesis is formalized by
2For example, see Rossi-Hansberg and Wright (2007), Koren and Tenreyro (2013) and Arkolakis (2016).
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Gabaix (2011), but most of the empirical evidence for the U.S. economy on this channel comes from Standard

and Poor’s Compustat database that can lead to biased conclusions on firm-level and aggregate volatility as

emphasized by Davis et al. (2007).3 I circumvent these sample selection issues by using the most extensive

database available for the U.S. economy based on resources from the U.S. Census Bureau. As a result, I

identify the impact of granularity on aggregate volatility directly from the data (as in Carvalho and Gabaix

(2013) and di Giovanni, Levchenko and Mejean (2014)).

On the other hand, firm-level idiosyncratic shocks can lead to aggregate volatility through their propaga-

tion in the network of input-output linkages (Acemoglu et al., 2012). While my main focus is the granular

channel, I provide suggestive evidence on the importance of buyer-supplier networks similar to di Giovanni,

Levchenko and Mejean (2014).

Second, I contribute to the literature on the size-variance relationship by providing estimates using data

underlying the universe of U.S. firms. I find substantial deviations from Gibrat’s law in the sense that there

is a strong negative relationship between firm-level volatility and size in the form of a power law. This has

been suggested before by Stanley et al. (1996), Sutton (2002) and Koren and Tenreyro (2013). However, all

of their empirical results are derived from Compustat which only contains a subsample of the distribution of

firm-level growth rates. Axtell (2001) mentions that this database is not only far from representative for the

U.S. economy, but also has a different qualitative character in terms of firm size. Next to the reasons noted

by Davis et al. (2007), this can substantially bias any views on the relationship between firm-level volatility

and size which I confirm by comparing my estimates with those of previous findings.

I not only provide unbiased estimates on the size-variance relationship, but also highlight its aggregate

implications. Specifically, when taking the size-variance relationship into account, the explanatory power

of granularity is cut by more than half compared to the previous literature which assumes constant firm-

level volatilities (as in Gabaix (2011) and Carvalho and Grassi (2015)).4 I also provide suggestive evidence

on the underlying economic mechanism that can drive the size-variance relationship. Understanding this

mechanism is important because it is crucial to understand what causes firms of different sizes to respond

heterogeneously during economic downturns. For example, Fort et al. (2013) argue that young and small

businesses were especially hit hard (in terms of net employment growth) during the Great Recession.

Third, this paper also speaks to the literature in firm dynamics that deals with deviations from Gibrat’s

law. My analytical framework is most closely related to the random growth models of Luttmer (2007),

Luttmer (2012) and Arkolakis (2016). One of the first-order features of Luttmer’s (2007) framework is that

it generates a stationary size distribution approximating Zipf’s law. However, the instantaneous standard

deviation of firm growth is independent of size. Under my setup with Kimball demand, the instantaneous
3This empirical evidence includes the contributions by Gabaix (2011) and Stella (2015). The studies by di Giovanni, Levchenko

and Mejean (2014) and Magerman et al. (2015) use data sets that cover more firms than just those that are publicly listed, but
focus on the importance of firm-specific shocks on aggregate volatility in France and Belgium respectively. Instead, I focus on the
importance of the granular channel in a large diversified country such as the U.S. as opposed to these countries. As opposed to other
studies, I find a fairly limited role for granularity and emphasize the underlying reason for why this is the case in the U.S. economy.

4Moreover, my findings have implications for the link between macroeconomic volatility and international trade. di Giovanni
and Levchenko (2012) propose a mechanism in which trade liberalizations can raise a country’s volatility: new trade avenues make
large firms more important because exporting activities are more concentrated at these firms (e.g. Melitz (2003) and Bernard et al.
(2009b)). Whenever a country is granular, the increased importance of large firms can thus increase its volatility. However, my
results imply that the quantitative significance of this channel is relatively small for the U.S. economy as large firms are at the same
time considerably less volatile.
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variance of firm growth falls in size and approximately follows a power law.

Lastly, I provide extensive evidence on additional firm-level outcomes that vary with size besides firm-

level volatility and growth.5 My results indicate that firm size plays an important role for price elasticities

and markups. In fact, I show that there is a robust, positive correlation between markups and size implying

that pass-through is incomplete. Furthermore, there is substantial variation of markups across firms within

industries (at the 3-digit NAICS level). As pointed out by Atkin et al. (2015), this has important implications

on a broad range of questions such as the welfare gains from trade liberalizations (e.g. de Loecker et al.

(2016) and Edmond et al. (2015)), the effects of industrial policy interventions, and the transmission of inter-

national price shocks to local markets (e.g. Atkeson and Burstein (2008) and Nakamura and Zerom (2010)).

OVERVIEW OF THIS PAPER. Section 2 contains a short description of the U.S. Census Bureau’s data sets used

in this paper. In section 3, I set up the empirical framework and present the results on the decomposition of

firms’ sales growth. In section 4, I describe the main aggregate implication of the size-variance relationship

on granularity. Additionally, I provide extensive empirical evidence on the size-variance relationship as a

power law and rule out a subset of alternative mechanisms put forward by other studies that explain this

relationship. Section 5 estimates markups at the plant-year level in the manufacturing sector and how these

markups display a robust, positive correlation with size. In addition, it presents an analytical framework that

can rationalize the previously found deviations from Gibrat’s law and the fat-tailed firm size distribution as

observed in the U.S. economy. Concluding remarks can be found in section 6. A detailed description of the

used data sets can be found in Appendix A. Appendices B and C contain numerous robustness checks and

additional derivations of the framework can be found in Appendix D.

2 U.S. Census Bureau data

The results of this paper are based on a variety of U.S. Census Bureau data sets. I employ the Longitudinal

Business Database (LBD), Standard Statistical Establishment List (SSEL), Longitudinal Firm Trade Trans-

actions Database (LFTTD), Annual Survey of Manufactures (ASM) and the Census of Manufactures (CM).

In the following subsections, I briefly describe how I combine these data sets and what observables are avail-

able and used for my analysis. A more detailed description of these data sets can be found in Appendix A.1

to A.6.

FIRM LBD. The Longitudinal Business Database (LBD) is a data set covering employment statistics at the

establishment-level that covers nearly all sectors of the U.S. economy and includes all geographic areas over

the period of 1976 - 2011. Its underlying source is the Business Register (BR) which contains administrative

records on U.S. businesses. My main purpose with the LBD is to obtain yearly employment (i.e. employee
5Violations on Gibrat’s law have been documented as early as Hymer and Pashigian (1962). Surveys on (deviations from)

Gibrat’s law can be found in Caves (1998) and Sutton (1997). The literature has then developed a rich set of explanations that can
rationalize several observations in the micro-level data that include product innovation (e.g. Klette and Kortum (2004), Lentz and
Mortensen (2008), Akcigit and Kerr (2015)), industry-specific human capital accumulation and mean reversion (Rossi-Hansberg and
Wright, 2007), investment in organizational capital (Luttmer, 2011), input diversification (Koren and Tenreyro, 2013) and market
penetration costs (Arkolakis, 2016).
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count) and revenue to construct growth rates at the firm-level. The LBD is unique in the sense that it covers

the universe of firms in the U.S. economy and contains firm identifiers at the establishment-level. As a

result, each establishment can be connected to some parent firm and thus, it is straightforward to aggregate

statistics to the firm-level. While the LBD covers nearly all the industries in the U.S. economy, there are

some exceptions. Roughly speaking, the LBD covers the non-farm private economy with some coverage

over government-owned or operated entities.6

An establishment belongs to a particular firm based on operational control: an establishment’s statistics

are included in the parent firm’s activity whenever this parent firm majority owns the establishment. Further-

more, the LBD covers only those firms with at least one employee on payroll over their life-cycle. Lastly,

I use the Standard Statistical Establishment List (SSEL) to obtain revenue at the firm-level. Revenues are

defined as the “total value of shipments, sales, receipts or revenue (in dollars)”. Appendix A.6 describes

in full detail how revenue information from the SSEL can be incorporated into the LBD. Finally, I obtain a

firm-level data set containing the variables employment, payroll, age, year of entry and exit, multi-unit status,

6-digit level NAICS/SIC code, state and county codes and identifiers at the establishment- and firm-level.

Due to restrictions in the SSEL, revenues are only available from 1994 onwards. The results of section 4 are

mainly based on this data set.

FIRM-DESTINATION LBD. The analysis in section 3 decomposes a firm’s revenue growth rate into a firm-

level idiosyncratic and aggregate-sectoral component. However as will become clear then, this decomposi-

tion is only valid at the firm-destination level. As a result, I need to determine how a firm’s total revenue

is decomposed across its destinations. To do this, I exploit export data from the Longitudinal Firm Trade

Transactions Database (LFTTD). Thus, a destination is defined at the country level. Fortunately, the LBD

and LFTTD share a common firm-level identifier which allows me to link the two databases. This procedure

is explained in more detail in Appendix A.6. As a result, I do not only observe a firm’s total revenue but I can

also decompose it into domestic and foreign sales at the country level. While the LFTTD is available from

1992 onwards, I only use data from 1994 - 2011 as total revenues are only available in the LBD from 1994

onwards. This leaves me with the FIRM LBD database described above but extended with export status and,

most importantly, revenues disaggregated at the country level over the period 1994 - 2011. Section 3 exploits

this constructed data base at its full potential.

PLANT ASM/CM. A large benefit of the LBD is that it consists of the universe of U.S. firms over a signifi-

cant amount of time. However, the number of firm-level observables is rather limited. As a result, I restrict

my attention to manufacturing for section 5 by using the Annual Survey of Manufactures (ASM) and Census

of Manufactures (CM). The rich variety of available observables allows me to construct measures of labor

(in hours as opposed to employee count only), capital, intermediate and energy inputs. Furthermore, these

panels contain information on revenues (total value of shipments), gross output and value added. As a result,

I can construct productivity measures such as value added or revenue per worker and total factor produc-

tivity. Combined with publicly available information from the NBER-CES Manufacturing Database, I can
6More details on the coverage of the LBD and how this database is constructed, can be found in Jarmin and Miranda (2002).

5



construct proxies for real measures of output. A complete description of used variables and how these are

constructed can be found in Appendix A.4. Finally, I obtain a plant-level data set that covers manufacturing

(NAICS 31 - 33) over the period 1976 - 2009.

PRODUCT CM. The PLANT ASM/CM data set does not contain quantities and relies on proxies for real

measures of output instead. However, the Census Bureau does collect physical quantities for a subset of

industries in Census years (ending with either “2” or “7”). More importantly, it collects this information at

an extremely disaggregated level (7-digit SIC for 1977, 1982, 1987, 1992 and 1997 and 10-digit NAICS for

1997, 2002 and 2007). In addition to the PLANT ASM/CM, this results in information on physical quantities

and prices which will prove to be extremely useful in section 5.1. Most importantly, I am able to construct

measures of physical total factor productivity (TFPQ) which serves as a strong instrument in dealing with the

simultaneity biases present in price-quantity regressions. Lastly, I restrict myself to only a handful of product

categories. In particular, I focus on those establishments that produce a subset of physically homogeneous

products. By focusing on these products that are considered to be the most physically homogeneous in the

manufacturing sector, I avoid any biases due to variation in unobserved product quality. The procedure that

I follow to select these products is similar to Foster, Haltiwanger and Syverson (2008). Its details can be

found in Appendix A.5.

3 Variance decomposition of aggregate sales

3.1 Empirical framework

In the following, I set up a simple framework that will serve as the theoretical foundation of the variance de-

composition. While the model is simple, it is rich enough to allow for a decomposition of individual growth

rates into a firm-level idiosyncratic component and a component that contains aggregate and sectoral forces.

The structure of the model allows me to interpret these shocks in a meaningful way. It is important to note

however that this decomposition is only valid at the firm-destination level. As a result, observing total sales

at the firm level is not sufficient. Instead, I require a firm’s sales to be broken down across destinations for

identication. This will become clear in the section below.

THEORETICAL MOTIVATION. Aggregate sales in the U.S. are defined asXt =
∑

f∈Ft xft =
∑

(f,n)∈It xfnt

where xfnt denotes the sales of some U.S. firm f to destination n in year t. Furthermore,Ft and It denote the

set of active firms and firm-destination pairs in year t respectively. As noted before, the unit of observation

will be a firm-destination pair. By definition, aggregate sales growth is γAt = Xt/Xt−1 − 1 where I impose

that the set of firms are identical in years t and t− 1.7

A firm f in the U.S. that is active in sector j ∈ {1, 2, . . . , J} can sell its product to some country n ∈
{1, 2, . . . , N} where J,N > 1. In each country n, the representative consumer is characterized by within-

7By construction, this definition of growth only focuses on the intensive margin of growth. In section 3.3, I argue that most of
the variation of aggregate sales growth is due to the intensive margin. Furthermore, appendix B.1 discusses the robustness of my
results with respect to the growth rate measure as suggested by Davis, Haltiwanger and Schuh (1996) which treats entry and exit
symmetrically.
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period Cobb-Douglas preferences over a set of J sectoral goods with income Ynt. Preference parameters

at this aggregation level are allowed to vary across countries and over time. As a result, the representative

consumer’s utility in country n at time t equals:

Unt =
J∏
j=1

C
ϕjnt
jnt

where ϕjnt is a demand shock at the sectoral level that varies over time. Obviously, the Cobb-Douglas struc-

ture implies that expenditure on goods in sector j are equal to Yjnt = ϕjntYnt. In turn, each sectoral good j

is a constant elasticity of substitution (CES) composite over varieties in Ωjnt. Each firm f is associated with

one sector and produces a unique variety in a monopolistically competitive fashion, thus I get:

Cjnt =

 ∑
f ′∈Ωjnt

ω
1/θ
f ′ntc

(θ−1)/θ
f ′nt

θ/(θ−1)

Let the U.S. be denoted by h (“home”) and define |Ωjht| = Ijht. Firms are heterogeneous in their productiv-

ity which is characterized by the time-varying unit input requirement afht. Therefore, a firm f ’s production

technology at home is yf (ι) = 1
afht

ι where ι denotes some composite input bundle that is priced at cjht.

Implicitly, I assume that the prices of input factors do not vary across firms within a sector. As a result, this

setup in which firms face constant marginal costs of production and a downward-sloping CES demand curve

leads to the well-known constant CES markup over marginal costs. Conditional on selling to destination n,

a firm f ’s revenue at the home destination is then equal to:

xfnt = ωfnt
ϕjntYnt

P 1−θ
jnt

[
θ
θ−1κjnhcjhtafht

]1−θ

where Pjnt =
(∑

f ′∈Ωjnt
ωf ′ntp

1−θ
f ′nt

)1/(1−θ)
denotes the ideal price aggregator at the sectoral level in coun-

try n and time t. Furthermore, κjnh ≥ 1 denotes the iceberg shipping cost from h to n. By construction,

it is the case that κjnh = 1 for all n = h. Implicitly, I am assuming that all the variation in a firm f ’s

marginal cost across destinations is captured by trade costs alone. These iceberg costs κjnh can vary across

sectors within a country but are constant over time. This does not come with much loss of generality as

any time variation in these iceberg costs will be absorbed by sectoral shocks. Whenever growth rates at the

firm-destination level γfnt are approximated by log differences, I obtain:

γfnt ' ln
(

xfnt
xfnt−1

)
= δ̃nt + δ̃jnt + εfnt

= δjnt + εfnt

where δ̃nt = ∆lnYnt denotes the aggregate (or “macroeconomic”) shock to destination n and δ̃jnt =

∆lnϕjnt + (1 − θ) (∆lncjdt −∆lnPjnt) captures sectoral-level demand and supply shocks which are spe-

7



cific to country n. More importantly however, εfnt = ∆lnωfnt + (1 − θ)∆lnafdt captures firm-specific

demand and supply shocks. My main point of interest lies in the firm-specific component, thus I combine

the aggregate and sectoral level components into one term which I will refer to as the “macro-sectoral”

component.

The framework is flexible enough to allow for demand shocks that differ across countries at the sectoral

and firm level. Thus, I allow for a scenario in which firms sell to multiple, imperfectly correlated desti-

nations. As will become clear in the next subsection, demand shocks at the sectoral level can substantially

differ across destinations; in particular between domestic and foreign sales. As a result, the proposed decom-

position is only valid at the firm-destination level which requires data on export sales as well. For this reason,

observing a firm’s total sales is not sufficient to identify the macro-sectoral and firm-specific shocks.8 Thus,

in addition to combining the Census Bureau’s LBD and SSEL, I also use data on the universe of firm-level

exports from the LFTTD.9

VARIANCE DECOMPOSITION. My aim is to quantify the contribution of firm-specific shocks to aggregate

volatility. First, I relate the firm-specific shocks {εfnt}f,n to the growth rate of aggregate sales γAt in year t:

γAt =
∑
f,n

xnft−1

Xt−1
γnft

=
∑
f,n

xnft−1

Xt−1
δjnt +

∑
f,n

xnft−1

Xt−1
εfnt

=
∑
j,n

 ∑
f∈Ωjnt

xnft−1

Xt−1

 δjnt +
∑
f,n

xnft−1

Xt−1
εfnt

≡
∑
j,n

wjnt−1δjnt +
∑
f,n

wfnt−1εfnt

where wfnt is the share of firm f ’s sales to destination n in total sales and wjnt =
∑

f∈Ωjnt
wfnt denotes

the share of sales by those subset of firms active in sector j in total sales. In the following, I will view the

set of macro-sectoral and firm-specific components as stochastic processes. These processes {δjnt}j,n,t and

{εjnt}j,n,t are allowed to be cross-sectionally and serially correlated. By construction, γAt is stochastic as

well. Performing a meaningful variance decomposition on γAt is complicated by wfnt and wjnt however as

these weights are time-varying. Analyzing the time-series properties of γAt becomes difficult as it is hard

to disentangle movements over time by the shocks from the weights. To overcome this problem, I follow

Carvalho and Gabaix (2013) and di Giovanni, Levchenko and Mejean (2014) by considering a “synthetic
8To see this, note that a firm’s total revenue growth does not allow for a decomposition that is loglinear. Under a log differences

approximation, a firm’s total revenue growth would be equal to γft = ln
(∑

n xfnt
)
− ln

(∑
n xfnt−1

)
. This term cannot be

further decomposed in a meaningful way unless sales are perfectly correlated across destinations for every firm f . This is equivalent
to saying that xfnt would have to be independent of n.

9As far as I am aware of, the only studies that enhance the LBD with measures of (real) revenue are Moreira (2016) and
Haltiwanger et al. (2016).
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growth” rate:

γAt|τ =
∑
j,n

wjnτ−1δjnt +
∑
f,n

wfnτ−1εfnt

The synthetic growth rate γAt|τ is identical to the actual growth rate γAt with the exception of the weights

that are fixed at their t = τ value. Given some value for τ , the weights wjnt and wfnt become predetermined

variables which simplifies the analysis considerably. Note that γAt|τ explicitly depends on calendar time t as

the weights from period τ are combined with the realization of shocks in period t. By construction, we have

that γAt|t = γAt.

Unlike for the actual growth rate, constructing the variance of the synthetic growth rate σ2
Aτ is relatively

straightforward and allows for the following decomposition:

σ2
Aτ = σ2

Mτ + σ2
Fτ + COVτ with

σ2
Mτ = V

∑
j,n

wjnτ−1δjnt

 ,

σ2
Fτ = V

∑
f,n

wfnτ−1εfnt

 ,

COVτ = cov

∑
j,n

wjnτ−1δjnt,
∑
f,n

wfnτ−1εfnt

 .

In the following, I will provide estimates for σ2
Aτ and its components for each τ ∈ {1995, . . . , 2011}. For-

mally, σ2
Aτ captures the variance of aggregate sales growth whenever there are no composition effects across

firms and/or sectors. Thus, I will loosely interpret σ2
Aτ as the variance of aggregates sales growth in year τ .

Furthermore, I am particularly interested in their averages across τ and how the average of the firm-specific

component relates to the average of the overall component, i.e.
(

1
T

∑2011
τ=1995 σFτ

)/(
1
T

∑2011
τ=1995 σAτ

)
.

While COVτ must be included in the decomposition for σAτ , I will rarely report results for this component

as this term is quantitatively negligible.

ESTIMATION. The theoretical framework above implies that firm-destination level growth rates can be de-

composed into a macro-sectoral and firm-specific component. To obtain these components, I adopt the

methodology by Stockman (1988) in which firm-destination level growth rates are regressed on a constant

and a set of sector-level dummies for each destination-year subsample.10 Its fitted values form the macro-

sectoral component while its residual will be interpreted as the firm-specific shock. Note that this procedure
10This methodology is adopted by the majority of the granularity literature including Gabaix (2011) and Magerman et al. (2015).

However, I deviate slightly from this approach by estimating this specification separately for each destination-year combination.
Implicitly, I am assuming that firms’ sales destinations are imperfectly correlated as in di Giovanni, Levchenko and Mejean (2014).
While the difference seems benign methodologically, the outcomes could turn out to be very different.
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is akin to the following regression specification:

γfnt = χ′Xfnt + εfnt

where Xfnt contains a set of sectoral-destination-year fixed effects. Thus, shocks are constructed as:

δ̂jnt = χ̂′Xfnt

ε̂fnt = γfnt − δ̂jnt

Recall that the proposed decomposition is only valid at the firm-destination level. Hence, I demean individual

growth rates at the sectoral level for each destination-year subsample separately which follows Koren and

Tenreyro (2007). Once the shocks are constructed, it is straightforward to estimate synthetic growth rates

and its components as the weights wjnt and wfnt can be taken straight from the data. Lastly, the estimate for

σ2
Aτ consists of the sample variance of γ̂At|τ :

σ̂2
Aτ =

1

T − 1

2011∑
t=1995

(
γ̂At|τ − 1

T

2011∑
t=1995

γ̂At|τ

)2

The estimates for σ2
Mτ and σ2

Fτ are generated in a similar fashion. di Giovanni, Levchenko and Mejean

(2014) show that this estimator is consistent under a mild set of assumptions.

3.2 Data preview

Table 1 displays some summary statistics for firm-destination level growth rates in my sample. While it is

only suggestive, the table already shows some signs of deviations from Gibrat’s law which will be crucial in

my analysis in section 4. First, the average growth of aggregate sales is smaller than the unweighted mean

of the individual firm-destination level growth rates. This is not surprising as smaller firms, conditional

on survival, tend to grow at higher rates than larger firms. Second, I report averages of firm-destination

level sales volatility, as measured by its standard deviation, by size quintile. It can be observed that smaller

firms are more volatile than their larger sized counterparts.11 Lastly, the table shows the time averages of

Herfindahl indices defined at the firm-destination and firm level. These are in the same order of magnitude as

reported in Gabaix (2011) who finds a value of 0.053. Intuitively, aggregate volatility is mostly determined

by the largest firms in a granular economy. Whenever large firms are not as dominant in terms of size, as

implied by low Herfindahl indices, their contribution to aggregate volatility declines as well. Thus, these

summary statistics already suggest that the U.S. economy is less granular than previously conjectured. The

following section will show this result in a more rigorous quantitative fashion.

11As mentioned by Bernard et al. (2009b), exporting activities in the U.S. are primarily concentrated at the largest firms who
might expose themselves to more volatile markets. This might explain the results for the 81 - 100 size percentile.
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Table I. Summary statistics of estimation sample.a

Value
AVERAGE OF GROWTH

Aggregate sales 0.046
Firm-destination level sales 0.051

STANDARD DEVIATION OF SALES GROWTH RATE

Whole sample (average) 0.208
0 - 20 size percentile 0.240
21 - 40 size percentile 0.209
41 - 60 size percentile 0.200
61 - 80 size percentile 0.197
81 - 100 size percentile 0.201

AVERAGE OF HERFINDAHL INDEX

Firm-destination
√
H(f, n) 0.034

Firm
√
H(f) 0.036

Industry (SIC2)
√
H(j) 0.208

a“Standard deviation of sales growth rate” reports the average standard deviation of

firm-destination level sales growth rates within a percentile category. “Average of

Herfindahl index” summarizes the average of a Herfindahl index (square root) across

time.

3.3 Results

Table 2 shows the summary statistics of each growth rate component as implied by the decomposition of

section 3.1. The average standard deviation of the firm-specific component is nearly equal to the standard

deviation of the actual growth rate. Thus, the firm-specific component seems to be dominating most of the

variation of sales growth at the firm-destination level. However, in contrast to the findings of di Giovanni,

Levchenko and Mejean (2014), the estimated macro-sectoral shocks are quite volatile and display, on aver-

age, the same order of magnitude as the firm-specific component. This implies that the role of aggregate or

sector-level shocks could be important. However, the table shows that these shocks are particularly volatile

for export sales. This highlights the importance of my identification strategy in which I allow demand shocks

at the sectoral level to vary across destinations. The summary statistics in table 2 indicate that this does mat-

ter as the average standard deviation of the macro-sectoral component is substantially different between

domestic and foreign sales.

The empirical framework implies that firm-destination level specific shocks εfnt consist of a demand

and supply component. In particular, I constructed these shocks as:

εfnt = ∆lnωfnt + (1− θ)∆ln(afdt)
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Table II. Summary statistics of firm-destination level growth rates and its components.b

Observations Mean SD
TOTAL SALES

Actual γfnt ' 46.2 · 106 0.052 0.239
Firm-specific ε̂fnt ' 46.2 · 106 0.000 0.229
Sector-destination δ̂jnt ' 95000 0.184 0.262

DOMESTIC SALES

Actual γfnt ' 44.2 · 106 0.045 0.228
Firm-specific ε̂fnt ' 44.2 · 106 0.000 0.219
Sector-destination δ̂jnt ' 1300 0.043 0.052

FOREIGN SALES

Actual γfnt ' 2.0 · 106 0.187 0.393
Firm-specific ε̂fnt ' 2.0 · 106 0.000 0.381
Sector-destination δ̂jnt ' 93000 0.186 0.264

bThe column “Mean” denotes the average value of the growth rate component

in the sample of firm-destination pairs and years. Similarly, “SD” denotes the

average standard deviation of the growth rate component in this sample.

Note that supply shocks do not vary across destinations for a U.S. based firm. As a result, I proxy ε2
fnt =

(1 − θ)∆ln(afdt) by calculating it as the average value of εfnt across its destinations n for each firm f

that serves at least two destinations in some year t. The firm-destination level specific demand shocks

ε1
fnt = ∆lnωfnt are then proxied by the difference between εfnt and the previously constructed destination-

level average.

Table III. Summary statistics of firm-specific components.c

Observations Mean SD
TOTAL SALES

Firm ε̂fnt ' 2.1 · 106 0.001 0.360
Firm-destination ε̂1

fnt ' 2.1 · 106 0.000 0.321
Firm-common ε̂2

fnt ' 433000 0.006 0.207

cThe column “Mean” denotes the average value of the growth rate component

in the sample of firm-destination pairs and years. Similarly, “SD” denotes the

average standard deviation of the growth rate component in this sample. Firm-

destination-specific and firm-common components are only estimated on the

subsample of firms that ship to at least two distinct countries.

These measures are proxies at best as the proxy for supply shocks is also capturing demand shocks that are

common across a firm’s destinations. Table 3 reports the summary statistics of the proxies to these supply

and demand shocks. It is then clear that most of the variation for firm-specific shocks are coming from

shocks that are destination-specific: the average standard deviation of ε1
fnt is more than 50 percent larger
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than the average standard deviation of ε2
fnt. Thus, this is suggestive evidence of the importance of demand-

side fundamentals which supports the view on the size-variance relationship laid down in sections 5.1 and

5.2.12

DECOMPOSITION OF AGGREGATE VOLATILITY. Figure 1 displays the estimates σ̂Aτ (black), σ̂Mτ (red) and

σ̂Fτ (blue) for each τ ∈ {1995, . . . , 2011}. Table 4 summarizes one of the key results in this section. This

table reports the average of the relative contribution of each component. Therefore, the contribution of the

firm-specific and macro-sectoral component consists of 1
T

∑2011
τ=1995

σFτ
σAτ

and 1
T

∑2011
τ=1995

σMτ
σAτ

respectively.

Most importantly, in contrast to di Giovanni, Levchenko and Mejean (2014), the macro-sectoral component

is more important than the firm-specific component (as its relative standard deviation averages to 67% over

52.47%). Furthermore, the firm-specific component is much smaller than previously found. Previous es-

timates average to approximately 80% whereas I only find a contribution of 52.47% which consists of a

decrease by more than 30%. This is already suggestive of the fact that granularity plays a much smaller role

in the U.S. economy than previously conjectured.

2000 2005 2007 2010 2011
τ

0.01

0.02

0.03

0.04

Volatility

σAτ σFτ σMτ

Figure 1: Decomposing aggregate volatility into firm-specific and macro-sectoral components.

Even though the firm-specific component contributes relatively less than the macro-sectoral component, the

standard deviation of the firm-specific component does seem to comove over time with the standard deviation

of aggregate sales. This is less clear for the standard deviation of the macro-sectoral component. However, its

component does seem to increase slightly over time. By construction of these synthetic standard deviations,

sales shares at the sector-destination level must then also increase over time. Note however that these do not
12Note that the estimation sample for ε1fnt and ε2fnt in table 3 is substantially smaller than in table 2. This is because I only focus

on those firms that serve at least two different destinations when estimating ε1fnt and ε2fnt.
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change substantially over time as the increasing trend for σ̂Mτ over time is modest.

Table IV. Relative contribution of firm-specific and macro-sectoral components.d

SD Relative SD
Aggregate σ̂Aτ 0.0348 1.0000
Firm-specific σ̂Fτ 0.0181 0.5247
Macro-sectoral σ̂Mτ 0.0232 0.6700

dThe column “SD” represents the average values of the aggre-

gate, firm-specific and macro-sectoral components over the sam-

ple period, i.e. I report 1
T

∑2011
τ=1995 σ̂Aτ , 1

T

∑2011
τ=1995 σ̂Fτ

and 1
T

∑2011
τ=1995 σ̂Mτ respectively. The column “Relative SD”

reports the average value of the relative standard deviations, i.e.
1
T

∑2011
τ=1995

σ̂Fτ
σ̂Aτ

and 1
T

∑2011
τ=1995

σ̂Mτ
σ̂Aτ

.

DECOMPOSITION OF FIRM-SPECIFIC COMPONENT FOR AGGREGATE VOLATILITY. While the contribu-

tion of the firm-specific component is smaller relative to the literature, its magnitude is still non-negligible.

Hence, it is worthwhile to pin down the economic forces behind this term. More importantly though, the

firm-specific component does not necessarily only represent the granular mechanism as brought forth by

Gabaix (2011). This is clarified by decomposing the firm-specific term as:

σ2
Fτ = V

∑
f,n

wfnτ−1εfnt


=
∑
g,m

∑
f,n

wgmτ−1wfnτ−1cov (εgmt, εfnt)

=
∑
f,n

w2
fnτ−1V (εfnt) +

∑
(g 6=f)∨(m 6=n)

∑
f,n

wgmτ−1wfnτ−1cov (εgmt, εfnt)

This decomposition can be found in Carvalho and Gabaix (2013) and di Giovanni, Levchenko and Mejean

(2014) and it identifies two important components within the firm-specific term. More specifically, the

contribution of the individual variances represents the direct effect of firm-level idiosyncratic shocks under

an environment in which firms are not connected, i.e. there are no firm-to-firm linkages. This is the key idea

of Gabaix’ (2011) concept of granularity. In the absence of firm networks, firm-level idiosyncratic shocks

can still have an impact on aggregate volatility whenever the firm size distribution is fat-tailed. The sheer

magnitude of the largest firms in the economy can make their idiosyncratic shocks sufficiently important and

steers us away of the conventional logic behind the Law of Large Numbers.13 It is not surprising that this

term captures granular forces as it is the variance of Gabaix’ (2011) granular residual whenever the firm-

specific shocks εfnt are distributed independently from each other. Hence, I will denote its component by

GRANτ =
∑

f,nw
2
fnτ−1V (εfnt).

13Gabaix (2011) shows that aggregate volatility declines at the rate 1/N (ζ−1)/ζ in the number of firms N where ζ denotes the
Pareto right-tail of the firm-size distribution. The most extreme case involves Zipf’s law (i.e. ζ = 1) under which aggregate volatility
declines at the rate 1/lnN instead. These results depend on a “fat-tailed” central limit theorem for infinite-variance random variables
(see appendix A of Gabaix (2011)).
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Lastly, there is the component containing comovements between firms. Traditionally, comovements

between firms were interpreted as by-products of aggregate or industry-level shocks. However, there is

a large and growing literature that comovements between firms can be induced by independent firm-level

idiosyncratic shocks through input-output linkages (e.g. Acemoglu et al. (2012) and Foerster, Sarte and

Watson (2011)). Whenever there exists a sufficient degree of asymmetry in the network, in terms of how

firms supply inputs to each other, then firm-level idiosyncratic shocks do not necessarily wash out in the

aggregate.

2000 2005 2007 2010 2011
τ

0.005

0.010

0.015

0.020

0.025

Volatility

σFτ GRANτ LINKτ

Figure 2: Disentangling granular and network components in the firm-specific term σ2
Fτ .

Most contributions in the literature feature a setup in which shocks to upstream firms affect their downstream

partners. The main idea though is that not only the direct partners of the upstream firms are affected but also

the downstream firms of these partners and so forth. Higher order connections make firm-level idiosyncratic

shocks cascade therefore propagating them downwards through the supply chain. As a result, firm-level

idiosyncratic shocks are amplified and can affect aggregate volatility generating positive covariances in the

residual growth rates of connected firms. However, it is important to note that observing positive covariances

between these residual growth rates are only necessary and not sufficient for the existence of these type

of input-output linkages. In appendix B.1, I provide a method on how these covariances can possibly be

interpreted as networks. However my main focus is on the granular component, thus I denote this component

as LINKτ =
∑

(g 6=f)∨(m6=n)

∑
f,nwgmτ−1wfnτ−1cov (εgmt, εfnt) in the mean time.

The results in figure 2 and table 5 depict a clear picture. The vast majority of the firm-specific component

σ̂Fτ is dominated by the term that reflects comovements between firms as its average relative contribution
1
T

∑2011
τ=1995 L̂INKτ/σ̂Fτ averages at 93.74%. Furthermore, it seems to comove almost perfectly with total

firm-specific volatility. While the relative contribution of the granular component ĜRANτ is much smaller, it
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is still non-negligible.14 Its relative contribution over the whole period averages at 30.45%. A quick back-

of-the-envelope calculation then results in one of the main results of this paper. The relative contribution of

the granular component to aggregate volatility equals 52.47% × 30.45% = 15.97% which is significantly

less than 30 - 35% which can be found in Gabaix (2011) and di Giovanni and Levchenko (2012).15

Table V. Relative contribution of granular and network components.e

Volatility Relative SD
σ̂Fτ 0.0181 1.0000
ĜRANτ (- -) 0.0052 0.3045
L̂INKτ (· ·) 0.0170 0.9374

eThe column “SD” represents the average values of

the firm-specific, granular and linkage components over

the sample period, i.e. I report 1
T

∑2011
τ=1995 σ̂Fτ ,

1
T

∑2011
τ=1995 ĜRANτ and 1

T

∑2011
τ=1995 L̂INKτ respec-

tively. The column “Relative SD” reports the average of

the relative standard deviations, i.e. 1
T

∑2011
τ=1995

ĜRANτ
σ̂Fτ

and 1
T

∑2011
τ=1995

L̂INKτ
σ̂Fτ

.

3.4 Robustness exercises

The baseline empirical framework assumes that all firms respond identically to aggregate and sectoral shocks.

This is consistent with a plethora of heterogeneous firms models.16 However, there is some evidence (e.g.

Fort et al. (2013) and Moscarini and Postel-Vinay (2012)) that firms’ cyclical dynamics are heterogeneous,

i.e. firms’ responses to aggregate and sectoral shocks are systematically different in the cross-section. This

would imply that the firm-specific component is systematically underestimated as this component should

not only include firm-level idiosyncratic shocks but also heterogeneous responses to aggregate and sectoral

shocks that differ by some firm-specific characteristic.

While di Giovanni and Levchenko (2012) argue that the latter channel is quantitatively minor, I will

nevertheless perform several robustness checks in which firms are allowed to respond heterogeneously to

aggregate and sectoral shocks. To do this, I augment the decomposition of section 3.1 as follows:

γfnt = δjnt + δjnt × zft + βzft + εfnt

where zft denotes some firm-specific characteristic that is allowed to vary over time. This implies that the

augmented firm-specific component equals ε̃fnt ≡ δjnt × zft + βzft + εfnt.

The firm-characteristic zft either comprises of firm size (as defined by a sales or employment quintile

dummy), firm age (dummy for whether firm is younger than 5 years) or trade openness. The latter is a
14An interesting exception is 2009 in which the U.S. economy experienced a decline in gross output by 8.08%: the firm-specific

component now primarily consists of the granular component. In appendix B.1, I show the results including the financial crisis in
2008 - 2009. The main conclusions of this section are unaffected.

15Alternatively, I could have calculated the average of the relative granular contribution. This amounts to
1
T

∑2011
τ=1995 ĜRANτ/σ̂Aτ = 15.54% which is almost identical to the back-of-the-envelope calculation.

16This includes the majority of frameworks that build upon Dixit and Stiglitz (1977), Krugman (1980) and Melitz (2003).
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dummy that equals 1 whenever a firm’s ratio of export sales to total sales exceeds 10 percent. While the

contribution of the firm-specific component increases somewhat whenever aggregate and sectoral shocks are

subject to heterogeneous responses in firm size, the relative contribution of the granular component decreases

as well. As a result, my main conclusions on the contribution of the granular channel stay preserved.

For age and trade openness, the results of section 3.3 are instead reinforced as the relative contribution

of the firm-specific components are lower than in the benchmark case. These results are robust whenever I

use a continuous measure of size or actual age instead of dummies. Overall, the contribution of the granular

channel is reduced under these “heterogeneous response” specifications as well.

Lastly, I implement a decomposition of firm-destination level growth rates that takes heterogeneity in

geographical location into account. Local factor markets (e.g. labor) could expose different regions in the

U.S. to location-specific shocks. To be exact, this is a region-specific shock that affects all firms located

within a specific geographical area. Thus, a firm-destination level growth rate gets decomposed as:

γfnt = δjnt + α`t + εfnt

In this specification, regions (indexed by `) are defined at the county level. The main results are also unaf-

fected under this specification. In appendix B.1, I verify that my results are also robust whenever I consider

firm-level entry and exit and deal with issues related to measurement error.
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4 Aggregate implications of the size-variance relationship

The variance decomposition exercise depicts a clear picture on the relatively small role of granularity in the

U.S. economy. However, this result seems at odds with previous evidence as other studies found that the

granular channel can explain approximately one third of observed volatility. In the following, I will suggest

a simple mechanism that can bridge this apparent discrepancy, i.e. the size-variance relationship. First, I

estimate the negative relationship between firm-level volatility and size using data covering the universe of

U.S. firms. Second, I show that previous explanations of this relationship are not consistent with the data.

Lastly, I show that the aggregate implications of the size-variance relationship are sizable. Most importantly,

this relationship alone is able to rationalize the findings of section 3.

4.1 Estimation results

The negative relationship between a firm’s volatility (i.e. standard deviation of a firm’s sales or employment

growth) and its size, as measured by the average volume of sales or employee count, was first documented by

Meyer and Kuh (1957) and Hymer and Pashigian (1962). Additional or supporting evidence for this fact was

later found by Hall (1987), Stanley et al. (1996), Sutton (2002) and Koren and Tenreyro (2013). However, all

of these studies relied on a sample of publicly traded firms. This can be problematic as long-run patterns or

characteristics of firm-level volatility can be vastly different between public and private firms. In particular,

this is emphasized by Davis et al. (2007) who show that even though the volatility of publicly traded firms

has been trending up over time, firm-level volatility overall has been declining. The impact of publicly traded

firms is completely overwhelmed by the declining volatility amongst privately held firms.

To overcome this selection bias, I will estimate the size-variance relationship using the LBD which con-

tains annual information on employment and payroll for the universe of the U.S. economy. In particular, I

focus on employment. Thus, firm-level volatility is defined as the standard deviation of a firm’s employment

growth and size is measured as the average number of employees. Even though revenues are available from

1994 onwards, the use of employment comes with several advantages. First, the time dimension of employ-

ment is significantly longer as it is available from 1976 to 2011. Second, the comparison of employment

across industries is easier than revenues as the components that constitute sales and receipts (underlying the

revenue data) can vary substantially by industry. Furthermore, the content of the revenue data can also differ

by the legal structure of the firm or its tax treatment status (see Moreira (2016)). To assuage any concerns on

the robustness of my results related to the diminished role of the granular channel, I also report the results

using revenue data in section 4.3.

While Hymer and Pashigian (1962) already established a negative relationship between firm-level volatil-

ity and size, it was not until the study by Stanley et al. (1996) that this relationship was formulated as a power

law. More precisely, the rate at which firm-level volatility falls in size is constant. Thus, it must be that firm-

level volatility, conditional on size, follows the log-linear form σ(g|S) ∝ S−α. The estimates for α under

several regression specifications can be found in table 6.
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Table VI. Estimation results on the size-variance relationship as a power law.g

EMP EMP EMP EMP

SIZE −0.249
(0.009)

−0.214
(0.015)

−0.249
(0.011)

−0.213
(0.015)

Fixed effects
FIRM N Y N Y

INDUSTRY N N Y Y

ESTIMATION SAMPLE 25.95 · 106 25.95 · 106 25.95 · 106 25.95 · 106

gFirm size is defined as employment count. Industry fixed effects are defined at the 3-digit NAICS level. Each

specification uses the 5-year standard deviation of annual employment growth rates from 1977 to 2011. All regression

specifications contain year fixed effects. Standard errors are clustered at the industry (3-digit NAICS) level. All

estimates are statistically significant at the 1 percent level.

This table shows the estimates of α under regression specifications of the natural log of the volatility of

employment growth on the natural log of average size. I follow Koren and Tenreyro (2013) and define

volatility as the standard deviation of employment growth for non-overlapping five year periods from 1977

to 2011. The results depict a clear deviation from Gibrat law’s as α̂ is obviously bounded away from zero.

Under the most basic regression specification, the estimate for α is equal to −0.2484. More importantly

though, all of the estimates are significantly more negative than found in previous studies using publicly

listed firms in Standard and Poor’s Compustat database. Previous lower bounds range from −0.16 (Stanley

et al. (1996)) to −0.21 (Sutton (2002)) or −0.22 (Koren and Tenreyro (2013)).17 Table 6 shows that even

the highest estimates for α roam around the lower bounds set by the previous literature. This negative

correlation stays remarkably strong even when I control for firm-level fixed effects restricting myself to

within-firm variation only. This results in α̂ = −0.2135. An identical picture is displayed when I control

for industry-level fixed effects (α̂ = −0.2493) or by including both firm- and industry-level fixed effects

(α̂ = −0.2134).18 Thus, firm-level volatility declines at a substantially higher rate in size than previously

conjectured. I show in section 4.3 that this has substantial aggregate implications in granular economies.

4.2 Robustness and underlying economic mechanisms

The previous set of regressions indicate a clear and robust negative correlation between firm-level volatility

and size. Obviously, these reduced form specifications cannot say much about the underlying economic

mechanism(s) that might be driving this relationship. Even though the amount of firm-level observables are
17Differing estimates on the size-variance relationship between the LBD and Compustat can be rooted in two causes. First,

Compustat only covers publicly listed firms. As a result, the firm size distribution is significantly skewed towards the right tail
which is highlighted by Axtell (2001). Second, information on employment and revenues are not necessarily restricted to the U.S.
as the Compustat database collects information on companies’ international activities.

18Alternatively, I estimate the size-variance relationship using the methodology in Stanley et al. (1996) and Sutton (2002). The
results are similar and the average estimate for α̂ amounts to −0.2457. Details on this estimation procedure can be found in
Appendix B.2.
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somewhat limited in the LBD, it is rich enough to rule out a substantial amount of mechanisms that have

been proposed in the literature.

In the following, I regress the natural log of the volatility of employment growth on average size (in

natural logs) and some additional firm-level characteristic. Table 7 shows that the relationship between

firm-level volatility and size stays robust even when controlling for a variety of firm-level characteristics.

Table VII. Potential explanations for the size-variance relationship.h

EMP EMP

Output diversification
SIZE −0.268

(0.012)
−0.221
(0.016)

ESTABLISHMENT COUNT +0.162
(0.028)

+0.152
(0.015)

Product diversification
SIZE −0.266

(0.011)
−0.218
(0.015)

PRODUCT COUNT +0.307
(0.039)

+0.204
(0.017)

Cohort fixed effects
SIZE −0.227

(0.009)

ESTIMATION SAMPLE 25.95 · 106 25.95 · 106

Age blocks
SIZE −0.229

(0.009)
−0.214
(0.014)

ESTIMATION SAMPLE 27.05 · 106 27.05 · 106

Fixed effects
FIRM N Y

hFirm size is defined as employment count. Each row denoted by “SIZE” displays

the estimate α̂ whenever the regression specification controls for output diversification

(proxied by number of establishments within a firm), product diversification (proxied by

number of unique 6-digit SIC establishments within a firm), age or cohort fixed effects.

The exceptions are the rows “ESTABLISHMENTS” and “PRODUCTS (SIC6)” which dis-

play the regression coefficient on the number of establishments and products respectively.

All regression specifications contain year fixed effects. Standard errors are clustered at

the industry (3-digit NAICS) level. All estimates are statistically significant at the 1

percent level.

A popular conjecture states that under a setting in which firms constitute of independent establishments (or

business segments), firm-level volatility declines in size as large firms tend to operate in a larger number

of establishments. Thus, the size-variance relationship could be driven by a form of output diversification.
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The first two rows of table 8 indicate that the previous estimates are robust to controlling for the number of

establishments operating under the firm. Surprisingly, the results indicate that the number of establishments

is positively (rather than negatively) related to firm-level volatility. A similar result with the number of

business segments in Compustat can be found in Koren and Tenreyro (2013) though. Appendix B.2 contains

an additional set of robustness checks on output diversification. The results do not change whenever I control

with an indicator variable (1 if firm is multi-unit establishment and 0 otherwise) or estimate the size-variance

relationship in the subsample of single-unit firms. Firms with only one establishment display the same

elasticity with respect to size. Thus, I conclude that output diversification cannot be driving the size-variance

relationship. Note that any form of financial diversification across a firm’s establishments or the “partitions

by integers” mechanism by Sutton (2002) and Wyart and Bouchaud (2003) are also indirectly ruled out by

this procedure.

It has been suggested that firms do not diversify across establishments in terms of output but through the

number of unique products they produce. This is the driving force behind the size-variance relationship in

the family of models based on Klette and Kortum (2004).19 Unfortunately, I do not directly observe a firm’s

number of unique products. Instead, I observe the industry code of each of its establishments. The finest

level of industry disaggregation at the establishment level is 6-digit SIC. Thus, I proxy a firm’s number of

unique products by its amount of unique 6-digit SIC establishments. The second category of results in table

7 indicates that the size-variance relationship is basically unchanged.20 As a result, I also rule out product

diversification as a potential mechanism behind the size-variance relationship.

Alternatively, it is possible that the main observable of interest is not firm size but rather firm age. In

a world with some form of incomplete information, older firms might be less volatile as they have learned

about either their own or competitors’ type over time. In the presence of some unobservable fixed effects,

young firms have incentives to learn about them (for example as in Jovanovic (1982)) and are willing to

trade off higher volatilities in return. If this would be the case, then the size-variance relationship should be

much weaker when controlling for firm age. However, this does not seem to be case as the third category

of results in table 8 indicates that the coefficient on size is barely affected when firm age is controlled for.

I deal with any issues due to selection by controlling for cohort fixed effects or by estimating the size-

variance relationship on a balanced panel. The results in table 7 and Appendix B.2 indicate that the results

are identical. Lastly, I check whether the size-variance relationship displays a different regime for larger

firms by of testing for a structural break. The results can be found in Appendix B.2. I find no evidence for

such a structural break.21

19These are the product innovation frameworks build upon Klette and Kortum (2004), e.g. Lentz and Mortensen (2008), Seker
(2012) and Akcigit and Kerr (2015).

20A similar set of robustness tests (as for the output diversification channel) can be found in Appendix B.2.
21This is potentially important as the coefficient α could be severely underestimated with ordinary least squares (OLS) in the

presence of a structural break for large firms. This can then impact the role of the granular channel for aggregate volatility whenever
the size-variance relationship is taken into account.
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4.3 Granularity

The results of the variance decomposition exercise in section 3.3 indicate that the granular component of

aggregate sales volatility is approximately only 15.9 percent. This is substantially smaller than the quanti-

tative findings in the literature.22 This result seems counterintuitive as the firm size distribution in the U.S.

is substantially skewed. Many studies find that the U.S. firm size distribution displays a Pareto tail with a

coefficient near one (i.e. Zipf’s law), thus the role of granularity should be substantial according to Gabaix’

(2011) theorem.23

I will argue on the other hand that the importance of the size-variance relationship for granularity has

been severely understated. The intuition behind my argument is simple: in a granular economy, aggregate

volatility is primarily affected by the largest firms. However, I observe that there is a declining power law

relationship between firm-level volatility and size. Whenever the former falls in firm size at a sufficiently

high rate, the volatility of the largest firms in the economy becomes small and, hence, their prominence in

terms of aggregate fluctuations declines significantly. This seems plausible given the results of section 4.1.

Whenever the firm size distribution is fat-tailed, Gabaix (2011) argues that the 1/
√
N diversification rule

is no longer applicable as the conditions for the central limit theorem are violated. Instead aggregate volatility

decreases at the rate 1/N (ζ−1)/ζ where ζ is the Pareto right tail of the firm size distribution. Obviously, the

rate of convergence becomes slower and slower as ζ → 1. Even though Gabaix (2011) formalizes the case

in which firm-level volatility falls in size at the rate α, this case is mostly ignored by the literature. It can

be shown that the rate of convergence can be significantly higher for non-trivial values of α (i.e. α 6= 0) as

aggregate volatility behaves asymptotically as 1/N ζ′ where ζ ′ = min{(ζ − 1 + α)/ζ, 1
2}. However, this

result is not sufficient to determine the quantitative decline of aggregate volatility in a granular economy as

α increases.

In the following, I employ a stylized framework with heterogeneous firms subject to firm-specific id-

iosyncratic shocks alone. Most importantly, it features a fat-tailed firm size distribution and a declining

power law relationship between firm-level volatility σ and its size S in reduced form:

P(S > x) ∝ x−ζ

σ(g|S) = AS−α

Note that any framework with firm-specific idiosyncratic shocks alone that delivers these relationships in

reduced form is sufficient for my quantitative exercise. Most importantly, my results do not hinge on a

particular microfoundation for the size-variance relationship. Appendix C lays down the explicit details of a

model that delivers these relationships in reduced form.24 In this framework, it can be shown that aggregate
22A large section of the literature finds that the granular mechanism can explain roughly one-third of aggregate fluctuations, e.g.

Gabaix (2011), di Giovanni and Levchenko (2012), di Giovanni, Levchenko and Mejean (2014) and Carvalho and Grassi (2015).
However, there does not seem to be a clear consensus as other studies conclude that the role of granularity is either larger (e.g.
Magerman et al. (2015)) or substantially smaller (Stella (2015)).

23Axtell (2001) finds a Pareto tail of 1.058 using the U.S. Census Bureau employment cross-section for 1997. Luttmer’s (2007)
estimate for 2002 is extremely similar as it equals 1.06.

24This model is in line with the autarky case of di Giovanni and Levchenko (2012). I chose the autarky case in particular for
simplicity. It is relatively straightforward to consider a framework with international trade and an additional non-tradeable sector.
di Giovanni and Levchenko (2012) show however that any conclusions on aggregate volatility for large countries such as the U.S.
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volatility, which is defined as the standard deviation of aggregate sales growth γA, can be calculated as:

SD(γA;α) = A ·
√∑

k

(
x−αk sk

)2
where xk and sk = xk

/∑
k′ x
′
k denote a firm k’s sales and its sales share in the economy respectively. This

formula nests the case in Gabaix (2011).

0.15 0.16 0.2 0.213 0.249
α

0.327

0.147

0.086

0.353

0.4

SD(γA;α)/SDobs

Figure 3: The volatility of the simulated granular economy SD(γA;α) relative to observed volatility in the U.S. is
displayed for several values of −α. Observed volatility SDobs is defined as the standard deviation of real GDP growth
in the U.S. over the period 1947 - 2011. The blue lines indicate the explanatory power of the granular channel whenever
α is set equal to either the upper (−0.213) or lower bound (−0.249) of estimates in table 6. The green line displays the
explanatory power of granularity under the previous estimate of α by Stanley et al. (1996). Lastly, the red line depicts
the explanatory power of granularity whenever I abide by the calibration strategy of the previous literature.

Under his baseline scenario, the size-variance relationship is ignored (i.e. α = 0) and the economy’s baseline

firm volatility is set to A = σ where σ usually equals the average volatility of the top 100 firms in Compu-

stat.25 Even though the average volatility of the top 100 firms in Compustat was previously considered to

be a conservative choice, I show that for sufficiently high values of α, most importantly as those observed

in section 4.1, this calibration choice can still substantially overestimate the contribution of the granular

channel.

The results can be found in figure 3. The figure displays the ratio of the volatility of the simulated

are barely affected by adding international trade.
25In this particular case, aggregate volatility is equal to the product of σ, which is set equal to 0.12, and the square root of the

economy’s sales Herfindahl.
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economy and observed volatility in the U.S. for a range of α. Furthermore, I setA = 1.3 which is well above

the upper bound reported in Davis et al. (2007). While this value is high, it guarantees that the volatility of a

typical large firm implied by the estimates of section 4.1 and 4.2 is not underestimated.26 Observed volatility

is calculated as the standard deviation of real GDP growth over the period 1947 - 2011 and equals 0.0238.

This value is calculated using the Federal Reserve Economic Database from the St. Louis Federal Reserve.

I find that the aggregate implications of the size-variance relationship are substantial. The explanatory

power of granular origins declines to roughly 10% whenever the size-variance relationship, as observed in

the data, is taken into account. Whenever I use the most conservative estimate for α, i.e. α̂ = −0.213,

the granular channel only accounts for approximately 14.7% of observed aggregate volatility. On the other

hand, the role of granularity is substantially smaller whenever I use the lower bound estimate for α. Table 6

indicates that this is α̂ = −0.249. Under this scenario, the contribution of granularity to aggregate observed

volatility reduces to about 8.6% instead.

This is consistent with the results of the variance decomposition exercise of section 3.3. Most impor-

tantly, my results indicate that this decline can purely be attributed to the incorporation of the size-variance

relationship. A potential concern is that the estimated size-variance relationship overstates the implied

volatility of the largest firms in the economy. Even though this is taken into account in the calibration

strategy above by using an extremely conservative choice for A, I could also implement the values (Â, α̂)

that are estimated from a subsample containing only the largest firms in the economy. In Appendix C.2,

I show that the results are extremely similar. Under some specifications, the contribution of the granular

channel is even lower than shown above.

Whenever I follow the calibration strategy of most granularity studies, the framework predicts that the

granular channel can approximately generate 35.3% of the observed volatility in the U.S. (red line in figure

3) as consistent with findings by Gabaix (2011), di Giovanni, Levchenko and Mejean (2014) and Carvalho

and Grassi (2015). Note that it is important to use the estimates on the universe of the U.S. economy (i.e.

LBD) as previous estimates based on Compustat (e.g. Stanley et al. (1996)) find a value of α̂ = −0.16) do

not have a substantial impact on granularity. Whenever these previous estimates are implemented instead,

the role of the granular channel is still significant as it can explain 32.7% of observed aggregate volatility (as

captured by the green line in figure 3).

26To illustrate this, the implied volatility of a firm with 200 000 employees which roughly corresponds to a top 20 firm in the
U.S., approximately equals 10%. Note that if I set A equal to the value implied by the actual estimate of section 4.1, then the
role of the granular channel becomes even smaller. As a result, the conclusions drawn from my quantitative exercise are extremely
conservative.
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5 A microfoundation for the size-variance relationship

In section 4, I provide estimates on the size-variance relationship using the most extensive data set covering

the U.S. economy. Moreover, I shed light on the potential economic mechanisms that could be driving this

deviation from Gibrat’s law and find that several explanations brought forth by the literature can be rejected

by the empirical results. However, there remain a handful of mechanisms that have been explored before

that cannot be directly tested with the available data. To deal with this, I will argue that these remaining

explanations are not consistent with markups being increasing in size. First, I structurally estimate markups

without making assumptions on the structure of demand and type of competition. Second, I establish that

there is a robust correlation between markups and size. Third, I propose a tractable model of firm dynamics

featuring size-varying demand elasticities that is consistent with the size-variance relationship as a power

law and the positive correlation between markups and size. Lastly, I provide direct evidence from a subset

of manufacturing industries that is consistent with the main assumption of the proposed framework.

5.1 Size-varying markups

PARAMETRIC METHOD. I will estimate markups using two distinct methods. Under the first approach, I

impose that a firm’s production technology is Cobb-Douglas. This is extremely convenient as the firm’s

marginal cost function c′(Q) is proportional to its total cost function over its level of total output c(Q)/Q.

Let the returns to scale parameter be denoted by β, then it is straightforward to derive that a firm’s markup

must satisfy:

β
rev(Q)

c(Q)
= µ(Q)

where rev(Q) denotes a firm’s revenue as a function of its total level of output Q. This identify is insight-

ful as revenue and total costs can be observed directly from the data.27 However, I can only observe total

costs for plants in the manufacturing sector from 1976 - 2009. As a result, I will restrict my analysis on

size-varying markups at the plant-year level to the manufacturing sector. Therefore, I am able to obtain

estimates of markups up to a constant by only using information on revenue and total costs. Under constant

returns to scale, this approximation is even exact as β = 1. Whenever the technology displays decreasing

returns to scale, i.e. β < 1, the ratio of revenue and total costs overestimate markups as it then satisfies

µ(Q)/β > µ(Q). Most importantly however, the relationship between this measure of markups and size

should be unaffected as the ratio of revenue and total costs is only off by a constant. In the following, I will

denote this specific measure of markups by µCRS .

SEMI-PARAMETRIC METHOD. The previous method strongly relies on the Cobb-Douglas production struc-

ture. To strengthen my results, I will also estimate markups structurally using the GMM-IV methodology

by de Loecker and Warzynski (2012). I will only describe the estimation procedure briefly in this section,

but a fully detailed overview can be found in Appendix B.4. The main advantage of this methodology is

that markups at the plant-year level can be retrieved from a minimal set of assumptions. This involves plants
27See Appendix A.4 for an extensive discussion of what is contained in a plant’s measure of total cost.
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engaging in cost minimization and the existence of at least one flexible input X . The key insight is then that

markups at the plant-year level µit satisfy the following equality:

θXit = µit
PXit Xit

PitQit

where θXit = ∂lnQit(·)
∂lnXit

denotes a plant i’s output elasticity with respect to the flexible input X in year t. This

equality is valid as long as input X is a static as significant adjustment costs would drive a wedge between

a plant’s elasticity θXit , its revenue share of input X and its markup. This equality is useful as the revenue

share of several inputs can be directly constructed from the ASM/CM data. Thus, markups at the plant-year

level can then be constructed by obtaining an estimate for θXit .

To do this, I will make the following simplifying assumptions. First, I will assume that material inputs

Mit are flexible.28 Second, I impose θMit = β
j(i)
m . This means that output elasticities with respect to inputs

are constant over time and do not vary across firms within a industry j. This assumption boils down to an

industry-by-industry Cobb-Douglas production function estimation procedure.29 Thus, production technolo-

gies are allowed to differ across, but not within, industries. To allow for a sufficient degree of heterogeneity

in production technologies, I will estimate technology parameters at the 3-digit NAICS level.

Furthermore, I allow for measurement error in gross output which results in observed log output satisying

yit = lnQit + εit. Note that firms do observe their level of productivity ωit but εit is neither observed by

the firm nor the econometrician. In the ASM/CM data, material inputs and energy inputs are registered

separately. Thus, the estimated production function specification (in log levels) becomes:

yit = ωit + βkkit + β``it + βmmit + βeeit + εit

Obviously, this specification cannot be estimated with least squares as productivity ωit is unobserved by

the econometrician leading to the well-known “transmission bias” problem: ωit is correlated with the set

of inputs resulting in biased and inconsistent estimates of β = (βk, β`, βm, βe).30 To resolve this issue, I

follow Levinsohn and Petrin (2003) and use a “proxy” method by exploiting material inputs which can, in

turn, be used to construct a set of identifying moments. To do this, I make a semi-parametric assumption on

plant-level productivity:
28Alternatively, I could have estimated a value added production function and identified markups from labor. This could poten-

tially be problematic in the presence of labor adjustment costs as these drive a wedge between a plant’s markup and the ratio of its
output elasticity with respect to labor and revenue share of labor. Caballero et al. (1997) do find evidence in favor of non-convexities
in labor adjustment cost technologies in a sample of U.S. manufacturing plants. Furthermore, the findings by Gandhi et al. (2013)
highlight the empirical importance of the misspecification one is faced with when using value added.

29The assumption of time-invariant production technologies can be relaxed. See footnote 15 in de Loecker and Warzynski (2012).
Furthermore, I could allow for output elasticities that vary at the plant level by estimating a translog production function which can
be shown to be a (local) second-order approximation to an arbitrary production function.

30It is not clear ex-ante whether OLS estimates will under- or overestimate the production function coefficients. More productive
firms are able to produce the same level of output with, for example, less labor compared to less productive firms. Whenever
production technologies are assumed to be identical across firms within a industry, this implies that β` will be underestimated under
OLS. On the other hand, firms experiencing positive productivity shocks will most likely hire more labor. However, the estimate
of β` under OLS will incorrectly contribute the increase in output to this change in labor. As a result, this means that β̂OLS` > β`.
More thorough discussions on the “transmission bias” problem in production function estimation can be found in Griliches and
Mairesse (1996) and Eberhardt and Helmers (2016).
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ωit = gt(ωit−1) + ξit

where ξit denote the innovations to productivity. Identification of β is obtained by relying on the following

four moment conditions:

E

ξit(β)


kit

`it−1

mit−1

eit−1


 =


0

0

0

0


Estimates of β are then obtained by using standard GMM techniques which involves the minimization of a

quadratic loss function. The main assumptions underlying identification exploit the fact that capital is chosen

a period ahead and should therefore be orthogonal to future innovations to productivity. A similar logic holds

for the lagged inputs `it−1, mit−1 and eit−1. While the plead for exogeneity is clear, the argument to satisfy

rank conditions is not necessarily straightforward. For a lagged input to be a valid instrument for current in-

put, some persistence in input prices is required. Recall from the discussion above that markups are obtained

through the output elasticity of intermediate inputs. Using plant-level data in the U.S. manufacturing sector,

Atalay (2014) shows that plant-level prices for material inputs are highly persistent. This seems to confirm

the validity of the rank condition as material input prices appear to be serially correlated over time.

Markups at the plant-year level are then simply constructed through:

µ̂GMM
it = β̂j(i)m

PMit Mit

PitQit/ε̂it

where j(i) denotes the industry to which firm i belongs to. Note that I explicitly correct observed gross out-

put for measurement error with ε̂it.31 The estimation results, obtained industry-by-industry (3 digit NAICS),

are shown in table 8. The first two columns present the mean of the markup distribution obtained for each in-

dustry.32 Mean level of markups vary substantially across industries and the average value of these means is

equal to 1.329. These values seem to be consistent with estimates using Slovenian (de Loecker and Warzyn-

ski (2012)), Chilean (Lamorgese, Linarello and Warzynski (2014)), Chinese (Lu, Tao and Yu (2014)) and

Indian (de Loecker et al. (2016)) data. While there is a significant amount of variation in markups between

industries, the within-industry variation is also substantial. The third column displays the standard devia-

tion of the markup distribution within each industry: the mean of this standard deviation across industries

amounts to 0.630. Lastly, columns 4 and 5 show the estimates of the output elasticity with respect to interme-

diate inputs. As can be seen from table 9, the OLS estimator tends to slightly underestimate βm highlighting

the transmission bias in production function estimation.

31This is potentially important as this correction will eliminate any variation in expenditure shares that comes from variation in
output not related to variables impacting input demand (see de Loecker and Warzynski (2012)). This is particularly crucial whenever
inputs are constructed by deflating input expenditures as mentioned by Klette and Griliches (1996).

32Under decreasing returns to scale, the methodology using the ratio of revenues over total costs overestimates markups.
The GMM-IV estimation procedure seems to be a decent job of correcting this bias as I find that, in general, med(µ̂CRSit ) ≥
med(µ̂GMM

it ). Due to disclosure restrictions however, I can only report mean rather than median values of the markup distributions.
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Table VIII. Estimation results of markup distributions by manufacturing industry group.j

INDUSTRY GROUP µCRS µGMM SD(µGMM ) β̂OLSm β̂GMM
m

Food and Kindred Products 1.319 1.161 0.605 0.585 0.595
Textile Mill Products 1.229 1.236 0.620 0.527 0.565
Apparel and Leather 1.331 1.570 1.035 0.440 0.569

Lumber 1.186 1.169 0.519 0.558 0.612
Furniture and Fixtures 1.303 1.428 0.488 0.544 0.588

Paper and Allied Products 1.241 1.136 0.382 0.564 0.582
Printing and Publishing 1.386 1.296 0.652 0.363 0.376

Chemicals 1.403 1.420 0.770 0.560 0.597
Petroleum Refining 1.190 1.220 0.412 0.722 0.735
Plastics and Rubber 1.303 1.366 0.512 0.545 0.593

Non-metallic Minerals 1.333 1.433 0.755 0.504 0.534
Primary Metals 1.275 1.420 0.713 0.565 0.619

Fabricated Metal Products 1.280 0.999 0.548 0.433 0.353
Non-electrical Machinery 1.322 1.437 0.695 0.482 0.518

Electrical Machinery 1.358 1.404 0.555 0.539 0.573
Motor Vehicles and Other

Transportation equipment

1.287 1.366 0.640 0.558 0.614

Computer and Electronic Products 1.406 1.249 0.635 0.410 0.407
Miscellaneous Manufacturing 1.387 1.613 0.812 0.472 0.547

AVERAGE 1.308 1.329 0.630 0.521 0.554

ESTIMATION SAMPLE 1.157 ·106

jThe estimation sample covers the U.S. manufacturing industries (NAICS 31 - 33) over the period 1976 - 2009. The second and third columns

depict the mean estimate of a plant’s markup within an industry group. µCRS denotes this value under the assumption of constant returns to scale

and a Cobb-Douglas production function. µGMM is obtained using the GMM-IV estimation procedure and reports the mean under the assumption

of a Cobb-Douglas specification for gross output only. The column SD(µGMM ) reports the standard deviation of the markup distribution within

the industry group. The columns β̂OLSm and β̂GMM
m report the estimated coefficients of the production function on intermediate inputs using OLS

and the GMM-IV estimation procedure. All estimation procedures use deflated wage bill as labor input. Lastly, the table trims observations with

markups above the 99th percentile.

While these estimates are interesting in their own right, I am primarily focused on whether markups vary

with size. To assess this relationship, I perform the following regression in the pooled sample:

lnµ̂it = γ0 + γ1lnSit + Γ′itσ + νit

where a plant’s size is reflected by its total number of employees and Γit contains a full set of industry-year

interactions to control for industry-specific aggregate trends in markups. Depending on the specification, Γit

can also include plant-level fixed effects. I run this regression specification for both measures of markups

(either µ̂it = µ̂CRSit or µ̂it = µ̂GMM
it ). The results are summarized in table 9.

This table depicts a clear picture: plant-level markups increase in size regardless of the way markups

are measured. Most importantly, this relationship even seems to hold whenever I restrict myself to variation
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in markups within plants. The markup elasticity with respect to size varies from 0.013 to 0.057 depending

on whether I control for plant fixed effects. Note that this result is not obvious as the markup estimation

procedure does not impose any restrictions on demand structures or the nature of competition. As a result,

there is no reason to believe that the estimated markups are mechanically related to size.33

These estimates are furthermore sizable. Under the specification with industry-year and plant-level fixed

effects for µ̂it = µ̂GMM
it , a typical “large” manufacturing plant with 100 employees charges a 6.25% higher

markup than its smaller counterpart with only 10 employees which is relatively high considering markups

are defined as profit per produced unit. Thus, I conclude the positive correlation between markups and size

is robust and economically sizable.

Table IX. Estimation results of relationship between firm-level markups and size.k

µCRS µCRS µGMM µGMM

SIZE 0.013
(0.000)

0.057
(0.001)

0.018
(0.001)

0.022
(0.002)

CONSTANT 0.111
(0.009)

−0.005
(0.012)

† 0.162
(0.008)

0.135
(0.013)

Fixed effects
INDUSTRY-YEAR Y Y Y Y

PLANT N Y N Y

kThe estimation sample covers the U.S. manufacturing industries (NAICS 31 - 33) over 1976 - 2009.

The independent variable is always the natural log of markups. In columns 2 and 3, markups are con-

structed by using the ratio of revenues over total costs. Columns 3 and 4 employ markups as constructed

by the GMM-IV methodology contained in the text. Standard errors are clustered at the industry (3-digit

NAICS) level. All estimates are significant at the 1 percent level unless denoted by †.

5.2 Identification

The results of section 4 and the stylized facts mentioned above depict a clear picture: a rich set of firm-

level outcomes are varying in firm size. This seems to be in stark contrast with a substantial fraction of the

firm dynamics literature in which the strong version of Gibrat’s law holds. The frameworks based on Klette

and Kortum (2004) are one of the few exceptions as these models predict that both firm-level growth and

volatility decline in firm size. However, the main driving mechanism behind the size-variance relationship

in this set of product innovation models is product diversification. The results in section 4.2 clearly showed

that the size-variance relationship stays robust when controlling for product diversification.34

33This is different from the case in which, for example, the logit demand structure is imposed. Under this setup, a firm’s own price
elasticity at price p with market share s is characterized by dp(1− s) where d denotes the disutility to a consumer from paying an
additional unit for the firm’s product. Thus, price elasticities are decreasing in size which implies that markups are, by construction,
increasing in size.

34This also rules out the mechanism described in Luttmer (2011) whenever “blueprints” are interpreted as either production lines
or plants, see section 2.6.2 of Luttmer (2011).
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As far as I am aware of, there are three alternative explanations that deal with deviations from Gibrat’s law.

Rossi-Hansberg and Wright (2007) focus on a mechanism in mean reversion in industry-specific human

capital accumulation. Under decreasing returns to scale, high levels of human capital lead to low rates of

return and slower accumulation. Whenever establishment sizes respond monotonically in changes in factor

prices, this creates mean reversion in establishment sizes as well. While establishment-level growth rates are

declining in size, Rossi-Hansberg and Wright (2007) use a competitive model. Thus, there are no predictions

on establishment-level markups. In their appendix A, it is shown that their results are robust to a setting with

Dixit-Stiglitz monopolistic competition. However, this only creates variation in markups across industries.

More importantly, markups within industries do not vary with size which contradicts the findings of section

5.1.

Koren and Tenreyro (2013) also conclude that output or product diversification cannot account for a

firm’s decline of volatility in size. As a result, they focus on input diversification: larger firms are less volatile

as they can use a wider number of input factors to smooth out firm-level idiosyncratic shocks. However, it is

hard to reconcile their framework with the stylized fact on size-varying markups. Firms face marginal costs

that decrease in the number of input varieties. Hence, larger firms are characterized by lower marginal costs.

Due to the use of CES aggregators however, a firm’s markup remains constant in size. Lastly, Arkolakis

(2016) adopts a setup with market penetration costs in which firms pay a cost that is convex in the share of

consumers of the destination market. His elegant framework is analytically tractable and most importantly

generates deviations from Gibrat’s law. In particular, large firms are less volatile as they make relatively small

adjustments in the extensive margin of reaching consumers. As a result, the effective demand elasticity is

small for larger firms. While this generates a declining size-variance relationship qualitatively, it is hard

to reconcile this with a power law as observed in the LBD data. Under Arkolakis’ (2016) setup, a firm’s

instantaneous variance of sales growth approaches a constant as its size increases in the limit to infinity.

This implies that the relationship between firm-level volatility and size must display a kink at a certain

size. I show in Appendix B.2 however that there is no evidence for a structural break in the size-variance

relationship. Lastly, prices in this framework are characterized by a constant markup over marginal costs

which is contradictory with the evidence of section 5.1.

Therefore, I construct an analytically tractable framework in continuous time featuring random growth

à la Luttmer (2007) and a Kimball aggregator (Kimball (1995)). This aggregator results in a price elasticity

that is declining in firm size. For a given percentage change in firm-level productivity, percentage changes

in revenues are then lower for large firms compared to small firms which is equivalent to a declining size-

variance relationship. Despite its parsimonious parametrization, which is taken from Klenow and Willis

(2016), it is sufficiently flexible to generate a size-variance relationship that behaves as a power law. Lastly,

the framework also predicts that markups are increasing in firm size as consistent with the results in section

5.1.35

35The Kimball aggregator is only one particular demand specification in which price elasticities are decreasing in firm size.
However, it comes with a few advantages. As demonstrated in section 5.3, it allows for a tractable setup of firm dynamics in a
random growth model. Furthermore, its parameterization is flexible enough to generate a size-variance relationship as a power law
which is consistent with my findings of section 4. Nevertheless, I present a class of preferences in appendix D.6 that is qualitatively
compatible with a negative (positive) relationship between firm-level volatility (markups) and size.
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5.3 Framework

CONSUMERS. Time is continuous and indexed by t. There is a continuum of consumers Lt = L · exp(ηt)

each of whom supply one unit of labor inelastically. Population growth η is non-negative. Dynastic prefer-

ences over per-capita consumption flows {Ct}t≥0 are given by:

(
Et
[∫ ∞

τ=t
exp(−ρτ)C1−γ

τ dτ

])1/(1−γ)

where ρ is the discount rate and the intertemporal elasticity of substitution 1/γ are positive. The composite

bundle Ct consist of a continuum of differentiated goods and is aggregated in a costless fashion through the

Kimball (1995) structure:

1

|Ω|

∫
ω∈Ω

ψ

(
|Ω| · ct(ω)

Ct

)
dω = 1

where ψ(1) = 1, ψ′(·) > 0 and ψ′′(·) < 0. Under these assumptions, this Kimball aggregator features a

price elasticity that decreases in the relative quantity consumed of a monopolistically competitive good.36

In general, the composite good Ct is only implicitly defined through the Kimball structure. For ease of

exposition, I will drop time subscripts unless denoted otherwise. In the balanced growth path constructed

below, per-capita consumption and the wage rate grow at a constant rate κ. Whenever the composite good

functions as the numéraire, the interest rate is constant at r = ρ+ γκ.

In the following, I will choose a specific functional form for the Kimball aggregator ψ(x). Let x de-

note the relative quantity consumed of some individual variety, then I follow Klenow and Willis (2016) by

choosing:

ψ(x) = 1 + (θ − 1)exp
(

1

ε

)
εθ/ε−1

(
Γ

(
θ

ε
,
1

ε

)
− Γ

(
θ

ε
,
1

ε
xε/θ

))
where Γ(u, z) =

∫ +∞
z su−1exp(−s)ds is the incomplete gamma function. This specific aggregator implies

demand curves of the following form:

c(ω) = ϕ

(
p(ω)

P

)
C

|Ω|
with ϕ(x) =

[
1 + εln

(
θ − 1

θ

1

x

)]θ/ε
This specification has several advantages. First, the framework allows for a tractable specification. Second,

the aggregator is parsimoniously specified by only two parameters θ and ε which control the rate at which
36The standard model of monopolistic competition which features a constant elasticity of substitution (CES) aggregator is nested

within this specification. This is done through ψ(x) = x(θ−1)/θ for some θ > 1.
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price elasticities vary with relative quantities x = c/C. This result can be shown analytically as:

σ(x) ≡ −dlnϕ(p)

dln(p)

= θx−ε/θ

Third, the specification has a natural interpretation. In the limit of ε→ 0, the Kimball aggregator converges

to the standard CES aggregator. As a result, the parameter ε can be interpreted as the “deviation” from a

CES specification with elasticity θ > 0.

FIRMS. A firm is characterized by a unique technology that allows it to produce a particular commodity as a

monopolist. Each firm with productivity z produces z` units of output with ` units of labor. Then, its optimal

pricing decision is characterized as:

p∗(z) = arg max
p≥0

(
p− w

z

)
ϕ
( p
P

)
where each firm takes the aggregate price level P as given. The necessary first order condition can be

rearranged in the form of an endogenous markup function over marginal costs. This results in:[
σ̃
( p
P

)
σ̃
( p
P

)
− 1

]
w

z
= p (A)

where σ̃(x) = 1/
(
1− 1

θ

[
1 + εln

(
θ−1
θ

1
x

)])
.37 Even though it appears that equation A does not have a closed

form solution, it can still be expressed in a meaningful way by using the Lambert W -function. In particular,

the Lambert W -function (or product logarithm) is defined as the inverse of the mapping x 7→ x · exp(x)

which has some properties that I can exploit later.38 As a result, it can be shown that a firm’s optimal price

equals:

p∗(z) =
θ

ε

1

W
[
Θw
z

1
P

] w
z

where Θ ≡ θ

ε

θ

θ − 1
exp

(
θ − 1

ε

)
Using the expression for a firm’s optimal price, firm-level revenue can be simplified to:

rev(z) ≡ p∗(z)ϕ
(
p∗(z)

P

)
C

|Ω|

=
θ

ε

1

W
[
Θw
z

1
P

] w
z

(
θ − εW

[
Θ
w

z

1

P

])θ/ε C
|Ω|

(B)

In the following, firm-level revenue will be the measure for a firm’s size.
37Note that the CES case of ε → 0 would lead to the constant markup over marginal costs in which p∗ = θ

θ−1
w
z

as σ̃(x) → θ
for all x.

38In particular, this function W (x) is single-valued for any x ≥ 0. Furthermore, it satisfies W (0) = 0 and is strictly increasing
and concave for any x > 0. Appendix D.1 contains a collection of identities involving the Lambert W -function that will prove to
be extremely useful in proving propositions 1 to 3.
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PRODUCTIVITY DYNAMICS AND SELECTION. I follow Luttmer (2007) and Arkolakis (2016) and assume

that the productivity of a firm born at time tb with age a evolves according to the following stochastic process:

ztb,a = z ·At · exp
(
θEt

b + θIa+ σFBtb,a
)

where
{
Btb,a

}
a≥0

is a standard Brownian motion. A new firm at time t enters the economy with productivity

zt,0 = z · exp (θEt). This implies that more recent entrants are of higher quality.39 Log productivity of

incumbents trend upwards at rate θI . Furthermore, At denotes the aggregate technology shock. Note that

the expected growth and volatility of productivities are independent of firm size. Nevertheless, the Kimball

structure of demand will induce firm-level growth and volatility to vary with firm size.

My framework does not feature a fixed cost of production or entry unlike the setup of Luttmer (2007).

Instead, I assume that the economy innovates at some exogenous rate ν. Then, the measure of existing firms

at each period t is given by Nt = N · exp(νt). Despite the lack of a flow fixed cost of production, the

economy does feature exit. The chosen Kimball specification induces demand curves with a finite choke

price. The characterized optimal price can be shown to be decreasing in productivity z. As a result, there

exists some cut-off productivity z∗ such that firm-level profits are zero for all z < z∗. Formally, this is cut-off

is given by:

z ≡ inf
{
z ∈ R+

∣∣∣∣ (p∗(z)− w

z

)
ϕ

(
p∗(z)

P

)
= 0

}
Under the specification of Klenow and Willis (2016), the choke price φ and cut-off productivity z∗ allow for

a closed-form solution. These are given by:

φ = exp
(

1

ε

)
θ − 1

θ

z∗t =
wt
Pt

θ

φ
(
θ − 1 + εln

(
θ−1
φθ

)) ∝ wt
Pt

The latter observation will prove to be useful in constructing a balanced growth path equilibrium as cut-off

productivities are known to grow at the rate of the real wage. Lastly, exogenous entry and a finite choke price

lead to a substantially more simple problem for the firm than in Luttmer (2007) or Luttmer (2011) as a firm

essentially faces a static problem.40 Nevertheless, the framework can characterize firm-level moments that

vary in size and a stationary firm size distribution in closed form.

BALANCED GROWTH PATH EQUILIBRIUM. I will focus on a balanced growth path equilibrium in which

per-capita consumption and the wage rate grow at a constant rate κ > 0. Along the balanced growth path,
39As mentioned in Arkolakis (2016), this incorporates a form of creative destruction. Alternatively, new firms can enter the

economy with different levels of productivity that are drawn from a distribution with full support. This is relatively straightforward
and can be done in a similar fashion as Reed (2001) or the exogenous entry case in Luttmer (2007).

40Arkolakis (2016) also dramatically simplifies the firm’s problem by specifying exogenous entry. However, productivity cut-offs
are determined without the use of fixed costs but through market penetration costs.
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the aggregate price level Pt is constant. Recall from the derivation above that the cut-off productivity is

proportional to the real wage. This implies that firm-level revenue can be expressed as a function of detrended

productivity ztb,a/z
∗
t . Additionally, I assume that aggregate technology grows at a constant rate and satisfies

At = A · exp(gAt). Then, it is straightforward to construct a balanced growth path in which κ = gA + θE .

To do this, it is useful to determine the stationary distribution of stb,a ≡ ln
(
z
tb,a

z∗t

)
. Along the proposed

balanced growth path, it must be that:

stb,a = s+ (θI − θE)a+ σFBtb,a

where s ≡ ln(z) + ln (w/P ) + ln

(
θ

φ
(
θ−1+εln

(
θ−1

φθ

))
)

. Then, let µ = θI − θE and it is straightforward to

deduce that the natural log of detrended productivity follows a standard Brownian motion with drift:

dsa = µda+ σFBtb,a

In a stationary setting, out-flows due to the stochastic evolution of firm-level productivities must be equal to

the rate of exogenous, deterministic entry. This is reflected by the Kolmogorov forward equation in which
∂
∂tf(s, t) = 0:

−µDs

[
s · f(s)

]
+
σ2
F

2
Dss

[
s2 · f(s)

]
= νf(s)

for each s ∈ (0, s)∪ (s,+∞). The solution concept is identical to Luttmer (2007). Let the roots ζ∗ and ζ be

defined as:

ζ∗ =
µ

σ2
F

+

√(
µ

σ2
F

)2

+
ν

σ2
F /2

and ζ = − µ

σ2
F

+

√(
µ

σ2
F

)2

+
ν

σ2
F /2

Then, the stationary distribution for detrended productivity s is given by:

f(s) =
ζ∗ζexp(−ζs)

exp(ζ∗s)
min

{
exp([ζ + ζ∗]s)− 1

ζ + ζ∗
,

exp([ζ + ζ∗]s)− 1

ζ + ζ∗

}

which directly implies that the firm size distribution is characterized by a Pareto right tail equal to ζ. Given

the numéraire of P = 1, the economy is closed in general equilibrium through budget balance and labor

market clearing which pin down the values for C and w. Consistency along the balanced growth path

requires ν = η. Then, budget balance (i.e. total expenditure equals total revenue) and labor market clearing
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are given by:

C = N ·
(∫

s∈R+

r(s)f(s)ds

)
(BB)

w · L =
N · C
|Ω|

(∫
s∈R+

ϕ (p∗(s)) exp(−s)f(s)ds

)
(LMC)

where ϕ(p) =

[
1 + εln

(
θ − 1

θ

1

p

)]θ/ε

DEVIATIONS FROM GIBRAT’S LAW. The stationary firm size distribution is characterized by a Pareto right

tail as observed in the U.S. data (see Axtell (2001)) since f(s) ∝ exp(−ζs) for s ≥ s. In the following,

I will show that the framework also predicts firm-level outcomes that are consistent with sections 4.1, 4.2

and 5.1. To do this, it will be convenient to establish the following lemma in which firm size, defined as

firm-level revenue, and (log) productivity are related one-to-one:

LEMMA 1. A firm’s size is increasing in its log level of detrended productivity.

Proof. See Appendix D.2. �

This property is present in a large body of work in firm dynamics. Nevertheless, this framework is able to

jointly predict the set of stylized facts presented in sections 4.1, 4.2 and 5.1 along the balanced growth path

constructed above. Equation B indicates that firm-level revenue is the product of a deterministic term, i.e.

the composite good C, and a stochastic term. Firm-level revenue can simply be expressed as rev(sa) =

g(a) × h(sa) where g(a) = Ca and h(sa) = 1
|Ω|

θ
ε

exp(−s)
W [Θ·exp(−s)] (θ − εW [Θ · exp(−s)])θ/ε. Applying Itô’s

lemma to this expression, it is immediate that:

drev(sa)

rev(sa)
= κ+

[
µ
h′(sa)

h(sa)
+
σ2
F

2

h′′(sa)

h(sa)

]
da+ σF

h′(sa)

h(sa)
dBa

Firm-level volatility and growth for a firm with initial size s0 is defined as the instantaneous variance and

expected growth rate conditional on s = s0 respectively. As a result, it is possible to derive that firm-level

volatility is declining in firm size. This is formalized in proposition 1.

PROPOSITION 1. Firm-level volatility vol(s0) =

√
V
(
drev(s)
rev(s)

∣∣
s=s0

)/
da declines in firm size rev(s0)

whenever θ > ε > 0. Furthermore, firm-level volatility is equal to σF (θ−1) for all s0 > 0 whenever ε→ 0.

Proof. See Appendix D.3. �

The intuition for proposition 1 is simple. Recall that the elasticity of demand is decreasing in the relative

quantity consumed of a firm’s variety. It is straightforward to derive that relative quantities are positively

correlated with productivity. Thus, a firm’s elasticity of demand decreases in its size as well. For a given

percentage change in firm-level productivity, percentage changes in revenues are then smaller for larger

firms. As a result, large firms are less volatile than small firms.

35



Proposition 1 is only a qualitative statement, so it is unclear whether the generated size-variance relation-

ship is also a declining power law. However, figure 4 shows that the Kimball specification is flexible enough

to generate this. Even though it is difficult to establish this analytically, it is not completely surprising that

the Kimball aggregator is able to generate the size-variance relationship as a power law. Recall from before

that the price elasticity of a differentiated good is decreasing in its relative market share at the rate ε/θ.

Both firm-level revenue and this relative market share are one-to-one with firm-level (log) productivity. This

implies that a declining size-variance relationship can be generated by letting ε/θ be fairly small. To see

this, consider the extreme cases. Whenever ε → 0, price elasticities are constant and there is no differential

response to firm-specific productivity shocks between large and small firms. Hence, Gibrat law holds and

the size-variance relationship is flat. On the other hand, a relatively high value for ε/θ implies that price

elasticities fall steeply in firm size which would imply extremely low values for firm-level volatilities among

the largest firms in the economy. This illustrates the strength of the Kimball aggregator as the degree to

which firms of different sizes respond to firm-specific shocks can be controlled by the ratio ε/θ only.

1 100 104 106 108 1010
r(s)

0.22

0.24

0.26

0.28

vol(s)

Figure 4: Size-variance relationship under the constructed random growth model with Kimball demand whenever
σF = 0.025, θ = 12 and ε = 0.1. The vertical (firm-level volatility) and horizontal (firm size) axes are in log scale.

A declining size-variance relationship will also generate a negative relationship between firm-level growth

and size. However, the framework also predicts that Gibrat’s law (in terms of growth) approximately holds

among large firms. This is formalized in proposition 2.

PROPOSITION 2. Firm-level growth is constant among large firms as m(s0) = E
(
drev(s)
rev(s)

∣∣
s=s0

)/
da→ κ

for s0 → +∞. For ε → 0, firm-level growth is constant as m(s0) = κ + µ(θ − 1) +
σ2
F
2 (θ − 1)2 for all

s0 > 0.

Proof. See Appendix D.4. �

Proposition 2 highlights another qualitative feature on the relationship between firm-level growth and size

that the framework is able to generate. As mentioned by Klette and Kortum (2004), smaller firms grow faster
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than larger firms, but Gibrat’s law cannot be rejected amongst the largest firms.41 Lastly, this random growth

framework with a Kimball aggregator is able to generate a positive relationship between firm-level markups

and size. This is depicted in proposition 3.

PROPOSITION 3. A firm’s markup (i.e. optimal price over marginal cost) declines in firm size rev(s0).

Whenever ε→ 0, markups are constant at θ/(θ − 1) for all s0 > 0 and thus do not vary in firm size.

Proof. See Appendix D.5. �

This result is intuitive as larger firms possess, by definition, a larger share of the market and hence have more

market power. This is exactly reflected in a firm’s markup. In this specific framework, larger firms set lower

prices but their marginal costs are also lower. Proposition 3 then implies that the cost effect dominates the

lower price set by a larger firm.42

While there are models that can account for variable markups, none of these frameworks, as far as I

am aware of, can generate the stylized facts from sections 4.1, 4.2 and 5.1 simultaneously in one stylized

setup.43 This is potentially important as there are numerous aggregate implications from deviating from

Gibrat’s law. First, the framework’s prediction on the declining relationship between firm-level growth and

size are consistent with the importance of small firms for economic growth (e.g. Birch (2010) and Neumark

et al. (2011)).

Second, as demonstrated in section 4.3, the size-variance relationship has drastic implications on the

quantitative importance of the granular channel as the role of granularity is cut by at least more than half

compared to the previous literature. Furthermore, the size-variance relationship can have implications that

extend to international trade. di Giovanni and Levchenko (2012) propose a novel mechanism in which

trade liberalizations raise aggregate volatility. Trade openings typically only induce the more productive

(i.e. larger) firms to enter the export market and the least productive (i.e. smallest) firms are forced to

exit.44 Hence, a trade liberalization gives a more prominent role to the largest firms. Whenever the firm

size distribution is close to Zipf’s law, granular forces then increase aggregate volatility as macroeconomic

fluctuations are mainly driven by the largest firms in a granular economy. di Giovanni and Levchenko (2012)

argue that their results are robust to the size-variance relationship, but the used estimates are based on the

values provided by Stanley et al. (1996) and Sutton (2002). I showed in sections 4.1 and 4.2 however

that the declining relationship between firm-level volatility and size is substantially more negative in the
41Many studies find that smaller firms grow faster than larger firms. Several contributions in the literature have documented this

particular fact, see the surveys by Caves (1998) and Sutton (1997). This violation of Gibrat’s law is then often cited to emphasize the
importance of small firms for economic growth (e.g. Birch (2010) and Neumark, Wall and Zhang (2011)). More recently, Akcigit
and Kerr (2015) find evidence that firm-level growth rates are negatively correlated with firm size in their subsample of innovating
firms in the LBD. In the following, I will take this stylized fact as stated in Klette and Kortum (2004) as given.

42Through the lens of the results in Appendix D.6, this result is not surprising. Appendix D.6 characterizes a class of preferences in
which markups are increasing in firm-level productivity. A sufficient condition is that the superelasticity of demand−dlnεD(p)/dlnp
is negative. This is the case with Kimball preferences as the superelasticity is conveniently characterized as −εx−ε/θ < 0 for all
relative quantities x > 0.

43Most models in firm dynamics and international trade have abstracted from variable markups, but there is an increasing stream
in the international trade literature that emphasizes size-varying markups. This requires the necessity of variable markups which can
be found in Bernard et al. (2003), Atkeson and Burstein (2008), Melitz and Ottaviano (2008) and Edmond et al. (2015).

44This mechanism is demonstrated in Melitz (2003) and its implications have empirically been confirmed by Bernard et al.
(2009a).
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LBD. As a result, this mechanism under which international trade affects macroeconomic fluctuations can

be significantly more limited than conjectured before.

Another application to international trade lies in the fact that markups are size-varying. Pass-through

of changes in tariffs induced by trade liberalizations are complete under constant markups. As a result,

most of the benchmark models in trade completely abstract from the markup channel as a potential source

of gains from trade.45 Finally, the existence of size-varying markups can improve our understanding on

firms’ responses to industrial policy interventions (see Atkin et al. (2015)) or firms’ pass-through policies of

international price shocks (e.g. Nakamura and Zerom (2010)).

5.4 Direct evidence on size-varying price elasticities

The framework of section 5.3 provides a microfoundation for the observed deviations from Gibrat’s law

and is consistent with a Pareto right tail of the firm size distribution. In this setup, the Kimball aggregator

induces demand curves in which price elasticities are decreasing in a firm’s size. However, this is a direct

consequence of the imposed assumption of the Kimball aggregator. To strengthen the credibility of this

assumption, I will show direct evidence that supports the main assumption of my framework.

Most contributions in the literature are unable to verify size-varying price elasticities directly in the data

as it is usually complicated by at least one of the following factors: (1) firm- or plant-level data usually do not

contain any information on prices and/or physical quantities and (2) when these are available, it is challenging

to find a suitable instrument to overcome the simultaneity bias present in price-quantity regressions.

To overcome all these issues, I use a unique subset of establishments producing physically homogeneous

products in the Census of Manufactures (CM) as in Foster, Haltiwanger and Syverson (2008).46 This has two

main advantages. First, physical quantities are directly observed. Combined with revenue data, this allows

me to construct (average) prices. A huge advantage of observing physical quantities combined with extensive

data on input factors is that I can construct measures of physical productivity (TFPQ) as opposed to mea-

sures of revenue-based productivity (TFPR). Typically, physical levels of productivity (reflecting physical

production costs) are strongly negatively correlated with prices satisfying rank conditions. Furthermore, the

exclusion restriction imposes that TFPQ is not correlated with any short-run plant-specific demand shocks.47

A condition that is most likely to hold. As a result, a plant’s TFPQ level serves as a strong instrument to

overcome typical simultaneity biases.

Second, by focusing on those products that are considered to be the most physically homogeneous in

the manufacturing sector, I avoid any biases due to variation in unobserved product quality. Therefore,

this strategy allows me to obtain reliable estimates of price elasticities and how they vary in size. To test

this hypothesis, I turn to the following empirical specification which will be estimated separately for each
45The reader is referred to de Loecker et al. (2016) for a more thorough discussion on the markup channel as a potential source

of gains from trade.
46The reader is referred to Appendix A.5 for details on this data set.
47Note that it is not obvious that the exclusion restriction holds for revenue-based measures of productivity as revenue typically

does reflect these types of demand shocks.
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product:

lnqit = σ0 + σ1lnpit + σ2lnpit × dit + σ3dit +
∑
t

αtYEARt + βln
(
INCOMEm(i)t

)
+ υit

where dit denotes a dummy that is equal to 1 whenever a plant i’s size (as measured by employee count) in

year t is larger than the 75th percentile. I also include a set of year fixed effects to control for economy-wide

shifts in the demand curve. The term INCOMEmt denotes the average income of the local market m in

which plant i is situated. Local markets are defined according to the BEA’s Economic Areas and control for

demand shifts at the regional level. This specification is then estimated separately for each product group.

These products include concrete, boxes, bread, processed ice and gasoline.

A profit-maximizing firm always operates on the elastic part of their demand curve, thus I expect σ1 <

−1 to hold. Whenever larger firms face lower price elasticities, then it should be the case that σ2 > 0 but

σ1 + σ2 < −1. To deal with the simultaneity bias, I perform a two-stage least squares (2SLS) exercise in

which the set of endogenous variables (lnpit, lnpit×dit) is instrumented with (lnTFPQit, lnTFPQit×dit).

The results of this procedure are displayed in table 10.

Table X. Estimation results of size-varying price elasticities.i

OLS IV IV - SMALL IV - LARGE IV - dit

CONCRETE

pit −0.820
(0.088)

−5.931
(0.359)

−8.047
(0.488)

−4.013
(0.377)

−8.030
(0.489)

pit × dit +3.998
(0.625)

Fixed effects
YEAR Y Y Y Y Y

SAMPLE '12000 '12000 '9000 '3000 '12000

iThe first two columns estimate the restricted regression specification in which σ2 = σ3 = 0. This is done

with OLS and IV (2SLS) respectively which replicates the results of Foster, Haltiwanger and Syverson (2008).

The third and fourth column display the results of the IV regression in which σ2 = σ3 = 0 but the sample

is restricted to small/medium and large firms respectively. In the last column, the results of the unrestricted IV

regression are displayed. The column “IV - dit” displays the estimated coefficients when the interaction dummy

equals 1 whenever a plant’s size exceeds the 75th percentile. Standard errors are clustered at the plant level. All

estimates are statistically significant at the 1 percent level.

The first two columns are nearly identical to Foster, Haltiwanger and Syverson (2008) and serve as a validity

test only. For concrete, they find estimates of −0.82 (OLS) and −5.93 (IV) which are identical to the values

I find. More interestingly, I find that larger firms indeed face lower price elasticities as σ̂2 > 0. I also verify

whether large firms face lower price elasticities by restricting the sample to either small and middle sized

firms or large firms only and imposing the restriction σ2 = σ3 = 0. This specification is also consistent

with the previous estimates as the estimate σ̂1 is significantly more negative for small and middle sized
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firms than for large firms. Lastly, I repeat the exercise for the four other product categories. The results for

boxes, bread, processed ice and gasoline display the same picture qualitatively. The results can be found in

Appendix B.3.48

6 Concluding remarks

The granular hypothesis postulates that a significant portion of aggregate fluctuations can be attributed to

firm-level idiosyncratic shocks. This channel is in particular supposed to be powerful in the presence of a

firm size distribution with a tail parameter that is close to one which is consistent with U.S. Census data

(e.g. Axtell (2001) and Luttmer (2007)). However, I find that the role of firm-level idiosyncratic shocks

to aggregate volatility in the U.S. economy is fairly limited despite its fat-tailed firm size distribution. The

contribution of the granular channel as proposed by Gabaix (2011) can at most explain about 16 percent of

observed aggregate volatility which is about half what previous studies find.

To come to this conclusion, I construct a novel, comprehensive data set comprised of several sources

from the U.S. Census Bureau which allows me to perform a theoretically founded variance decomposition

of aggregate sales volatility into a firm-specific and macro-sectoral component. In stark contrast to previous

findings, I observe that the component capturing macroeconomic and sectoral forces is more important for

aggregate volatility than its firm-specific counterpart. A further decomposition of the firm-specific com-

ponent indicates that the role of granularity (relative to aggregate volatility) is capped around 16 percent.

More interestingly though, the majority of the firm-specific component seems to be generated by forces

that generate positive comovements between firms’ residual growth rates. While I cannot perfectly identify

the exact driving forces behind these patterns, preliminary correlation exercises do seem to be suggestive of

input-output linkages which gives additional empirical support for the potential importance of buyer-supplier

networks as described in Acemoglu, Carvalho, Ozdaglar and Tahbaz-Selehi (2012).

My results on the role of granular channel vis-à-vis the previous literature can be entirely rationalized

by the size-variance relationship. Firm-level volatility falls at a substantially higher rate in size than found

before and, hence the prominence of the largest firms in terms of macroeconomic volatility is strongly dimin-

ished. The negative log-linear relationship between firm-level volatility and its size is remarkably robust to a

variety of specifications and the empirical results indicate that traditional explanations of the literature can-

not explain the size-variance relationship which include narratives on output, input or product diversification,

firm learning, industry-specific human capital accumulation and market penetration costs.

Instead, I propose a theory of firm dynamics that incorporates a demand specification with price elas-

ticities that are declining in firm size for which I find direct evidence using product-level data for a select

number of industries in the Census of Manufactures. Most importantly, this tractable framework does not

only predict “standard” deviations from Gibrat’s law (i.e. size-varying firm-level growth and volatility), but

it is also consistent with firm-level markups being increasing in firm size. This finding is directly supported

by the empirical findings from section 5.1 using data spanning the whole U.S. manufacturing sector.
48The bulk of the total sample consists of plants producing ready-mixed concrete. The results for this particular product are

displayed in the main text.
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The aggregate implications of deviations from Gibrat’s law have usually been confined to first moments:

smaller firms grow at a substantially faster rate than large firms and indicates the importance of small firms

for economic growth. However, I show that deviations in second moments (through the size-variance rela-

tionship) have drastic consequences for granular economies. In particular, the role of the granular channel

is cut by more than half whenever the size-variance relationship, as observed in the data, is taken into ac-

count. Additionally as mentioned by Axtell (2001), this result places “important limits on models of firm

dynamics”.

Finally, I find that markups are increasing in size which could have important implications on several

distinct strands of the literature. Size-varying markups give rise to the markup channel as a potential source

of gains from trade. Moreover, my results are strongly indicative of size-varying pass-through which could

have strong implications for our understanding on firms’ responses to industrial policy interventions or firms’

pass-through policies of exchange rate shocks. As a result, it is important for future macroeconomic models

of firm dynamics to consider deviations from the strong version of Gibrat’s law as opposed to the majority

of current and past work.
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A U.S. Census Bureau data

A.1 Longitudinal Business Database (LBD)

The Longitudinal Business Database (LBD) is an establishment-level data set covering employment statistics for nearly
all sectors of the economy and includes all geographic areas over the period of 1976 - 2011. Its underlying source is
the Standard Statistical Establishment List (SSEL) or Business Register (BR) of U.S. businesses with paid employees.
The LBD is unique in the sense that it covers the universe of the U.S. economy and contains firm identifiers at the
establishment-level. As a result, each establishment can be connected to some parent firm and thus, it is straightforward
to aggregate statistics to the firm-level. An establishment belongs to a particular firm based on operational control.
I follow Davis et al. (2007) in the sense that an establishment’s statistics are included in the parent firm’s activity
whenever this parent firm majority owns the establishment. While the LBD covers nearly all the industries in the U.S.
economy, there are some exceptions. Roughly speaking, the LBD covers the non-farm private economy with some
coverage over government-owned or operated entities.49

The main variables in the LBD are employment (emp), payroll (pay), year of entry (firstyear) and exit
(lastyear), 6-digit level SIC code (sic), establishment age (age), type of operation (toc), legal form of organi-
zation (lfo), 5-digit Federal Information Processing Standard (FIPS) county codes (county), 6-digit zipcode (zip),
establishment identifier (lbdnum) and a firm-level identifier (firmid). Industry codes are not consistent over time as
these are constructed from two SIC regimes (i.e. SIC72 and SIC87) and the covered period contains the transition from
SIC to NAICS codes and the NAICS 2002 and 2007 regimes. As a result, I follow Fort and Klimek (2016) who de-
veloped a methodology to classify all establishments to a consistent 6-digit NAICS industry classification system from
2002 (fk naics02). To determine the industry and location at the firm level, I follow Moreira (2016) by defining the
main industry and location of the firm as that industry group and location with the largest share of employment within
the firm. In case of a tie, the industry and county code mode across all establishments within the firm will function
as the industry and location of the firm. Whenever this mode is not unique, that industry and county code with the
smallest value is arbitrarily chosen instead.

The LBD covers only those firms with at least one employee on payroll over their life-cycle.50 Employment is
defined as employees subject to U.S. payroll taxes which is deduced from records by the Internal Revenue Service
(IRS) available in the BR. Also, the LBD is measured yearly: the employment statistics reflect those numbers as
measured on March 12 of each calendar year.

A.2 Standard Statistical Establishment List (SSEL)

The Standard Statistical Establishment List (SSEL) or Business Register (BR) is an establishment-level data set that
covers all domestic businesses (with the exception of private households and governments) and organizational units of
multi-establishment businesses. Unlike the LBD, it also provides coverage of non-employer businesses. The BR is a

49This is described in detail by Jarmin and Miranda (2002). Out of scope industries include Agriculture, Forestry and Fishing (SIC
Division A), railroads (SIC 40), U.S. Postal Service (SIC 43), Certificated Passenger Air Carriers (part of SIC 4512), Elementary
and Secondary Schools (SIC 821), Colleges and Universities (SIC 822), Labor Organizations (SIC 863), Political Organizations
(SIC 865), Religious Organizations (SIC 866) and Public Administration (SIC Division J). In general, government-owned and/or
operated entities (SIC Division J) are out of scope. The only exceptions are Wholesale Distributors of Beer, Wine and Distilled
Alcoholic Beverages (SIC 518), Liquor Stores (SIC 5912), Central Reserve Depository Institutions (SIC 601), Federal and Federally-
sponsored Non-depository Institutions (SIC 611) and Hospitals (SIC 806). Despite all of these exceptions, the LBD tracks aggregate
employment statistics (relatively to those provided by the County Business Patterns (CBP)) extremely well, see figures 5 and 6 in
Jarmin and Miranda (2002).

50Under the definition of the Census Bureau, paid employment consists of both full- and part-time employees, including salaried
officers and executives of corporations. Employees on sick leave, holidays and vacations are included whereas proprietors and
partners of unincorporated businesses are not.
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continuously updated database that consists of information from the Census Bureau and the Internal Revenue Service
(IRS). It contains name and address, industry, employment and payroll data based on payroll tax records and serves as
the underlying source of the LBD. More importantly, it contains receipts data based on income tax records from the
IRS. These variables on receipts are the main sources to construct revenues which is a broad category capturing value
of shipments, sales, receipts or revenue (in dollars). Data on receipts are not always available for all establishments. To
circumvent this problem, the IRS asks every establishment to report their receipts data from the previous (two) year(s).
As a result, missing information on receipts in year t can then be deduced from year t+ 1 and/or t+ 2. Unfortunately,
this procedure is only possible until 2001. After 2001, the Census Bureau constructs its own measure of receipts which
can then be used to construct revenues.

A.3 Longitudinal Firm Trade Transactions Database (LFTTD)

The Longitudinal Firm Trade Transactions Database (LFTTD) is an international transaction-level data set that covers
the universe of U.S. firms that make them. Thus, it captures all the exporting activity by U.S. firms and import
transactions to U.S. importers. I am only utilizing export activities in my quantitative exercises, so I will restrict my
attention to exports only in this section. The underlying sources of the LFTTD are comprised of the Foreign Trade
Exports (FT-EXP) data and the LBD which is described in more detail under section A.1 of the appendix.

The FT-EXP contains transactions on the exports of the universe of U.S. firms that engage in merchandise export
to some foreign destination. This data containing the universe of trade transactions data is collected by U.S. Customs
and Border Protection (CBP) during the export process. Every U.S. firm that engages in some exporting activity valued
at more than 2500 dollars is obliged to fill out the Shipper’s Export Declaration (SED) form which contains the value
(value) and quantity (qty1, qty2) of the exported good(s), transaction date (date), transport mode (mot), country
of origin (sourceid) or destination (country, isoctry), 10-digit Harmonized System (HS) product codes (hs)
and the name (name1, name2) and tax payer ID (ein) of the exporting establishment in question.51 Furthermore,
information is collected on whether the transaction takes place at “arm’s length” or between two “related” parties.
Export partners are defined to be “related” whenever either party directly (or indirectly) owns at least 10 percent of the
other party.

The LFTTD is constructed by linking the FT-EXP with the LBD. This is possible through the use of the SSEL (see
section A.2 of the appendix) as the tax payer ID (EIN) available in the FT-EXP is sufficient to link it to the SSEL. In
turn, the SSEL and LBD are linked through a common record number (recnum). As a result, it is possible to construct
a database at the firm-export transaction level. There is a caveat to this procedure as exports to Canada are not collected
through the SED form. U.S. institutions use data on Canadian imports from U.S. firms to infer U.S. exports to Canada.
This is done to reduce the reporting burden for U.S. and Canadian firms in accordance with a 1987 Memorandum of
Understanding signed by the U.S. Census Bureau, U.S. CBP, Canadian customs and Statistics Canada. U.S. exports to
Canada are then linked to U.S. firms through the business name field available in the SSEL. For more details on this
“name matching” procedure, see the appendix of Bernard et al. (2009a).

Aggregation up to the firm-destination level is trivial as each transaction contains the destination country. While
exporting numbers are available from 1992 - 2011, I only use the LFTTD from 1994 to 2011 as reliable measures of
firm-level revenues are only available from 1994 onwards.

51The U.S. Census Bureau imputes a total value for transactions valued lower than 2500 dollars but the reliability of this imputed
number is unknown. Hence, I exclude these imputed records from my analysis following Bernard et al. (2009a).
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A.4 Annual Survey of Manufactures/Census of Manufactures (ASM/CM)

The Annual Survey of Manufactures (ASM) and Census of Manufactures (CM) are establishment-level data sets that
cover the U.S. manufacturing sector (SIC2 20 - 39; NAICS2 31 - 33). Establishments are defined as a distinct physical
location of a manufacturing firm in which the main activity is production. As a result, purely administrative establish-
ments are excluded. An establishment is identified by its Permanent Plant Number (ppn) which is time-invariant and
does not change in case of ownership change or temporary shutdown. The ASM/CM contain a rich set of variables,
however I will only use a limited subset of them. In the following, I will discuss what adjustments I make to the raw
variables of need. For consistency, all values will be deflated to a common 1997 dollars basis.

Real measure of goods produced. The ASM/CM neither provides physical quantities nor prices for a large set of
plants. As a result, I am forced to construct a proxy for real production with industrial price deflators from the NBER-
CES Manufacturing database. Fortunately, the ASM/CM does contain the total value of shipments (tvs) and detailed
information on inventories. As a result, it is possible to contain a proxy for real production by adjusting the total value
of shipments with the nominal values of finished goods and work-in-progress inventories and convert them with the
appropriate deflators.

I have data on the nominal values of beginning- and end-of-year finished goods (fib and fie) and work-in-
progress (wib and wie) inventories. Then, real measures for each of these inventories can be obtained by using the
appropriate deflators:

invfp,t =
fiep,t − fibp,t

pifii(p),t
+
wiep,t − wibp,t

piwii(p),t

A real measure of goods produced is then obtained by deflating the total value of shipments and adjusting them for
inventories:

qp,t =
tvsp,t

pishipi(p),t
+ invfp,t

=
tvsp,t

pishipi(p),t
+
fiep,t − fibp,t

pifii(p),t
+
wiep,t − wibp,t

piwii(p),t

As mentioned by Kehrig (2015), deflators for inventories are unfortunately not publicly available; not even at the
industry level. As a result, I proxy inventory price deflators with the 4-digit SIC industry-level shipment price deflator
piship from the NBER-CES Manufacturing database. This results in:

qp,t =
tvsp,t

pishipi(p),t
+
fiep,t − fibp,t
pishipi(p),t

+
wiep,t − wibp,t
pishipi(p),t

A potentially important factor is the treatment of resales (cr). Kehrig (2015) classifies resales as finished goods rather
than material inputs as, by definition, resales are goods that are bought and immediately resold by the plant. As a result,
resales do not enter the production process at any point in time. Thus, an alternative measure for real output is defined
as follows:

qkp,t =
tvsp,t − crp,t
pishipi(p),t

+
fiep,t − fibp,t
pishipi(p),t

+
wiep,t − wibp,t
pishipi(p),t

Real value added. Value added (va) is defined as the contribution of labor and capital to gross output. The nominal
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values are directly available from the ASM/CM. For a consistent comparison across years, I deflate nominal value
added by using industry-level chain-type price indexes for value added (piva) which can be found in the BEA’s GDP-
by-Industry Value Added file. These are available for the manufacturing sector at roughly the 3-digit NAICS level.52

Then, real value added becomes:

rvap,t =
vap,t

pivai(p),t

Labor. Labor is measured as the total number of worker hours. However, I only observe the number of hours by
production workers (ph). As a result, I follow the adjustment method by Bailey, Hulten and Campbell (1992). Hours by
production workers are multiplied by the ratio of total payroll (sw) over payroll to production workers (ww) whenever
these are both strictly positive. Otherwise, total hours are just equal to production hours. Therefore, labor is constructed
as:

lp,t =

php,t ×
swp,t
wwp,t

if swp,t,wwp,t > 0,

php,t otherwise.

An alternative measure for labor is a plant’s deflated wage bill. I deflate total payroll (sw) with the shipment deflator
piship from the NBER-CES Manufacturing database. Thus, I obtain:

lp,t =
swp,t

pishipi(p),t

Capital. The construction of a measure of capital with the manufacturing data is complicated by several factors. First,
the value of capital stocks are only reported for a limited amount of years. Second, depreciation and return rates are
not available at the plant level. Lastly, plants only report the book value of their assets rather than market values. As a
result, I will deal with these issues as follows.

First, capital investment expenditures are reported annually. These can be denominated in 1997 dollars by using
deflators from the NBER-CES Manufacturing database. These deflators are available at the 4-digit SIC level. Con-
sequently, I can construct capital flows with the perpetual inventory method once capital stocks are initialized. This
requires some assumptions on the initialization of capital though, but this will become clear below. Second, the per-
petual inventory method requires depreciation and rental rates which are not available at the plant level. Thus, I will
use data from the BLS Capital Tables which is reported at the 3-digit NAICS level. As a result, I will approximate
depreciation and rental rates by using 3-digit NAICS industry-level analogues. Lastly, I transform book values into
constant 1997 dollars market values by using data from the BEA’s Fixed Asset Tables which is also reported at the
3-digit NAICS level. All industry-level deflators from the NBER-CES Manufacturing, BEA and BLS databases are
normalized to a common 1997 basis (1997 = 1.0).

The ASM/CM contains a complete breakdown of beginning- and end-of-year total assets into structures (buildings)
and equipment (machinery) for the period of 1976 - 1985, 1987 and 1992. These reported values are book values. Thus,
I transform these to market values denominated in constant 1997 dollars by multiplying them with the ratio of current
(ckeq and ckst) and historical (hkeq and hkst) cost of capital stocks found in the BEA’s Fixed Asset Tables.
Current cost of capital stocks are already deflated to 1997 dollars using the investment price deflators (piinve and

52The BEA constructs industry groups within the manufacturing sector at the 3-digit level. However, there are some exceptions
as it groups industries with NAICS codes 311 and 312 into “Food and beverage and tobacco products”, 313 and 314 into “Textile
mills and textile product mills” and 315 and 316 into “Apparel and leather and allied products”. As a result, I need to deflate value
added for these industry groups with the appropriate price index for the industry group as defined by the BEA.
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piinvs) from the NBER-CES Manufacturing database. Historical costs are denominated in period t dollars. As a
result, the ratio of current and historical costs are in 1997$

year t$ . This implies that capital stocks for equipment and structures
are:

ksteqp,t = maep,t

(
ckeqi(p),t
hkeqi(p),t

)
kststp,t = baep,t

(
cksti(p),t
hksti(p),t

)
The breakdown of end-of-year total assets (tae) into structures and equipment is not available after 1987 (with the
exception of 1992). However, capital expenditures on machines (cme) and buildings (cbe) are available annually.
As a result, I impute the capital stocks of a plant that entered the sample in or before 1987 with a forward perpetual
inventory method:

ksteqp,t = (1− dprkeqi(p),t)ksteqp,t−1 +
cmep,t

piinvei(p),t

kststp,t = (1− dprksti(p),t)kststp,t−1 +
cbep,t

piinvsi(p),t

where dprkeqi(p),t and dprksti(p),t are 3-digit NAICS industry-level depreciation rates taken from the BLS. The
nature of the data makes initialization of capital stocks for plants entering after 1987 non-trivial. Even though I do not
observe end-of-year assets separately for structures and equipment after 1987, I do observe a plant’s end-of-year total
assets in Census years (i.e. 1992, 1997, 2002 and 2007). The breakdown between equipment and structures is then
determined by using the fraction of equipment capital at the 4-digit SIC industry level observed in the NBER-CES
Manufacturing database. Initialization occurs in the most recent Census year in which the plant is still active. This
implies:

ksteqp,t =

(
equipi(p),t

equipi(p),t + planti(p),t

)
taep,t

(
ckeqi(p),t
hkeqi(p),t

)
kststp,t =

(
planti(p),t

equipi(p),t + planti(p),t

)
taep,t

(
cksti(p),t
hksti(p),t

)
where, with some abuse of notation, t denotes the most recent Census year after plant p’s entry year in which it is still
active.53 Then, capital stocks are once more imputed using forward and backward perpetual inventory methods.

Lastly, I need to construct capital rental rates for equipment and structures. To do this, I turn to the BLS Capital
Tables. The rental rate for each type of capital is obtained by dividing corporate capital income by the stock of produc-
tive capital. The latter is the product of capital stock and the ratio of capital inputs to productive stock. The product of
capital stock is deflated to 1997 dollars using piinve or piinvs. Thus, rental rates are in units of year t$

1997$ .

Intermediate inputs (materials). The value of materials is simply the sum of expenditures on materials and parts,

53If the most recent Census year is 1992, then I initialize ksteqp,t = maep,t
(
ckeqi(p),t
hkeqi(p),t

)
and kststp,t = baep,t

(
cksti(p),t
hksti(p),t

)
as the breakdown of total assets is still available in 1992.
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resales and contract work.54 Thus, I get:

vmp,t = cpp,t + crp,t + cwp,t

A measure for real material input is then obtained by deflating the previous value with the 4-digit SIC level deflator
pimat from the NBER-CES Manufacturing database. This results in:

mp,t =
vmp,t

pimati(p),t

Energy. Total expenditure on energy is the sum of expenditure on fuels and electricity. To obtain a real measure of
energy input, I deflate it by the 4-digit SIC level deflator pien from the NBER-CES Manufacturing database. In total,
this implies:

vep,t = cfp,t + eep,t

ep,t =
vep,t

pieni(p),t

Industry-level cost shares. To construct measures of TFP (or Solow residuals), I need the cost shares of all inputs.
These will be calculated at the industry level to minimize measurement error at the plant level. To achieve this, I use
data from the NBER-CES Manufacturing database and BLS Capital Tables:

ali,t =
payi,t
tci,t

akei,t =
eqrkli,t × equipi,t

tci,t

aksi,t =
strkli,t × planti,t

tci,t

ami,t =
matcosti,t − energyi,t

tci,t

aei,t =
energyi,t
tci,t

where tci,t = payi,t + strkli,t × planti,t + eqrkli,t × equipi,t + matcosti,t. Note that the NBER-CES
Manufacturing database includes energy expenditures in the expenditures for material inputs. However, this is not
problematic as expenditures for energy are reported separately. Lastly, I resort to divisia-based cost shares as even cost
shares at the industry level are considered to be noisy. Thus, I obtain:

daxi,t = (axi,t + axi,t−1)/2

for x ∈ {l,ke,ks,m,e}.
54Even though this is the conventional definition of material inputs, Kehrig (2015) argues that resales should not be considered

as material inputs as they never enter the production process. As a result, Kehrig (2015) emphasizes a definition for the value of
intermediate inputs that also includes material inventories. For robustness, I also consider his definition which is:

vmkp,t s.t. miep,t = mibp,t + cpp,t + cwp,t − vmkp,t

Obviously, I define the real input measure of materials accordingly as mkp,t = vmkp,t/pimati(p),t
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TFP. The constructed measure of TFP is a Solow residual based on deflated revenues and also referred to as TFPT by
Foster, Haltiwanger and Syverson (2008). I construct the natural log of this measure as:

ltfptp,t ≡ ln(qp,t)− dali(p),tln(lp,t)− dakei(p),tln(ksteqp,t)

− daksi(p),tln(kststp,t)− dami(p),tln(mp,t)− daei(p),tln(ep,t)

Then, TFP is simply defined as tfptp,t = exp(ltfptp,t).

A.5 Homogeneous product-level data in CM

The Census Bureau collects product-level information for a subset of manufacturing plants at the 7-digit SIC level.
The CM is conducted every five years in years ending in “2” and “7”. For these years only, data on physical output
is available. I consider the Census years 1977, 1982, 1987, 1992 and 1997 as a baseline as the Census Bureau ceased
denoting products at the 7-digit SIC level after 1997. Afterwards, products are only denoted at the 10-digit NAICS
level. This makes it hard for me to compare products across time and as a result, I do not use any information from
Census years 2002 or 2007 in my baseline results. As an extension, I create a bridge file that connects 7-digit SIC
codes with 10-digit NAICS codes. The results are shown in table A.5.

The Census Bureau has a set of special product codes that are important to highlight. First, I drop all products from
administrative records sources (“ar = 1”). These products are typically produced by very small plants (employment
count < 5) and only contain information at the 4-digit SIC level. As a result, I am not able to assign these products to a
single 7-digit SIC code. Second, the sum of the total value of shipments reported for each individual product (pv) does
not always add up to the total value of shipments (tvs) reported at the plant level. As a result, the Census Bureau
creates “artificial” products to align these numbers. These are denoted as “balancing” codes which I will drop. Third,
I exclude any product that is associated with contract work, miscellaneous receipts and/or resales. Fourth, any product
with a negative value of shipment is dropped as well. Finally, I drop any remaining observations that are imputed by
the Census Bureau. To do this, I employ the item-level edit and imputation flags made available to me by the Census
Bureau (see White (2014)).

To avoid any issues regarding unobserved heterogeneity in product quality, I will focus on a particular subset of
products that are considered to be the most physically homogeneous in the manufacturing sector. To achieve this, I
follow the procedure of Foster, Haltiwanger and Syverson (2008) almost to the letter. With some abuse of terminology,
I will define “product industries”. Each product industry can consist of a single or multiple 7-digit SIC level products.
Thus, each of the defined products will be the sum of quantities (pqs) over one or several 7-digit SIC level products.
In the end, I consider 4 product industries which are defined as in table A.5.

The construction of these specific product industries comes with some caveats. Physical quantities were not col-
lected for ready-mix concrete in 1997. The unit of measurement for boxes changed over the sampling period such that
data from 1992 and 1997 cannot be compared to other years. Lastly, there are recording errors in physical quantity for
processed ice in 1992. As a result, I do not use data on these product industry-year pairs.

Regression specifications are run at the product level. However, the data on inputs (i.e. labor, capital, intermediate
inputs and energy) is reported at the plant level. To deal with this, I impose a product specialization criterion: a
plant must obtain at least 50 percent of its revenue from sales of the defined product of interest. This share will be
denoted as the “primary product specialization ratio” (ppsr). As Foster, Haltiwanger and Syverson (2008) mention,
this restriction reduces measurement problems in calculating TFPQ. Furthermore, I apportion the share of inputs used
to make the product of interest. This is simply done by dividing physical quantities by the product’s share of plant
sales. Since I am only focusing on primary products, physical quantities are defined as q = pqs/ppsr.
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Table A.5. Definition of product categories.1

YEAR

PRODUCT 1977
(SIC7)

1982
(SIC7)

1987
(SIC7)

1992
(SIC7)

1997
(SIC7/NAICS10)

2002
(NAICS10)

2007
(NAICS10)

CONCRETE 3273000 3273000 3273000 3273000 3273000100 3273000100 3273000100
3273011

BOXES 2653012 2653012 2653012 2653012 3222110111 3222110111 3222110113
2653013 2653013 2653013 2653013 3222110114 3222110114 3222110221
2653015 2653015 2653014 2653014 3222110221 3222110221 3222110343
2653016 2653016 2653015 2653015 3222110341 3222110341 3222110436
2653018 2653018 2653016 2653016 3222110345 3222110345 3222110551
2653021 2653021 2653018 2653018 3222110431 3222110431 3222110663
2653022 2653022 2653021 2653021 3222110433 3222110433
2653029 2653029 2653022 2653022 3222110435 3222110435
2653051 2653051 2653030 2653030 3222110437 3222110437
2653067 2653067 2653051 2653051 3222110551 3222110551
2653068 2653068 2653067 2653067 3222110661 3222110661

2653068 2653068 3222110666 3222110666
2653098 3222110691 3222110691

BREAD 2051111 2051111 2051111 2051121 3118121111 3118121111 3118121131
2051122 3118121121 3118121121

ICE 2097011 2097011 2097011 2097011 3121130111 3121130111 3121130100
2097051 2097051 2097051 2097051 3121130121 3121130121

GASOLINE 2911131 2911131 2911131 2911131 3241101121 3241101121 3241101121

1Product categories are the sum of either 7-digit SIC products (1977 - 1997) or 10-digit NAICS products (1997
- 2007). The Census Bureau assigned both 7-digit SIC and 10-digit NAICS codes to products in 1997. The units
of measurement for each product category are thousands of cubic yards (“Concrete”), short tons (“Boxes” and
“Ice”) and thousands of pounds (“Bread”). The categories are almost identically defined as in Foster, Haltiwanger
and Syverson (2008). The exception is for “Ice”. I combine the products “Manufactured can or block ice” and
“Manufactured cubed, crushed or other processed ice”. This is also done by the Census Bureau from 2007 onwards,
see “Numerical List for Manufactured and Mineral Products 2007”.

To obtain full consistency with the results in Foster, Haltiwanger and Syverson (2008), all prices are denominated in
1987 dollars. All input variables are constructed using industry-level deflators denominated in 1987 dollars. As a
result, the only variables to adjust to a common 1987 basis are product-level prices and revenues. First, nominal prices
are obtained by dividing revenues by adjusted physical quantities (p = pv/q). Since the latter two are reported on a
yearly basis, constructed unit prices are annual averages but can also be interpreted as a quantity-weighted average of
all transactions’ prices charged by a plant during some year. Second, I need to construct deflators that have a common
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1987 basis. To do this, I adopt a Cobb-Douglas aggregate price index:

P jt =

Njt∏
i=1

p
sijt
ijt

where pijt denotes the unit price charged by plant i active in product industry j at time t. Similarly, sijt denotes the
plant’s revenue share and Njt counts the number of active plants in product industry j at time t. Then, real prices
adjusted to a common 1997 basis are defined as pdijt = pijt/

(
P jt/P j1987

)
. Deflated revenues are defined in a similar

fashion and are used in the computation of revenue-based TFP (TFPR). Alternatively, I use the shipments deflator from
the NBER-CES Manufacturing database that is defined at the 4-digit SIC industry level. The results remain unaltered
qualitatively whenever I use this alternative deflator.

A.6 LBD-SSEL-LFTTD merging process

Revenue is defined as the “total value of shipments, sales, receipts or revenue” which is denominated in dollars. This is
different from the common measure of “total value of shipments” (tvs) in the ASM/CM which emcompasses less. The
necessary variables to construct revenue are contained in the SSEL files. Revenue can consist of multiple components
depending on type of industry and legal structure which can cause some difficulties. Fortunately, the Census Bureau
provides instructions on how to construct revenue by industry.55 While this is extremely helpful, there are nevertheless
some considerable challenges.

The Business Register’s measures of revenue are based on administrative data from annual business tax returns.
These are reported at the tax ID (or Employer Identification Number (EIN)) level. This can potentially cause problems
as the notion of “establishment”, “tax ID (EIN)” and “firm” are all not identical. A firm can consist of multiple tax
reporting identities whereas multiple establishments are allowed to file taxes under one EIN. Unfortunately, EIN is
the most disaggregated level at which revenues are available. As a result, it is not possible to obtain revenues at the
establishment level. Of course, single-unit firms are the exception as, by definition, a firm can only consist of one
establishment and hence one tax-reporting entity. Thus, revenues at the firm level are easily obtained whenever a firm’s
identity (firmid) and its tax-reporting entities (ein) are linked. While this is possible (as the SSEL files are the
underlying source of the LBD), the structure of the Census Bureau’s files requires caution to do this.

Furthermore, there are complications with missing values for the revenue data which are more severe than for
employment. Fortunately, the Census Bureau also asks each firm to report their revenues from the previous year which
can then be used to fill in missing values.

The variable that links the LBD with the SSEL files is the SSEL’s record number. This variable is not uniquely
defined in the LBD though. In fact, it is a mix of the record numbers of two databases. The Census Bureau splits each
year’s SSEL file into two files: the single unit (SSELsu) and the multi-unit (SSELmu) file; each of which contain their
own record number. As a result, the record number in the LBD is unique up to the level of multi-unit status.

SSELsu contains information of all the business tax returns and is thus comprised of the universe of all EIN’s in
the U.S. economy. SSELmu contains all the establishments that belong to multi-unit firms.56 However, this file does
not contain any information on revenues. It is necessary to use this file though as the link between the LBD and SSEL
for multi-unit firms is based on the record number of the multi-unit SSEL file.

55Nevertheless, the constructed concept of “revenue” can be hard to compare across industries. As a result, it is advised to only
use variation within industries. This issue is less problematic for the current study as I am mostly focusing on the growth of revenue
rather than its level.

56To be exact, SSELsu contains all single-unit establishments and submasters which are defined as the aggregation of establish-
ments belonging to multi-unit firms to the EIN level. In turn, SSELmu contains the establishment-level data for those EIN entities
with multiple establishments within the submasters. This is also mentioned in Moreira (2016).
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The revenue data in the SSEL files are available from 1992 onwards, but most of the values for the years 1992 and
1993 are imputed and not deemed reliable enough. Hence, I construct the measure for firm-level revenue for the period
1994 - 2011. The information on employment and pay roll in LBD is very reliable and does not suffer from many
missing observations. However, the resulting merging process for revenues does lead to some missing observations.
On average, I am able to merge the revenue data for the majority of the firms though. Most importantly however, I
do not seem to be missing a extraordinarly high amount of observations for middle-sized or large firms. The missing
variable issue does seem somewhat more acute for the smallest firms in the LBD, but this seems less problematic for
my purposes as I am focusing mostly on the largest firms in the economy. Moreover, these sampling concerns do not
seem to be leading to significant biases as mentioned by Moreira (2016).

The constructed file contains total revenues at the firm level. However, the main identifying assumption of the
exercise in section 3 requires a decomposition of a firm’s revenues across destinations (i.e. countries). As a result, I
turn to the Census Bureau’s trade database. The LFTTD is a database at the transaction level. For every transaction
however, it includes a firm identifier (alpha which is identical to the LBD’s firmid) and an identifier that labels the
country to which the firm exported (country). Given that the LFTTD contains firmid, constructing a version of
the LBD with revenues at the firm-destination level is relatively straightforward.

Unfortunately, the Census Bureau does not provide firmid for every transaction in the trade database. This is
most probably due to Canadian exports as transactions to Canada are not collected through standard methods. Never-
theless, I am able to match, on average, approximately 75% of the value of all transactions. These matching rates are
identical to Bernard, Jensen and Schott (2009a) who also work with the LFTTD which should assuage any concerns
on the reliability of the merging process.
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B Robustness and estimation strategies

B.1 Variance decomposition

FINANCIAL CRISIS OF 2008 - 2009. In section 3, I showed that the average granular contribution to aggregate
volatility was 15.97%. To calculate this average, I excluded the weights τ from 2008 and 2009 which are the years of
the financial crisis. The main reason to exclude these years is that the industry- and firm-level sales composition (and
hence their weights) were not representative of the U.S. economy in those years. In particular, U.S. aggregate sales
growth plummeted to −8.08% in 2009 according to public figures from the BEA. Note though that all my calculations
in section 3.3 do include the shocks from these years as well. In the following, I will show that the results on the
relatively small contribution of the granular channel remain qualitatively the same whenever I do include the financial
crisis.

Figure B.1.2. Including the financial crisis years 2008 and 2009.

��������

2000 2005 2010
τ

0.025

0.050

0.075

0.100

0.125

stdev

σAτ σFτ σMτ

(a) Firm-specific versus macro-sectoral
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(b) Granular forces versus input-output linkages

Figures B.1.2a shows that the firm-specific component of aggregate volatility increases dramatically during the finan-
cial crisis. However, the relative contribution of the firm-specific and macro-sectoral components stay almost identical
and amount to 54.24% (compared to 52.47%) and 65.51% (compared to 67%) respectively. A similar picture is de-
picted for the granular contribution relative to the firm-specific component in figure B.1.2b. The linkage component
L̂INKτ dominates the firm-specific component for the whole sample period with the exception of 2009 in which the
granular component increases substantially. Nevertheless, the average relative contribution of the granular compo-
nent only increases to 34.23% (compared to 30.45%). Thus, the total contribution of the granular channel amounts to
54.24%× 30.45% = 18.56% which is almost identical to what I find in section 3.3.

IDENTIFYING INPUT-OUTPUT LINKAGES IN THE U.S. ECONOMY. It is clear from section 3.3 that firm-specific
volatility is dominated by the component containing comovements between firms. However, the presence of positive
covariances between the residual growth rates of firms does not necessarily imply the existence of input-output linkages
in the U.S. economy. An identical pattern on these covariances could be observed due to, for example, local labor
markets. In the following, I will suggest an exercise that can provide suggestive evidence of the fact that at least
a fraction of these comovements between firms must be due to buyer-supplier networks. To do this, I follow the
strategy suggested by di Giovanni, Levchenko and Mejean (2014). The intuition behind this procedure is simple. The
component capturing comovements between firms is constructed at the industry pair level and is then correlated with a
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statistic that summarizes input-output linkages between two industries. Whenever this correlation is sufficiently high,
it is concluded that a significant portion of the comovements between firms is due to input-output linkages.

Unfortunately, there is no extensive information available on firm-level interconnections in the U.S. economy
which leads me to use measures that are defined at the industry level instead. I construct the linkage measure that
captures comovements between firms at the industry-pair level through:

LINKijτ =
∑

f∈Iiτ ,n

∑
g∈Ijτ ,m

wfnτ−1wgmτ−1cov(εfnt, εgmt)

where Iiτ denotes the set of firms that are active in industry i at time τ . To create a measure of input-output linkages,
an industry pair (i, j)’s “mean network intensity” is defined as:

IOijτ = 1
2 [(1− λiτ )ρijτ + (1− λjτ )ρjiτ ]

where 1 − λiτ denotes the cost share of intermediate inputs in industry i at time τ . Similarly, ρijτ is the share of
inputs from sector j in sector i’s spending on intermediate inputs. This measure is attractive for two reasons. First,
this measure can be motivated by a simple model of input-output linkages at the firm level.57 Second, the measure can
be constructed with data at the sector level. As a result, this measure can be implemented with data from the BEA’s
annual Input-Output Accounts.

To do this, I use public source data from the BEA. First, I construct ρijτ from the BEA’s annual Input-Output
Accounts data. In particular, I turn to the “Use Tables” for 1995 - 1996 and 1997 - 2011. Unfortunately, sectors are
not defined in a consistent way over time. Most probably, this is due to the introduction of NAICS codes in 1997. As
a result, I categorize sectors in a way such that they are time-consistent. To do this, I classify industries as in Atalay
(2015). A full overview of these industries can be found in table B.1. In the end, I will be working with 30 industries
as the LBD does not contain any economic activity by the government. Thus, the entries ρijτ are constructed by only
using information from industries 1 to 30 but are normalized such that the equality

∑30
j=1 ρijτ = 1 is satisfied for every

industry i and period τ .
Furthermore, I need to calculate the share of intermediate inputs relative to gross output for each of the constructed

industries. For this purpose, I use the BEA’s annual GDP-by-Industry data. Constructing the required ratio is immediate
as intermediate inputs (code II) and gross output (code GO) can be taken directly from the tables. Aggregation to the
required industry level as defined above is straightforward as the BEA uses IOcode in both data sets.

Finally, I plot LINKij ≡ 1
T

∑2011
τ=1995 LINKijτ and IOij ≡ 1

T

∑2011
τ=1995 IOijτ against each other. A strong positive

correlation between the empirically measured term that captures comovements between firms L̂INKij and the intensity
of input-output linkages IOij at the industry-pair level would be indicative of the presence of input-output linkages in
the U.S. economy.

57See Appendix E of di Giovanni, Levchenko and Mejean (2014) for a framework that can motivate this measure.
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Table B.1.1. Definitions of constructed industries.1

# Industry name NAICS02-03 IOcode
1 Agriculture and Fishery 111 - 113 111CA, 113FF
2 Mining 212 212
3 Oil and Gas Extraction 211, 213 211, 213
4 Construction 23 23
5 Food and Kindred Products 311, 312 311FT
6 Textile Mill Products 313, 314 313TT
7 Apparel and Leather 315, 316 315AL
8 Lumber 321 321
9 Furniture and Fixtures 337 337
10 Paper and Allied Products 322 322
11 Printing and Publishing 323, 511 323, 511
12 Chemicals 325 325
13 Petroleum Refining 324 324
14 Plastics and Rubber 326 326
15 Non-metallic Minerals 327 327
16 Primary Metals 331 331
17 Fabricated Metal Products 332 332
18 Non-electrical Machinery 333 333
19 Electrical Machinery 335 335
20 Motor Vehicles 336 3361MV
21 Other Transportation Equipment 336 3364OT
22 Computer and Electronic Products 334 334
23 Miscellaneous Manufacturing 339 339
24 Warehousing 493 493
25 Communications and Media 512, 515 - 519 512 - 514
26 Utilities 22 22
27 Wholesale and Retail 42, 441, 445, 452 - 454, 521, 522 42, 441, 445, 452, 4A0
28 Finance, Insurance and Real Estate 521 - 525, 531 - 533 521CI, 523, 524, 525, HS,

ORE, 532RL
29 Other Services 541, 55, 561, 562, 611, 621 - 624, 5411, 5415, 5412OP, 55,

711 - 713, 721, 722, 811 - 814 561, 562, 61, 621 - 624,
711AS, 713, 721, 722, 81

30 Transportation 481 - 488, 492 481 - 486, 487OS
31 Government - GFGD, GFGN, GFE,

GSLG, GSLE

1This table is based on the BEA’s annual Input-Output Accounts data of 1997 - 2014 which contains 71 industries. The
data for 1963 - 1996 (of which I only use 1995 and 1996) is less disaggregated but nevertheless contains 65 industries.
Converting these industries to the groups as defined above is identical to table B.1.2 with the exception of: Wholesale and
Retail (IOcodes 42 and 44RT), Finance, Insurance and Real Estate (IOcodes 521CI, 523, 524, 525, 531, 532RL), Other
Services (5411, 5415, 5412OP, 55, 561, 562, 61, 621, 622HO, 624, 711AS, 713, 721, 722 and 81) and Government
(IOcodes GFG, GFE, GSLG and GLE).
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ADDITIONAL ROBUSTNESS SPECIFICATIONS. The results of section 3.3 are based on firm-destination level growth
rates that are constructed through natural log differences. This is useful as it allows for a decomposition of individ-
ual level growth rates into a firm-specific and macro-sectoral component. By construction however, this growth rate
measure is not properly defined for entry and exit and thus ignores the extensive margin completely. As a result, I
will resort to the growth rate measure suggested by Davis, Haltiwanger and Schuh (1996) that treats entry and exit
symmetrically:

γ̃fnt =
xfnt − xfnt−1

1
2 (xfnt + xfnt−1)

∈ [−2,+2]

This implies that entrants and exiters have growth rates equal to −2 and +2 respectively. Technically speaking, the
suggested decomposition of individual level growth rates in section 3.1 does not hold for this specific measure. Thus,
the presented results should be interpreted with some care. To achieve consistent aggregation, the appropriate weights
are:

w̃fnt =
xfnt + xfnt−1∑

f ′,n′ xf ′n′t + xf ′n′t−1

which implies that aggregate sales growth must satisfy γ̃At = Xt−Xt−1

0.5(Xt+Xt−1) =
∑
f,n w̃fntγ̃fnt. I perform two exer-

cises with the growth rate by Davis, Haltiwanger and Schuh (1996). First, I consider the full sample with entrants and
exiters. As a result, the estimation sample increases considerably. The relative contribution of the firm-specific com-
ponent decreases substantially compared to the benchmark specification of section 3.3. Even though this is somewhat
surprising at first sight, this could be explained by the fact that firm-level entry and exit amplify and propagate the
effects of aggregate shocks as mentioned by Clementi and Palazzo (2016). This indirect effect can obviously not be
identified in the baseline sample, but can prove to be important quantitatively as firm-level entry and exit rates are per-
sistently high in the U.S. economy.58 The average contribution of the granular component relative to the firm-specific
component is nearly identical to the benchmark specification. As a result, the total average contribution of granularity
is smaller than the baseline specification which only reinforces my conclusions.

Second, I use the growth rate by Davis, Haltiwanger and Schuh (1996) but trim outliers as in the baseline specifi-
cation. This removes the effects of the extensive margin, but considers the sole effect of using a different growth rate.
The results are extremely similar to the baseline results. This is not surprising as the growth rate of Davis, Haltiwanger
and Schuh (1996) can be interpreted as a second-order approximation to natural log differences.

Lastly, I consider 3-year growth rates instead of annual growth rates to deal with measurement error in year-to-

year growth rates. The results are nearly identical compared to the baseline specification of section 3.3. This also

provides some suggestive evidence that ignoring persistent firm-level productivity processes and the slow propagation

of firm-level idiosyncratic shocks through the production network is a relatively good approximation.

B.2 Size-variance relationship

ROBUSTNESS TESTS FOR KOREN-TENREYRO PROCEDURE. The results of table 7 in section 4.2 indicate that the
size-variance relationship is robust when I control for the (natural log of the) number of establishments or products
within the firm. This implies that the size-variance relationship cannot be driven entirely by either output or product
diversification. In the following, I reinforce these findings by using different regression specifications. First, I regress
(the natural log of) firm-level volatility on (the natural log of) size and a dummy diτ that equals 1 whenever firm i

58Statistics from the Business Dynamics Statistics (BDS) indicate that average firm-level entry and exit rates from 1976 - 2011
amount to 11.12% to 8.81% respectively.
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consists of more than one establishment or product at year block τ instead of the number of establishments or products.
The results are consistent with the main text as the elasticity of firm-level volatility with size is basically unaffected.

Furthermore, being a multi-unit or multi-product firm is positively (rather than negatively) related with firm-level
volatility. This result is akin to Koren and Tenreyro (2013) who find a similar result with the number of business
segments in Compustat for U.S. firms. Alternatively, I estimate the size-variance relationship on the subsample of
firms that only have one establishment or product. It appears that these single-unit firms do not display different size
elasticities with respect to firm-level volatility. Note that all of these observations hold regardless of whether I control
for firm-level fixed effects or not.

Lastly, I verify that my results on the size-variance relationship are not completely driven by selection. Table 7
in section 4.2 already included a specification with cohort fixed effects to deal with this, but I also estimate the same
regression specifications with a balanced panel to ensure the robustness of my results. Obviously, this implies that my
sample shrinks but I am nevertheless left with a substantial sample. The results indicate that the estimates from table 7
are robust which alleviates any concerns due to selection.

TESTING FOR STRUCTURAL BREAK IN THE SIZE-VARIANCE RELATIONSHIP. In section 4.1 and 4.2, I assume that
the size-variance relationship holds uniformly across the whole size distribution. However, it could be conjectured that
firm-level volatility declines at a substantially slower rate in size for large firms. Formally, it is possible that firm-level
volatility takes the form:

σ(g|S) ∝

S−α, if S < B,

S−α+αb , otherwise.

where αb ∈ [−∞, α) andB > 1. This is potentially important as the imposition of a single regime for the size-variance
relationship could substantially underestimate the volatility of larger firms.59 In turn, this can have consequences on the
results of section 4.3. In that section, I argue that the relatively small role of the granular channel can be rationalized
by the size-variance relationship alone as my estimates in section 4.1 and 4.2 clearly indicate that larger firms are
substantially less volatile than their smaller sized counterparts.

Under a discontinuous regime for the size-variance relationship as conjectured above, this intuition does not nec-
essarily have to hold. I will show though that this is not the case by means of testing for a structural break. More
precisely, I test the null hypothesis of the coefficient on SIZE × 1(Sit > B) being zero for several known breaking
points in size B. The indicator 1(Sit > B) denotes whether the firm at time block t is large or not. The results indicate
that for large values of B (i.e. large firm size) the null hypothesis can never be rejected. I only focus on relatively
large firms as aggregate volatility is primarily determined by the largest firms in a granular economy. Thus, I conclude
that the size-variance relationship does not show any forms of a structural break for the upper right tail of the firm size
distribution.

STANLEY-SUTTON PROCEDURE FOR SIZE-VARIANCE RELATIONSHIP. My results on the size-variance relationship
are primarily based on the methodology by Koren and Tenreyro (2013). However, another popular methodology is used
by Stanley et al. (1996) and Sutton (2002). These authors view the size-variance relationship as a purely cross-sectional
phenomenon and therefore provide year-by-year estimates for α.

The procedure is carried out as follows. First, take the employment cross-sections of two consecutive years (e.g.
year x and year x + 1). Second, calculate year-to-year growth rates at the firm level and order them by the size of the
firm in the initial year (i.e. year x). Third, categorize firm size in B > 1 bins, take the standard deviation of firm-level

59Obviously, this can also result in significantly overestimating the volatility of the largest firms. However, this would only
reinforce the results of section 4.3. As a result, I do not deal with this scenario.
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growth rates volb and calculate average size sizeb within each bin b. This results in the set of pairs (volb, sizeb)Bb=1.
Finally, regress the natural log of volb on the natural log of sizeb with OLS.

I implement this procedure by using the bin categories for employment as adopted by the Census Bureau and create
the bins 1 − 4, 5 − 9, 10 − 19, 20 − 49, 50 − 99, 100 − 249, 250 − 499, 500 − 999, 1000 − 2499, 2500 − 4999,
5000− 9999 and ≥ 10000. These categories are, for example, used in the Business Dynamics Statistics (BDS).

Using the LBD, I repeat this procedure for every cross-section from 1976− 1977, 1977− 1978, . . . , 2010− 2011

resulting in 35 values for α̂. Its average estimate over time is extremely similar to the results shown in the main
text. Lastly, I repeat the procedure above but allow for a more fine level of disaggregation at the right tail of the size
distribution. Thus, the bin≥ 10000 is further divided up into 10000−14999, 15000−24999 and≥ 25000. Once again,
the results are similar to the benchmark specification of table 6 in section 4.1. Thus, the results for the size-variance
relationship do not depend on its estimation methodology.

B.3 Size-varying price elasticities

I show in section 5.1 that larger plants, defined as plants with more employees than the 75th percentile, are faced with
a less elastic demand. However, the results are only based on plants producing ready-mixed concrete (7-digit SIC
3273000). Even though the bulk of my estimation sample consists of plants producing concrete, I will show that most
of the results in the main text also hold for a variety of other homogeneous products in the manufacturing sector. I
follow Foster, Haltiwanger and Syverson (2008) and also estimate the main specification of section 5.1 for the product
categories boxes, bread, processed ice and gasoline. The previous study considers a broader range of products, but I
only focus on those products that have at least 50 observations for each Census year for at least three years to leave a
sufficient amount of variation in size across plants and time.60

Smaller firms face a more elastic demand curve (i.e. more negative estimate for σ̂1). The results for the baseline
specification in section 5.1 are identical for the category boxes. The estimates for bread, processed ice and gasoline
are economically significant but not always statistically significant. Imprecise estimates might be obtained as the total
number of large plants for these products is fairly low across time.

Lastly, I show that the results on size-varying elasticities do not depend on the definition of a “large” plant. The
main text defines a plant to be large whenever its size exceeds the 75th percentile of the size distribution in a given year.
The results are qualitatively the same whenever different cut-off percentiles are used (i.e. 50th and 90th percentile).
As expected, larger plants face smaller price elasticities. A similar conclusion holds for the other product categories
and are available on the author’s request.

B.4 Markup estimation: de Loecker and Warzynski (2012)

In this section, I will provide more details on the markup estimation procedure. To this extent, I will use the method-
ology by de Loecker and Warzynski (2012). Their procedure encompasses a relatively broad environment while rest-
ing on only a mild set of assumptions. Let the production function be given by Qit = Qit(Xit,Kit, ωit) where
Xit = (X1

it, · · · , XV
it ) is a vector of inputs free of adjustment costs, Kit denotes capital and ωit is a plant’s technology

level. Following de Loecker and Warzynski (2012), I will impose the following assumption.

B1. The production function Qit(.) is continuous and twice differentiable with respect to its arguments.
B2. Productivity ωit is one-dimensional and Hicks-neutral.
B3. Technology parameters are constant across time and common within a industry group.

60See table A.5 of Appendix A.5 to see the exact product composition of these product groups.
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Imposing assumption B1 and using standard cost minimization arguments, it is straightforward to obtain:

θXit = µit
PXit Xit

PitQit

where θXit = ∂Qit(·)
∂Xit

Xit
Qit

is the output elasticity with respect to input X , µit is the plant-specific time-varying markup

and αXit ≡
PXit Xit
PitQit

is the ratio of input X’s expenditure to total sales. Note that input expenditures and total sales are
directly observed from the ASM/CM data. As a result, markups µit are easily obtained through the identity:

µit =
θXit
αXit

Thus, the main goal is to estimate the elasticity θXit . To accompany this, I impose assumptions B2 and B3 for the
estimation of production technologies through proxy methods. These immediately imply that production can be written
as Qit = F (Xit,Kit;β)exp(ωit). I also allow for measurement error and assume that observed logged output satisfies
yit = ln(Qit) + εit. The error term εit is not observed by plants when they have to make their optimal input decisions.
As a result, I can write:

yit = f(xit, kit;β) + ωit + εit

Obviously, plant-level productivities ωit are not observed by the econometrician. As a result, I turn to the methodology
by Levinsohn and Petrin (2003) and use material demand mit to proxy for productivity:

mit = mt(kit, ωit,pit)

where capital kit and productivity ωit are state variables at the time of input choice(s). Furthermore, the vector pit

denotes any additional variables that can affect a plant’s optimal demand for material inputs. Under a mild set of as-
sumptions, as described in appendix A of Levinsohn and Petrin (2003), the material input demand function is invertible.
Thus, I obtain ωit = ht(mit, kit,pit). As a result, production yit can be written in terms of observables only:

yit = f(xit, kit;β) + ht(mit, kit,pit)

= φt(xit, kit,mit,pit) + εit

I will focus on gross output Cobb-Douglas production functions in my empirical applications. The case for translog
production is conceptually almost identical. Estimating the production technology parameters is done in a three stage
fashion which is in a similar spirit as Ackerberg, Caves and Frazer (2015).

Step 1. Non-parametric estimation of φit and εit.
First, I estimate ϕit and εit non-parametrically by approximating them with a polynomial in (`it, kit,mit, eit). More
precisely, I run the regression:

yit =

M∑
j=1

`jit +mj
it + kjit + ejit +

 N∑
j′=1

`jitm
j′

it + `jitk
j′

it + `jite
j′

it + kjitm
j′

it + kjite
j′

it +mj
ite

j′

it

+ `jitm
j
itk

j
ite

j
it + εit

for some integers M,N ≥ 1. Let its fitted values and residuals be denoted by φ̂it and ε̂it respectively.
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Step 2. Construction of innovations ξit to productivity ωit.
Second, I assume that productivity ωit is only a function of its lagged value. As a result, I get ωit = gt(ωit−1) + ξit.
Under a Cobb-Douglas specification, productivity is approximated by:

ωit(β) = φ̂it − β``it − βkkit − βmmit − βeeit

where β ≡ (β`, βk, βm, βe)
′.61 Then, I approximate gt(.) with a third order polynomial in its argument:

ωit(β) = ρ0 + ρ1ωit−1(β) + ρ2ω
2
it−1(β) + ρ3ω

3
it−1(β) + ξit

Thus, the innovations to productivity can be constructed as a function of β through:

ξit(β) = ωit(β)− Ωit−1(β)′ρ̂(β)

where ρ̂(β) = (ρ̂0, ρ̂1, ρ̂2, ρ̂3)′ is the OLS estimator of Ωit−1(β) = (1, ωit−1(β), ω2
it−1(β), ω3

it−1(β))′ on ωit(β).

Step 3. GMM-IV estimation of β.
I assume that capital kit is decided one period ahead, thus it is orthogonal to the innovation ξit(β). Furthermore, lagged
labor `it−1 is used to instrument for `it as current period labor is decided after the realization of the innovation ξit(β).
As a result, I expect E (`itξit) 6= 0. However, I require that `it and `it−1 to be correlated with each other to satisfy the
rank conditions. This is the case whenever wages are correlated over time. A similar argument is made for intermediate
inputs mit and energy inputs eit. Define the instrument vector as zit = (`it−1, kit,mit−1, eit−1)′, then the parameters
β are identified through the following K = 4 moment conditions:

E (ξit(β)zit) = 04×1

To obtain β, I rely on the minimization of a quadratic loss function which is standard in GMM estimation.62 Thus, I
get:

β̂ = arg min
β∈R4

+

K∑
k=1

(
N∑
i=1

T∑
t=1

ξit(β)zkit

)2

Recall that markups are constructed using the output elasticity with respect to intermediate inputs:

µ̂it = β̂`

(
vmit

goit/ε̂it

)−1

where vmit and goit = tvsit+(fieit−fibit)+(wibit−wibit) denote a plant i’s total expenditure on intermediate
inputs and value of gross output at year t. Note that gross output is defined as total sales plus the value of finished
goods and work-in-progress inventories. My markup results are robust to whenever I do not include inventories.

61The case for translog production is extremely similar. In fact, the first stage is identical to the case for Cobb-Douglas
production technologies. The only difference is that the dimension of the vector β is substantially increased as β =
(β`, βk, βm, βe, β``, βkk, βmm, βee, β`m, βkm, βem, βk`, βke, β`e, β`km, β`ke, βkme, β`me)

′ whenever I adopt a polynomial ap-
proximation of degree M = 3.

62By construction, the number of parameters in β is equal to the amount of identifying moments. This case of “just identification”
renders the specification of a weighting matrix useless.
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C Accounting framework for granular economy

I show in section 4.3 that the aggregate implications of the size-variance relationship are substantial. To show this
quantitatively, any framework with firm-specific shocks alone that delivers a firm size distribution with a Pareto right
tail and the size-variance relationship as a power law is sufficient. In the following section, I show the explicit micro-
foundations of such a framework.

REPRESENTATIVE CONSUMER. The representative consumer’s problem is characterized by CES preferences over a
discrete number N ≥ 1 of goods (indexed by k) with elasticity θ. Labor endowment L is supplied inelastically and
compensated at the wage rate w > 0. Total expenditure X comprises of labor income and received profits π̃ from
operating firms as they are fully owned by the representative consumer. As a result, expenditure on good k equals:

x(k) = X ·
(
p(k)

P

)1−θ

where P =
(∑N

k=1 p(k)1−θ
)1/(1−θ)

denotes the ideal price index and reflects the price of an additional unit of utility.

FIRMS. A firm k is defined by permanent productivity a(k) that is determined upon entry and does not change after.
However, a firm will also be subject to idiosyncratic shocks z(k). Then, it can transform a(k)z(k) input bundles into
one unit of output. Aggregate volatility will be driven solely by the idiosyncratic shocks z(k) alone in the constructed
granular economy. The input bundle ι is a Cobb-Douglas composite of labor ` and some intermediate input bundle M ,
i.e.

ι(k) =

(
`(k)

β

)β (
M(k)

1− β

)1−β

where M(k) =

(∑N
k′=1m(k, k′)

θ−1
θ

) θ
θ−1

and m(k, k′) denotes firm k’s demand for the good produced by firm

k′. Thus, the production side of the economy features a roundabout structure as in Basu (1995). By letting β → 1,
these linkages are absent. By standard arguments, the cost of one input bundle ι is c ≡ wβP 1−β . A firm’s production
function is linear in this input bundle, thus its optimal price is characterized by the standard constant CES markup over
marginal costs which in turn results in the following equilibrium supplied quantity:(

p∗(k)

P

)−θ
X

P
=

X

P 1−θ

[
θ

θ − 1
ca(k)z(k)

]−θ

ENTRANTS. Each potential entrant can discover the permanent component of its inverse productivity a after paying the
entry cost fe which is denominated in input bundles. Once paid, these costs are sunk and a firm, given its realization
of a, has to decide whether to incur the fixed cost of production fP which is also denoted in input bundles. I explicitly
assume that a firm has to incur the cost fP before the realization of the idiosyncratic shock z.

Due to these timing assumptions, a firm k will only decide to enter if the permanent component of its inverse
productivity a(k) is low enough.63 Thus, there exists a cut-off value a such that firms only incur the fixed cost of

63To see this, note that ex-interim expected profits, that is whenever the permanent component of productivity a(k) is already
realized, are equal to:

π(a(k)) = Ez

[
X

θP 1−θ

(
θ

θ − 1

)1−θ

(ca(k)z(k))1−θ − cfP
∣∣∣∣a(k)

]
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production fP whenever a ≤ a. This selection procedure is similar to Melitz (2003) who relies on a Law of Large
Numbers to validate his argument as his setup features a continuum of firms. However, I explicitly assumed that there is
a finite amount of potential entrants and hence the number of active firms must be finite as well. Recall this is necessary
for any granular framework as a continuum of firms would otherwise automatically imply an aggregate volatility of
zero. Therefore, I need to impose two assumptions to validate this selection procedure.

ASSUMPTION 1. The marginal firm, which is small enough, ignores the impact of its own realization of z on aggregate
expenditure X and price P .

ASSUMPTION 2. The marginal firm treats X and P as non-stochastic.

These assumptions deliver substantial computational and analytical simplifications: solving the equilibrium is reduced
to a static problem as will become clear.64 The number of potential entrants N will be pinned down by the free entry
condition in which the ex-ante profits of a firm must be reduced to zero. To close the model in general equilibrium, I
need to solve for the aggregate price P . To avoid a complex computational procedure, I will approximate the equilib-
rium price level P by ignoring firm-specific idiosyncratic shocks by fixing them at their expected values. As a result,
P satisfies:

P =

(
N∑
k=1

Ea,z
[
(p∗(k))

1−θ
]) 1

1−θ

=

(
Pr(a ≤ a)N

(
θ
θ−1c

)1−θ
Ea
[
a1−θ|a ≤ a

]) 1
1−θ

Then, I can solve for a monopolistically competitive equilibrium (w,P ) by clearing the labor market
∑N
k=1 `

∗(k) = L,
good markets y(k) = c(k) +

∑N
k′=1m(k′, k) for every k ∈ {1, 2, . . . , N} and imposing free entry which brings net

aggregate profits to zero such that βX = wL. The numéraire of the economy is the wage rate w, thus I set w = 1.

C.1 Calibration

Aggregate volatility can be driven by idiosyncratic shocks alone whenever the firm size distribution is fat-tailed. How-
ever, I argue in section 4.3 that it is equally important to take the size-variance relationship into account. To do this in
the easiest way, I normalize Ez

(
z1−θ) ≡ Ez (z̃) = 1 without loss of generality and impose:

ASSUMPTION 3. The permanent component of productivity satisfies 1/a ∼ PAR(b, ϕ) and the conditional standard
deviation of a firm’s idiosyncratic shock is decreasing in its size at the rate α, i.e. we have SDz [z̃|x] = Ax−α.

Then, it is straightforward to derive that the constructed granular economy has a Pareto right-tail with coefficient

As θ > 1, there exists a cut-off a such that π(a) ≥ 0 if and only if a ≤ a.
64While assumption 1 is standard and “not controversial” according to di Giovanni and Levchenko (2012), it is not completely

trivial in a granularity context. If the behavior of the largest firms are the most important for aggregate volatility, then it is reasonable
to assume that these firms are aware of their impact on aggregate prices. As a result, the standard CES markup over marginal cost
would not be the firm’s optimal pricing function. However, di Giovanni and Levchenko (2012) suggest that deviations of fully
flexible markups from constant CES markups are very small; even for the largest firms in the economy. This insight is shared by
Gaubert and Itskhoki (2015) who note that competition through prices leads to substantially less markup variation than through
quantitites. The second assumption implies that the marginal firm ignores the fact that its entry into the market has an impact
on aggregate volatility and prices. As a result, I am abstracting from the impact that the marginal firm has on the value of entry
through its own entry decision. Furthermore, it only applies to the marginal firm. Assuming it is small enough, my conclusions on
granularity should be affected minimally as only the large firms should dominate aggregate outcomes. In any numerical exercise, I
will explicitly verify that the market share of the marginal firm is negligible.
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ζ = ϕ
θ−1 and aggregate volatility is given by:

SDz

[
∆X

Ez(X)

]
= A ·

√∑
k

(
Ez (x(k))

−α
h(k)

)2

where firm k’s expected share of total sales equals h(k) ≡ Ez (x(k)) /Ez(X). To implement the model quantitatively,
I set 4 parameters as according to the literature. The elasticity of substitution satisfies θ = 6 which is in the middle
of the range [3, 10] as mentioned by Anderson and van Wincoop (2004). Furthermore, I set β = 0.56027 which is
the average of the ratio of gross output over GDP in the period 1950 - 2011 according to the BEA’s GDP-by-Industry
tables. Labor endowment equals L = 155 · 106 which is equal to the civilian labor force in 2012 according to the BLS.
Lastly, I set b = 0.1 as in di Giovanni and Levchenko (2012) to ensure that the market share of the marginal firm is
negligible. This ensures that assumption A.2 is satisfied. The parameters α and A are estimated from the LBD and
taken from section 4.1. The remaining parameters are calibrated internally according to standard moments.

Table C.1. Internally calibrated parameters.6

PARAMETER VALUE TARGET MODEL SOURCE

ϕ 5.3 1.06 1.06 Pareto tail (Luttmer, 2007)
fe 1.9189 0.1091 0.1091 Entry rate (BDS, 1977 - 2012)
fP 1.0546 5.0309 · 106 5.0309 · 106 Firm count (BDS, 2012)

6The parameter ϕ governs the Pareto right-tail of the size distribution, thus it is set to match the
empirical Pareto right-tail in Luttmer (2007). The fixed cost of entry fe and production fP jointly
determine the fraction of potential entrants that enters the economy and thus also the absolute
number of active firms. The empirical counterpart for the former is the firm entry rate which I set
equal to the average entry rate over the period 1977 - 2012 in the Business Dynamics Statistics
(BDS) whose underlying source is the LBD. Lastly, the absolute number of active firms is set equal
to approximately 5 million which is the number of U.S. firms in 2012 according to the BDS.

C.2 Alternative calibration strategies

Section 4.3 displayed the aggregate implications of the size-variance relationship in a granular economy. More pre-
cisely, the explanatory power of the granular channel is capped at 14.7% whenever the size-variance relationship is
taken into account as estimated from the data. However, it is argued that only the volatility of the largest firms matter
in granular economies. Thus for the sake of robustness, I implement the values from the size-variance relationship that
are estimated from the subsample of large firms only.

Even though the estimates vary somewhat across the regression specifications, the quantitative role of the granular
channel is always about half or less relative to the results of the previous literature. This alleviates any concerns related
to the results on the size-variance relationship in table 6 underestimating the volatility of the largest firms in the U.S.
economy.

D Theoretical framework

D.1 Properties of the Lambert W -function

The Lambert W -function is defined as that mapping W satisfying z = W (z · exp(z)). This function possesses the
following properties which I exploit at several stages of the proofs for lemma 1 and propositions 1 to 3.
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Property 1. W (x) > 0 and W (0) = 0.
Property 2. dW (x)

dx = W (x)
x(1+W (x)) > 0 and d2W (x)

dx2 < 0 for x > 0.
Property 3. ln (W (x)) = ln(x)−W (x) for x > 0.

In the following, I will take these properties of the Lambert W -function as given.

D.2 Proof of lemma 1

Recall that firm-level revenue can be decomposed as:

rev(sa) = g(a)× h(sa)

Thus, it is sufficient to show that h′(s0) > 0. Straightforward differentiation and using property 3 of the Lambert
W -function implies that:

sgn {h′(s0)} = sgn
{

W (Θ · exp(−s0))

1 +W (Θ · exp(−s0))

}
which is always positive by property 1 of the Lambert W -function whenever Θ > 0. �

D.3 Proof of proposition 1

I start by showing that the following expression is strictly decreasing in s0:

σF
h′(s0)

h(s0)

Straightforward differentiation of the above expression and using property 3 of the Lambert W -function implies that:

sgn
{

d

ds0

h′(s0)

h(s0)

}
= sgn

{
− 2θ + (ε− θ)W (Θ · exp(−s0))

}
By property 1 of the Lambert W -function, W (Θ · exp(−s0)) > 0 whenever Θ > 0. Then, it is obvious that θ > ε is
a sufficient condition for d

ds0

h′(s0)
h(s0) < 0 to hold. For ε → 0, the Kimball demand specification converges to the CES

case which gives me h(s0) ∝ exp((θ− 1)s0). This immediately implies that h
′(s0)
h(s0) is constant and equal to θ− 1. The

statement in the proposition then follows directly from lemma 1. �

D.4 Proof of proposition 2

Along the balanced growth path, per capita consumption Ct with t = tb + a grows at the rate κ. By lemma 1, it is then
sufficient to show that:

h′(s0)

h(s0)
→ 0 and

h′′(s0)

h(s0)
→ 0

as s0 → +∞. Note that h′(s0)/h(s0) can be simplified to:

h′(s0)

h(s0)
= ε

W (Θ · exp(−s0))
2

[1 +W (Θ · exp(−s0))] · [θ − εW (Θ · exp(−s0))]
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By property 1 of the Lambert W -function, it is true that W (0) = 0. This immediately implies that lim
s0→+∞

h′(s0)

h(s0)
= 0.

The case for lim
s0→+∞

h′′(s0)

h(s0)
= 0 is identical. Lastly, the case of ε → 0 is equivalent to CES preferences with

substitution parameter θ > 0. As a result, h(s0) ∝ exp((θ − 1)s0). This implies that h
′(s0)
h(s0) = θ − 1 and h′′(s0)

h(s0) =

(θ − 1)2. By Itô’s lemma and E(Ba) = 0, it is true that m(s0) = κ + µ(θ − 1) +
σ2
F

2 (θ − 1)2 along the constructed
balanced growth path as ε→ 0. �

D.5 Proof of proposition 3

The firm’s optimal price as a function of productivity z is simply characterized as:

p∗(z) =
θ

ε

1

W
[
Θw
z

1
P

] w
z

The production technology is linear in labor only, hence a firm’s marginal cost of production must be equal toMC(z) ≡
w/z. Obviously, this implies a markup, defined as equilibrium price over marginal cost, of:

p∗(z)/MC(z) =
θ

ε

1

W
[
Θw
z

1
P

]
Recall that I defined detrended log productivity as stb,a = ln

(
z
tb,a

z∗t

)
and z∗t ∝ wt/Pt. Hence, there exists a constant

z > 0 such that markups can be expressed as a function of detrended log productivity as:

p∗(s)/MC(s)

∣∣∣∣
s=s0

=
θ

ε

1

W [Θ · z · exp(−s0)]

Firm-level markups are then increasing in detrended log productivity s0 by property 2 of the Lambert W -function.
The first statement of the proposition then follows from lemma 1. Whenever ε→ 0, the Kimball demand specification
converges to the CES case with substitution parameter θ > 0 (see footnote 34). This gives rise to the well-known CES
pricing rule in which markups are constant and a function of the parameter θ only through p∗(s)/MC(s)

∣∣
s=s0

= θ
θ−1

for all s0 > 0 which is the second and last statement of the proposition. �

D.6 Class of preferences with size-decreasing price elasticities

Section 5.3 presents a random growth framework in the spirit of Luttmer (2007) and Arkolakis (2016) with a Kimball
aggregator that is analytically tractable and consistent with the observed deviations from Gibrat’s law. The key charac-
teristic of the Kimball aggregator is that it allows for a price elasticity that is decreasing in firm size which is the crucial
component for generating the size-variance relationship and the positive correlation between markups and size.

Even though it is unclear whether any demand specification with price elasticities that is decreasing in firm size can
generate the size-variance relationship as a power law, it does seem to be sufficient to qualitatively generate the stylized
facts from sections 4.1 and 5.1. As a result, I will characterize a class of demand functions that generates downward-
sloping price elasticities in firm size. To do this, I use the demand system by Arkolakis, Costinot, Donaldson and
Rodriguez-Clare (2015a).

There exists a continuum of differentiated goods Ω. A consumer with income M takes prices p = {pω}ω∈Ω as
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given and has a Marshallian demand curve for each differentiated good ω:

qω(p;M) = Q(p,M)D

(
pω

P (p,M)

)
By assumption, the aggregate demand shiftersQ = Q(p,M) andP = P (p,M) are jointly determined in the aggregate
as the solution of the following system:∫

ω∈Ω

(
H
(pω
P

))β (
pωQD

(pω
P

))1−β
dω = M1−β (D.1)

Q1−β
(∫

ω∈Ω

pωQD
(pω
P

)
dω

)β
= Mβ (D.2)

where β ∈ {0, 1}, H ′(·) > 0 and H ′′(·) < 0. In the following, I will restrict my attention to homothetic preferences
that are not iso-elastic. Arkolakis, Costinot, Donaldson and Rodriguez-Clare (2015a) show that this is equivalent to
β = 1. Note that this case nests Kimball preferences and Quadratic of Mean Order r (QMOR) expenditure functions
(e.g. Feenstra (2014)). Under this restriction, equation D.1 determines the aggregate price level P (p) whereas equation
D.2 is the consumer’s budget constraint. As a result of homothetic preferences, it can be shown that P is independent
of income M and the demand shifter Q(p,M) is proportional to it. Thus, it must be the case that:

P = P (p)

Q = MQ(p)

The restriction β = 1 only has consequences for the aggregate demand shifters P and Q. The only restriction that I
will make on D(·) is that it features a finite choke price which is formalized in the following assumption.

ASSUMPTION D. There exists a finite a > 0 such that D(x) = 0 for all x ≥ a.

As mentioned by Arkolakis, Costinot, Donaldson and Rodriguez-Clare (2015a), the normalization of a = 1 is without
loss of generality. A firm i producing the differentiated good ω is characterized by a constant returns to scale production
technology in some input bundle ι with productivity zi. The input bundle ι is supplied competitively at the rate w. For
ease of exposition, I will drop the firm index i and denote c = w/z. Furthermore, firms take the aggregate demand
shifters Q = MQ(p) and P = P (p) as given. Hence, a firm’s optimal pricing decision is characterized by:

p∗(c) = arg max
p≥0

{
(p− c)D

( p
P

)}
By standard arguments, the first order condition can be rearranged and expressed as a function of its own price elasticity:

p− c
p

= −
∂lnD

(
p
P

)
∂lnp

≡ εD
( p
P

)
This is equivalent to the markup identity: p/c = εD

(
p
P

)
/(εD

(
p
P

)
− 1). Define the transformed variables m = p/c

and v = P/c, then the equilibrium markup is characterized as the solution of:

m =
εD(m/v)

εD(m/v)− 1
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In the following, I will provide necessary and sufficient conditions on the curvature of the demand function D(·) that
induce more productive firms to charge higher markups. To do this, define the mapping f(m, v) = m − εD(m/v)

εD(m/v)−1 .
Optimality implies that f(m∗(v), v) = 0 must hold. Straightforward differentiation with respect to m and v delivers:

∂f(m, v)

∂m
= 1 +

1

v

ε′D(m/v)

(εD(m/v)− 1)
2

∂f(m, v)

∂v
= −m

v2

ε′D(m/v)

(εD(m/v)− 1)
2

According to the Implicit Function Theorem, more productive firms (i.e. higher values of v) charge higher markups
whenever:

dm∗(v)

dv
= −

∂f(m,v)
∂v

∂f(m,v)
∂m

=
m

v

ε′D(m/v)

(εD(m/v)− 1)
2
v + ε′D(m/v)

> 0

Thus, a necessary and sufficient condition for more productive firms charging higher markups is ε′D
(εD−1)2v+ε′D

> 0.
Denote a demand function’s superelasticity as:

εS (x) ≡ −ε
′
D(x) · x
εD(x)

Then, the above condition can be rearranged as εS(m/v)
(εD(m/v)−1)2m

εD(m/v)
+εS(m/v)

. Recall however that m = εD(m/v)
εD(m/v)−1 must

hold at the optimum. Thus, a necessary and sufficient condition can expressed in terms of elasticities εD = εD(m/v)

and superelasticities εS = εS(m/v) only:

εS
εS − εD + 1

> 0

The above inequality directly implies that εS < 0 is a sufficient condition for more productive firms to charge higher

markups as any firm always prices at the elastic portion of its demand curve (i.e. εD > 1). Whenever εS > 0 holds, it

is easy to observe that the sufficient condition then reduces to εS > εD − 1.
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