
Aggregate Dynamics in Lumpy Economies
⇤

Isaac Baley
†

Andrés Blanco
‡

UPF, CREi, Barcelona GSE University of Michigan

March 20, 2019

Abstract

We develop tools to analyze the aggregate implications of lumpiness in microeconomic adjustment.

We derive a set of structural relationships between the steady-state moments and the business cycle

dynamics of cross-sectional distributions, and we show how to discipline these relationships using micro

panel data. As an application, we implement our machinery in a standard framework of firm investment

with non-convex adjustment costs and random opportunities of free adjustment. We demonstrate

analytically that, in order to explain aggregate capital dynamics, that model must match two steady-

state moments related to capital misallocation and the time since the last investment. Using plant–level

data from Chile and Colombia, we compute these two moments, and discover that there does not exist

a calibration of the lumpy investment model that is consistent with the data.

JEL: D30, D80, E20, E30

Keywords: inaction, lumpiness, transitional dynamics, fixed adjustment costs, aggregate shocks,

su�cient statistics, firm investment, Ss models.

⇤We thank Adrien Auclert, Rudi Bachmann, Fernando Broner, Andrea Caggese, Javier Cravino, Andrés Drenik (discus-
sant), John Leahy, Kurt Mitman, Matthias Meier, Pablo Ottonello, Jaume Ventura, Edouard Schaal, and seminar partici-
pants at CREi, UPF, Michigan, Banque de France, Bocconi, Cleveland FED, PSE, EM3C Conference, Transpyrenean Macro
Workshop 2019, and XXII Workshop in International Economics and Finance for extremely useful feedback and sugges-
tions. Lauri Esala provided outstanding research assistance. Isaac Baley gratefully acknowledges the support of the Spanish
Ministry of the Economy and Competitiveness, through the Seed Grant (Aggregate Dynamics in Lumpy Economies) of the
Barcelona Graduate School of Economics Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0563).

†Universitat Pompeu Fabra, CREi, Barcelona GSE, isaac.baley@upf.edu. Ramón Trias Fargas 25–27, Barcelona, 08015.
‡University of Michigan, jablanco@umich.edu.

1



1 Introduction

Lumpiness in microeconomic adjustment is pervasive in many economic environments. Capital invest-

ment, labor hiring and firing, inventories, consumption of durable goods, price setting, portfolio manage-

ment, and many other economic decisions faced by firms and households are characterized by periods of

inaction followed by bursts of activity. How does lumpiness in microeconomic adjustment a↵ect aggregate

dynamics? After a policy change or an aggregate shock, how long do transitions last until the lumpy

economy reaches its new long-run equilibrium? Understanding these issues is key for the design and

implementation of policies aiming at stabilizing the business cycle or generating long-run growth.

This paper presents new tools to study aggregate dynamics in lumpy economies. We consider environ-

ments with ex-ante identical agents that make decisions subject to idiosyncratic shocks and adjustment

frictions. These frictions may take the form of non-convex adjustment costs, random opportunities of

adjustment, fixed dates of adjustments, among many others. A common challenge that arises when

studying this type of environments is that aggregate dynamics depend on the cross-sectional distribution

of agents, a highly dimensional and complicated object. The standard method to tackle this challenge is

through state-of-the-art numerical techniques. We propose a complementary approach by deriving a set of

structural relationships between the steady-state cross-sectional moments and microdata on adjustments,

and between the steady-state moments and business cycle dynamics.

Our first result establishes a structural relationship between steady-state moments and microdata on

adjustments. The idea behind this mapping consists in assuming a process for idiosyncratic shocks that

hit agents during periods of inaction and a minimal structure for the adjustment policy, and then use

the information revealed through agents’ actions—frequency and size of adjustments—to back out the

cross-sectional moments. Let us stress that the relationship between ergodic moments and data is model-

free, as we do not assume any particular structure for the adjustments frictions; the only requirement

is that policies are “memoryless”, in the sense that upon adjustment, the agent fully incorporates all

the accumulated idiosyncratic shocks into her policy.1 An attractive feature of this approach is that it

allows to quantify cross-sectional moments of unobserved variables, for example, markup dispersion or

skewness of marginal products, using information on observable actions available in panel data, such as

price changes or investment rates, with a minimum set of assumptions.

Our second result establishes a structural relationship between the steady-state moments and transi-

tional dynamics of the distribution. The logic is that steady-state moments are informative about agents’

responsiveness to idiosyncratic shocks, and therefore, are good predictors of the e↵ect of lumpiness on the

speed of adjustment. For example, an economy that features substantial ex-post heterogeneity relative

to the volatility of idiosyncratic shocks must necessarily have important adjustment frictions, which in

turn generate unresponsive policies and persistent transitional dynamics.

In this context, business cycle dynamics are analyzed in the following way. Starting from any arbitrary

initial distribution, we characterize the convergence of any moment of such distribution towards its ergodic

counterpart. Following Alvarez, Le Bihan and Lippi (2016), we measure transitional dynamics through

1Formally, we require certain degree of history independence in the stochastic processes and policies in order to collapse
all the ex-post heterogeneity due to idiosyncratic shocks and frictions to the problem of a representative agent. Importantly,
this aggregation result does not imply that heterogeneity is irrelevant for aggregate dynamics; it says that all heterogeneity
can be summarized in a compact way.
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the cumulative impulse-response function (CIR), which equals the cumulative deviations in the moment

of interest with respect to its steady-state value, i.e. the area under the IRF. We show analytically that

the CIR can be represented through a linear combination of cross-sectional moments. This mapping is

not model-free anymore; still, we characterize the CIR for widely used models of inaction in a variety of

economic applications.

With the two theoretical results at hand, we study aggregate investment dynamics in an economy

with idiosyncratic productivity shocks, a common drift due to depreciation and productivity growth,

potentially asymmetric policies, and non-convex capital adjustments costs. For this purpose, we set-up

a canonical model of lumpy investment à la Khan and Thomas (2008), Bachmann, Caballero and Engel

(2013) and Winberry (2016). This literature aims at understanding the role of lumpy investment at

the plant-level for aggregate dynamics and has been marked by an active debate about the size of the

adjustment frictions. Our approach considers a flexible formulation and lets the data inform us directly

about the nature of frictions.

First, we compute various steady-state moments of interest (e.g. dispersion of marginal products of

capital) using investment rates and frequency of adjustment from annual plant–level data from Chile

and Colombia. Through the lens of our formulas, the data provides clear evidence against fully time-

dependent and fully state-dependent models and in favor of hybrid models that combine both types of

components.

Second, we study the transitional dynamics via the CIR. For this purpose, we assume a hybrid model

for adjustment costs known as the “CalvoPlus” model in which firms pay a fixed cost to invest and get free

random opportunities of adjustment.2 We demonstrate analytically that, in order to explain aggregate

capital dynamics, such a model must match two steady-state moments related to capital misallocation

and capital age (the time since its last adjustment). Concretely, defining the capital gap as the log of

capital to productivity ratio, the CIR of aggregate capital in that model is given by the steady-state

dispersion of capital gaps and the covariance between capital gaps and capital age. We compute these

two moments for the first time and discover that there does not exist a calibration of the CalvoPlus model

that is consistent with the data. In this spirit, our tools can aid researchers in improving their models to

be consistent with the empirical evidence on inaction.

Advantages and limitations. As stressed above, one key advantage of our framework is the limited

assumptions on the structure of adjustment costs and policies. This permits us to remain agnostic about

the true nature and size of adjustment costs and allows the microdata to inform us about them. In

the same vein, we can accommodate very general (continuous) stochastic processes. While the mapping

between data and ergodic moments clearly depends on the assumptions on the stochastic process (e.g.

with drift, without drift, mean-reversion), the theory imposes cross-equation restrictions that allow us

to validate such assumptions and discern across processes. Another advantage is that we can recover

ergodic moments of variables that are hard to measure in the data, such as markups or capital gaps, with

observable data on frequency and size of adjustments.

Regarding the analysis of transitional dynamics, we provide formulas to track any moment of the

cross-sectional distribution as well as functions of these moments for a variety of family of models.

2This model is proposed by Nakamura and Steinsson (2010) in the context of price-setting.
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This is useful as many applications require tracking the dynamics of higher moments of cross-sectional

distributions, such as its skewness (Bloom, Guvenen and Salgado, 2016) or tails (Kozlowski, Veldkamp and

Venkateswaran, 2015). Moreover, we can accommodate transitions starting from various initial conditions

consisting on (small) perturbations around steady-state, such as horizontal shifts of the distribution or

mean-preserving spreads, that can be interpreted as arising from aggregate shocks to first moments,

second moments (Bloom, 2009), etc.

One limitation of our framework is that we can only recover the CIR of moments of the distribution,

but not the complete IRF. The reason is that in order to exploit the ergodic properties of the environment

(i.e. exchange the time series of the cross-sectional distribution with a cross-sectional distribution of

individual stopping-time problems) we need to consider the complete transitional dynamics. Nevertheless,

the CIR is a useful metric to summarize the persistence of aggregate dynamics, it eases the comparison

across models, and it can be interpreted as a “multiplier” of aggregate shocks.3

Another limitation is that our analysis takes as a premise that the steady-state policies hold along the

transition path. This assumption is valid as long as the general equilibrium feedback from the distribution

to individual policies though prices is quantitatively insignificant. There are several general equilibrium

frameworks in which this is the case.4 But when general equilibrium e↵ects are quantitative relevant,

our framework does not fully characterize aggregate dynamics. Nevertheless, the tools developed in this

paper are still informative about the role of lumpiness in richer general equilibrium models and serve as

a guide to study one important dimension of the economic environment.5

Related literature. Aggregate dynamics in inaction models has been widely studied. The ground-

breaking work of Caplin and Spulber (1987), Caballero and Engel (1991) and Caplin and Leahy (1991)

provided theoretical guidelines in stylized models to understand the role of micro lumpiness in shaping

aggregate dynamics. With the surge of microdata, more realistic models that incorporated idiosyncratic

shocks were developed, such as Cooper and Haltiwanger (2006), Golosov and Lucas (2007), Midrigan

(2011), Berger and Vavra (2015), Carvalho and Schwartzman (2015) and Álvarez, Lippi and Paciello

(2016), with the objective of understanding how the interaction of heterogeneity and lumpiness mattered

for aggregate dynamics. We contribute by providing novel theoretical insights and an empirical strategy

that exploits the microdata to its maximum while imposing a minimum structure to the inaction model.

Our work is inspired by Alvarez, Le Bihan and Lippi (2016), who consider a multi-product menu

cost model with random opportunities to freely adjust and Brownian innovations to markup gaps. In

that setup, they study the real e↵ects of monetary shocks. One of their striking results is that the CIR

3Álvarez and Lippi (2014); Alvarez, Le Bihan and Lippi (2016); Baley and Blanco (2019) use the CIR to evaluate the
e↵ect of monetary policy shocks on output in menu cost models.

4For the e↵ect of monetary shocks, see Woodford (2009), Golosov and Lucas (2007), and the vast literature that builds on
them. For real exchange dynamics, see Carvalho and Nechio (2011) and Kehoe and Midrigan (2008). Regarding investment
models, Bachmann, Caballero and Engel (2013) and Winberry (2016), building on Khan and Thomas (2008), show that
partial equilibrium dynamics are not undone by general equilibrium e↵ects whenever the model is calibrated to match the
cyclical properties of aggregate investment or interest rates. Web Appendix C describes some of these frameworks.

5A concrete example of this logic is found in the context of pricing literature with Calvo-type adjustments. In a model with
negligible first order general equilibrium e↵ects, Alvarez, Le Bihan and Lippi (2016) show analytically that the e↵ectiveness
of monetary policy is a function of the average duration of pricing spells, independent of any type of heterogeneity. Following
this result, Blanco and Cravino (2018) reach a similar conclusion in a model with large general equilibrium e↵ects (arising
from real rigidities) in the context of real-exchange dynamics. Therefore, the role of heterogeneity and inaction in shaping
aggregate dynamics is not altered by general equilibrium forces.
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for average markup gaps—a measure of the real e↵ects of a money shock—equals the kurtosis of price

changes times the average duration of prices divided by 6. They show this result analytically for the case

of one product (n = 1) and infinite products (n = 1), and more generally, they construct power series

of each of the terms in the equality and confirm that the relationship holds. Our contribution lies in

proving an intermediate link between the CIR and observable actions, given by the steady-state moments.

For example, in their menu cost model, the intermediate link between the CIR and the kurtosis of price

changes is given by the variance of markups. This strategy allows us to study richer environments and

provide new economic insights on the aggregate implications of lumpiness.

Our paper also relates to the pioneer work in Hamermesh (1989), where it is shown how firms’ labor

decision can be rationalized in a fixed adjustment cost model in which the adjustment trigger depends

on the labor gap, i.e. di↵erence between current and static optimal labor. This strategy has been

applied in Caballero and Engel (1993) and Caballero, Engel and Haltiwanger (1997) for analyzing the

consequences of lumpiness for macroeconomic fluctuations. More recently, a similar approach has been

applied in the analysis of cross-country productivity di↵erences due to capital misallocation across firms

(see Restuccia and Rogerson (2013) for a survey). While in theory this methodology appears adequate,

the challenge lies in finding the optimal target to construct the gap. The standard approach, as in Hsieh

and Klenow (2009), consists in specifying a particular production function at the micro level that allows

to recover the optimal input demand, therefore the gap. We propose an alternative way that consists in

directly assuming a stochastic process for the unobserved marginal product of an input, thus its optimal

static demand, and then adding discipline to the parameters of the stochastic process using observable

microdata on investment that holds for all lumpy adjustment models.

Structure of the paper. Section 2 presents a standard model of lumpy investment that allows us

to introduce the objects of interest. Section 3 develops the theory. Section 4 applies the theory using

micro-level data. Section 5 generalizes and extends the results.

2 A Model of Lumpy Investment

This section describes the economic environment on which we build and apply the theory. We build

a lumpy investment model in the spirit of Khan and Thomas (2008), Bachmann, Caballero and Engel

(2013) and Winberry (2016), with a few simplifications that are discussed below.

2.1 Environment

Time is continuous and infinite. A representative household and a continuum of ex-ante identical firms

live in the economy. There is no aggregate uncertainty and firms face idiosyncratic shocks to productivity

and capital adjustment costs. We denote with ! 2 ⌦ the full history of shocks and consider (⌦, P,F) to be

a probability space equipped with the filtration F = {Ft : t � 0}. We use the notation g!,t : ⌦⇥R ! R
to denote an adapted process (a function Ft-measurable for any t � 0) and E[g!,t] to denote its expecta-

tion under P .
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Household. The household chooses the stochastic process for consumption to maximize its expected

utility subject to a budget constraint. The household problem is given by

Z 1

0
e
�⇢t

Ctdt, subject to

Z 1

0
Qt (Ct �⇧t) dt = 0, (1)

where ⇧t ⌘ E[⇡!,t] denotes aggregate firm’s profits and Ct denotes household’s consumption.

Firms. Firms operate in competitive markets. They produce output y using capital k as the only input

through a decreasing returns technology:

y!,t = e
1�↵
!,t k

↵
!,t, ↵ < 1, (2)

where the log of idiosyncratic productivity e evolves according to a Brownian motion with drift µ and

volatility �:

d log(e!,t) = µdt+ �dW!,t, W!,t ⇠ Wiener. (3)

A firm chooses capital to maximize its expected stream of profits, discounted at the Arrow–Debreu

time-zero price Qt. Capital between adjustments depreciates at a constant rate  . For every capital

adjustment, a firm pays an adjustment cost proportional to its productivity !,te!,t, where !,t is follows

a stochastic process to be described below. With these elements, a firm’s problem consists in choosing a

sequence of adjustment dates (⌧!,i) and investment rates (�k⌧!,i = k⌧!,i � k⌧�!,i
) that jointly solve the

following stopping-time problem:

max
{⌧!,i,�k⌧!,i}

1

i = 1

E
"Z 1

0
Qsy!,s ds�

1X

i = 1

Q⌧!,i

�
!,⌧!,ie!,⌧!,i +�k⌧!,i

�
#
, (4)

where output and productivity follow (2) and (3), respectively, and capital follows:

log(k!,s) = log(k!,0)�  s+
X

i:⌧!,is

�k⌧!,i . (5)

Aggregate feasibility. Aggregate output Yt is used for household’s consumption Ct and firms’ invest-

ments It, which includes capital adjustments adjustment costs:

E
⇥
e
1�↵
!,t k

↵
!,t

⇤
| {z }

Yt

= Ct + E
⇥

{⌧,t} [!,te!,t +�k!,t]
⇤

| {z }
It

. (6)

where {⌧,t} = {! : 9i s.t. ⌧!,i = t} indicates the set of adjusters.

Equilibrium. Given an initial distribution of {k!,0, e!,0}, an equilibrium is a set of stochastic processes

for prices {Qt}, household’s policy {Ct}, and firms’ policies {⌧!,i,�k!,i} such that:

(i) Given prices {Qt}, {Ct} solves the household’s problem (1).
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(ii) Given {Qt} and the stochastic processes for productivity and capital adjustment costs, {⌧!,i,�k!,i}
solve the firm’s investment problem (4).

(iii) Goods market clears in (6).

Discussion of simplifying assumptions. Let us compare our environment with one of the benchmark

lumpy investment models by Khan and Thomas (2008). First, in contrast to that paper, we do not consider

labor as a production factor. Given that we consider a partial equilibrium setting, and the labor decision

is static in their model, this assumption is innocuous as adding labor would only a↵ect the value of the

output-capital elasticity. Second, all the investments in our model regardless of their size are subject to

the adjustment costs (in the language of that paper, we do not consider unconstrained investments). This

assumption is quantitatively irrelevant for transitional dynamics, as in the calibration, most investments

are constrained anyways due to the large size of idiosyncratic shocks relative to aggregate shocks. Lastly,

we consider a random-walk process for idiosyncratic productivity instead of a mean-reverting process.

This assumption is done to simplify the exposition at this stage but it is relaxed in Section 5. Moreover,

this assumption is motivated by the empirical observation that plant-level investment rates are iid.6

2.2 Adjustment cost structures

The following specification for the stochastic process for capital adjustment costs !,t spans a wide set

of models of adjustment costs. Consider two sequences of iid random variables (u!,i, ⇠!,i), where u!,i is

drawn from the distribution Hu over R+ and ⇠!,i is drawn from the distribution H⇠ with support over

[0,], with  > 0. Then the capital adjustment costs follows:

!,t =

(
⇠!,i if

Pi
j = 1 u!,i = t for some i,

 otherwise.
(7)

The first class of nested models refers to fully time-dependent models, for which firms can adjust

freely with iid probability; this class is generated by the assumptions  = 1 and H⇠(0) = 1. If in

addition, Hu(u) = 0 for all u < T and Hu(T ) = 1—the u is a constant—then firms adjust at the fixed

date T , analogous to the Taylor (1980) model. If Hu is an exponential distribution with parameter �,

then firms adjust on random iid dates, analogous to the Calvo (1983) model.

The second class refers to fully state-dependent models , in which firms always face the same

constant fixed cost ⇠ = , i.e. H⇠() = 1 and H⇠(⇠) = 0 for all ⇠ < . This structure is considered

by Caballero and Engel (1991) in investment.

The third class refers to hybrid models with both time- and state-dependence in the adjustment cost

structure. Consider Hu as an exponential distribution with parameter �. If H⇠ is degenerate at zero,

then firms face either a positive or a zero adjustment cost; this case is known in the pricing literature as

the CalvoPlus model (Nakamura and Steinsson, 2010). Finally, within this class, we call generalized

6Section 4 shows that the first-order autocorrelation of investment rates in the Chilean data is zero; this observation is
also true for US plants, see Cooper and Haltiwanger (2006). Mean-reverting shocks generate a negative autocorrelation in
investment rates at the plant level. This observation also justifies the absence of convex adjustment costs in our specification,
as they a generate a positive autocorrelation in investment rates.
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hazard models those with non-degenerate H⇠. For example, H⇠ ⇠ Uniform[0,], which generates the

same adjustment hazard as in Khan and Thomas (2008).

The advantage of considering a flexible formulation is that it permits us to remain agnostic about

their true nature of adjustment costs and allows the data to inform us about it. In the next sections, we

focus the analysis on the three families specified above.

2.3 Dynamics of the aggregate capital stock

Given the firms investment policy, we are interested in characterizing deviation of aggregate capital

from the steady-state. Since there is growth, we work with log deviations of aggregate capital detrended

by productivity. To this end, we define three variables. First, we define the individual capital gap

k̂!,t ⌘ log(k!,t/e!,t) as the log of the ratio of a firm’s capital to its productivity. Second, we define

the average of capital gap in the steady-state k̂ss ⌘ E [log(k!/e!)]. The notation without time index t

refers to moments computed with the steady-state distribution. Lastly, we define the normalized capital

gap x!,t ⌘ k̂!,t � k̂ss as a firm’s capital gap minus the steady-state average.

With these definitions, we compute the aggregate capital detrended by productivity denoted with

K̂t : = E [log(k!,t)] � E [log(e!,t)] = E [log(k!,t/e!,t)]. Then, the aggregate capital deviation from

steady-state is equal to the average normalized capital gap E[x!,t]:

K̂t � K̂ss = E [log(k!,t/e!,t)]� E [log(k!/e!)] = E
h
k̂!,t

i
� k̂ss = E[x!,t], (8)

Notice that, in this normalization, we first centralize the capital-gap distribution around its steady-state

average and then we aggregate across firms. By the previous analysis, we may shift the focus from

aggregate capital to moments of the normalized capital gaps. Finally, note that the dynamics of other

aggregate variables, such as output deviations from steady-state, denoted by Ŷt, can also be expressed in

terms of moments of normalized capital gaps: Ŷt = ↵E[x!,t].

Law of motion of capital gaps. To derive the law of motion of capital gaps, we use the firm policy.

The uncontrolled capital gaps—not considering any investments—follow the process

dx̃!,t = ⌫dt+ �dW!,t (9)

where we use tildes to show explicitly that these variables evolve exogenously. For convenience, we define

the total drift of capital gaps as ⌫ ⌘ �( + µ), which is negative and includes depreciation and the

productivity trend. The initial conditions x̃!,0 are exogenously given. By the discussion above, the

initial condition of the uncontrolled capital gap is x̃!,0 = k̂!,0 � k̂ss. In contrast, the controlled capital

gaps—taking into account investments—evolve as

x!,t = x̃!,t +
X

⌧!,it

�x⌧!,i , (10)
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where the adjustment dates (⌧!,i) and the investment rates (�x⌧!,i) solve the firms’ problem in (4).

Finally, we define the reset capital gap x̂ (the new capital gap, conditional on adjustment) and capital

gap age (the time since its last adjustment) implicitly as:

x̂ = x!,⌧!,i , a!,t = t�max{⌧!,i : ⌧!,i  t}. (11)

A few things are worth noting. First, x̂ is the same across firms and time, in other words, firms become

identical after an adjustment. This is due to the fact that there is no fixed heterogeneity7 and the

adjustment costs are memoryless. Second, due to the normalization explained above, x̂ is the capital–

productivity ratio of adjusting firms relative to the average ratio in the economy. With respect to age,

for some adjustment cost structures (e.g. Taylor), capital gap age is a relevant state for the investment

decision. Even if it is not the case, the joint stochastic process of (x, a) does matter for aggregate

dynamics. Therefore, we carry age as part of the firm’s state. Lastly, we assume that steady-state policies

hold along the transition path. This assumption is valid as long as the general equilibrium feedback from

the aggregate distribution to the individual policies though prices is quantitatively insignificant. In this

model, it is guaranteed by the linear preferences.

2.4 Steady-state and transitional dynamics

Now we define steady-state moments and our notion of transitional dynamics through the cumulative

impulse response or CIR.

Steady-state moments. Consider the steady-state distribution of capital gaps and age, denoted by

F (x, a). For any two numbers k, l 2 N, we define the ergodic cross-sectional moment of capital gaps and

age as

E[xkal] ⌘
Z

x

Z

a
x
k
a
l
dF (x, a) 8k, l 2 N, with E[x] = 0. (12)

Transitional dynamics. Fix an initial distribution of the state F0(x, a) = E
⇥

{(x!,0,a!,0)(x,a)}
⇤
. We

define the Impulse-Response Function for the m-th moment of the capital gap distribution under the

initial distribution F0, denoted by IRFm,t(F0), as the di↵erence between its time t value and its ergodic

value:

IRFm,t(F0, t) ⌘ E
⇥
x
m
!,t

⇤
| {z }
transition

� E[xm].| {z }
steady-state

(13)

Following Alvarez, Le Bihan and Lippi (2016), we define the Cumulative Impulse-Response (CIR), denoted

by CIRm(F0), as the area under the IRFm,t(F0) curve across all dates t 2 (0,1):

CIRm(F0) ⌘
Z 1

0
IRFm,t(F0, t) dt. (14)

Figure I illustrates these two objects. In the left panel, we plot an initial marginal distribution F0(x)

and the steady-state distribution F (x), and also highlight the m-th moment of capital gaps E[xm0 ] which

7Section 5 introduces fixed heterogeneity.
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will be tracked in its way towards steady-state.8 In the right panel, the solid line represents the impulse-

response of E[xmt ], which is a function of time, and the area underneath it is the CIR. The CIR is our

key measure of the convergence speed towards the steady-state. The smaller is the CIR, the faster the

convergence.

Figure I – Cumulative Impulse-Response (CIR)

State (x)

A. Distribution of State

steady state F (x)

initial condition F0(x)

E[xm1] E[xm0 ]

CIRm =
R1
0

IRFm,t dt

Time

B. Dynamics for E[xmt ]� E[xm1]

IRFm,t = E[xmt ]� E[xm1]

1

The following Lemma expresses the CIR in a recursive way, and it is a generalization of the result in

Alvarez, Le Bihan and Lippi (2016) for any moment of the distribution m > 1, for an arbitrary Markovian

stopping policy, and for any Markovian law of motion of the uncontrolled state.

Lemma 1. The CIR can be written recursively as:

CIRm(F0) =

Z
vm(x, a)dF0(x, a). (15)

where the value function for an agent with initial state (x, a) is given by:

vm(x, a) ⌘ E
Z ⌧

0
(xmt � E[xm]) dt

���(x, a)
�

(16)

The idea behind Lemma 1 is to exchange the integral across agents (the cross-section) with the infinite

time integral (the time-series).9 Then, it is key to recognize that the first time a firm adjusts its capital

it incorporates all deviations from steady-state into its policy, and thus we only need to keep track of this

firm until its first adjustment; any additional adjustments are driven purely by idiosyncratic conditions.

The average of these additional adjustments equals the ergodic moment E[xm], implying that the value

function vm(x, a) equals zero after the first adjustment. For that reason, the infinite time integral gets

substituted for an integral between t = 0 and the stopping date t = ⌧ .

8Abusing notation, we denote the marginal distributions as F (x) and F (a).
9This can be done due to the ergodic properties of the problem and the fact that moments are finite.
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Initial distribution as �-perturbations around steady-state. For ease of exposition, we interpret

the initial distribution as a small perturbation of the steady-state distribution that can be parsimoniously

described in terms of one parameter �. As a baseline case, we focus on a particular type of perturbation

that translates horizontally the distribution of capital gaps, i.e. a shock to the first moment of the

distribution. If f(x � �, a) denotes the initial density of capital gaps and fx(x, a) denotes its derivative

with respect to x, we can approximate it as f(x��, a) ⇡ f(x, a)��fx(x, a). For � < 0, we observe that the

initial density is equal to a right shift of the steady-state density. Afterwards, the distribution will evolve

according to the agents’ policies and will converge back to its steady-state. Under this interpretation, we

will denote the CIRm(F0) as CIRm(�).10

3 Theoretical Results

In this section, we establish the theoretical relationships between observable panel data, (possibly) un-

observable steady-state moments and parameters, and the CIR. In particular, the CIR is expressed as a

linear projection over the steady-state moments.

3.1 From microdata to steady-state moments

The first link connects the ergodic cross-sectional moments, the structural parameters of the stochastic

process, and the reset state to the distribution of capital gaps �x and adjustment dates ⌧ in a panel of

observations. The relevance of this result lies in that, in many applications, the state x is likely to be

unobservable, but the adjustment sizes �x and date ⌧ are observable. This is the case in the investment

model, as capital gaps are hard to observe but investment rates are readily available in the data.11 Propo-

sition 1 derives a set of relations between objects that we do observe—the distribution of investment and

duration—with objects that we do not observe—the joint distribution of capital gaps and age.

Proposition 1. Let (�x, ⌧) be a panel of observations of adjustment size and inaction duration. Denote

with E[·],Cov[·] and CV[·]2 = V[·]/E[·]2, respectively, the cross-sectional average, the covariance, and

the coe�cient of variation squared, conditional on adjustment. Then, the following expressions hold:

1. The reset capital gap is given by:

x̂ =
E[�x]

2

⇣
1� CV[⌧ ]2

⌘
+

Cov[⌧,�x]

E[⌧ ] . (17)

2. The drift and volatility of the capital gap process are recovered as:

⌫ = �E[�x]

E[⌧ ] ; �
2 =

E[�x
2]

E[⌧ ] + 2⌫x̂. (18)

10In Section 5 we consider more general perturbations around steady-state, such as mean-preserving spreads.
11Our formulas require us to compute the change in log capital gaps �x in the data. Due to the continuity assump-

tion for the idiosyncratic productivity, the changes in the capital-gap equal the observed investment rates: �x!,⌧ =
limt"⌧i log(K!,⌧i/K!,t) � limt"⌧i log(E!,⌧i/E!,t) = limt"⌧i log(K!,⌧i/K!,t). Therefore, we can compute the changes in
the capital gap using changes in the capital stock.
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3. If ⌫ 6= 0, the steady-state moments for any m � 1 are given by:

E[xm] =
1

m+ 1

(
x̂
m+1 � E

⇥
(x̂��x)m+1

⇤

E [�x]
� �

2

2⌫
m(m+ 1)E[xm�1]

)
, (19)

E[a] =
E[⌧ ]
2

⇣
1 + CV[⌧ ]2

⌘
, (20)

E[xma] =
1

m+ 1

8
<

:
E
h
⌧ (x̂��x)m+1

i

⌫E[⌧ ] � E[xm+1]� �
2

2⌫
m(m+ 1)E[xm�1

a]

9
=

; . (21)

The proof is in the Appendix; it enumerates the formal assumptions for this proposition to hold.

To show this result, we uses three tools: Ito’s Lemma, the Optional Sampling Theorem (OST), and

the equivalence between the cross-sectional distribution of agents and the occupancy measure.12 To

understand the logic of the proof, assume there is a single state x. Apply Ito’s Lemma to x
m+1
t with the

initial condition x̂ (right after adjustment), integrate between 0 and ⌧ , and use x⌧ = x̂��x⌧ to obtain:

(x̂��x⌧ )
m+1 � x̂

m+1

| {z }
investment (observable)

=

Z ⌧

0


⌫(m+ 1)xmt +

�
2

2
(m+ 1)mx

m�1
t

�
dt

| {z }
history of capital gaps (unobservable)

+�(m+ 1)

Z ⌧

0
x
m
t dWt

| {z }
noise

. (22)

Equation (22) shows that the distribution of investment is related to the history of capital gaps plus a

noise term. While we cannot recover each individual history, we can recover the average history between

adjustments. For this, take the expectation on both sides of (22), and observe that the noise term is a

martingale with expectation zero by the OST, we have that

E
⇥
(x̂��x⌧ )

m+1 � x̂
m+1

⇤
| {z }

moments of investment

= ⌫(m+ 1)E
Z ⌧

0
x
m
t dt

�
+
�
2

2
(m+ 1)mE

Z ⌧

0
x
m�1
t dt

�

| {z }
average capital gap during inaction

. (23)

The final step to relate the distributions of investment and capital gaps uses the occupancy measure.

Intuitively, the average time that a single agent’s state spends at a given value is proportional to the

number of agents with a state equal to that same value, where the constant of proportionality is the

expected time between adjustments E[⌧ ].13 Therefore, instead of measuring the average capital gap

between adjustments for an agent, we can measure the average capital gap across agents:

E
⇥
(x̂��x⌧ )

m+1 � x̂
m+1

⇤
/E[⌧ ]

| {z }
moments of investment and duration

= ⌫(m+ 1)E [xm] +
�
2

2
(m+ 1)mE

⇥
x
m�1

⇤

| {z }
average capital gap across agents

. (24)

Now we provide the economics behind the expressions in Proposition 1.

Reset state. Equation (17) shows how to recover the reset state x̂ from the microdata; this expression

is derived from the restriction imposed by the normalization of the ergodic mean to zero. It has two com-

12See Stokey (2009) for details.
13Formally, E

⇥R ⌧

0
x
m
t dt

⇤
= E[⌧ ]E [xm] for any m.
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ponents that reflect how the reset state compensates for the drift, for the asymmetry in state-dependent

policies, or a combination of both, ensuring that E[x] = 0. To illustrate the compensation for drift, con-

sider the family of fully time-dependent costs, which by construction do not exhibit asymmetric policies.

In such models, Cov[⌧,�x] = �⌫Var[⌧ ] and equation (17) collapses to x̂ = �⌫E[a], so that the reset

state compensates the average accumulated drift between adjustments, centralizing the ergodic mean at

zero.14

To illustrate the compensation for asymmetric policies, consider a driftless state and fully state-

dependent costs, where the widths of the lower and upper inaction triggers relative to the reset point

are |� x� x̂| and |x� x̂|, respectively. Panel A of Figure II plots three distributions of capital gaps for

di↵erent types of policies. First, symmetric policies (in green) necessarily imply x̂ = 0. Now consider an

asymmetric inaction region such that the upper trigger is closer to x̂ than the lower trigger, for example,

4z = |� x� x̂| > |x� x̂| = z for z > 0 (in red). In this case, the capital gap distribution is left-skewed

and the covariance Cov[⌧,�x] is positive: the longer the duration of inaction, the larger the probability

of a positive investment. This implies a positive reset state x̂ = Cov[⌧,�x]/E[⌧ ] = z > 0. Analogously,

the reset state is negative for right-skewed distributions (in blue).

Figure II – Reset state for asymmetric policies in fully state-dependent models

State (x)

f
(
x
)

A. Fully state dependent

symmetric

left-skewed

right-skewed

�3z �2z �z

x̂ = �z

0

x̂ = 0

z

x̂ = z

2z 3z 5 10

20

40

60

80

100

Drift (�⌫ ⇥ 100)

(
x
+
x
)
⇥
1
0
0

B. CalvoPlus

� = 0.001

� = 0.1

� = 0.17

1

Notes: Panel A describes the distribution of the state x in a fully state-dependent model. The symmetric distribution (green

line) has widths of (|x̂ � x|, |x � x̂|) = (z, z), the left-skewed distribution (|x̂ � x|, |x � x̂|) = (4z, z), and right-skewed

distribution (|x̂�x|, |x� x̂|) = (z, 4z). The reset states are 0, z and �z, respectively. Panel B shows the levels of asymmetry

in policy and drift that together imply a zero reset state x̂ = 0, for fixed parameters (�, x) = (0.275,�0.49) and three

values of � 2 {0.001, 0.1, 0.17}.

Lastly, regarding the interactions, policy asymmetry may dampen or amplify the e↵ect of the drift

in the reset state. For illustration, consider the CalvoPlus adjustment costs and fix a set of parameters.

Panel B in Figure II shows the combination of values for (�⌫⇥100, x+x) such that the reset state is zero

x̂ = 0. When ⌫ = 0, only symmetric policies generate a zero reset x̂. As the drift increases, the upper

limit x increases as well to compensate the drift. The covariance term informs about this interaction, as

in this case x̂ = �⌫ (E[⌧ ]� E[a]) + Cov[⌧,�x]/E[⌧ ]. Note that the asymmetry is also increasing in the

14Proof: Cov[⌧,�x] = E[⌧�x]�E[⌧ ]E[�x] = E
⇥
⌧(�⌫⌧ � �

R ⌧

0
Wt)

⇤
+ ⌫E[⌧ ]2 = �⌫E[⌧2]+ ⌫E[⌧ ]2 = �⌫Var[⌧ ], where

we have used the OST to kill the martingale E
⇥
⌧
R ⌧

0
Wt

⇤
= 0.
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parameter � (the arrival of free adjustment opportunities). This is because as � increases, the fraction of

state-dependent (asymmetric) investments decreases, and it must be compensated by a more asymmetric

policy.

Mean and variance of capital gap growth. Expressions in (18), which extend those in Alvarez,

Le Bihan and Lippi (2016) for the case with drift, provide a guide to infer the parameters of the stochastic

process. The first expression shows how to infer the drift ⌫ from the average investment rate in the data,

scaled by the adjustment frequency. Intuitively, the average depreciation has to be equal the investment

rate to have an ergodic distribution. The second expression shows how to infer the volatility � from the

dispersion in investment rates, scaled by the frequency and corrected by the drift. With a zero drift,

higher idiosyncratic volatility reduces the average duration or increases the average investment size; with

non-zero drift, investment’s second moment also reflects the drift and (18) shows how to correct for it.

One interesting application of the results for non-zero drift would be to revisit the role of positive

inflation for price-setting, as studied by Alvarez, Beraja, Gonzalez-Rozada and Neumeyer (2018) in

Argentina, Gagnon (2009) for Mexico, and Blanco (2018) for the US.

Ergodic moments. Equation (20) relates average age to the average and the dispersion in duration,

measured through the coe�cient of variation. The relationship with the average duration is straightfor-

ward. To understand why the duration dispersion a↵ects average age, recall a basic property in renewal

theory: the probability that a random firm has an expected duration of inaction of ⌧ is increasing in ⌧ ,

i.e. larger stopping times are more representative in the capital-gap distribution.15 Therefore, dispersion

in duration reflects that there are firms that take a long time to adjust, and on top of that, those firms

are more representative in the economy; this rises the average age.

Equations (19) and (21) provide recursive formulas to compute the ergodic moments using observed

investment rates. For a given reset capital gap, the ergodic moments of capital gaps only depend on

moments of investment, and we can ignore moments of duration. For example, set x̂ = 0 and m = 2,

then equation (19) reads E[x2] = E
⇥
(�x)3

⇤
/3E [�x], relating the dispersion of capital gaps in the LHS

to the skewness of investment rates in the RHS. For m > 2, the ratio of drift to idiosyncratic volatility

also matters. This is not the case for the moments that interact x and a, as equation (21) shows.

Key assumptions and limitations. The first key assumption underlying Proposition 1 is the partic-

ular stochastic process for capital gaps. This is not a limitation, as di↵erent stochastic processes generate

di↵erent mappings between data and steady-state moments that can be tested. For example, if one as-

sumes an Ornstein–Uhlenbeck process instead, there is an additional equation that pins down the mean

reversion parameter (see Section 5). The second key assumption is that the state only consists of the

capital gap and its age. This is also not a limitation, as the proof can be generalized to any Strong

Markov state. In a similar way, parametric assumptions on firms’ policies are not necessary, as the proof

can be generalized to arbitrary Markovian policy. The third key assumption is that (x̂, ⌫,�) is a constant

vector of numbers. If this is not the case, the theory can still recover some cross-sectional moments of

15This property has been widely studied in labor economics when thinking about long-term unemployment. For example,
Mankiw (2014)’s textbook Principles of Macroeconomics mentions that: “[...] many spells of unemployment are short, but
most weeks of unemployment are attributable to long-term unemployment”.
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these variables. For example, in a model with stochastic volatility and zero drift, Baley and Blanco (2019)

show how to recover the average level as E[�2i ] = E[�x
2]/E[⌧ ].

3.2 From steady-state moments to transitional dynamics

This sections shows the following properties. In the class of adjustment cost specifications described

in Section 2.2, the CIR is a linear combination of ergodic moments, where the coe�cients depend on the

stochastic process parameters and adjustment cost specification.

3.2.1 Fully time-dependent models

With fully time dependent adjustment costs, the distribution of stopping times is independent of the

capital-gap. Proposition 2 characterizes the CIRm for this class of models.

Proposition 2. In fully time-dependent models, for every m � 1:

CIRm(�)/m� =
mX

i = 1

✓
��

2

2⌫

◆m�i✓
E
⇥
x
i�1

a
⇤
+ {i�2}

�
2

2⌫
(i� 1)E

⇥
x
i�2

a
⇤◆

+ o(�). (25)

We leave the discussion of the proof for later, as this is a special case of the generalized hazard model

explained below. To understand the economics behind this relationship, consider first the case m = 1,

where we have that

CIR1(�)/� = E [a] + o(�). (26)

This expression for the CIR1 was first obtained in Alvarez, Lippi and Paciello (2015) in the context

of a pricing model of inattentive producers with time-dependent revelation of information. Average

age provides information about the speed at which the average firm adjusts to the perturbation from

the steady-state. Remember, average age is di↵erent to expected duration, and it also considers its

dispersion. Thus the older is average capital in the economy and the more dispersed its duration, the

longer the transition. Consider a frictionless limit in which all firms continuously invest to brings capital

gaps to zero. Since capital in all firms would have age equal to zero, the economy reaches its steady-state

immediately.

Now consider the case m = 2, where we have that

CIR2(�)/2� = Cov [x, a]� �
2

2⌫
E[a] + o(�). (27)

To fix ideas, assume ⌫ < 0 so that the second term is positive. It is clear that a positive �-perturbation

could in principle generate a positive or negative CIR for the second moment depending on the value

of the covariance. In turn, the value of the covariance depends on the model. Using an alternative

expression for CIR2 in terms of the first three moments of the duration distribution,16 we can derive

expressions for the Taylor and the Calvo models: CIR
Taylor
2 (�)/� = �⌫E[⌧ ]

�
�
2
/2⌫2 � E[⌧ ]/12

�
and

CIR
Calvo
2 (�)/� = �⌫E[⌧ ]

�
�
2
/2⌫2 � E[⌧ ]

�
. For the same average duration, the two models may imply

16CIR2(�)/� = ⌫

h
E[⌧3

]

3E[⌧ ] �
E[⌧2

]
2

4E[⌧ ]2 �
�2

⌫2
E[⌧2

]

4E[⌧ ]

i
. In Taylor, we substitute E[⌧m] = E[⌧ ]m; while in Calvo we substitute

E[⌧m] = m!E[⌧ ]m.
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di↵erent signs for the transitional dynamics of the second moment; this is due to di↵erences in the tail

and the mode (x̂ = �⌫E[a] > 0) of the duration distribution generated by each model.

3.2.2 CalvoPlus model

Consider CalvoPlus adjustment costs. As explained in Section 2.2, this adjustment cost structure nests

the Calvo model, the fully state-dependent model, and their combination. This model also delivers a very

simple expression for the CIR, as a linear combination of two simple moments of the joint distribution

F (x, a) for all cases.

Proposition 3. In the CalvoPlus model, for every m � 1:

CIRm(�)/� =
E
⇥
x
m+1

⇤
� ⌫Cov [xm, a]

�2
+ o(�). (28)

The proof uses the induction hypothesis. The guess for the moments in which the CIR is projected is

suggested by the generalized hazard model below. Equation (28) shows that, up to first oder, there exists

a one-to-one mapping between ergodic moments and the CIR. To build the intuition for this result, let

us focus in the case m = 1. Consider ⌫ = 0 so that the CIR1 is given exclusively by Var[x]/�2, the
dispersion of capital gaps normalized by the idiosyncratic volatility. This dispersion encodes information

about agents’ responsiveness to idiosyncratic shocks (the higher is the ratio the less responsive is the

policy), and in turn, the responsiveness determines the speed of convergence to the steady-state. In the

case ⌫ 6= 0, the covariance between capital gap age and the investment rate appears in the expression to

correct for the dispersion generated by the drift (which is orthogonal to the dispersion due to idiosyncratic

shocks).

Now consider m = 2. As with the time-dependent models, the dynamics of the second moment

can have either sign. Assume ⌫ < 0 and � su�ciently large. Then Cov
⇥
x
2
, a
⇤
> 0, since larger age is

associated with larger accumulated gaps. Then the sign of the CIR2 depends on the asymmetry of the

capital gap distribution, measured through its third moment E[x3], which in turn depends on how much

an asymmetric policy compensates the drift (recall Figure II).

Relation to the literature. With zero drift and a symmetric policy (x̂ = 0), one can recover ergodic

moments from data with an expression similar to (19) given by17

E[xm] =
2

(m+ 1)(m+ 2)

E
⇥
(��x)m+2

⇤

E [�x2]
. (29)

Combining the CIR1 in the CalvoPlus model (28) with the expression for �2 in (18) and the new expression

for E[x2] in (29), we obtain the well-known “kurtosis” formula in Alvarez, Le Bihan and Lippi (2016):

CIR1(�)/� =
E[x2]
�2

=
E[⌧ ]

E[�x2]
E[x2] =

E[⌧ ]
6

E
⇥
�x

4
⇤

E[�x2]2
=

E[⌧ ]
6

Kur[�x]. (30)

We complement their analysis by introducing the link to the ergodic variance Var[x]/�2.
17See Web Appendix for the observation formulas for ⌫ = 0.
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3.2.3 Generalized hazard models

Finally, we proceed to characterize the CIR for the most general case, where we do not impose any

structure to the adjustment hazard. The strategy is as follows. We set as an upper bound the value of the

CIR obtained for fully time-dependent models. This value reflects the adjustments along the intensive

margin exclusively, as agents cannot a↵ect the duration of inaction. Then, we consider an additional term

that captures adjustments through the extensive margin or changes in the duration, which are available

in models with a state-dependent component, that can only reduce the value of the CIR.

There are two challenges involved in bringing discipline to the extensive margin. First, the extensive

margin does not only depend on the immediate response of the aggregate duration, but it also reflects

all current and future changes in duration. Second, even if we had the whole sequence of adjustments

in duration that follows a perturbation, the extensive margin also depends on the capital gaps of the

particular set of firms selected to invest. Next, we develop a way to discipline these margin in a general

setting.

How to characterize the extensive margin? In order to characterize the extensive margin, we

introduce the following auxiliary function:

gm(x) ⌘ E[xm⌧ |x̂+ x]� Ex̂ [(x⌧ + x)m| x̂]. (31)

The first term in (31) equals the expected capital gap at the moment of adjustment when the initial

condition is x̂ + x; while the second term equals the expected capital gap at the moment of adjustment

plus a deterministic increase of size x when the initial condition is x̂. The di↵erence between these two

functions of x provides information of how the stopping time policy depends on the initial condition and

how it correlates with the capital gap. To see this clearly, recall that the expected capital gap at the

moment of adjustment is equal to x⌧ = x̂��x and we can re-express gm(x) in the following way:

gm(x) = E
h
(x̂+ x� ⌫⌧

x̂+x � �W⌧ x̂+x)m
i
� E

h
(x̂+ x� ⌫⌧

x̂ � �W⌧ x̂)
m
i
, (32)

where ⌧ z is the stopping time with initial condition z. In equation (32) we observe that if ⌧ is independent

of the initial condition, i.e. ⌧ x̂+x = ⌧
x̂ = ⌧ , as in time-dependent models, then gm(x) = 0 for all

x, implying that the extensive margin is null. For other models, the derivatives of gm with respect to

the initial condition, evaluated at zero, provides a micro-elasticity of firms’ idiosyncratic response to the

new initial conditions though changes in its stopping time ⌧ . With this function at hand, we proceed to

characterize the CIRm for the general hazard model.

Proposition 4. Assume ⌫ 6= 0. In the generalized hazard model, for every m � 1:

CIRm(�)/� = Zm � E [xm]⇥0 + o(�), (33)
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where the margins of adjustment are given by:

(total) Zm = �m +⇥m � �
2
m

2⌫
Zm�1, (34)

(intensive) �m = mE
⇥
x
m�1

a
⇤
+ {m�2}

�
2
m(m� 1)

2⌫
E
⇥
x
m�2

a
⇤
, (35)

(extensive) ⇥m =
1X

j = 0

✓m,jE[xj ], with (36)

✓m,j ⌘ 1

⌫

1X

k�j

x̂
k�j

k!j!


d
k+1

gm+1(0)/m+ 1

dxk+1
� d

k
gm(0)

dxk

�
. (37)

Equation (33) measures the total e↵ect of the �-perturbation as an area with height of � and a base

given by Zm constructed with two components: �m, which measures adjustments through the intensive

margin and its expression is identical to that for time-dependent models in equation (25); and ⇥m, which

measures adjustments through the extensive margin and its expression is a linear combination of ergodic

moments. In turn, the weights ✓m,j or micro-elasticities are written in terms of derivatives of the auxiliary

function gm, evaluated at zero.

The proof of Proposition 4 is constructive and has two steps. The first step constructs two Bellman

equations to characterize the intensive �m and the extensive ⇥m margins of adjustment. The second

step we proceeds similarly to Proposition 1 and expresses each Bellman equation as a function of ergodic

moments using a combination of Ito’s Lemma, Optional Sampling Theorem and the occupancy measure.

We cannot solve analytically for the extensive margin, but we do it numerically.

Necessity of micro-elasticities. Proposition 4 uses steady-states moments plus micro-elasticities to

discipline the dynamics of the distribution capture in the CIR, especially the extensive margin. A natural

question arises: Are the micro-elasticities necessary to discipline the extensive margin? The answer is

yes, as we show with the following counterexample.18

Let T ⌘ E[⌧ ] denote average duration. Consider an inaction model with adjustments at fixed dates

(Taylor-type) and a standard Ss model; assume away idiosyncratic shocks (� = 0) and allow for a

non-zero drift (⌫ 6= 0). In these two models there exists a steady-state with a uniform distribution of

capital-gaps and an investment distribution with an atom at �⌫T ; thus they produce the same ergodic

moments.19 Now, let us study transitional dynamics for � < 0. As stated by the theory, in both models

the intensive margin is equal to the average age: �1 = T/2. Since the Taylor model is time-dependent,

⇥1 = 0 and its CIR1 equals: CIRTaylor
1 (�)/� ⇡ T/2. In the Ss model, the extensive margin is equal to

⇥1 = ✓1,0E[x0] = �T/2 (as ✓1,j = 0 for j > 0), and its CIR1 equals CIR
Ss
1 (�)/� ⇡ T/2�T/2 = 0. This

result mirrors the classic money neutrality outcome in Caplin and Spulber (1987) in lumpy adjustment

models.

The previous counterexample illustrates that two models may produce the same steady-state statistics,

but nevertheless, they can exhibit completely di↵erent transitional dynamics. Our explanation lies in the

18See Web Appendix B.2 for the proof.
19These two models have several ergodic time-varying distributions that depend on the initial condition. To generate an

unique ergodic distribution for any initial condition, we add a small and random probability of free adjustment. Besides
generating a unique ergodic distribution, it gives di↵erentiability to the CIR at � = 0 in the Ss model.
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di↵erences in micro-elasticities, zero in the Taylor-type model and ��1 in the Ss model. Therefore, there

are cases for which the micro-elasticities are relevant objects for characterizing the extensive margin, and

our theory can guide researchers in finding experiments or exogenous variation to compute them.

In the following section we apply our theoretical results to the data.

4 Application: Investment Dynamics

In this section, we revisit the investment model from Section 2 and apply our tools using establishment-

level data to gauge the magnitude of capital misallocation in steady-state as well as the transitional

dynamics of aggregate capital.

4.1 Data description

Sources. We use yearly microdata on the cross-section of manufacturing plants in Chile from the

Annual National Manufacturing Survey (Encuesta Nacional Industrial Anual) for the period 1979 to

2011.20 Information on depreciation rates and price deflators used to construct the capital series comes

from National Accounts and Penn World Tables. We report statistics for the total capital stock as

well as for structures, a capital category that represents approximately 30% of all investment in the

manufacturing sector and features the strongest lumpy behavior. We consider all plants that appear in

the sample for at least 10 years (more than 60% of the sample).21

Capital stock and investment rates. We construct the capital stock series through the perpetual

inventory method (PIM).22 Let firm’s ! stock of capital of type j on year t be given by:

K!,j,t = (1� �j)K!,j,t�1 + I!,j,t/Dj,t for K!,j,t0 given, (38)

where the depreciation rate �j is a type-specific time-invariant depreciation rate; price deflators Dj,t are

gross fixed capital formation deflators by capital type; and initial capitals Ki,j,t0 are given by the firms’

self-reported nominal stock of capital of type j at current prices on the first year in which they report

a non-negative capital stock. Gross nominal investment I!,j,t is based on the information on purchases,

reforms, improvements, and sales of fixed assets reported by each plant in the survey:

I!,j,t = puchases!,j,t + reforms!,j,t + improvements!,j,t � sales!,j,t (39)

20This data has been used by Liu (1993) to examine the role of turnover and learning on productivity growth; by Tybout
(2000) to survey the state of the manufacturing sector in developing economies; and more recently, by Oberfield (2013) to
study productivity and misallocation during crises.

21The Online Data Appendix presents all the details on the data, construction of variables, and analysis for each capital
category separately: structures, machinery, equipment and vehicles. Additionally, we repeat all the analysis for Colombia,
using the Annual Manufacturers Survey Encuesta Anual Manufacturera for the period 1995-2016. This data has been used
by Eslava, Haltiwanger, Kugler and Kugler (2004, 2013) to study the e↵ect of structural reforms and trade liberalization on
aggregate productivity. Results are very similar across the two countries, so we focus here the analysis for the Chilean data.

22See Section A.2 for details on the PIM method and several checks on the data.
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Once we construct the investment and capital stock series, we define the investment rate i!,j,t as the ratio

of real gross investment to the capital stock:

i!,j,t ⌘ I!,j,t/Dj,t

K!,j,t
. (40)

Table I presents descriptive statistics on investment rates. Inaction is defined as investment below 1%

in absolute value; positive spikes are investments above 20% and negative spikes below �20%. Besides

the statistics for Chile, we include the numbers reported by Cooper and Haltiwanger (2006) for 7,000

US manufacturing plants between 1972 and 1988.23 Structures presents an inaction rate of 76% and a

large fraction of positive spikes of 31%. Investment rates are very asymmetric (the frequency of positive

investments is larger than the frequency of negative investments) and serially uncorrelated, as in the US

data. The zero correlation of investment rates in the data is consistent with the model we developed in

the previous section.

Table I – Investment Rates Statistics

Structures Total US

Average Investment 10.3 18.3 12.2

Positive Fraction (i > 1%) 22.8 56.7 81.5
Negative Fraction (i < �1%) 1.4 4.0 10.4
Inaction rate (|i| <= 1%) 75.8 39.3 8.1

Spike rate (|i| > 20%) 10.2 24.3 20.4
Positive spikes (i > 20%) 9.7 23.2 18.6
Negative spikes (i < �20%) 0.5 1.0 1.8

Serial correlation 0.0 0.0 0.1

Sources: Own calculations using plant-level data for Chile. The time period is 1979-2011 for plants that appear in the

sample for at least 10 years. US refers to data in Cooper and Haltiwanger (2006) which covers manufacturing plants total

investment in the US from 1972 to 1988. Investment rates reported in this table are computed as real investment divided

by initial capital. We use perpetual inventories to compute capital stock. We eliminate investment rates below the 1st

percentile and above the 99th percentile of the investment rate distribution.

4.2 Construction of capital gaps and duration

To apply the theory, for each firm ! and each inaction spell k, we record the capital gap change upon

action �x!,k and the spell’s duration ⌧!,k. Recall that the capital gap change is given by the log di↵erence

in the capital stock between adjustment dates:

�x!,k = xt!,k � xt!,k�1
= log

�
Kt!,k/Kt!,k�1

�
= log (1 + i!,t) (41)

23The Data Online Appendix shows numbers reported in Zwick and Mahon (2017) from tax records for US firms. In
particular, the weighted inaction rate across firms is 30% in their unbalanced panel.
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Using the information on investment rates, we construct capital gap changes as:

�x!,k =

8
<

:
log (1 + i!,k) if |i!,k| > i

0 if |i!,k| < i,

(42)

where i > 0 is a parameter that captures the idea that small maintenance investments do not incur the

fixed cost. Following Cooper and Haltiwanger (2006), we set i = 0.01, such that all investments smaller

than 1% in absolute value are excluded and considered as inaction. Finally, we compute a spell’s duration

as the di↵erence between two adjacent adjustment dates:24

⌧!,k = t!,k � t!,k�1. (43)

Figure III plots the cross-sectional distribution of capital gap changes for structures and the total capital

stock. In each figure, we show the distribution for two subsamples: observations with spell duration

above the average (dark bars) and spell duration below the average (white bars). Interestingly, the two

populations present the same behavior in terms of adjustment size: there is a large mass concentrated

at low levels of capital gap changes and there are a few firms that have very large adjustments, and the

distribution is asymmetric. Moreover, given that the two distributions lie on top of one another, there is

no apparent correlation between adjustment size and duration.

Figure III – Distribution of capital gap changes by duration
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As the next step, we put the theory to work by computing the cross-sectional statistics of the capital

gap changes and duration in order to back out the parameters of the stochastic process as well as the

ergodic moments. With these objects at hand, we use the theory to provide evidence against fully

time-dependent models and in favor of hybrid models, and study the transitional dynamics via the CIR.
24See the Online Data Appendix for corrections due to duration dependence and unobserved heterogeneity.
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4.3 Putting the theory to work

The relationships derived in Proposition 1 tell us how to use cross-sectional data on capital gaps and

duration to pin down the parameters of the productivity process, the reset point, as well as the ergodic

moments, which in turn are used to construct the CIR. Table II summarizes the statistics calculated from

the microdata which serve as inputs into the formulas, as well as the theory’s output.

Table II – Inputs from Micro Data and Outputs from the Theory

Inputs from Data Outputs from Theory

Structures Total Structures Total

Frequency Parameters
Ex̂[⌧ ] 2.441 1.714 ⌫ -0.111 -0.129
CV2[⌧ ] 1.093 0.855 �

2 0.076 0.067
x̂ 0.013 0.039

Capital Gaps Steady State Moments
Ex̂[�x] 0.271 0.220 Var[x] 0.228 0.149
Ex̂[�x

2] 0.192 0.132 E[a] 2.554 1.590
Ex̂[(x̂��x)3] -0.186 -0.099 Cov[a, x] 0.914 0.417

Covariances Transitional Dynamics
Covx̂[⌧,�x] 0.063 0.040 Var[x]/�2 3.014 2.240
Ex̂[⌧(x̂��x)2] 0.534 0.254 �⌫Cov[a, x]/�2 1.340 0.803

CIR1(�) 4.354 3.043

Sources: Authors’ calculations using establishment-level survey data for Chile.

The left part of Table II shows the inputs from the data: cross-sectional statistics for frequency,

capital gaps, and covariances between them. The right part of the table shows the outputs from our

theory: estimated parameters ⌫,�2, x̂ and ergodic moments Var[x],Cov[x, a], and the CIR1(�) for the

CalvoPlus model.

4.3.1 Inputs from microdata

Consider first the distribution of expected times ⌧ . We obtain an average expected time to adjustment

of E[⌧ ] = 2.4 years with a large dispersion, suggesting substantial heterogeneity in adjustment times

across plants. Now consider the distribution of capital gaps; it has an average of E[�x] = 0.27 and a

second moment of E[�x
2] = 0.19, and it is right-skewed. The covariance between adjustment size and

expected time is almost zero Cov[⌧,�x] = 0.06. As we discuss below, this zero covariance is one of the

key statistics that allows us to discern across inaction models.
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4.3.2 Outputs from theory: parameters

Let us know explain the parameter values implied by our formulas. From (18), the implied drift, which

captures the depreciation rate, productivity growth, and changes in relative prices, equals

⌫ = �E[�x]

E[⌧ ] = �0.271

2.441
= �0.111, (44)

and the volatility of idiosyncratic shocks equals

� =

vuuut
E[�x

2]

E[⌧ ]| {z }
0.08

+ 2⌫x̂|{z}
0.002

= 0.27. (45)

Note that the main component that drives the volatility estimate is the second moment of capital gap

changes, normalized by expected duration, whereas the drift term is negligible. The calibration for the

volatility of innovations in the literature falls within a very wide range, from 0.052 in Khan and Thomas

(2008) to 0.121 in Winberry (2016) to 0.202 in Bachmann, Caballero and Engel (2013).25 It is worth

noting that these calibrations are done jointly with the fixed adjustment cost within a particular inaction

model. In contrast, our volatility estimate is pinned down directly through our model–independent

mapping between data and parameters. Lastly, the observation formula for the reset capital gap in (17)

implies that, upon adjustment, capital gaps are reset on average 1.3% above the average capital gap:

x̂ =
E[�x]

2| {z }
0.14

⇣
1� CV[⌧ ]2

⌘

| {z }
�0.23

+
Cov[⌧,�x]

E[⌧ ]| {z }
0.02

= 0.013 (46)

As with the covariance, the reset state together with the drift provide very useful information to tell

apart families of inaction models, as we explain below.

4.3.3 Output from theory: ergodic moments.

According to the observation formula (19), the steady-state dispersion of capital gaps Var[x]—a notion

of misallocation—can be expressed in terms of capital gap changes and the reset point as follows:

Var[x] =
x̂
3 � E[(x̂��x)3]

3E[�x]
= 0.23, (47)

where the cubic powers capture asymmetries in the distribution. The average age E[a] is recovered

using information about the average and the dispersion of adjustment times from (20). Following our

25The original numbers used in those papers are 0.022 and 0.049, respectively. Since we abstract from labor and our
productivity is rescaled, we must adjust their volatilities by a factor 1/1 � ↵ in order to make their numbers comparable
to ours. We assuming a labor share of ↵ = 0.58 and obtain the numbers above. Additionally, for Bachmann, Caballero
and Engel (2013) and Winberry (2016), we convert their quarterly volatilities �

q = 0.024, 0.047 to yearly taking into

account their yearly growth rate standard deviation: �a = �
q
q

⇢4�1

1�⇢2
+ 1 + ⇢2 + ⇢4 + ⇢6), with ⇢ = 0.94, 0.86. Lastly, for

Bachmann, Caballero and Engel (2013), we only consider the idiosyncratic shocks (excluding the sectorial shocks). Recall
that we only consider here structures.
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earlier discussion on renewal theory—larger stopping times are more representative in the sample—the

heterogeneity in expected times increases the average age:

E[a] = E[⌧ ]/2| {z }
1.2

⇣
1 + CV[⌧ ]2

⌘

| {z }
2.1

= 2.52. (48)

Lastly, equation (21) implies that the covariance between age and adjustment size suggested by the data

is positive:

Cov[x, a] =
1

2⌫

0

BB@
E
h
⌧ (x̂��x)2

i

E[⌧ ]| {z }
0.22

�Var[x]| {z }
0.23

��
2E[a]| {z }
0.20

1

CCA = 0.914. (49)

This positive covariance between capital gaps and capital age means that the capital holdings of plants

that have not adjusted in a long time (their capital is old) are above the gap of firms that have recently

adjusted. In the next section, we discuss how this covariance as well as other objects compute above

allows us to discern across models of inaction.

4.4 Discerning between inaction models

Let us recall the only two assumptions we have made to establish the link between data and ergodic

moments and parameters: (i) capital gaps follow a Brownian motion, and (ii) the reset state x̂ is constant

across plants and time. We have not assumed any particular inaction model or parametric restriction of

the plants’ state besides those imposed to the capital gaps x. Clearly, plants may have other drivers of

their investments besides capital gaps and we do not impose any structure on those.

Evidence against fully time-dependent models. A first source of evidence against this family is

the zero covariance between duration and adjustment size. According to our formulas, in fully time

dependent models it equals Cov[⌧,�x] = Var[⌧ ] = 6.5, which is extremely large compared to its tiny

value in the data. A second source is the reset state: if the driver of inaction was fully time-dependent,

then the reset state should be equal to x̂
time dep = �⌫E[a] = �0.111 ⇤ 2.554 = 0.279, twenty

times larger that the reset state implied by the data x̂
data = 0.013. We conclude that there exists an

important state-dependent component that trades-o↵ a lower reset state with an asymmetric policy in

order to compensate the drift.

Mixed evidence of state-dependent models. Fully state dependent models are characterized by

an increasing adjustment hazard: the covariance between duration of inaction and the adjustment size is

positive. Even more so if there is a negative drift: the longer the inaction period, the larger the amount

of idiosyncratic shocks that have accumulated. For this reason, one would expect a positive covariance:

the longer the inaction period, the stronger the e↵ect of the drift; consequently, upon taking action, the

investment rate should be larger. Again, this is invalidated by the data, as the covariance is very small.

Recall that the drift in capital gaps is equal to minus 11%. As firms that reset their capital gaps do it to
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a point 1.3% above the average, the part of the drift that is not compensated by the reset state (9.7%)

must be accommodated through an asymmetric policy. This is in favor of state-dependent models.

Evidence in favor a hybrid model. The data points towards a hybrid model with both time and

state-dependent components. A tiny covariance between adjustment sizes and duration, Cov[⌧,�x] ⇡
0, which in turn implies a positive covariance between capital gaps and capital age of Cov[x, a] ⇡ 1.

This provides evidence that plants compensate part of the structural shocks they receive. However,

compensation is not total. This can be seen with the ratio Var[x]/�2 = 2.8, which is quantitatively

close to the expected duration E[⌧ ] = 2.4. This suggests that the dispersion—a measure of ex-post

heterogeneity—is almost equal to the fundamental volatility �2 times expected duration. In other words,

there is a large passthrough of productivity shocks to capital misallocation, signaling ine�cient capital

adjustments. Moreover, comparing this result to (18), implies that 2⌫x̂ ⇡ 0: the large negative drift of

�11% is undone by firms through their adjustment policy.

While some of these moments appear counterintuitive, we want to stress again that they come directly

from the data. Thus the empirical evidence suggests a hybrid model with both state and time dependent

components. For this reason, we focus on a CalvoPlus structure for adjustment costs and proceed to

analyze the dynamics of aggregate capital for this family.

4.5 Business cycle dynamics in CalvoPlus model

Now we assume the CalvoPlus model to analyze transitional dynamics of the first moment of capital

gaps. We consider an unanticipated permanent aggregate productivity shock that shifts horizontally the

distribution of idiosyncratic productivity of all firms. If this model is true, where both intensive and

extensive margins are active, we obtain that

CIR1(�)/� ⇡
Var[x]
�2| {z }
3.014

� ⌫ Cov[a, x]
�2| {z }
1.340

= 4.354. (50)

The fact that the CIR1(�)/� = 4.354 is larger than its upper bound, that of a fully time dependent

model given by CIR1(�)/� = E[a] = 2.55, suggests that their is no calibration such that the CalvoPlus

generates the values of the ergodic moments in the data.

Calibration strategy. Now we show that the CalvoPlus model cannot generate jointly the four scalars

that determine the CIR1. The parameters for the stochastic process of the capital gaps (⌫,�2) =

(�0.111, 0.076) and the reset state x̂ = 0.013 are taken from the data through our formulas, see Table

II. We are left with four parameters to calibrate: the upper and lower border of the inaction region (x, x),

and the arrival rate of free adjustment opportunities �. To set the remaining parameters, we follow the

following strategy. First, we find the arrival rate of free adjustments � to match the average expected

time to adjustment E[⌧ ] = 2.44. The implied � is plotted in Figure IV. Then, we vary the normalized

borders of inaction (x � x̂, x � x̂) and compute the implied capital gap variance Var[x] and covariance

with age Cov[x, a] for those parameters.
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Figure IV – Calibration of arrival rate of free adjustment opportunities

Figure V plots these key moments for di↵erent values of the normalized inaction regions (and the

implied � that matches average duration). The variance is increasing in both sides of the inaction region,

while the covariance is decreasing in the lower band and increasing in the first. Given these shapes, we

find that, in order to match the variance of capital gaps Var[x], we need a wide upper band x� x̂ = 4

and a wide lower band x̂ � x = 2 (and a large � = 0.34); in other words, the variance calls for

wide inaction region with frequent free adjustment opportunities. In this case, the adjustments would be

primarily driven by the Poisson arrival rate, as in a Calvo model. In contrast, to match the covariance

of capital gap and its age, we still need a wide upper band x � x̂ = 4 but a very narrow lower band

x̂� x = 0.3 (as well as a low � = 0.005); thus, the covariance calls for a one-sided inaction region and

infrequent opportunities to adjust. This is close to a standard menu cost model with very asymmetric

inaction regions.

Figure V – Key moments generated by the random fixed cost model

In summary, the random fixed cost model cannot match simultaneously the two key moments that it
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must satisfy for the CIR of average capital.

4.6 Heterogeneity concerns

One obvious concern that arises regarding the empirical analysis is that di↵erent layers of heterogeneity

may a↵ect the computation and the interpretation of cross-sectional statistics. To mitigate this concern,

we repeat the analysis considering eight 2-digit subsectors within manufacturing and also di↵erent plant

sizes in terms of their number of workers.26

Table III – Inputs from Micro Data and Outputs from the Theory by Size and Sector

Inputs from Data Outputs from Theory

Plants size Excluding Plants size Excluding
Small Large Textile/Chemical Small Large Textile/Chemical

Frequency Parameters
Ex̂[⌧ ] 2.862 2.300 2.445 ⌫ -0.111 -0.111 -0.110
CV2[⌧ ] 1.167 1.012 1.096 �

2 0.077 0.078 0.075
x̂ 0.004 0.013 0.011

Capital Gaps Steady State Moments
Ex̂[�x] 0.317 0.256 0.270 Var[x] 0.220 0.244 0.228
Ex̂[�x

2] 0.222 0.185 0.190 E[a] 3.101 2.314 2.563
Ex̂[(x̂��x)3] -0.209 -0.187 -0.184 Cov[a, x] 0.849 1.016 0.922

Covariances Transitional Dynamics
Covx̂[⌧,�x] 0.088 0.033 0.059 Var[x]/�2 2.870 3.145 3.021
Ex̂[⌧(x̂��x)2] 0.769 0.455 0.531 �⌫Cov[a, x]/�2 1.227 1.454 1.350

CIR1(�) 4.097 4.599 4.371

Sources: Authors’ calculations using establishment-level survey data for Chile.

Regarding the sectoral composition, we find that besides textiles and chemicals, all other sectors

present very similar investment patters. Table III recomputes our formulas excluding textiles and chem-

icals and we find that neither the inputs from the data nor the outputs from the theory di↵er from the

numbers that include these sectors. We conclude that heterogeneity across sectors should not be a con-

cern once these two subsectors are excluded. Regarding plant size, things are more interesting. Across all

capital categories, average investment, the frequency of non-zero investments, and the fraction of spikes

are increasing in plant size; in contrast, the inaction rate decreases with size. Table III recomputes our

formulas splitting the sample in small and large plants. Not surprisingly, the inputs from the data are

di↵erent for small and large firms. What is really striking is that the parameters of the stochastic process

that we recovered are identical same across sizes: firms are hit with the same type of shocks. In terms

26See Data Online Appendix for details. Table XIV reports cross-sectional statistics by subsectors: (1) Food and beverages;
(2) Textile, clothing and leather; (3) Wood and furniture; (4) Paper and printing; (5) Chemistry, petroleum, rubber and
plastic; (6) Manufacture of non-metallic mineral products; (7) Basic metal; (8) Metal products, machinery and equipment.
Table XVI reports cross-sectional statistics by quartiles of the average number of workers during the sample period: small
plants (0-25%, S), medium plants (25-50%, M), large plants (50-75%, L), and very large plants (75-100%, XL).
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of ergodic moments, larger plants have more dispersed capital gaps, capital is younger on average, and

have a larger covariance; all of these forces increase the CIR.

Overall, heterogeneity across sectors and across plant size does not change the conclusion.

5 Extensions and Generalization

In the previous sections we specified parametric restrictions to the inaction model and to the firms’

state space. Such assumptions exclude from our analysis models with fixed adjustment dates as in

Taylor (1980), models with observation costs as in Álvarez, Lippi and Paciello (2011), and several others.

Nevertheless, it is possible to extend our theory to accommodate richer models. In this section, we

generalize our results to consider any stopping-time model or state space, explaining the assumptions on

policies and processes that are key to apply our tools.

Second, we extend the analysis in three directions, to consider: (i) transitions of higher moments

(m > 1) of the distribution; (ii) transitions starting from any general initial condition F0; and (iii)

transitions for a mean-reverting process. In each case, we focus on the one property that delivers the

most interesting mechanism.27 We denote conditional distributions as Z|Y , conditional expectations with

initial condition z as Ez[Z], and the minimum between two stopping times as t ^ s ⌘ min{t, s}.

5.1 Generalization

Let (⌦, P,F) be a probability space equipped with a filtration F = (Ft; t � 0). We consider an economy

populated by a continuum of agents indexed with ! 2 ⌦, where agent !’s information set at time t

is the filtration Ft. Each agent’s uncontrolled state is given by S̃t(!) = [x̃t(!), S
�x
t (!)] 2 R1+K�x .

The state is split between a main state x̃ and a set of complementary states S̃
�x
t . The main state

follows a Brownian motion dx̃t(!) = �dWt(!). Agent’s policies consist of a sequence of adjustment

dates {⌧k}1k = 1 and adjustments sizes {�S⌧k}
1
k = 1, measurable with respect to Ft. Given these policies

{⌧k(!),�S⌧k(!)}1k = 1, the controlled state St(!) evolves as the sum of the uncontrolled state plus the

adjustments: St(!) = S̃t(!) +
P

⌧k(!)t�S⌧k(!).

The first premise for our theory is a recursive representation of the conditional CIR, both between

and within stopping dates. This demands St(!) to be a su�cient statistic for the conditional CIR, which

in turn requires that the policy is history independent. Formally, this mean that

E
"Z ⌧i+1

⌧i^t(!)
f(xt)dt|F⌧i^t(!)

#
= E

Z ⌧

0
f(xt)dt|S⌧i^t(!)

�
= v

f (S⌧i^t(!)), for all t(!)  ⌧i+1.

Since the main state follows a Brownian motion, the burden of this requirement falls completely on the

complementary state and the policy. Assumption 1 and 2 formalize these requirements.

27The Web Appendix presents the full characterization and analysis of the three properties.
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Assumption 1 (Markovian complementary state). The complementary state S̃
�x
t follows a Strong

Markov process:

S̃
�x
(t^⌧k)+h(!)|Ft^⌧k = S̃

�x
h (!)|S̃(t^⌧k)(!), 8k. (51)

To understand this assumption, consider a history ! such that t < ⌧k(!). In this case, the comple-

mentary state’s law of motion depends only on its current value; thus it is independent of its own history.

Additionally, the complementary state is an homogenous process, since its law of motion at date t is

equivalent to its law of motion at zero, given an initial condition. In the complementary case t � ⌧k(!),

these properties continue to hold, thus the stopping policy does not reveal new information about the

complementary state’s law of motion.

Assumption 2 (Markovian policies). Policies satisfy the following conditions:

⌧k+1|F⌧k+h = ⌧1|S⌧k+h for all h 2 [0, ⌧k+1 � ⌧k]. (52)

A second premise in our theory is that we can characterize the CIR with the first stopping time of

every agent. This means that, upon taking action, agents fully adjust to include any deviations from their

steady-state behavior and come back to the steady-state process. This would imply that S⌧k is iid across

time and independent of the history previous to the adjustment. The challenge with stochastic iid resets

is that is makes it more di�cult to identify the parameters of the stochastic process, e.g. di↵erentiating

the fundamental volatility � from the volatility arising from a random reset state. Therefore, in order for

the reset state to be su�ciently informative, we ask that it is a constant x⌧i = x̂.28

Assumption 3 (Constant reset state). The reset state is constant: x⌧k = x̂ for all k.

It is straightforward to check that the previous assumptions hold in the investment example developed

in Section 2. For Assumption 1, the complementary state is given by the arrival of free adjustment

opportunities Nt, which is assumed to be a Poisson counter process and thus a Strong Markov process.

The requirements in Assumption 2 and 3 are also satisfied. We showed that the reset capital gap is

constant; and since the stopping policy is an inaction set with respect to the controlled state, the stopping

policy is history independent within and between adjustments.

Finally, in order to apply the Optional Sampling Theorem, we require several stopping processes to

be well-defined (finite moments at the stopping-time).29

Assumption 4 (Well-defined stopping processes). The processes

⇣nR t
0 s

j
x
m
s dBs

o

t
, ⌧

⌘
for all m

and j = 0, 1, are well-defined stopping processes.

The previous Markovian requirements are enough in order to characterize the aggregation, represen-

tation of the intensive margin, and observation properties; however, in order to apply the representation

property to the extensive margin, we must require one additional assumption. There must exist an

equivalent representation of the extensive margin as a function exclusively of the main state x. For this,

28In this paper, we ignore ex-ante heterogeneity across agents (that could be reflected in di↵erent reset states and policies),
but this can be relaxed. Nevertheless, it remains crucial that history is erased at the moment of reseting the state.

29See Web Appendix A for a formal definition of a well-defined stopping process.
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we require that there exists a stopping policy ⌧⇤ that only depends on the main state x and can fully

describe the extensive margin by itself. For instance, a stopping policy given by a Poisson counter with

hazard ⇤(x)dt satisfies this requirement.

Assumption 5 (Hazard). Assume that there exist a stopping policy ⌧
⇤
s.t.

E
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and there exist a smooth function gm(x) such that

gm(x) = Ex̂+x [(x̂��x)m]� E [(x̂��x+ x)m] , 8m. (54)

where �x is under the policy ⌧
⇤
.

5.2 Extensions

Now that we have stated the formal requirements needed to apply our theory, we proceed to develop

the three extensions. To highlight the new mechanisms, in all the extensions we focus on the driftless

case ⌫ = 0, but the proofs are straightforward to extend to consider a non-zero drift.

Extensions I: CIR for arbitrary functions the capital-gaps. This section provides formulas for

the CIR of the m-th moment for di↵erent classes of models. Additionally, these formulas have two useful

applications. They can be used to (i) derive bounds for the dynamics of functions of the m-th moments,

and (ii) study transitions of any arbitrary function of the state. To illustrate the first application, let us

consider the transitional dynamics for the variance. Using Jensen’s inequality, we derive an upper bound

on the variance’s CIR:30

CIR(Var[x]) ⌘
Z 1

0
(Vt [x]� V [x]) dt  CIR2(�)� CIR1(�)

2
. (55)

To illustrate the second application, consider a smooth function of the state f(x). For example, in

many models the aggregate welfare criteria can be written in this form. Using a Taylor approximation

around zero, we write the CIR of the f(x) function in terms of the state’s CIR, weighted by the Taylor

factors.

CIR(f(x)) =

Z 1

0
Et[f(x)]� E[f(x)]dt =

1X

j = 1

df
j(0)

dxj

CIRj(�)

j!
. (56)

Extension II: Transitional dynamics for higher moments We first consider the transitional dy-

namics for higher moments of the distribution (m � 1). The initial condition remains to be a mean

translation of the steady-state distribution. In this case, we focus the discussion on the representation of

the intensive margin.

30CIR(Var[x]) ⌘
R

1

0
(Vt [x]� V [x]) dt =

R
1

0

�
Et

⇥
x
2
⇤
� E

⇥
x
2
⇤�

dt�
R

1

0
Et [x]

2
dt  CIR2(�)� CIR2

1(�).
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Proposition 5. Assume dx̃t = �dWt. To a first order, the transitional dynamics of the m-th moment

are given by

CIRm(�)/� = �m +⇥m � E[xm]⇥0 + o(�) (57)

where the intensive margin relates to ergodic moments as follows:

�m = mE[xm�1
, a], (58)

E[xm�1
, a] =

2

m(m+ 1)

2

4
E
h
⌧ (x̂��x)m+1

i

E [�x2]
� E[xm+1]

�2

3

5 . (59)

To focus on the intensive margin, assume ⇥m = 0 for all m and consider the transitional dynamics

for the state’s first three moments by setting m = 1, 2, 3. We have that

CIR1(�)/� = �1 = E[a] (60)

CIR2(�)/� = �2 = 2E[xa] (61)

CIR3(�)/� = �3 = 3E[x2a] (62)

As discussed earlier, the dynamics of the first moment (m = 1)—average capital gaps—are fully driven

by the state’s average age. The dynamics of the second moment (m = 2)—dispersion of capital gaps or

misallocation—are driven by the covariance between the age and the size of capital gaps. If this covariance

is zero, then the distribution’s second moment remains constant along the transition path. Asymmetry

in in the agents’ investment policy, which generates a skewed ergodic distribution, is one way to generate

a non-zero covariance. This interaction between the business cycle dynamics of capital misallocation

and the asymmetry of the ergodic capital distribution is studied by Ehouarne, Kuehn and Schreindorfer

(2016) and Jo and Senga (2014). Finally, the dynamics of the third moment (m = 3)—skewness of

capital gaps—are driven by the covariance between age and the square of capital gaps. Note that if the

ergodic distribution features excess kurtosis, then the skewness of the distribution will change along the

transition.

Proposition 5 provides formulas for the CIR of the m-th moment. Additionally, these formulas have

two useful applications. They can be used to (i) derive bounds for the dynamics of functions of the

m-th moments, and (ii) study transitions of any arbitrary function of the state. To illustrate the first

application, let us consider the transitional dynamics for the variance. Using Jensen’s inequality, we

derive an upper bound on the variance’s CIR:31

CIR(Var[x]) ⌘
Z 1

0
(Vt [x]� V [x]) dt  CIR2(�)� CIR2

1(�). (63)

To illustrate the second application, consider a smooth function of the state f(x). For example, in

many models the aggregate welfare criteria can be written in this form. Using a Taylor approximation

around zero, we write the CIR of the f(x) function in terms of the state’s CIR, weighted by the Taylor

31CIR(Var[x]) ⌘
R
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0
(Vt [x]� V [x]) dt =
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�
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dt�
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2
dt  CIR2(�)� CIR2
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factors.

CIR(f(x)) =

Z 1

0
Et[f(x)]� E[f(x)]dt =

1X

j = 1

df
j(0)

dxj

CIRj(�)

j!
. (64)

Extension III: General initial conditions This extension considers transitional dynamics for general

initial conditions. For instance, since the work on uncertainty shocks by Bloom (2009), there has been a

large literature interested in the macroeconomic consequences of uncertainty in the business cycle. Within

our framework, these aggregate uncertainty shocks can be studied by setting the initial distribution

as a mean-preserving spread of the steady-state distribution. Moreover, the interaction between first

and second moment shocks, as studied by Aastveit, Natvik and Sola (2013), Vavra (2014), Caggiano,

Castelnuovo and Nodari (2014), Castelnuovo and Pellegrino (2018), and Baley and Blanco (2019), can

be accommodated as well.

For simplicity, we consider perturbations that can be expressed via a single parameter �. The initial

distribution is described through a function G(x, �), such that F0(x) = F (G�1(x, �)). To make progress,

we impose certain smoothness and di↵erentiability properties to the function G.Additionally, we focus on
perturbations to the first and second moments. Since this extension does not a↵ect steady-state moments,

we omit the characterization of the observation property as it remains as before.

Proposition 6. Assume dx̃t = �dWt and let G(x, �) be a function that satisfies the following properties:

1. G(x, 0) = x.

2. 9z > 0 such that 8✏ 2 (�z, z), G(·, ✏) is bijective.

3.
@G(G�1(y,0),0)

@� = �(G0 + G1y) with G2
0 + G2

1 = 1.

To a first order, the CIR is given by:

CIR1(G)/� = G0 (�1,0 +⇥1,0)| {z }
1st moment shock

+G1 (�1,1 +⇥1,1)| {z }
2nd moment shock

+ o(�) (65)

�1,i = (i+ 1)E[xia] (66)

⇥1,i =
1X

j = 0

✓1,jE[xj+i] (67)

with ✓1,j are the micro-elasticities.

Proposition 6 points towards the moments that are crucial to characterize the dynamics for a particular

type of initial condition. As long as there exists enough di↵erentiability in the perturbation of the initial

condition, we can find ergodic moments that perfectly describe the dynamics of the model. Interestingly,

the micro-elasticities needed to compute the extensive margin are independent of the number of moments

that are shocked.

As an example, consider G to be a mean preserving spread of the steady-state distribution F0. This

means that G(x, �) = x(1 + �) and therefore G0 = 0 and G1 = 1. Again, let us focus only in the

32



intensive margin by setting ⇥1,i = 0 for all i. Then the CIR is approximated as:

CIR1(�)

�
⇡ G1�1,1 = Cov[x, a].

Thus mean-preserving perturbations have first order e↵ects if and only if the covariance between age and

the state is di↵erent from zero. A non-zero covariance is consistent with the data presented in Section 4.

Therefore, suggesting that uncertainty shocks (in the form of mean-preserving spreads of the capital gap

distribution) would have e↵ects on average investment.

Extension IV: Mean-reversion. This extension considers a mean-reverting process for the uncon-

trolled state. This type of process is wildly used due to its empirical relevance and because it ensures the

existence of an ergodic distribution. For this application, we focus on the observation properties.

Proposition 7. Assume the uncontrolled state follows a Ornstein–Uhlenbeck process dx̃t = ⇢x̃tdt +

�dWt. Then, the reset state and structural parameters are recovered through a system of equations:

x̂ =
E[e�⇢⌧�x]

E[e�⇢⌧ ]� 1
(68)

�
2

⇢
= 2

x̂
2 � E

⇥
e
�2⇢⌧ (x̂��x)2

⇤

E [e�2⇢⌧ ]� 1
(69)

erf

 
x̂p
�2/⇢

!
= E

"
erf

 
x̂��xp
�2/⇢

!#
(70)

where erf(x) ⌘ 2p
⇡

R x
0 e

�t2
dt is the Gauss error function.

To gain some intuitions about the observation formulas above, let us consider the limiting case ⇢! 0.

Using the approximation e
�⇢⌧ ⇡ 1� ⇢⌧ , it is easy to show that equations (68) and (69) converge to our

baseline observations expressions in (17) and (18) with ⌫ = 0 (no mean-reversion):

x̂ !⇢!0
E[⌧�x]

E[⌧ ] , �
2 !⇢!0

E
⇥
�x

2
⇤

E[⌧ ] . (71)

Therefore, as long mean reversion is “su�ciently small”, the mappings between the data and the reset

state, and between the data and idiosyncratic volatility do not change.

Let us make a deeper comparison of how x̂ is determined with and without mean-reversion. With iid

shocks, we can write (17) as a weighted sum of investment rates across firms:

x̂
iid = E[⌘(⌧)�x], with ⌘(⌧) ⌘ ⌧

E[⌧ ] > 0, E[⌘(⌧)] = 1,

where the weights ⌘(⌧) are increasing in ⌧ , i.e. more weight is given to the investment rate of firms with

large periods of inaction (with “old” capital). In order to understand this result, note that conditional

of surviving, the distribution of the state is more centered around the reset state for “young” capital

vintages, which cannot reflect policy asymmetries. The opposite happens for firms with “old” vintages,
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as the distribution of the state is more centered around the domain’s middle point, reflecting the policy

asymmetries. Thus investment rates associated with large stopping times are more informative about

these asymmetries. The opposite happens when we consider a mean-reverting process. An analogous

decomposition yields

x̂
mr = RE[⌘0(⌧)�x], with ⌘

0(⌧) ⌘ e
�⇢⌧

E[e�⇢⌧ ]
> 0, E[⌘0(⌧)] = 1, R ⌘ E[e�⇢⌧ ]

E[e�⇢⌧ ]� 1
< 0,

where now the weights are decreasing in duration and it is preceded by a negative number. As the inaction

period of increases, the mean-reverting productivity process goes back to its zero long-run mean, and the

distribution gets centered around zero on its own, so there is no need to correct for policy asymmetries

with the initial condition.

6 Conclusion

This paper provides a structural relation in model of inaction between the CIR (a measure of persistence

for aggregate dynamics) and microdata. This relation holds for any moment of the distribution, any

inaction model, and any initial condition. In the same way we apply our tools to a model of lumpy

investment, we foresee applications in models with labor adjustment costs, inventory models, portfolio

management, government debt management, among others.

For developing our theory, we assume that upon taking action, agents fully adjust to include any

deviations from their steady-state behavior. Thus our results do not accommodate partial adjustments

which are due, for instance, to imperfect information or convex adjustment costs. One example of these

frameworks is the menu cost model with information frictions in Baley and Blanco (2019). We leave for

future research the application of the tools developed here to that type of frameworks.
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A Appendix: Proofs

Proof of Lemma 1. Here we extend the result in Alvarez, Le Bihan and Lippi (2016) for higher order moments and arbitrary
state state. Let St = [xt, at]. Next, we enumerate the three assumptions needed for this Lemma:

1. {St}t2[0,1) is an Strong Markov Process with first element xt.

2. S⌧i = Ŝ.

3. ⌧i is a stopping time w.r.t. the filtration generated by {St}.

Fix an m 2 N. Start from the CIR’s definition:

CIRm = E
Z

1

0

(xt(!)
m

� E[xm]) dt

�
, (A.1)

where the expectation is taken across agents !. Using the strong Markov property and law of iterated expectations

CIRm = E

E
Z

1

0

(xt(!)
m

� E[xm]) dt

����F0

��
=

Z

S

E
Z

1

0

(xt(!)
m

� E[xm]) dt

����S0 = S

�
dF0(S) =: CIRm(F0), (A.2)

Let {⌧i}
1

i=1
be the sequence of stopping times. In (1), we write the CIR as the cumulative deviations between time t = 0 and

the first stopping time ⌧1 plus the sum of deviations between all future stopping times. In (2), we use the Law of Iterated
Expectations to condition on the information set F⌧i . In (3), we use the Strong Markov Property of St, the assumption of
homogenous resets and that Ŝ is constant for i � 1 to change the conditioning from S⌧i+h|F⌧i to Sh|Ŝ and write the problem
recursively. In (4), we show that every element inside the infinite sum is equal to zero. For this purpose, recall the relationship

between ergodic moments and expected duration derived in Auxiliary Theorem 2, Mm[x] = EŜ
⇥R ⌧

0
xt(�|!)

m
⇤
/EŜ [⌧ ], and

thus we are left with the simple expression in the fourth line (we also relabel ⌧1 as ⌧):

CIRm(F0) =

Z

S

E
Z

1

0

(xt(!)
m

� E[xm]) dt

����S0 = S

�
dF0(S),

=(1)

Z

S

E
"Z ⌧1
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m

� E[xm]) dt+
1X
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Z ⌧i+1
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� E[xm]) dt

�����S0 = S

#
dF0(S)

=(2)

Z

S

E
"Z ⌧1

0

(xt(!)
m

� E[xm]) dt+
1X

i=1

E
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=(4)

Z

S


E
Z ⌧

0

(xt(!)
m) dt|S

�
� E[xm]E[⌧ |S]

����S0 = S

�
dF0(S) (A.5)

As a final step, define the following value function conditional on a particular initial condition S = [x, S�x]:

v
m(S) ⌘ ES

Z ⌧

0

[xt(!)
m

� E[xm]] dt

�
, (A.6)

CIRm(F0) =

Z

S

v
m(S)dF0(S) (A.7)

Proof of Proposition 1. We continue with the notation St = [xt, at] and assume S⌧i = Ŝ. Additionally, we assume that⇣nR t

0
x
m
s s

n
dWs

o

t
, ⌧

⌘
are a well-defined stopping processes for any m and n = 0, 1.

• Average adjustment size. From the law of motion xt = x̂ + ⌫t + �Wt, we find the following equalities: �W⌧ =

�⌫⌧ + x⌧ � x̂ = �⌫⌧ ��x. Taking expectations on both sides, we have �EŜ [W⌧ ] = �⌫EŜ [⌧ ]� EŜ [�x]. Since W⌧ is

a martingale, EŜ [W⌧ ] = W0 = 0 by the OST. Therefore, ⌫ = �
EŜ

[�x]

EŜ [⌧ ]
as well.

• Observation of fundamental volatility: For characterizing � define Yt = xt � ⌫t with initial condition Y0 = x̂.
With similar steps as before we have that

�
2 =

EŜ
⇥
�Y

2

⌧

⇤

EŜ [⌧ ]
=

EŜ
⇥
(x⌧ � ⌫⌧ � x⌧ + x̂)2

⇤

EŜ [⌧ ]
=

EŜ
⇥
(⌫⌧ +�x)2

⇤

EŜ [⌧ ]
(A.8)

38



or equivalently

�
2 =

EŜ [�x
2]

EŜ [⌧ ]
+ 2⌫

 
EŜ [�x⌧ ]

EŜ [⌧ ]
+ ⌫

EŜ [⌧2]
Ex̂[⌧ ]

!

Applying the formula for x̂ below (A.10) we have the result.

• Observation of reset state: For the reset state x̂, we apply Itō’s lemma to x
2

t to obtain d(x2

t ) = 2xtdxt + (dxt)
2 =�

2⌫xt + �
2
�
dt+ 2�xtdWt. Using the OST EŜ [

R ⌧

0
xsdWs] = 0. Moreover, given that EŜ [

R ⌧

0
xsds] = E[x]EŜ [⌧ ] = 0, we

have that
EŜ [x2

⌧ ] = x̂
2 + �

2EŜ [⌧ ] (A.9)

Completing squares EŜ [x2

⌧ ] = EŜ [(x̂� (x̂� x⌧ ))
2] = EŜ [�x

2]� 2x̂EŜ [�x] + (x̂)2, we get

x̂ =
1

2EŜ [�x]

h
EŜ [�x

2]� �
2EŜ [⌧ ]

i

=
1

2EŜ [�x]

"
EŜ [�x

2]�

 
EŜ [�x

2] + 2
EŜ [�x]Ex̂[�x⌧ ]

EŜ [⌧ ]
+

EŜ [�x]2EŜ [⌧2]

EŜ [⌧ ]2

!#

=
EŜ [�x⌧ ]

EŜ [⌧ ]
�

EŜ [�x]EŜ [⌧2]

2EŜ [⌧ ]2
. (A.10)

Applying the formula for the covariance EŜ [⌧�x] + EŜ [⌧ ]Ex̂[�x] = Cov
Ŝ [⌧,�x] and coe�cient of variation square

CV2[⌧ ] = VŜ
[⌧ ]

EŜ [⌧ ]2
, we have the result.

• Observation of ergodic moments with respect to the state: For observability of ergodic moments of x, apply

Itō’s lemma to x
m+1 and get dxm+1

t = (m+1)xm
t ⌫dt+ (m+1)xm

t �dWt + �2

2
m(m+1)xm�1

t dt. Integrating from 0 to
⌧ , using the OST to eliminate martingales, and rearranging:

EŜ

Z ⌧

0

x
m
t dt

�
=

1
⌫(m+ 1)

⇣
EŜ [xm+1

⌧ ]� x̂
m+1

⌘
�

�
2

2⌫
mEŜ

Z ⌧

0

x
m�1

t dt

�
(A.11)

Substituting the equivalences E[xm] = EŜ
⇥R ⌧

0
x
m
t dt

⇤
/EŜ [⌧ ] and EŜ [�x] = �⌫EŜ [⌧ ] yields:

E[xm] =
x̂
m+1

� Ex̂[(x̂��x)m+1]
Ex̂[�x](m+ 1)

�
�
2
m

2⌫
E[xm�1], E[x] = 0 (A.12)

• Observation of ergodic moments with respect to the joint moments of state and age: For observability
of ergodic moments of xm

a, where a stand for the duration of the last action, we use Itō’s lemma and the OST on
x
m+1

t t:

EŜ ⇥
⌧ (x̂��x)m+1

⇤
= EŜ

Z ⌧

0

x
m+1

t dt

�
+ (m+ 1)⌫EŜ

Z ⌧

0

x
m
t tdt

�
+

�
2
m(m+ 1)

2
EŜ

Z ⌧

0

x
m�1

t tdt

�
(A.13)

and therefore

E[xm
a] =

EŜ
⇥
⌧ (x̂��x)m+1

⇤

⌫(m+ 1)EŜ [⌧ ]
�

E[xm+1]
⌫(m+ 1)

�
�
2
m

2⌫
E[xm�1

a] (A.14)

with initial condition E[a] = EŜ
[⌧2

]

2EŜ [⌧ ]
.

Proof of Proposition 2. We collapse this proof with the proof of proposition 3.

Proof of Proposition 3. The proof is divided into Lemmas 2 to 7 for clarity. Some of the steps are developed in Online
Appendix.

Lemma 2. [CIR as a function of v
0

m(x)]
Define vm(x) ⌘ Ex

⇥R ⌧

0
x
m
t dt

⇤
, then

CIRm(�)/� =

Z x

x

�
v
0

m(x)� E[xm]v00(x)
�
dF (x) + o(�) (A.15)

Proof. The proof comes directly from Lemma 1.
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Lemma 3. [Characterization of ergodic moments] Define the following values:

vm(x) ⌘ Ex

Z ⌧

0

x
m
t dt

�
, V

1

m(x) ⌘ Ex

"Z ⌧

0

e

�⌫�
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⌫2+2��2

�2 xt
dt

#
, V

2
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"Z ⌧

0

e

�⌫+
p

⌫2+2��2

�2 xt
dt

#

They can be expressed as

vm(x) =
�e

⇠1x [↵2
m(x)� ↵

2

m(x)]� e
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1
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m(x)

�
(A.16)

V
1

m(x) = �
�e

⇠1x(e⇠1xx↵2 � e
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2
)� e
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�
e
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1
� e
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�
+ e

⇠1xx

�2(⌫̃ + ⇠1)
(A.17)

V
2

m(x) = �
�e

⇠1x(e⇠2xx↵2 � e
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2
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�
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+ e
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(A.18)

where the parameters are given by

⌫̃ =
⌫

�2
; �̃ =

�

�2
(A.19)

⇠1 = �⌫̃ �

q
⌫̃2 + 2�̃ ; ⇠2 = �⌫̃ +

q
⌫̃2 + 2�̃ (A.20)

↵1 =
e
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; ↵

1
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e
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e
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; ↵

2
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e
⇠2x

e⇠1x+⇠2x � e⇠2x+⇠1x
(A.22)


m(x) ⌘

mX

i=0

bi,mx
i
with bi,m =

m!
i!
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⇠1 + ⇠1⇠2
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�̃

⇠1 � ⇠2
(⇠1)

i�m +
⇠2 + ⇠1⇠2

⌫̃
�̃

⇠2 � ⇠1
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#
(A.23)

Proof. The derivation of vm(x) is in proposition E.3 in the Online Appendix and the derivation of V 1(x) and V
2(x) are in

proposition E.7 in the Online Appendix.

Lemma 4. [Decomposition I of CIRm] The following relation holds

CIRm(�)/� =
K1m � ⌫̃K2m � E[xm] (K10 � ⌫̃K20)

��2Ex̂ [⌧ ]
+ o(�), (A.24)

where
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Proof. Using Theorem 2 and Lemma 3, we have that

CIRm(�)/� =

Z x

x

[v0m(x)� E[xm]v00(x)]dF (x) + o(�) (A.27)
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40



Operating over �2
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where K1m and K2m are defined in equations above.

Lemma 5. [Characterization of K1m as a function of ergodic moments with respect to x] The following relation

holds

K1m = �
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Proof. For this proof it would be useful to define T = (↵2↵1
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Departing from the definition of K1m we have
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Using the definition of T
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(A.35)
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and rewrite as
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Using Proposition E.8 in the Online Appendix and 
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we have
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Lemma 6. [Characterization of ergodic moments with respect to age] The following relation holds
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Proof. From proposition E.6, we have that
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Taking the derivative of hm('), and using the result that and that
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and evaluating at zero, we have that
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Now we show that K2m
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Thus,
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= C1m. (A.64)
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Finally, we need to show that
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Departing form the definition of C2m and using Proposition E.9 in the Online Appendix, we have that
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Thus, we have the result.

Lemma 7. [Final characterization of the CIR] The following relation holds
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Proof. To show the previous Lemma, first, we need to characterize
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Since bm,m = 1, we have that
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Since E[x] = 0

CIRm(�)/� =
K1m � ⌫̃K2m � E[xm] (K10 � ⌫̃K20)

��2Ex̂ [⌧ ]

=

"
E
⇥
x
m+1

⇤
� x̂E [xm]� ⌫Ex̂ [axm]

�2
� E[xm]

E [x]� x̂� ⌫E [a]
�2

#
+ o(�),

=
E
⇥
x
m+1

⇤
� ⌫ [E [axm]� E[xm]E [a]]

�2
+ o(�)

=
E
⇥
x
m+1

⇤
� ⌫Cov [a, xm]

�2
+ o(�), (A.71)

where in the last step we use the covariance formula Covx̂ [a, xm] = E[xm]E [a].
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Proposition 4. Assume that:

• The uncontrolled state follows dx̃t = ⌫dt+ �dWt, with Wt a Wiener process;

•

⇣nR t

0
x
m
s s
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dWs

o

t
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⌘
are a well-defined stopping processes for any m and n = 0, 1; and

• Define the function
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1. Aggregation: To a first order, the CIR is given by

Am(�)/� = Zm �Mm[x]⇥0 + o(�) (A.72)

where the intensive and extensive margin are given by
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2. Representation for the intensive margin:
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3. Representation for the extensive margin:
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• If ⌧ |xt ⇠ ⌧ , gm(x) = ✓(m, j) = 0 for all m, i.

The proof is divided into 4 Lemmas for clarity.
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Lemma 8. [Aggregation] To a first order, the transitional dynamics of the m-th moment are given by

Am(�)/� = ⇥ (Zm �Mm[x]⇥0) + o(�) (A.78)

where the intensive and extensive margin are given by
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Proof. The proof consists of 6 steps.

Characterization of CIR as the recursive problem of a representative agent. Fix an m 2 N. Start from the CIR’s
definition:

Am(�) = E
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�Mm[x]) dt
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, (A.82)

where the expectation is taken across agents !. Let {⌧i}
1

i=1
be the sequence of stopping times after the arrival of the

perturbation. In (1), we write the CIR as the cumulative deviations between time t = 0 and the first stopping time ⌧1 plus
the sum of deviations between all future stopping times. In (2), we use the Law of Iterated Expectations to condition on the
information set F⌧i . In (3), we use the Strong Markov Property of the Brownian motion, the assumption of homogenous resets
and that x̂ is independent of � for i � 1 to change the conditioning from x⌧i+h|F⌧i to xh|x̂ and write the problem recursively.
To get (4), we show that every element inside the infinite sum is equal to zero. For this purpose, recall the relationship
between ergodic moments and expected duration derived in Auxiliary Theorem 2, Mm[x] = Ex̂
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As a final step, define the following value function conditional on a particular initial condition x:
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and notice that Am(�) is equal to the average of vm(x) across all initial conditions after the perturbation, given by the shift
in the ergodic distribution (F0(x) = F (x� �)):

Am(�) =

Z
v
m(x)dF (x� �). (A.84)

2. State’s support. Since Brownian motions are continuous in t, and initial conditions are identical across agents (by the
assumption of homogeneous resets), the ergodic set is connected. Thus, the support of x is given by an interval [x, x].

3. Taylor approximation to Am(�) and decomposition into two terms. We do a first order Taylor approximation
of Am(�) around zero: Am(�) = Am(0) + A

0

m(0)�. Since Am(0) = 0 by definition, we have that: Am(�) = �A
0

m(0), which
we now characterize. Start from the representation in (A.84), expressed in terms of the marginal density of x:

Am(�) =

Z
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47



The derivative with respect to �, at � = 0, is given by:

A
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where in the third equality we do integration by parts, and in the fourth equality we use the result that there is no mass
at the endpoints (or Pr

x=x[⌧ = 0] = Pr
x=x[⌧ = 0] = 1). The previous expression says that the e↵ect of the perturbation

is equivalent to the changes in the stopping time problem of one agent when her initial conditions change (derivative of vm

with respect to x), averaged across all the possible initial conditions (the steady state distribution). In turn, as we show
next, changes in the stopping time problem are reflected by alterations in the state paths and by shifts in duration.

From v
m’s definition in (A.83), take its derivative with respect to initial conditions and substitute it back into A
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Now we further characterize each of these terms. Note that for various extensions, the proof up to this point is exactly
the same. The results change from this point onwards as we make use of the particular stochastic process for the uncontrolled
state.

4. Characterize Bm. Since xt = x+ ⌫t+ �Wt, for all t  ⌧ we have that
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Applying Itō’s Lemma to x
m
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Given that
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s dWt is a martingale with zero initial condition and it is well-defined by assumption, we apply the Optional
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where we used the Auxiliary Theorem 2, exchanging the ergodic distribution for the local occupancy measure.

5. Characterize Cm. With similar steps as in the previous point, we characterize Cm as follows.
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First we get an expression for the term A. Applying Itō’s Lemma to x
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initial condition x:
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Subtract the equations for A and B and simplify to obtain:
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Integrating with the ergodic distribution and using the definition of ⇥m in (A.81) and recognizing Cm and Cm�1 we get:
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Define Zm ⌘ Bm + Cm, which implies Zm = �m + ⇥m �
�2m
2⌫ Zm�1. Combine the results in (A.87), (A.87) and (A.88) to
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We now characterize Ex̂
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Using equations (A.89) and (A.91), we have that
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• If ⌧ |xt ⇠ ⌧ , gm(x) = ✓(m, j) = 0 for all m, i.

Proof. Using a change of variable in assumption (A.92), we have that :
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If ⌧ |xt ⇠ ⌧ , then we have that
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