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Abstract

R&D �rms coexist with non-R&D �rms, even in narrowly de�ned industries. In

this paper I estimate the magnitude of the R&D sunk costs which rationalize �rm

behaviour observed in the data. On the methodological side, I develop an estimable

model with dynamic competition where �rms can decide to invest in physical capital and

R&D. By assuming that �rms�individual states are private information, the industry

state is summarized by the aggregate (payo¤ relevant) state. This has two advantages

for estimation purposes: (i) it avoids the �curse of dimensionality�, typical in dynamic

industry models and; (ii) it deals with unobserved �rms in the data, a problem neglected

in the literature, but severe if one wants to estimate from the equilibrium conditions.

I apply the model to the Portuguese Moulds Industry and estimate the average

sunk costs of R&D to be 2.6 million euros (1.7 times the average �rm sales). Finally,

I evaluate the impact of a reduction in the sunk costs of R&D on equilibrium market

structure, productivity and capital stock. The results corroborate the idea that sunk

costs of R&D have implications for policies which target at promoting R&D. Policy

makers should be concerned with reducing the large sunk costs of R&D and promote

R&D start-ups.
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1 Introduction

Even in narrowly de�ned industries R&D �rms coexist with non-R&D �rms. Since most

existing theories focus in the continuous rather than the discrete decision, they predict that

in general, either all or no �rms perform R&D (e.g. Cohen and Klepper, 1996; Klette and

Kortum, 2004; Vives, 2004). In this paper I explore the discrete decision to become an

R&D �rm with two main contributions. First, I develop a model which deals with the

�curse of dimensionality�, typical of dynamic industry models. This is achieved by using an

aggregate (payo¤ relevant) state to represent the state of the industry. This way, instead

of keeping track of all competitors� state, each �rm just tracks individual state and the

aggregate state, considerably reducing the size of the state space. The second contribution

is the quanti�cation of sunk costs of R&D. I estimate the sunk costs of R&D at the level

which is consistent with the actual R&D decisions observed in the data. This is done using a

methodology recently developed by Bajari, Benkard and Levin (2007) to estimate dynamic

industry models.

The Portuguese Moulds industry has been very successful and is recognized worldwide

for its quality standards, technology and competitive prices. A report for the US interna-

tional trade commission (USITC, 2002) emphasizes the fast delivery, technology, quality and

competitive price as the main strengths of the Portuguese Moulds Industry. There has been

also a considerable e¤ort in moving upstream in the value chain by also supplying design and

propotyping services. Some �rms have also developed new materials for the moulds. This

creates value for the clients since it allows them to reduce the costs of production. Eventough

this upstream move and technology shift requires considerable investment in Research and

Development, more than 60% of �rms in the industry do not perform R&D and these �rms

are considerably less productive. I estimate the size of the costs required to rationalize this

wedge.

Firms have a similar evolution within the industry. First, they are typically founded by

an ex-employee(s) (managers of engineers) who left another �rm in the industry to start his

(their) own business and the size of the start-up is normally very small (less than 10 workers).

If the �rm is sucessfull and able to secure some client base, they grow by investment and

increment in producing capaticty. Later in their life, they might decide to increase their

supply of services to design and propotypying and also develop new products and materials

which is achieved by performing R&D.

There is a considerable cost of becoming a pro-active �rm who besides producing moulds

is also able to supply their clients with moulds conception and design skills, mould testing

and development and development of new materials, all at a competitive price. A successful

innovative �rm should be able to produce not only the mould itself but also all the pre

and post production services required by their clients. The costs can range from training

and hiring of new employees, investment in new machinery and even the establishment of
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links with universities and public research agencies. These costs strongly support the idea

of sunkness since they can not be recovered, particularly in this industry, and they are also

easy to reconcile with the fact that R&D �rms are bigger than their non-R&D counterparts.

Sunk costs have for a long time been regarded as one potential source of ine¢ ciency

in the economy. The earlier literature puts most of the emphasis in the failure of the

contestability theory in the presence of sunk entry costs, which results in market failures

because the industry will not be competitive and �rms can maintain some degree of market

power (Baumol and Willig, 1981; Stiglitz, 1987). The issue is of great importance for policy

makers and regulators since their existence results in a market failure which induces the

need for policy intervention.

Sunk costs of R&D, in particular, have been widely studied in the industrial organization

literature, especially following the work by Sutton (1991, 1998). The main purpose of this

research was to explore the relationship between R&D and market structure. Especially,

�rms can use R&D as a strategic tool to increase barriers to entry and maintain a dominant

position even for large market size. One constraint raised by Schmalensee (1992) is that, in

cases R&D does not have a �forever lasting�e¤ect and therefore does not create a �forever

lasting� advantage/barrier, it is not clear how the incumbent can maintain a dominant

position. However, the study of more complex dynamics for the outcome of R&D requires a

fully dynamic model that goes beyond the two period approach and this type of framework

was at the time in an early development stage. Dixit (1988) acknowledges this in his work

by referring that

"Perhaps the most important aspect ignored here is the possibility of partial

progress (state variables) in the R&D race. That has so far proved intractable

at any reasonably general level, but remains an important problem for future

research". Dixit (1988: 326)

The objective in this paper is quantifying the magnitude of R&D sunk costs and, the im-

plications for industry R&D and innovation. I will estimate the sunk costs of R&D in a fully

dynamic setting and I �nd these to be of signi�cant magnitude (1.7 times the yearly average

sales in the industry). To achieve this I develop a dynamic framework for productivity and

physical capital accumulation which incorporates a constant elasticity demand speci�cation.

In this area, several dynamic industry equilibrium models have been developed (Jovanovic,

1982; Hopenhayn, 1992; Ericson and Pakes, 1995; Klette and Kortum, 2004). Since it allows

for optimal R&D and investment choices, I use the framework studied in Ericson and Pakes

(1995), but I summarize the industry state by the aggregate (payo¤ relevant) state.

The paper will progress in two parts. In the �rst part I develop a model which can be

applied to the type of �nancial databases available and avoids the �curse of dimensionality�.

In the second part of the paper I estimate the model for a panel of �rms in the Portuguese

Moulds industry and recover the sunk costs of R&D. The framework is the following: �rms
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can enter and exit the market, invest in physical capital and decide to engage in R&D by

paying a setup sunk cost. There are both linear and quadratic costs with total irreversibility

for the physical capital investment. Productivity follows a �rst ordef Markov process which

depends on whether the �rm is an R&D performer or not. To become an R&D performer,

�rms have to pay a setup sunk cost. Finally, they compete in the market where demand is

modeled by a representative consumer Constant Elasticity of Substitution framework.

Most �rm level datasets1 contain information on �nancial variables (balance sheet, pro�ts

and losses, number of workers) for a subset of the total population of �rms in the industry.

This creates problems on estimating game theoretic type of models, because in these cases

we need information on the whole population of �rms, otherwise we need to control for

unobserved players. Most studies in empirical Industrial Organization have then focused on

oligopolies or regulated industries where there is information for all players in the market,

but this leaves aside a large part of industries which are relevant and interesting cases.

Furthermore, for the question I am interested in, oligopolist markets are less attractive

since in most cases all �rms are large and perform R&D. However, it will be the coexistence

in equilibrium of both R&D and non-R&D �rms that allows the identi�cation of sunk costs.

A second problem arising in the estimation is the �curse of dimensionality�which occurs

when the state space grows exponentially, either by increasing the number of �rms or the

number of states per �rm.

To deal with the problems mentioned above, I introduce the assumption of incomplete

information. By doing this the industry state is summarized by the (payo¤ relevant) aggre-

gate state. The equilibrium de�nition is then very intuitive. The evolution of the aggregate

industry state is consistent with optimal behavior and given the beliefs about the evolution

of the aggregate state agents behave optimally (single agent decision conditional on beliefs).

The assumption addresses the two problems both avoiding the �curse of dimensionality�by

reducing the dimensionality of the state space and dealing with unobserved �rms in the data

since it only requires that the aggregate industry state is observed.2

The problem can then be represented as a single agent dynamic model where beliefs about

the evolution of the industry must be consistent with actual play. I have also developed an

1Examples of these are Standard & Poor�s COMPUSTAT Database for US �rms, Bureau Van Dijk�s
FAME (UK) and AMADEUS (Europe) database or Thomson Financial�s DATASTREAM database (UK).
Only census data would contain observations for all �rms present in the industry and even in this case
smaller �rms are sampled.

2To better understand the �curse of dimensionality�problem, consider a model with several state variables
per �rm and/or large numbers of �rms. Equilibria and policy rules are then impossible to compute since the
size of the problem grows exponentially. For example, call s the industry state (i.e. if we de�ne sit the state
vector of �rm i at time t, then the industry state at time t is st = (s1t; :::sNt)), �nding the industry state
transition, Q(st+1jst), for an industry with 50 �rms and 2 binary state variables would mean calculating
a 450 � 450 transition matrix. If one assumes the typical anonymity and symmetry (Pakes and McGuire,
2001) the problem will be greatly reduced but still intractable (504 � 504). The �curse of dimensionality�is
not only a computational problem but will also arise in the estimation. As we will see ahead, if one tries to
estimate a �exible policy function on the whole industry state like proposed by Bajari, Benkard and Levin
(2007), since this industry state is very large, it will require a large quantity of data (not available on most
�rm level dataset).
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algorithm, which is represented in �gure 1, to solve the model which resembles a nested �xed

point where the inside loop solves the dynamic programing problem and the outside loop

solves for equilibrium beliefs. I can use this algorithm to recalculate the model for di¤erent

structural parameters and perform policy simulations. This would not be possible in the

Full Information case for the Moulds Industry where the average number of �rms is above

500.

In related research Weintraub, Benkard and Van Roy (2007) propose the use of a di¤erent

equilibrium concept, the approximated "Oblivious Equilibrium". In this type of equilibrium

�rms disregard the current state of the industry and base their decisions solely upon the

long run industry state. As the number of �rms in the industry grows, this converges to the

MPNE provided the industry state distribution satis�es a �light tail�condition. This result

resembles Hopenhayn (1992) and when the number of �rms grows large, with no aggregate

shocks, the equilibrium is deterministic.

The �rm�s information can work as a link between Weintraub, Benkard and Van Roy

(2007) and Ericson and Pakes (1995). To see this recall that in Ericson and Pakes, individual

states are public information (perfect information) whereas in Weintraub et al. it is as if

only the long run industry distribution is common knowledge (minimum information). In

the setting I will develop below, individual states are privately observed but the aggregate

industry state is publicly observed (partial information).

Introducing incomplete information has some potential drawbacks by implicitly imposing

more structure on the type of strategic interactions since �rms now react to the �average�

competitor (i.e. �rm A�s reaction to competitors B and C is identical either they are similar

or very di¤erent). In some cases, like oligopolist industries, this comes at a cost. However,

for industries where competition is well summarized by the aggregate state variables, this

restriction is minor. This is the case in industries where there is a large number of players,

there are no market leaders and products are di¤erentiated. Examples of these type of

industries are for example Industrial Machinery Manufacturing or Metalworking Machinery

Manufacturing (moulds, dies, machine tools). What all these industries share in common is

the fact that each �rm sells specialized products, prices are contract speci�c and information

is kept secret from competitors.

The earlier dynamic models only accounted for the e¤ects of entry and exit and did not

allowed for investment or R&D (Jovanovic, 1982; Hopenhayn, 1992). Ericson and Pakes

(1995) develop an attractive framework where players interact strategically using Markov

strategies which generates a Markov Perfect Nash Equilibrium (MPE) as de�ned by Maskin

and Tirole (1988, 2001).

However, the MPNE brings two complications. One was the possibility of non-existence

of equilibrium which Doraszelski and Satterthwaite (2005) addressed with the introduction

of privately observed i.i.d. shocks. The second, is the �curse of dimensionality�and the com-
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putational burden. Recent algorithms (e.g. Pakes and McGuire (2001)) are very successfull

in avoiding this second problem and solve the model for cases up to 10-15 �rms, by using

techniques similar to the arti�cial intelligence literature. However, they still cannot solve

problems where there is a larger number of �rms in the market.

Other theoretical models exist that study the R&D decision in an industry framework.

Vives (2004) for example does this in a static setting, but since it does not incorporate any

heterogeneity, it cannot explain the coexistence of R&D and non-R&D �rms. Klette and

Kortum (2004) use an interesting dynamic framework with the advantage of providing an

analytical solution. However, the model cannot be extended to account for R&D sunk costs

and it does not allow for aggregate uncertainty making it unattractive for the question I

want to address.

There has been an increased interest in the literature on estimating dynamic industry

model with some successful applications to oligopolies (Benkard, 2004; Ryan, 2005; Schmidt

Dengler, 2006). Several alternative techniques have been developed and this is currently

an area under research (Aguirregabiria and Mira, 2007; Bajari, Benkard and Levin, 2007;

Pakes, Ostrovsky and Berry, forthcoming; Pesendorfer and Schmidt-Dengler, forthcoming).

I use a method similar to Hotz et al. (1994) as developed by Bajari, Benkard and

Levin (2007) because it allows for both continuous and discrete actions. The estimation is

done in two steps. In the �rst step I recover the static parameters (production function,

demand elasticity, policy function and transition functions). By assumption, estimated

policies are pro�t maximizing for the actual equilibrium observed in the data. I can then

estimate continuation values by simulating industry paths far enough in the future using

the estimated policies and transitions. Using non-optimal policies by slightly perturbing the

estimated policy functions I can simulate alternative (non-pro�t maximizing) continuation

values. With these optimal and non-optimal continuation values and exploring the property

that the value function is linear in the dynamic parameters, I can recover the parameters

by imposing the equilibrium condition that optimal continuation values must be larger then

non-optimal continuation values, without needing to recalculate continuation values for each

set of parameters.

The minimum distance estimator explores the optimality condition by searching for the

parameters that minimize the cases where the continuation values for the non-optimal poli-

cies are larger than the continuation values for the estimated policies. These are the para-

meters which are consistent with actual behavior being optimal.

One alternative I have not explored here is the possibility of using a nested �xed point

estimator as suggested by Rust (1987). The reason why I can do this is because conditional

on equilibrium beliefs for the evolution of the industry state, agents solve a simple dynamic

programing problem. The equilibrium beliefs can be directly recovered from the data and
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parameters estimated using a single agent approach.3

To con�rm the validity of the used assumptions, I perform some speci�cation tests.

The main objective of introducing incomplete information into the model is to solve the

�curse of dimensionality�problem by summarizing the industry state distribution into the

aggregate industry state. This allows the restriction to Markovian strategies on own state

and aggregate (payo¤ relevant) industry state to work. However, problems occur if the

(equilibrium) aggregate industry state does not follow a �rst order Markov process because

Markovian strategies are no longer optimal and previous lags of the aggregate industry state

are relevant, potentially making optimal strategies history dependent. This can be checked

by testing the signi�cance of previous lags (t-2 and above). An alternative I have also

explored, is to test the signi�cance of further moments of the industry state distribution

in predicting the evolution of the aggregate state. If previous lags of the aggregate state

and/or further moments of the industry state distribution are not signi�cant in predicting

the aggregate industry state, the model is well speci�ed.

The data I use has been collected by the Bank of Portugal ("Central de Balancos")

yearly for the period 1994-2003. This industry competes in the international market (90%

of total production is exported, mainly supplied to the auto industry) and it has recently

faced increased competition from Asian countries. The strategy adopted by most players has

been to reinforce strong links with clients, to develop new materials (product innovation)

and minimize waste (process innovation). Given the state of the industry, most �rms would

be expected to perform R&D since according to the experts it is the only way to survive

the strong competition. The sector has developed partnerships with Universities to achieve

this and has been quite successful internationally. However, a signi�cant proportion of �rms

(56% in my sample for the year 2003) still reports no R&D. Some under reporting could be

happening because the accounting rules to qualify as R&D expenditures are quite restrictive.

However, under reporting cannot explain the large number of �rms not reporting R&D. I

will argue that it is due to high sunk costs of starting R&D and I will estimate these from the

data. Since the industry is populated by many small �rms and the products and prices are

contract speci�c, the industry �ts very well in the models�assumptions. Finally I evaluate

the impact of a 25% reduction in the sunk costs of R&D. This results in an 11% increase in

average productivity and 18% increase in average capital stock.

The rest of the paper is organized as follows. In section 2 I outline the model, section 3

provides details of the application, section 4 describes the estimation, section 5 gives a brief

introduction to the moulds industry, section 6 summarizes the data, section 7 contains the

results and section 8 the policy experiments, in section 9 I provide some possible extensions

and future research and �nally section 10 concludes.

3The main problem with such approach is its computational cost even for the single agent case when
there are several individual state variables.
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2 The aggregate state dynamic model

2.1 States and actions

This section describes the elements of the general model. Time is discrete and every period,

t = 1; 2; :::;1, there are N �rms in the market (Nt incumbents and N�
t = N �Nt potential

entrants) and a typical �rm is denoted by i 2 f1; :::; Ng

States Agents are endowed with a state (discrete or continuous) sit 2 si and a vector
of payo¤ shocks 'it 2 J. Both the state and the payo¤ are privately observed by the players.
The econometrician observes the states, sit, but not the payo¤ shocks, 'it.

Assumption 2.1 (a) Individual states and actions are private information and;

(b) p(stjSt; :::; S0) = p(stjSt)

The industry state is st = (s1t; :::; sNt) 2 sNi . The vector of payo¤ shocks is drawn i.i.d.
and assumed to depend on the actions of the players. This satis�es Rust�s (1994) conditional

independence assumption and allows the value function to be written as a function of the

state variables which keeps the number of payo¤ relevant state variables small.

Actions Incumbents choose l = lc + ld actions that can be continuous acit 2 Ac � Rl
c

or discrete (exit, R&D start-up) adit 2 f0; 1gl
d

and ait = facit; aditg 2 A � Rlc � f0; 1gld .
Throughout the analysis I will restrict discrete actions to be binary for a matter of simplicity

and I also use one continuous variable (investment) and one discrete variable (entry/exit).

For example, if adit represents �status�and �rms choose to exit the industry they set a
d
it = 0

and receive a �scrap�value, 'scrapi . Potential (short lived) entrants may choose to pay a

privately observed entry cost ('entryi ) and enter the industry.

Assumption 2.1 implies that the only common information is the aggregate state. More-

over it says that all we can learn about the state of the industry st is contained in St and

history (St�1; :::; S0) brings no more additional information.

State transition

Assumption 2.2 (No Spillover) Conditional on current state and actions, own state evolves

according to the transition function

p(sit+1jsit; ait)

Per period payo¤ Time is discrete and �rms receive per period returns which depend

on the state of the industry, current actions and shocks (�(ait; st; 'it)).
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Assumption 2.3 (a) There exists a function (S : sN ! S 2 R) that maps the vector

of �rm�s individual states (st) into an aggregate state (S(s1t; s2t; :::; sNt)) and this state is

observed with noise (St = S(s1t; s2t; :::; sNt) + "t, where "t is i.i.d. distributed �("t) and

bounded support).

(b) Per period returns can be written as

�(ait; st; 'it) = �(ait; sit; St; 'it)

Under this assumption, St is the payo¤ relevant variable observed by all agents. The

random shock, "t, guarantees that there is no perfectly informative state St from which we

can exactly recover (s1t; :::; sNt). The intuition for this error term is the following, imagine

sit is marginal cost which a¤ects pricing in the stage game so that the price is a function of

the state p(sit; St). If players make pricing mistakes, the actual price they set is p(sit; St)+"it,

where "it is i.i.d, the aggregate state is then St =
NX
i=1

p(sit; St) + "
i
t =

NX
i=1

pit + "t, since "it is

i.i.d. we can rewrite "t =
NX
i=1

"it. Note that the payo¤ relevant shocks ('it) have no impact

on the stage game pricing. One type of demand which meets this assumption is:

Example 1 With CES demand where the state is individual price (pi) and demand elasticity

is �: St =
PN

i=1 pit + "t.

The timing is the following:

1. States (st) and shocks ('it) are formed,

2. Actions (at = (a1t; ::; aNt) are taken simultaneously (given the observed state),

3. Firms compete in the market and receive period returns (�(:)).

4. Exitors leave the market and collect the exit fee and entrants pay the entry fees. All

costs are incurred

5. Both stochastic and deterministic outcomes of actions are realized. New state is formed

(st+1).

2.2 Strategies

For each state �rms can take actions in some space ait 2 A. Restricting to Symmetric

Markovian Pure Strategies,4 these strategies, � map the set of states into the action space

� : s � S � J ! A (�it(sit; St; 'it) = (�cit(sit; St; 'it); �
d
it(sit; St; 'it))) where the action

space is

4Anonymity as de�ned in Ericson and Pakes is imposed by assuming that �rms do not observe each
others state.
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A(sit; St; 'it) =

8<: f0; 1g � [0; �ac] if sit 6= se

f0; 1g sit = s
e

Using symmetry we can drop the i subscript and imposing stationarity we can drop the

t subscript: �it(sit; St; 'it) = �(sit; St; 'it):

Proposition 2 Under assumptions 2.1 to 2.3 the industry aggregate state conditional dis-

tribution takes the form q(S0jS).

Proof. See appendix.

So while the industry state is a vector st = (s1t; s2t; :::; sNt), St is a scalar variable that

maps individual �rm�s states into an aggregate industry state St = g(s1t; s2t; :::; sNt) + "t.

Since this result allows me to focus on optimal strategies that just depend on individual and

the aggregate state, I test the validity of this result in the empirical section.

When some actions and states are not observed, the �rm has to condition its strategies

on the expected actions and state of the competitors. When nothing is observed about

the competitors, the �rm will have the same expectation about the state and actions for

all competitors. To understand the implications of the incomplete information assumption,

recall that in the Ericson and Pakes framework with the symmetry and anonymity assump-

tion �rms keep track of the industry state distribution and not the whole industry state

vector as it would be the case with no anonymity. In the incomplete information case what

matters is just the �rst moment of this same distribution so this imposes slightly stronger

conditions than the usual symmetry and anonymity. The structure implicitly imposed upon

the strategic interactions is that the �rm will have the same expectations for all di¤erent

competitors and will react symmetrically to all of them (i.e. �rm A�s reaction to competitors

B and C is identical either they are similar or very di¤erent, what matters is the average

competitor). Notice that implicitly, knowledge about the own state is considered to have

no impact on the evolution of the aggregate state conditional on knowing the current state,

i.e., q(St+1jsit; St) = q(St+1jSt).

Corollary 3 Under assumptions 2.1 to 2.3 and when St =
PN

i=1 h(sit)+ "it, as N becomes

large q(S0jS) is approximately normally distributed with conditional mean �S0jS = (1 �
�S)�S+�SS and standard deviation �S0jS = �S(1��2)1=2. Where �S ; �2S ; �s are respectively
the unconditional mean, variance and autocorrelation for the St process.

Proof. By the Central Limit Theorem.

Corollary 4 Three moments of the aggregate state distribution, (�S ; �S ; �S) fully charac-

terize q(S0jS).

Proof. Follows from Corollary 3.
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Value function Given Proposition 2 and Assumption 2.2, we can write the ex-ante

value function de�ned as the discounted sum of future payo¤s before player speci�c shocks

are observed and actions taken, as

V (sit; St; p(aitjsit; St); q)

=

Z
acit

X
adit

24 R
'
it

�(ait; sit; St; 'it)p('itjait)

+�
R
sit+1;St

Vi(sit+1; St+1)p(dsit+1jsit; ait)q(dSt+1jSt)

35 p(acitjsit; St)p(aditjsit; St)dacitd'it
This continuation value depends on the beliefs about the transition of the aggregate

state. These beliefs depend on the equilibrium strategies played by all players. Notice

that since �rm i does not observe sjt;8j 6= i, it can only form an expectation on its ri-

vals actions conditional on the information available St, p(sj jS) =
R
sj
��(sj ; S)g(sj jS)dsj

where g(sj jS) is the probability density function of �rm j�s state conditional on S and

��(sj ; S) =
R
'j
�(sj ; S; 'j)p('j jaj)d'j . The assumption has a similar e¤ect to mixed strate-

gies or privately observed information in Doraszelsi and Saterthwaite (2005) which smooths

out the continuation value and guarantees existence of equilibria.5

2.3 Equilibrium

The equilibrium concept is Markov Perfect Bayesian Equilibrium in the sense of Maskin and

Tirole (1988, 2001). Since I restrict to Markovian pure strategies that the �rm can take

actions ait 2 A(sit; St; 'it) the problem can be represented as:

V (sit; St; 'it; q) = sup
a2A(s;S;')

h(s; S; '; a; V ; q)

where

h(s; S; '; a; V ; q)

=
�
�(sit; St; 'it; ait) + �EfV (sit+1; St+1; 'it+1)jsit; St; ait; qg

De�nition 5 A collection of strategies and beliefs (�; q()) constitute a Markov perfect equi-

librium if:

(i) Firms�strategies (�it = ��(sit; St; 'it; q)) conditional on beliefs about industry evolu-

tion (q) maximize the value function

V (sit; St; 'it; q) = h(s; S; '; �(s; S; q); Vi; q) 8� 2 �; s 2 s; S 2 S;' 2 J

5Note that this was a problem with the original Ericson and Pakes framework which Doraszelski and
Satterthwaite have shown to cause the model not to have an equilibrium in pure strategies in some cases.
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where E
�
V (si;t+1; St+1; 'it+1)jsit; St; 'it

�
=
R
s2s
R
S2S V (si;t+1; St+1)~q(dsit+1; dSt+1; 'it+1jsit; St; 'it)

and

~q(sit+1; St+1; 'it+1jsit; St; ; 'it) = q(St+1jSt)p(sit+1jsit; ��it(:jq))p('it+1jsit+1)
(ii) all players use Markovian strategies �(sit; St; 'it)

(iii) The transition matrix (q�(St+1jSt; ���(sit; Stjq))) resulting from using optimal strate-
gies (��it) de�ned above is consistent with beliefs q(St+1jSt)

The solution to the dynamic programming problem conditional on q provides optimal

strategies ��(:jQ) and a solution exists, under Blackwell�s regularity conditions. These

strategies will then characterize the industry conditional distribution q(St+1jSt;��) and the
equilibrium is the �xed point to a mapping from the beliefs used to obtain the strategies

into this industry state transition

�(q)(St+1jSt) = q�(St+1jSt;��(:jq))

where �rm�s follow optimal strategies ��(:). An equilibrium exists when there is a �xed

point to the mapping �(q) : Q! Q

Theorem 6 An equilibrium q� exists.

Proof. See appendix.

2.3.1 Uniqueness

The problem of multiple equilibrium is recurrent in this type of games and has been widely

discussed in the literature. One of the main problems is the signi�cant di¢ culties that

arise in estimating the model when one cannot fully characterize the whole set of possible

equilibria.

"However, discrete games with incomplete information have a very di¤erent equi-

librium structure than games with complete information. For example, in a sta-

tic coordination game Bajari, Hong, Krainer and Nekipelov (2006) show that the

number of equilibria decreases as the number of players in the game increase. In

fact, the equilibrium is typically unique when there are more than four players.

In a complete information game, by comparison, the average number of Nash

equilibrium will increase as players are added to the game (see McKelvey and

McLennan (1996)). Thus, the assumption of incomplete information appears to

re�ne the equilibrium set." Bajari, Hong and Ryan (2007: 11)

Given the structure of the game developed above, I can compute the set of equilibrium.

Using corollary 4 the equilibrium is de�ned by a triple (�S ; �S ; �S). Given this triple I can

solve the model for any starting vector (�0S ; �
0
S �

0
S) and compute the resulting equilibrium.
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Figure 2 represents the con�guration for any starting value of (�S)
6 and corroborates the

�ndings by Bajari et al (2006) supporting the idea of uniqueness of equilibrium for this

model. Whereas in general uniqueness is di¢ cult to prove, with this framework it can be

checked by looking at all possible equilibrium con�gurations (�S ; �S ; �S) 2M�D�R and

M�D�R is a compact set.

2.4 Discussion

The model above brings some of the ideas developed in Doraszelski and Satterthwaite (2005)

to address the (in)existence of equilibrium in Ericson and Pakes (1995). Instead of intro-

ducing i.i.d. stochastic shocks for the discrete decisions, I introduce incomplete information

in an extreme form where no �rm knows their competitors�individual state. Firms attach

probabilities to the outcomes which smooths the continuation values and eliminates the

discreteness that caused non-existence problems in the Ericson and Pakes framework.

Reducing the industry state into the payo¤ relevant aggregate state by introducing in-

complete information avoids the �curse of dimensionality�. As noted before, this imposes

more structure on the type of strategic interactions by making strategic reactions identical

to all competitors. In a sense this condition imposes slightly stronger restrictions than the

usual anonymity and symmetry assumptions which are also fundamental to reduce the di-

mension of the state space. Symmetry and anonymity are a restriction that allows the state

space to be characterized more compactly as a set of "counting measures" (i.e. the industry

state distribution).

In a di¤erent area of research, Krusell and Smith (1998) use a similar idea whereby the

evolution of the aggregate variables in the economy is well approximated by some summary

statistics even in the presence of substantial heterogeneity in the population.

Empirical applications avoid the calculation of the equilibrium but they require estimat-

ing Pr(s0js) from the data (Pakes, Ostrovski and Berry, forthcoming) or estimating the policy
functions �(s; ') (Bajari, Benkard and Levin, 2007). However, if the industry state is large,

since it does not solve the �curse of dimensionality�, it will require a very large amount of

data to �exibly estimate either Pr(s0js) or �(s; '). Estimating very �exible policies can lead
to serious bias in the second stage estimates which arise because the �rst stage parameters

enter nonlinearly in the second stage. Therefore any error in the �rst stage can be greatly

magni�ed into the second stage (Aguirregabira and Mira, 2007). In an empirical application

to the Portland Cement Industry, Ryan (2005) used the sum of competitors capacities as

the state variable rather than the individual capacities of competitors. While doing this

for tractability reasons, it is in fact imposing that the players strategies are of the form

�(s; S; ') instead of �(s; ').

6 (�; �) are held constant only for simplicity in order to provide a visual representation.
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Assumptions 2.3 and 2.1 might be seen as restrictive in some settings.7 The �rst is

satis�ed by most reduced form pro�t functions whenever S is payo¤ relevant. The algorithm

is therefore �exible enough to allow di¤erent demand structures provided the aggregate state

is the payo¤ relevant variable.

The second assumption is more restrictive as it imposes that �rms do not observe each

other�s states (and actions) and also that history of the aggregate state is irrelevant condi-

tional on the current state. For example, imagine the state variable is price, this means that

�rms observe industry aggregate prices (e.g. published by some entity or magazine) but they

do not observe �rms individual prices because this would involve incurring in costly market

research. In several industries �rms try to keep their prices secret. In fact, when R&D is

important, we would probably expect to see industrial secrecy being used as a strategic tool.

In industries where there are market leaders, Assumption 2.1 will possibly not hold.

However, the model can be extended in these cases by enlarging the state space to include

the state of the market leaders. Instead of one there are two problems to solve, one for the

leader and one for all other �rms and the state space becomes (sit; St; sLt) where sLt is the

state of the leader.

Once q(St+1jSt) is known the problem can be represented as a standard dynamic pro-

gramming problem which can be estimated with available techniques for single agent models

(Rust (1987), Hotz and Miller (1993), Aguirregabiria and Mira (2002)). Alternatively, we

can apply the estimators developed for dynamic games.

3 Recovering the Sunk Costs

To estimate the sunk costs of R&D, I use a model where �rms sell di¤erentiated products

facing a CES demand. They can invest both in physical capital and decide to engage in

R&D for which they have to pay a sunk cost. This sunk cost can have several sources from

building an R&D lab to the costs involved in internally changing the �rm�s organization or

even credit constraints. Finally potential entrants can enter and incumbents can exit.

3.1 State and action space

The state space is represented by four variables: Physical capital, productivity, R&D status

and operating status (enter/exit)

sit = (Kit; !it; Rit; �it)

where Kit 2 K; !it 2 
; Rit 2 f0; 1g; �it 2 f0; 1g where � = 1 means the �rm is active

7Assumption 3 (�no spillover�) is standard in the literature and it allows us to write down the transition
for the individual state conditional on the �rms�actions independently of the other �rms�action/states.
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and R = 1 means the �rm has built the R&D lab.

After entering the industry, �rms can invest in physical capital, pay a sunk cost and

engage in R&D (this is done only once and R&D can be done forever) and �nally decide on

exit from the industry.

ait = (a
c
it; a

d
it) = (Iit; Rit+1; �it+1)

where Iit 2 I
This generates a law of motion for the state variables that depends on actions

si;t+1 = s(sit; ait)

As will be explained below, this law of motion will be stochastic for productivity and

deterministic for all other state variables.

3.2 Parametrization

Per period returns are a primitive of the model which must be speci�ed �(sit; St; ait; 'it).

I �rst de�ne the demand and production functions and then, assuming Bertrand pricing, I

solve for the reduced form period returns. The period return function satis�es Rust�s (1994)

conditional independence and additive separability assumptions

�(sit; St; ait; 'it) = ~�(sit; St; ait) + 'it(ait)

3.2.1 Demand

Using the Dixit-Stiglitz monopolistic competition framework,8 there are Nt available goods,

each supplied by a di¤erent �rm so there are Nt �rms in the market. Consumers choose

quantities of each good Qi to consume and pay Pi with the following preferences

U

0@ X
i

Qi
��1
�

! �
��1

; Z

1A
With U(:) di¤erentiable and quasi-concave and Z represents aggregate industry shifter.

The aggregate price index is

~P =

 
NX
i=1

P
�(��1)
i

!� 1
��1

(1)

and demand becomes (see Appendix A.3):

8As explained before the model may work with other demand structures.
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Qi = ~Y ~P��1P��i (2)

Where
�
~Y
~P

�
=

PNt
i=1 PiQi

~P
is total industry de�ated revenues. If the goods were perfect

substitutes (� is in�nite), then there can be no variations in adjusted prices across �rms,

Pi = ~P and
~Yi
~P
= Qi for all �rms.

3.2.2 Production function

The production technology uses both capital (K) and labor (L) with a given productivity

factor (!) according to a Cobb Douglas

Qi = !iL
�
i K

�
i (3)

It is easy to show9 that maximizing out for labor, ~� = P (Q)Q� wL becomes,

~�(!i;Ki; S;�; �) =
1




�
� � 1
�

�
~Y

�
!iK

�
i

�

P

j

h
!jK

�
j

i
 (4)

where 
 2 [0; (1 � �)�1], St = ~Yt=
P

j

h
!jK

�
j

i

is the state of the industry and (�; �)

are the elasticity of substitution and capital coe¢ cient, respectively.

Notice that since in the short run, productivity and physical capital are �xed, the only

way to adjust production is through labour which is assumed to be perfectly �exible.

Productivity The assumption os that R&D generates stochastic innovations that af-

fect the pro�ts. The source of the e¤ect on pro�ts can be via revenues (product innovation,

i.e. either by developing a new product or improving the quality of an existing product R&D

outcome changes the revenues and therefore the pro�ts of the �rm) or via costs (process in-

novation, i.e. by changing a current process of production, or improving the use of resources

the R&D outcome will a¤ect the costs of the company and therefore its prices). In general,

product and process innovation are di¢ cult to disentangle from each other unless one has

�rm level price data. Since in my data I do not have price data I consider them to be

indistinguishable in the model and restrict the analysis to the e¤ect on productivity, !. The

model can however be extended to allow for quality in the demand speci�cation (see Melitz,

2000). This distinction would be important to model other type of phenomena like dynamic

pricing, where the e¤ects of product and process innovation would be qualitatively di¤erent.

This �internal�source of uncertainty distinguishes R&D investment from other �rm�s deci-

sions like capital investment, labor hiring, entry and exit which have deterministic outcomes

and where the only source of uncertainty is �external�to the company (e.g. the environment,

9See Appendix A.4.
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competition, demand). This distinction is important since the stochastic R&D outcome will

determine (together with entry and exit) the stochastic nature of the equilibrium (Markov).

3.2.3 Cost function

Investment cost Investment cost takes the traditional quadratic adjustment form

(Hayashi 1982). I do not introduce non-linear adjustment costs (Cooper and Haltiwanger

1995 and 2000) because in the data there are not many observations with zero investment.

I however introduce investment irreversibility by restricting it to be positive, It 2 R+ so

that there is no disinvestment. Bond and Van Reenen (2003) provide a good survey on

investment models. The investment costs take the following form

CK(It) = �1It
2 + (�2 + �3'

inv
it )It (5)

R&D technology To start up R&D, �rms have to pay a sunk cost of ($0 +$1'
RD
it )

(e.g. to build the R&D lab). From there onwards the assumption is that the level of R&D

is set at an exogenous so I will not deal with the continuous R&D choice. The reason why

I do this is to avoid the estimation for the productivity evolution dependent on the R&D

level chosen. This would require some type of parametrization and could introduce more

error in the second stage estimates. Given the evidence from the empirical literature, the

assumption is not restrictive since R&D intensity is typically highly autocorrelated which

supports the idea that �rms set the R&D at an exogenous optimal level, independent from

the current state.

Notice that we have to introduce a binary state variable to track if the R&D sunk cost

has been paid or not R 2 f0; 1g. The productivity evolves stochastically depending on
whether the R&D sunk cost has been paid or not, i.e.

p(!i;t+1j!it; Rit)

Entry cost Potential entrants are short lived and cannot delay entry. Upon entry,

�rms must pay a (privately observed) sunk entry fee of �3+�4'
entry
it to get a draw of ! with

distribution p(!0j� = 0) next period. The capital stock level upon entry is �xed K = K

and R = 0, i.e., �rms enter the market with a capital stock of K and no R&D. Active �rms

take a value � = 1 and inactive �rms � = 0.

Exit value Every period the �rm has the option of exiting the industry and collect a

scrap exit value of �1 + �2'
scrap
it .

Payo¤ shocks The vector of payo¤ shocks ' = ('inv; 'RD; 'entry; 'scrap) are i.i.d.

standard normal.
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3.2.4 State transition

Productivity is stochastic and follows a Markov process.

!it+1 = E(!it+1j!it; R) + �it

The capital stock depreciates at rate � and investment add to the stock:

Ki;t+1 = (1� �)Kit + Iit

If a �rm decides to start R&D, the sunk cost is paid only once and does not need to be

paid ever again while the �rm stays in the industry:

Ri;t+1 =

8<: 1 if Rit = 1 or Ri;t+1 = 1

0 otherwise

If a �rm exits it sets �i;t+1 = 0 and if it enters it sets �i;t+1 = 1

�i;t+1 =

8>>>>><>>>>>:
1

if �it = 0 and �rm i enters OR,

�it = 1 and �rm i stays

0
if �it = 0 and �rm i does not enter OR,

�it = 1 and �rm i exits

3.2.5 Period Returns

Using the above speci�cation I can write the per period return function

�(!it;Kit; Rit; �it; Rit+1; �it+1; Iit; St) =

=

8>>><>>>:
�it

0@ 1



�
��1
�

�
~Yt
(!itK�

it)

P

j[!jtK
�
jt]


 � �1I2it � �2Iit � 'invit Iit

�($0 +$1'
RD
it )(Rit+1 �Rit)Rit+1 + (1� �it+1)(�1 + �2'

scrap
it )

1A
�(1� �it)�it+1(�3 + �4'

entry
it )

9>>>=>>>;
Where 'it = f'

entry
it ; 'scrapit ; 'invit ; '

RD
it g is a collection of i.i.d. standard normal payo¤

shocks. Using the demand speci�ed above (2) there are two �external�variables that a¤ect

company�s revenues. One is market size ( ~Y ) and the other is competitors�adjusted price

index ( ~P ). Since individual prices are determined by productivity and physical capital

(P �i = P (!i;Ki; ~P ; ~Y ), see appendix), the price index is a mapping from individual �rms�

productivity and capital stock onto a pricing function so that we get the �nal result for the

aggregate state variable

St = ~Yt=
X
j

h
!jtK

�
jt

i

(6)
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It is important to recall that as explained before, �rms adjust production to maximize

short run pro�ts through the only �exible input, labor.

3.3 Value Function

The value function for the �rm is

V (sit; St; 'it; q) = sup
a2A

h(sit; Ss; 'it; ait; Vit; q)

where

h(sit; St; 'it; ait; Vit; q)

= ~�(sit; St; ait) + 'it(ait) + �EfV (sit+1; St+1)jsit; St; ait; qg

sit and ait have been de�ned above and the expectation E[:jsit; St; ait; q] is taken over
p(!0j� = 0)q(S0jS) if � = 0 and p(!0j!;R)q(S0jS) if � = 1. So the �rms decide on next

period capital investment (K 0), R&D start-up (R0) and next period operating status, i.e.

entry and exit (�0).

Firms optimally choose their entry, exit, R&D and investment given the knowledge about

the evolution of the industry q(S0jS).
There are two di¤erent value functions depending on the �rm being an incumbent (�it =

1) or a potential entrant (�it = 0). For incumbents, the value function is the sum of

current returns and the expected continuation value which depends on current individual

state (sit), current industry state (St) and actions taken (ait). For the potential entrant the

value function is either zero if it chooses to remain outside (�it+1 = 0) or the sum of the

entry cost with the continuation value which depends on the aggregate industry state (St)

and the entry state distribution (p(sit+1j�it = 0)).

4 The Estimation

There are currently several proposed alternatives to estimate dynamic industry models in the

recent surge of estimation techniques which extend the work of Hotz and Miller (1993) for

single agent models (see Pesendorfer and Schmidt-Dengler, forthcoming; Aguirregabiria and

Mira, 2007; Bajari, Benkard and Levin, 2007; and Pakes, Ostrovsky and Berry, 2007). I will

follow the technique developed by Bajari, Benkard and Levin (2007) since this allows for both

discrete and continuous choices and is easily applicable to the model outlined above. This

framework has been applied by Ryan (2006) to study the impact of environmental regulation

changes on capacity investment for the cement industry in the US. The industry state is the
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sum of competitors�capacities rather than the individual capacities of competitors and this

resembles the model I am about to estimate.

The estimation proceeds in two steps. In the �rst step I recover the production func-

tion parameters (�; �), the demand elasticity (�), unobserved productivity (!it) as well as

the state transition (Pr(!0j!;R) and q(S0jS)) and equilibrium policy function (�(:)). In

the second step, I impose the equilibrium conditions to estimate the linear and quadratic

investment costs parameters, R&D sunk costs and exit costs (�1; �2; $0; �1).

By simulating actions and states from a starting con�guration and collecting these paths

through time, I can calculate the present-value for a given path and a given set of parameters.

Slightly perturbing the policy functions allows me to generate alternative paths and di¤erent

present-values for a given parameter vector. The observed policy functions were generated

by pro�t-maximizing �rms who chose the actions with the highest expected discounted value.

This means that at the true parameters, the discounted value generated by the observed

actions should be greater than those generated by any other set of actions.

My main interest is recovering the R&D sunk costs, $0. Getting a good estimate of sunk

costs of R&D is important because these will determine R&D performance and consequently

innovation and productivity which are topics of extreme importance for policy makers. Sec-

ond, these will have an e¤ect on market structure and competition as explained by Sutton

(1998).

For most industries, the R&D/Sales ratio is not very high (2%-5%). This is puzzling if

we recall that only a fraction of the �rms actually perform R&D. The reason must then be

that either the returns to R&D are too low or that there are very high sunk costs involved

that prevent �rms from engaging in R&D (credit constraints could also be a cause and they

could be modeled in a similar fashion). With all dynamic cost parameters recovered, I can

then do some policy analysis to study changes in the amount of R&D and industry structure

when one changes the sunk costs of R&D.

One hotly debated (and unsolved) issue is the link between competition and R&D perfor-

mance. Aghion et al. (1999) provide a theoretical explanation and some empirical evidence

arguing that there is an inverted U-shape relationship between these two, whereby innova-

tion is higher for mid levels of competition but lower for either very competitive or little

competitive industries. However, since both market structure and R&D performance are

jointly determined in equilibrium, it is not easy to disentangle these e¤ects without a dy-

namic model that addresses the market structure endogeneity issue.

4.1 First step

In the �rst step I recover the static parameters (production function, demand, policies and

transitions). This then allows me to compute the per period returns, simulate actions for a

given state using the estimated policies and update the states using the transitions which
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will be the hearth of the second step.

4.1.1 Productivity

Productivity is not directly observed but there are methods10 to estimate it as the residual

from a production function estimation (Olley and Pakes, 1995; Levinshon and Petrin, 2003;

De Loecker, 2007). To be coherent with the theoretical model I use a methodology similar

to De Loecker (2007) which allows me to recover both the production function parameters

and the demand elasticity when one uses de�ated sales instead of quantities. The main

problem with De Loecker (2007) is that it is inconsistent with the model I have outlined.

The reason for the inconsistency arises from the fact that input demand function depend

on the industry state, more precisely on the aggregate industry state. This means that the

elasticity of demand cannot be recovered in the �rst step since the input demand is also a

function of the aggregate sales and I can only recover it only in the second step together

with the capital coe¢ cient. To see this notice that sales are P:Q so taking the logs and using

(2) and (3) from above:

yit = pit + qit =
1

�
~yt +

� � 1
�

~pt +
� � 1
�

(!it + �kkit + �llit)

or

yit � ~pt =
1

�
(~yt � ~pt) +

� � 1
�

(!it + �kkit + �llit)

The �rst problem is then that the unobserved productivity term !it is possibly correlated

with the inputs. Levinshon and Petrin (2003) propose the use of materials to control for the

unobservable. To see this recall that input demand is a function of individual states and the

aggregate state

mit = m(!it; kit; ~yt)

Assuming that mit is monotonically increasing in !it this can be inverted

!it = !(kit; ~yt;mit)

and the unobservable is now a function of observables. Imposing that productivity is

governed by a �rst order Markov process we get

!it = E[!itj!it�1] + �it

10Ackerberg et al. (forthcoming) provide a survey on the literature for estimating production functions.
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First stage From above we can rewrite the production function as (using de�ated sales

as variables ypit = yit � ~pt)

ypit =
1

�
~ypt +

� � 1
�

(�kkit + �llit) +
� � 1
�

!it + "it

=
� � 1
�

�llit + �(kit; ~y
p
t ;mit) + "it

where

�(kit; ~y
p
t ;mit) =

1

�
~ypt +

� � 1
�

�kkit +
� � 1
�

!(kit; ~y
p;mit)

And we can estimate this non-parametrically using an nth-order polynomial. This pro-

vides estimates of \��1� �l and �̂.

Second stage For the second stage I use the estimated values to construct

�̂it = ŷit �
\� � 1
�

�
l
lit

with this we can give an estimate of ��1� !it for a given �̂�1
� �k and e1�

\� � 1
�

!it = �̂it �
e1
�
~yt +

^� � 1
�

�kkit

Using this we can approximate non-parametrically E[!itj!it�1] with an nth-order poly-
nomial

yit �
\� � 1
�

�llit =
1

�
~yt +

� � 1
�

�kkit + E[!itj!it�1] + �it + "it (7)

=
1

�
~yt +

� � 1
�

�kkit +

+

24 
0 + 
1

�
�̂it�1 � 1

� ~yt�1 �
��1
� �kkit�1

�
+:::+ 
n

�
�̂it�1 � 1

� ~yt�1 �
��1
� �kkit�1

�n
35

+�it + "it

Using non-linear least squares allows us to �nally recover an estimate for 1
� and

��1
� �k.

Potential problems of the second stage For the second stage estimation to work,

the error term of equation (7), �it + "it, must be uncorrelated with kit and ~yt. While

this might be a reasonable assumption for kit due to the timing of investment that makes

kit independent from �news� in period t, the same is not necessarily true for ~yt if in the

productivity shock �it there is an aggregate time component �t. One potential instrument
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is the use of lagged ~yt�1.

4.2 Policies and transitions

4.2.1 Policies

With all state variables observed (!;K; ~Y ;R), the policy functions can be easily estimated.

To recover the equilibrium policies I use a polynomial expansion on the state variables

�(s; S). For the investment function I use OLS while for entry and R&D I use a probit

speci�cation. I have tried di¤erent degrees for the polynomials and there is a clear preference

over polynomials with smaller degrees because they produce policy functions with less noise.

Since errors in the policy functions enter nonlinearly in the second step, this can signi�cantly

bias the estimates in small samples.

4.2.2 The transition function

Aggregate state From Corollary 4 the observed aggregate state should have a conditional

normal distribution with mean �S0jS = (1��S)�S+�SS and variance �S0jS = �S(1��2S)1=2.
Where (�S ; �S ; �S) are respectively the unconditional mean, variance and autocorrelation

for S and are easily estimable from the data.

Productivity Since the model does not impose any parametric restrictions on the transi-

tion for individual productivity, I estimate it separately for R&D and non-R&D �rms using

a polynomial on lagged productivity (gRD(!i;t�1); gNRD(!i;t�1)). The main assumption is

that

!i;t+1 = E(!i;t+1j!it; Rit) + "Rit+1 = �R0 + �R1 !it + �R3 !2it + �R3 !3it + "rit+1

which is estimated separately for R&D �rms and non-R&D �rms

4.3 Second Step (minimum distance estimator)

Assuming the policy and transition functions are consistently estimated, starting from a state

con�guration (s0; S0), I can draw vectors of payo¤ shocks ' = ('inv; 'RD; 'entry; 'scrap),

simulate actions (a0) by reading o¤ the policy functions and update states (s1; S1) by reading

o¤the transition functions. Doing this for long enough periods (each path has been simulated

for �T periods), I compute a sequence of actions and states fat(s0; S0; '0); st(s0; S0); St(s0; S0)g
�T
t=1

from a starting con�guration (I have used ns di¤erent starting con�guration combina-

tions for (s0; S0)). With this sequence of actions and states, I can compute the dis-

counted stream of pro�ts for a given parameter vector � and a given �rst step estimate

~�,
P �T

t=0 �
t�(at; st; St; 't; ~�; �) which gives me an estimate of the expected value from a
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starting con�guration EV (s0; S0; ~�; �) =
P �T

t=0 �
t�(at; st; St; 't; ~�; �).

11 For each starting

con�guration I simulate nJ di¤erent path to get an average estimate EV (s0; S0; ~�; �) =
1
nJ

PnJ
j=1

P �T
t=0 �

t�(ajt ; s
j
t ; S

j
t ; '

j
t ; ~�; �).

In order for a strategy, �, to be an equilibrium then it must be that for all �0 6= �

V (s; S;�;Q(S0jS); �) � V (s; S;�0; Q(S0jS); �)

So the set of dynamic parameters �, must rationalize the strategy pro�le �. I just consider

the case where � is point identi�ed whereas Bajari et al. (2007) also develop the method for

(bounds) set identi�cation on �.

Given the linearity of the value function on the dynamic parameters I can write

V (s; S;�;Q(S0jS); �) =W (s; S;�;Q(S0jS)) � �

whereW (st; St;�;Q(S0jS)) = E�jst;St
P1

s=t �
swt and � = [1; �1; �2; $0; �1], wt =

�
�(ss; Ss;�;Q); Is; I

2
s ; 1(Rs+1 = 1; Rs = 0); 1(�s+1 = 0; �s = 1)

�
.

I construct alternative investment, R&D and exit policies (�0) by drawing a mean-zero

normal error and adding it to the estimated �rst stage policies. With these non-optimal

policies I construct alternative expected value following the same procedure as before to get

W (s0; S0;�
0; Q(:)) (I calculate these values for n� alternative policies).

I then compute the di¤erences between the optimal and non-optimal value functions for

several (Xk) policies and states (Xk; k = 1; :::nI), where nI = n� � ns

ĝ(x; �; ~�) =
h
Ŵ (s; S; �̂; Q̂(S0jS))� Ŵ (s; S; �̂0; Q̂(S0jS))

i
� �

Since the estimated policies should be optimal, then the expected value when using �

should be bigger than using alternative �0. The empirical minimum di¤erence estimator

then minimizes the square of the violations (g(x; �; ~�) < 0)

Ĵ(�; ~�) =
1

nI

nIX
k=1

(min fĝ(Xk; �; ~�); 0g)2

and

�̂ = argmin
�2�

1

nI

nIX
k=1

(min fg(Xk; �; ~�); 0g)2

Notice that I set the time of each path �T = 100, the number of starting con�gurations

ns = 100, the number of simulations for each con�guration nJ = 150 and the number of

alternative policies n� = 200, so that I get the number of di¤erences nI = 20; 000

11 I set the discount factor at � = 0:92 which is in line with other studies.
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4.3.1 Standard errors

Since the estimated parameters in the �rst step are used in the second step, the standard

errors of the parameters are determined by the �rst stage standard errors. The easiest way

to estimate them is to use subsampling or the bootstrap.

4.3.2 Optimization

When the objective functions lacks smoothness (e.g. problems with discontinuous, non-

di¤erentiable, or stochastic objective functions) using derivative based methods might pro-

duce inaccurate solutions. For this reason, to minimize the empirical minimum distance (Ĵ)

I use a derivative free optimization method (Nelder-Mead) which circumvents this problem.

Non-smoothness might occur with �nite nI , because of the min operator in the objective

function, Ĵ , which takes only the negative values of g(:) and this creates discontinuities even

if g() is continuous in �.

4.4 Identi�cation

Identi�cation of the static parameters follows the identi�cation strategy used in De Loecker

(2007) with the main di¤erence that the demand elasticity cannot be recovered in the �rst

stage since it enters the input demand function (in order to be consistent with the model

above). Therefore, as explained above, both the capital coe¢ cient and demand elasticity

are recovered in the second stage.

The sunk costs of R&D are identi�ed from the observed behavior of the �rms. Under the

assumption that observed actions are pro�t maximizing, the sunk costs of R&D are identi�ed

through the comparison between observed (optimal) behavior and alternative (non-optimal)

behavior. The sunk costs are such that other policies are sub-optimal. Similarly, investment

costs and exit values are estimated from the observation of optimal behavior and comparing

with non-optimal behavior. So the identi�cation of the dynamic parameters is achieved by

comparing actual with alternative actions. Note that if policies are estimated with error,

the parameters might be wrongly estimated. Because of this I have chosen polynomials of

lower degree (1st and 2nd) to approximate the policy functions.

A second potential problem is that identi�cation of the policy functions only works

provided there are no unobservable state variables. This is actually a potential concern and

a reason why one might consider the use of a �xed e¤ects speci�cation in the �rst step.

5 The moulds industry

The Portuguese moulds industry is a case study of success and ability to compete in a

global environment. The industry exports 90% of its production and supplies 60% of its
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production to the very competitive car manufacturing industry accounting for more than

1% of total Portuguese Exports (CEFAMOL, 2005). The main advantage of the industry is

the ability to produce complex moulds which require advanced technology at a low cost and

high quality (USITC, 2002).

"Despite Portugal�s small size, it has emerged as one of the world�s leading ex-

porters of industrial molds. In 2001, despite limited production of dies, Portugal

was the eighth largest producer of dies and molds in the world and it exports to

more than 70 countries. The Portuguese TDM industry�s success in exporting,

and in adoption of the latest computer technologies, has occurred despite the

fact that Portugal has a small industrial base on which the TDM industry can

depend. Since joining the EU in 1986, Portugal has focused on serving customers

in the common market." (USITC, 2002)

There has been a considerable e¤ort of improvement and investment over the last 15

years. There has been three ways how �rms have sucessfully improved performance and

developed new skills. Firstly, there has been an unpstream move in the value chain. By

supplying design and propotyping services, the �rms have been able to provide valuable

services which reduce the cost of production to their clients. Secondly there has been an

orientation towards lean manufacturing and waste minimization which has been in�uenced

by clients in the car manufacturing industry. Finally some �rms have been in contact with

universities and research labs for the development of new materials. Eventough this upstream

move and technology shift requires considerable investment in Research and Development,

more than 60% of �rms in the industry do not perform R&D and these �rms are also

considerably less productive (more then 40%).

The history of the industry dates back to the 1930�s and 1940�s when the development

of plastics created a great need of moulds for plastics. The Portuguese moulds industry

started to �ll this need in the late 1950�s as a major producer of moulds for the glass (where

it inherited some of the expertise) and specially for the toy manufacturing industry. Exhibits

1 and 2 provide some examples of how the moulds looked like during this period. From the

late 1970�s there was a huge increase in production mainly driven by the export market, as

reported in Figure 3, with the sector currently representing around 1% of total country�s

exports. In the late 1980�s the production shifted from toy manufacturing towards the

growing industries of automobiles and packaging. Figure 4 shows the export composition

(% share of total exports), by main client/product type between 1984 and 2004 and it is

clear the importance the Car Manufacturing industry as been capturing away from Toys

and Home Electricals. During the 1990�s the biggest export markets started shifting from

the US towards France, Germany and Spain. (IAPMEI, 2006).

During this period the industry su¤ered several structural changes both in terms of

number of �rms with a big increase in the early 1980�s and a shift towards other main
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clients due to the boom of the plastics and packaging sectors. This put pressure for the

introduction of new technologies (e.g. CAD, CAM, Complex process, In-mold Assembling)

and an increasingly importance of innovation and R&D. For example, Exhibit 3 shows

a computer operated machine for building moulds which is completely di¤erent from the

techniques used in the 1970�s and 1980�s. These state of the art Industrial Machinery allows

�exibility at a low cost besides a close collaboration with the client in the phase pre mould

construction. The design team can work closely with the clients� engineers and produce

a 3D virtual version of the mould which is then just programed into the machine to start

production.

Figure 5 presents �rm size distribution (number of workers) and it is clear that the

sector is mainly populated by small and medium �rms. In 2004, Portugal was the 9th

biggest world exporter and 3rd European exporter (Figure 6). The industry invests in R&D

and has established strong links with Universities. Most of the R&D is targeted at the

development and use of new materials (product innovation), and minimization of waste and

worked hours (process innovation).

TheWikipedia website provides a quote about a Portuguese moulds manufacturer (SIMOLDES)

that illustrates the importance of the industry:

Simoldes is a Portuguese mould maker company headquartered in Oliveira de

Azeméis.

Considered to be Europe�s largest mould maker, Simoldes Group Mould Divi-

sion is the world leader in plastic injection moulds for the automotive industry.

(http://en.wikipedia.org/wiki/Simoldes)

However, a puzzling fact about the Portuguese moulds (and most industries in general) is

that 56% of the �rms in my sample in 2003 claim to do no R&D. With increasing competition

from low wage countries, the low end specialization does not seem an optimal strategy so

why do we still observe �rms performing no R&D? The potential reason I will explore is the

existence of R&D sunk costs and if so, is this the reason why most R&D is done by bigger

�rms. To answer these questions I estimate a fully structural dynamic model where �rms

decide on physical capital investment and R&D.

Since each mould is (quasi) unique, prices depend on the mould speci�cation and are

typically contract speci�c and agreed between the producer and the client. Therefore, indi-

vidual prices are not observed and even if they were observable they would not be di¢ cult

to comparable due to the nature of the product. Most �rms establish strong cooperative

relations with their clients in order to improve the quality of the product. Firms tend to

specialize in a particular type of mould and therefore potential clients approach �rms with

the expertise in their product. For this reason the industry �ts very well within the monop-

olistic competition framework. This is appropriate since �rms sell a di¤erentiated product

27



and along this product they have some degree of market power. Also the assumption that

�rms react to aggregate movements in the industry and not to any particular competitor

is not stringent since the market is quite fragmented. The incomplete information is not

violated since �rms do not directly observe their competitors prices or productivity. Because

of all these facts, the industry �ts very well in the framework developed above.

I have observations for both big and small �rms but I do not observe all �rms in the

market since the data is collected by sampling. These type of datasets are common and

as explained before the complete information model would have problems because of the

non-observed �rms in the market. However, for the incomplete information case, I just need

to observe aggregate variables which are available from the National Statistics O¢ ce (INE).

Another important advantage of the Portuguese Moulds Industry is the fact that I observe

R&D behavior and this is what will allow me to recover the R&D sunk costs.

6 The data

The data is part of a database compiled yearly by the Portuguese Central Bank ("Central de

Balanços"). I have extracted the observations for the period between 1994-2003 for the �ve-

digit NACE (rev 1.1) industry, 29563. This database collects, �nancial information (balance

sheet and P&L) together with other variables like number of workers, occupation of workers

(5 levels), total exports, R&D, founding year and current operational status (e.g. operating,

bankrupt, etc). I have also collected industry aggregate variables for sales, number of �rms,

employment and value added from the Portuguese National Statistics O¢ ce (INE, 2007)

and industry price data from IAPMEI (2006).

6.1 Descriptive statistics

The dataset has 231 �rms over the period 1994-2003 and 1,290 observations. There are 265

observations with positive R&D that corresponds to 59 �rms. I observe 49 cases of R&D

start-ups after 1994 (de�ned as a �rm not reporting R&D ever before in the sample). On

average, an R&D �rm reports positive R&D for 2.5 year periods (tables 2 and 3).

Due to the short nature of the panel, there are few observations on entry and exit. A

further complication arises due to the way data has been collected. Since answering the

questionnaire is not compulsory, some �rms might not be reported in the dataset but still

be active in the industry. This complicates the identi�cation of exitors and entrants since

the �rms might enter the dataset but could have been operating in the market before �rst

appearing in the dataset. I address these problem with two variables that help to identify

entry and exit. For entry, �rms report their founding year so I match the founding year

with the year the �rm �rst appeared in the sample and if it is within a 2 year window I

consider it to be a new entrant (this is reported in Table 2 under the column entry in the
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industry). Regarding exit, the central bank collects a variable that reports the "status" of

the �rm. The problem with this variable is that some �rms that might have closed down

are still reported as "active", so I can only capture a fraction of the total exits. Using this

methodology I identify a total of 48 entries and 7 exits from the panel.

In tables 4 and 5 I present some summary statistics for the main variables. The average

�rm in my sample sells 1.5 million Euros and employs 32 workers with an average labor

productivity of 20,452 euros. Over the period 1994-2003, real sales have grown at an average

9.9% and labor productivity at 6%.

After a decline until 1998, the total number of �rms in the industry has grown up to a

maximum of 738 in 2003, employing 8,766 employees so, the industry is populated by small

and medium �rms and there are no market leaders.

R&D performers are bigger and older and their labour productivity is on average 20%

higher. Average sales growth is higher for non-R&D �rms and they also invest more but the

also the variance is larger.

7 Results

7.1 First stage

7.1.1 Production Function

Table 6 reports the results for the production function estimates using the methodology

de�ned above. Because of problems that could arise in the �rst stage, and bias the estimates

of �L due to potential unobserved state variables, I have also tried using a �xed e¤ects

speci�cation with no overall impact on the results.

The estimated labor and capital coe¢ cients imply decreasing returns to scale while the

estimated demand elasticity implies a price-cost margin of 13%. These values are at a rea-

sonable level and within the range of parameters found in the literature for other industries.

To test the method I also report the results using a �xed e¤ects and a �rst di¤erences spec-

i�cation. All these are prone to the input endogeneity problem but Table 6 shows that the

�rst di¤erence results are very similar to the two step procedure. This evidence seem to

corroborate some of the �ndings by Bond and Soderbom (2005) according to which, in the

presence of adjustment costs for the inputs and autocorrelation in productivity consistent

estimation of production functions parameters becomes possible by quasi-�rst di¤erencing

and using lagged levels of inputs as instruments.

In order for the �rms to be willing to pay a sunk cost for R&D, it must be that its

because they expect to have a bigger productivity. To check if the productivity distribution

for R&D �rms stochastically dominates the distribution of productivity for the non-R&D

�rms I plot in �gure 7 the two distributions. As we can see, there is evidence that R&D
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�rms have better productivity draws and so the productivity estimates are according to the

expected.

7.1.2 Transition function

Aggregate state For the aggregate state, I calculate the mean, variance and autocorre-

lation and use corollary 4 to specify the aggregate state transition and these are:

�S = 16:43

�S = 0:39

�S = 0:97

In table 7 I test the normality results against a non-parametric approximation using a

polynomial expansion with very similar results.

Speci�cation test Since the model might be misspeci�ed and assumptions violated

I test the implications by testing if the aggregate follows a �rst order Markov process.

The problem arises that if the aggregate state is not a �rst order Markov process, then

Markovian strategies would not be optimal. If assumption 2.1 is violated, then the use of

the lagged values of the aggregate variable would be insu¢ cient and potentially all history

could matter. The data does not reject the null hypothesis that the aggregate state is a

�rst order Markovian process and this is good news since it supports the implications of my

assumptions.

This is an important speci�cation test of the model since the idea that the industry

state can be summarized by the aggregate state is a crucial result to resolve the �curse of

dimensionality�problem.

I also directly perform a test of the following implication:

p(St+1jg(st); St) = p(St+1jSt)

I use both standard deviation and skewness as further measures of changes in industry

distribution. Beside sales distribution I also add capital stock and productivity distribution.

The results are summarized in Table 7b. Due to the lack of su¢ cient observations, I test

one measure in each column. The overall result is that none of the measures are statistically

signi�cant once we control current aggregate state. This strongly suggests that the model

is well speci�ed and that the current aggregate industry state is a su¢ cient statistic.

Productivity For the individual productivity, I estimate a third order polynomial for !

separately for R&D and non R&D �rms and results are shown in table 8.
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7.1.3 Investment, R&D and Exit policies

The �nal part of the �rst step involves the estimation of the investment and R&D policy

functions. These will be at the heart of the second stage where it is imposed that they

represent optimal behavior. I have used di¤erent polynomial approximations (1st, 2nd and

3rd) and opted for a 2nd order polynomial. The reason for doing so is because higher order

polynomials can create more noise in the estimates and this is magni�ed in the second step

as these variables enter non-linearly in the maximum distance estimator (Aguirregabiria and

Mira, 207). The results are presented in table 9. The R&D policy function was estimated

using a probit model whereas the investment policy function was estimated using OLS.

For the exit policies due to data limitations, I have adopted a probit model only on

productivity and aggregate sales.

7.2 Second Stage

In the second stage I use the minimum distance estimator outlined above to recover the

linear and quadratic investment cost, R&D sunk cost and exit value, reported in Table 10.

Standard errors were estimated using the bootstrap. I have introduced per period R&D

expenditures for �rms who decide to do R&D at 1% of their sales level. This is a �xed cost

component for any �rm who choose to do R&D and has to be paid every period to keep the

"R&D lab" operating.

The values are estimated at the right expected signs. Specially, investment has positive

quadratic adjustment costs. The exit value are positive and estimated at around 534,000

euros which is slightly higher then the average capital stock of exitors (420,684 EUR). Finally

for the parameter we are interested in, the R&D sunk costs are estimated at 2.6 million euros

which is 1.7 times the average sales in the industry and 87% the average sales of an R&D

�rm.

The magnitude of the sunk costs is high so I want to test the robustness of these results.

In order for the estimates to be biased upwards we would need either the continuation values

for no-R&D to be too low or the continuation values for R&D to be too high. Since the

functions which are estimated di¤erently for R&D and non-R&D �rms are the investment

and R&D policies and the productivity dynamics, the only way the estimated would be

biased is when these policies are imprecisely estimated. Since the estimated sunk costs are

very similar using the �rst or the second order polynomial approximation, so there is no

evidence that results have been biased by policy function estimation error.

Finally, I present the estimated value function for the 1st order polynomial case in �gure

8 for the average �S. We can see that this is quite well behaved and increasing both in K

and ! as expected.
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8 Counterfactual Experiments

In this section I perform a policy experiment where the sunk cost of R&D is decreased in

25% to access the impact of this shock on industry R&D, productivity and investment. To

perform these experiments I now need to solve for the equilibrium of the model. Particularly

I have to solve for equilibrium industry evolution, q(S0jS). This requires de�ning entry costs
and specify the productivity distribution for entrants. I specify the actual mean and variance

for the productivity of entrants in my dataset and use an entry value which is consistent

with the number of �rms existent in the industry. After setting these I use the algorithm in

�gure 1 to calculate the equilibrium for the model using the estimated structural parameters.

Notice that these experiments could not be performed without the incomplete information

assumption that allows the use of the aggregate state instead of the full industry state. To

solve the model in the complete information case with 200 �rms in the market would be

computationally impossible, but it is feasible and relativelly fast in the "aggregate state"

case.

Results are presented in table 11. The �rst thing to notice is the decrease of the number

of �rms in the market. This happens because with lower sunk costs of R&D, each �rm

is now on average bigger and so the entry condition is met with less �rms in the market.

Secondly there is an increase in the percentage of �rms performing R&D, which doubles.

This increase in the number of R&D �rms translates into an increase in average productivity

of 11% and in average capital stock of 18%.

9 Conclusion

In this paper I have estimated the sunk costs of R&D for the Portuguese Moulds Industry

and developed a model which is computationally tractable and empirically implementable

with the typical �rm level datasets. The model both avoids the �curse of dimensionality�

and the existence of unobserved �rms in the data.

The idea I explored was to summarize the industry state into the payo¤ relevant aggre-

gate state by introducing incomplete information in the model. As explained, this implicitly

imposes more structure in terms of strategic interactions, speci�cally the �rms react symmet-

rically to all its competitors. This is not restrictive for the moulds manufacturing industry

because each �rm specializes in a particular product, they do not observe what their com-

petitors o¤er, �rms produce almost per piece and prices are contract speci�c. This means

that demand can be well approximated with a constant elasticity framework.

Finally I apply this setup to recover the sunk cost of R&D for the Portuguese moulds

industry. I have estimated these to be around 2.6 million euros (or 1.7 times the average

yearly �rm sales level). The magnitude of the sunk costs suggest that choice of subsidies

cannot disregard the discreteness of the R&D decision. Particularly, R&D subsidies targeted
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at R&D start-ups will be more e¤ective.

I have not explored two ways of making use of the simpli�cation introduced by the model.

First, since given the beliefs about the aggregate state evolution, the problem can be rep-

resented as a single agent one, I can apply the Nested Fixed Point Algorithm as developed

in Rust (1987). Second, the existence of serially correlated unobserved variables might bias

the �rst stage estimates. This bias can be magni�ed to the second stage because of the

nonlinear relationship between the �rst stage and the second stage parameters. Aguirre-

gabiria and Mira (2007) propose a method to deal with this which makes bigger use of the

equilibrium conditions. I have not explored the fact that since my model avoids the curse

of dimensionality, I can recalculate the equilibrium for a given parameter set and use the

equilibrium conditions in a similar way. I think a future line of research is to make use of

these alternatives to increase the e¢ ciency of the estimator.
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A Appendix

A.1 Proof of proposition 2

Proof. Using Assumptions 2.3 to 2.2, St is the payo¤ relevant variable and p(stjSt;:::S0) =
p(stjSt) the aggregate (industry) state transition is

p(St+1jSt; St�1; ::::) =

Z
st+1:St+1=S(st+1)+"t+1

p(st+1jSt; :::; S0)dst+1

=

Z
st+1:St+1=S(st+1)+"t

Z
st

p(st+1jst)p(dstjSt; :::S0)dst+1

=

Z
st+1:St+1=S(st+1)+"t

Z
st

p(st+1jst)p(dstjSt)dst+1

=

Z
st+1:St+1=S(st+1)+"t+1

p(st+1jSt)dst+1

= q(St+1jSt)

A.2 Sketch proof of theorem 6

Some preliminary lemmas:

Lemma 7 sitjSt is independently and identically distributed across �rms with density func-
tion g(sitjSt; q).

Proof. By the independence assumption (no spillovers).

Lemma 8 The distribution g(sitjSt) is continuous with positive densities and bounded sup-
port.

37



Proof. St = S(s1t; :::; sNt) + "t with "t distributed i.i.d. �("t) and bounded support.

Then St is never perfectly informative and therefore g(sitjSt) > 0 8sit; St.
Rewriting the state transition

q(St+1jSt) =

Z
st+1:St+1=S(st+1)+"t+1

p(dst+1jSt; q)d�("t+1) (8)

=

Z
(s01;::s

0
N ):S

0=S(s01;::s
0
N )+"

0
p(ds01jS; q):::p(ds0N jS; q)d�("0)

p(sit+1jSt; q) =

Z
sit

p(si;t+1jsit; a(sit; St); �(sit; St))g(dsitjSt; q) (9)

=

Z
sit

X
�i2f0;1g

p(si;t+1jsit; ait; �i)�(S)�i(1� �(S)(1��i))g(dsitjSt; q)

Lemma 9 a(sit; St) is continuous in q.

Proof. Standard dynamic programming argument.

Lemma 10 �(St) is continuous in q.

Proof. Notice that �(S) =
R
s
�(s; S)g(dsjS).

�(s; S; q) =

8<: 1 if c � �c(s; S; q)
0 otherwise

Where we can de�ne

�c(s; S; q)=� = fE[V (s�; S�)ja; � = 1]� E[V (s�; S�)ja; � = 0]js; Sg

=

24 R
S

R
s
V (s0; S0)p(s0js; a; � = 1)q(S0jS)dsdS

�
R
S

R
s
V (s0; S0)p(s0js; a(s; S); � = 0)q(S0jS)dsdS

35
=

Z
S

24 R
s
V (s0; S0)p(s0js; a(s; S); � = 1)ds

�
R
s
V (s0; S0)p(s0js; a(s; S); � = 0)ds

35 q(S0jS)dS
and since �c(s; S; q) is continuous in q (because V (s; S) is continuous in q and a(s; S) is also

continuous in q), also will �(S).

Conjecture 11 g(sitjSt) is continuous in q.

Since �c is continuous in q as shown above, this means that for a tiny change in q (close

to zero), there is only a small fraction of �rms a¤ected by this as �c also changes only slightly

due to continuity (just remind that a(sit; St) is also continuous in q). This means that the
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steady state distribution of states will not have any discrete jump and should therefore be

continuous in q.

Proof of Theorem 6. From lemmas 7-10 and conjecture 11, q(S0jS) 2 Q is a contin-

uous self map on a non-empty compact and convex set Q 2 BC[S; �S] to which Schauder�s
Fixed Point Theorem can be applied. This proves the result.

A.3 Demand

Assuming individuals have the following demand

U

0@ X
i

Qi
��1
�

! �
��1

; Z

1A
With U(:) di¤erentiable and quasi-concave and Z represents aggregate industry shifters.

Setting up the Lagrangian for i = 1; ::::; N (
�P

iQi
��1
�

�
= ~Q)

U

0@ X
i

Qi
��1
�

! �
��1

; Z

1A� ��XPiQi � ~Y
�

Take the First Order Conditions

U
1

��1
1

 X
i

Qi
��1
�

!
Q

��1
�

i Q�1i = Pi� (10)

Rearranging

 
��1U
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��1
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i

Qi
��1
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!!�
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1
��1
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Q
�1=�
i = Pi

Using the budget constraint ~Y =
P
PiQi and (10) from above

~Y = ��1U
1

��1
1

 X
i

Qi
��1
�

!X
Q

��1
�

i (11)

Using (11) from above and replacing for Qi

~Y =

 
��1U

1
��1
1

 X
i

(Qi)
��1
�

!!�X
P
�(��1)
i

Finally replacing back in the FOC and rearranging, demand is

Qi =
~YP

P
�(��1)
i

P��i
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A.4 Derivation of the reduced form pro�t function

Since !i and Ki are �xed factors, the only adjustable factor is labor: � = P (Q(Li))Q(Li)�
wLi where w is the wage rate. The �rst order conditions are

� � 1
�

�P [Q(Li)]
Q(Li)

Li
= w (12)

Rewriting we get

L�i =

��
(� � 1)�
�w

��
~Y ( ~P!iK

�
i )
(��1)

�1=[���(��1)]
(13)

Replacing back in the production function (3)

Q�i = !iL
�
i K

�
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��
!iK

�
i

�� (� � 1)�
�w

�
~P (��1) ~Y

�1=�����=[���(��1)]
(14)

Prices can be written from the Demand Function (2)

P �i =

264!iK�
i

�
(� � 1)�
�w

��0@ ~Y
~P

!1=�
~P

1A��(1��)
375
�1=[���(��1)]

(15)

Finally sales are

PiQi =

"�
(� � 1)�
�w

��(��1)
~Y
�
~P!iK

�
i

�(��1)#1=[���(��1)]
(16)

The quality adjusted price index is

~P =
�X

P
�(��1)
i

�� 1
��1

(17)

From (15) above we can express this as

(P �i )
�1
=

�
!iK

�
i

�
(� � 1)�
�w

�� �
~Y ~P (��1)

��(1��)�1=[���(��1)]
(18)

So that the quality adjusted price index is

~P =

��
(� � 1)�
�w

��
~Y �(1��)

��1�Xh
!iK

�
i

i(��1)=[���(��1)]��(���(��1))=(��1)
(19)

Using this in the equation for pro�t

V A(!i;Ki; N ; �) = P (Qi)Qi � wLi =
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Using the expression for ~P , (19) we �nally get the one period returns

V A(!i;Ki; N ; �) =
1
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� � 1
�

�
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�
!iK

�
i

�

Ph

!iK
�
i

i
 (21)

A.5 Data and sample construction

I have collected data for the aggregate variables from the Portuguese National Statistics

O¢ ce (INE), together with data on industry price de�ators (from IAPMEI, 2006). I have

merged these aggregate variables with the sample for the 5 digit NACE code industry 29563

(Moulds Industry). The capital stock was calculated using the perpetual inventory method

formula. Value added was constructed as total sales subtracted from materials and services.

Both aggregate and individual sales and value added were de�ated with the industry price

de�ator.

In 11 observations the number of workers reported was zero which occurs in the year the

�rms enter or exit the industry. Since the owner of the �rm is never reported as a worker

I add one to all �rms with zero reported workers. The results are robust to dropping these

observations.

I identi�ed 9 holes in the sample (�rms that interrupt reporting for 1 or more consecutive

years). In these cases either the earlier or later periods are dropped, minimizing the total

number of observations lost.

Entry and exit are di¢ cult to identify since it is not compulsory for �rms to report to the

central bank. However, the dataset has information on the founding year and current �rm

"status" (i.e. active, bankrupt, merged, etc). Using this information I identify 48 actual

entries and 7 exits.

I have winsorized at 1% (0.5% on each tail) the variables for ln(K), I, ln(Materials),

ln(Value Added), value added growth, sales growth.
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Exhibit 1: Plastics’ Mould (1950’s): Toy’s head 
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Exhibit 2: Metals’ mould (1950’s): spoon 

 

 
 

 
Exhibit 3: CNC (Computer Numerical Control) Machining (2006)
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Figure 2: Uniqueness 

 
Figure 3: Total exports (blue) and US exports (green) 1960-2001 (millions of euros) 
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Figure 4: Export composition (% share of total exports), by client/product type 
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Figure 5: Distribution of firm size (number of workers per firm) 
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Figure 6: World moulds exports in 2004 (%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7: Productivity distribution for R&D and non-R&D firms 
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Figure 8: Estimated value function for the 1

st
 order polynomial parameters 

0
2

4
6

8
10

12
14

0
2

4
6

8
10

12
14

0

1

2

3

4

5

x 10
7

ln(K)

Estimated value function

ln(omega)

V



 49 

 

Year 
Number 
of firms 

Number of 
non R&D 

firms 
Number of 
R&D firms 

R&D 
start-
ups 

Number of 
entries 
in the 

Industry 

Number of 
entries 
in the 

dataset Exits 

        

1994 144 134 10 - 2 3 0 

1995 157 137 20 10 12 14 2 

1996 165 141 24 4 8 14 0 

1997 170 145 25 2 11 20 2 

1998 164 135 29 7 9 33 0 

1999 136 108 28 3 2 46 1 

2000 92 68 24 7 2 8 0 

2001 88 56 32 9 1 5 0 

2002 88 53 35 4 1 2 0 

2003 86 48 38 3 0 0 2 

Total 1290 1025 265 49 48 145 7 
Table 2: Firms, entry, exit and R&D behavior per year 

 

 

 
Consecutive 
years of 
positive R&D 

Number 
of firms 

  

1 26 

2 12 

3 6 

4 6 

5 2 

6 4 

7 2 

8 1 

Table 3: Distribution for the number of periods with positive R&D 

 

 

 

Variable   Mean p50 Std. Dev. Min Max 

       

Sales (EUR)   1,570,166 697,310 2,866,806 3,292 34,700,000 

Value Added (EUR)  792,605 389,231 1,437,950 494 15,200,000 

Employment  32 20 39 1 258 

Capital Stock (EUR)  1,092,534 406,775 2,169,156 135 23,900,000 

Labor Productivity (EUR)  20,452 19,279 9,150 386 73,313 

Sales growth  9.9% 8.1% 32.9% -171.9% 207.5% 

Value added growth  10.1% 8.6% 35.8% -169.1% 226.0% 

Labor productivity growth   6.0% 5.7% 34.5% -188.5% 176.2% 

Table 4: Summary statistics 
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Year 
Number 
of firms Employment 

Sales 
(euros) 

Value added 
(euros) 

Price 
Index 

Price 
Variation 

Sales 
Growth 

Value 
added 
growth 

         

1994 644 5,133 171,300,000 152,600,000 96.73 - - - 

1995 570 5,796 193,400,000 172,300,000 100.00 3% 13% 13% 

1996 452 7,316 244,200,000 217,500,000 101.80 2% 26% 26% 

1997 477 7,821 292,700,000 246,200,000 101.87 0% 20% 13% 

1998 461 7,740 322,400,000 258,800,000 97.50 -4% 10% 5% 

1999 549 8,429 362,200,000 277,300,000 99.91 2% 12% 7% 

2000 604 8,879 411,800,000 299,300,000 104.90 5% 14% 8% 

2001 612 8,919 421,000,000 368,800,000 105.90 1% 2% 23% 

2002 722 9,312 378,000,000 359,200,000 98.87 -7% -10% -3% 

2003 738 8,766 402,800,000 358,600,000 90.51 -8% 7% 0% 

Table 5: Aggregate variables, per year 

 

 

 
(i)  (ii)  (iii)  (iv) 

First stage (GLS)  Second Stage (NLLS)  Fixed Effects estimates  First difference estimates 

  Coef. s.e.     Coef. s.e.     Coef. s.e.     Coef. s.e. 

               

ln(L) 0.61 0.03   ln(K) 0.18 0.02   ln(K) 0.76 0.04   D.ln(K) 0.53 0.05 

    ln(S) 0.29 0.10  ln(L) 0.24 0.02  D.ln(L) 0.20 0.03 

    γ0 0.13 0.69  ln(S) 0.35 0.03  D.ln(S) 0.33 0.14 

    γ1 0.59 1.07  Constant -1.43 0.51  Constant 0.04 0.03 

    γ2 0.32 0.11         

    γ3 0.02 0.05         

               

R squared 92%    75%    91%    21%  

Observations 1,269    1,038    1,269    1,038  

Firms 231       227       231       224   

                

Labor coefficient 0.86               1.18       0.79   

Capital coefficient 0.26        0.37    0.30  

PC Margin 29%               35%       33%   

Notes: columns (i) and (ii) report the results for the first and second stage of the production function estimates. Columns (iii) and (iv) report the production function 

results using a fixed effects and a first differences specification, respectively. 

Table 6: Production function estimates, dependent variable ln(Value Added) 
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 (i)  (ii)  (iii)  (iv) 

Dependent Variable: Aggregate State ln(S) 

  Coef. s.e.   Coef. s.e.   Coef. s.e.   Coef. s.e. 

            

ln[S(t-1)] 0.95 0.08   1.25 0.34   -2.33 7.34   570.85 598.06 

ln[S(t-1)]^2    -0.35 0.32       

ln[S(t-1)]^3       0.10 0.23  -34.94 36.56 

ln[S(t-2)]          0.71 0.74 

Constant 1.01 1.23  1.76 1.50  27.66 59.81  
-

3096.74 3260.35 

            

Observations 11   10   11   11  

Adjusted R Squared 0.95     0.93     0.95     0.95   

            

Mean ln(S) 16.43           

St. Dev ln(S) 0.39           

Autocorrelation ln(S) 0.97                     

Notes: Column (i) specifies a linear first order markov process and column (ii) a second order Markov process. Column (iii) 
and (iv) present results for a second and third order polynomial approximation for the first order Markov process. 

Table 7: Tests on the aggregate state variable 

 

 
 (i)  (ii)  (iii)  (iv)  (v)  (vi)  (vii)  (viii) 

Dependent Variable: ln[S(t+1)]                   

  Coef. s.e.   Coef. s.e.   Coef. s.e.   Coef. s.e.   Coef. s.e.   Coef. s.e.   Coef. s.e.   Coef. s.e. 

                        

ln[S] 0.95 0.08   0.90 0.09   0.84 0.09   0.79 0.10   0.68 0.18   0.88 0.07   0.83 0.08   0.69 0.20 

std(y) - -  -0.62 0.59  - -  - -  - -  - -  - -  -1.77 0.87 

skew(y) - -  - -  -0.02 0.18  - -  - -  - -  - -  -0.68 0.28 

std(k) - -  - -  - -  0.49 0.47  - -  - -  - -  -0.25 0.83 

skew(k) - -  - -  - -  - -  -0.15 0.15  - -  - -  0.07 0.13 

std(ω) - -  - -  - -  - -  - -  -0.58 0.28  - -  0.07 0.26 

skew(ω) - -  - -  - -  - -  - -  - -  0.04 0.05  -0.12 0.10 

const 1.01 1.23   2.64 1.27   2.65 1.51   2.81 1.29   5.14 2.85   2.50 1.06   2.83 1.36   7.46 3.49 

                        

Obs. 11   9   9   9   9   9   9   9  

R2 94%   94%   92%   94%   94%   96%   93%   99%  

Notes: Column (i) specifies a linear first order markov process and columns (ii)-(viii) test the significance of further moments (standard deviation and 
skewness) of the distribution of sales (y), capital stock (k) and TFP (ω). 

Table 7b: Further tests on the aggregate state variable 
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Dependent variable: ω(t) 

 (i)  (ii) 

 Non-R&D firms  R&D firms 

  Coef. s.e.   Coef. s.e. 

      

ln[ω(t-1)] 0.72 0.03   0.75 0.09 

ln[ω(t-1)]
2
 0.16 0.01  0.07 0.10 

ln[ω(t-1)]
3
 -0.03 0.01  -0.01 0.03 

constant 0.14 0.03   0.24 0.05 

      

R-squared 67%   80%  

Obs. 784   254  

Firms 198   59  

      
Note: Results for the productivity transition using a 3rd order 
polynomial expansion. 

Table 8: Transition function for productivity, OLS results 

 

 

 

 
 (ii)  (iii)  (i)  (iv) 

Dep. Var. Investment  R&D start-up  Exit Probit 

 R&D firms  Non R&D firms       

  Coef. s.e.   Coef. s.e.   Coef. s.e.   Coef. s.e. 

                        

ln(S(t-1)) -0.36 0.27  -0.16 0.20  0.26 0.25  -0.02 0.53 

ln(K(t-1)) -2.08 1.13  1.20 0.37  0.16 0.06    

ln(K(t-1))
2
 0.10 0.04  -0.02 0.02  - -  - - 

ln(ω(t-1)) 1.17 0.37  0.25 0.10  0.07 0.14  -0.17 0.20 

ln(ω(t-1))
2
 -0.25 0.13  0.17 0.06  - -  - - 

Constant 26.67 8.90   1.90 3.98   -7.90 4.05   -2.07 8.66 

            

R Squared 53%   30%   4%   1%  

Observations 206   832   1038 832  1038  

Firms 51   213   264 213  224  

Notes: Columns (i) and (ii) presents the results for the invesment OLS results for the non-R&D and R&D firms on a second order 
approximation on the state variables (w,K,S). Column (iii) presents the results for the R&D start-up probit regression on a first order 
approximation on the state variables (w,K,S). Finally column (iv) presents the results for the exit probit regression on a first order 
approximation on the state variables (w,S) 

Table 9: Estimated policy function 
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 µ1 µ2 ω0 ν1 

       

Coefs -0.46 5.77 2,598,000 -534,000 

s.e. 1.61 7.17 1,020,524 1,020,162 

Table 10: Investment cost, R&D sunk cost and exit value 
 
 
 
 

 ω0=2,598,000  ω0=1,948,500  % change 

      

Market size 4,228,255  6,514,233  43% 

Number of firms 267  227  -15% 

% of R&D firms 16%  33%  16% 

Average Productivity 2.92  3.24  11% 

Average Capital Stock 77,637  92,865  18% 

Entry Rate 4%  5%  1% 

Exit Rate 4%  5%  1% 

Table 11: Counterfactual results for a 25% reduction in sunk costs of R&D (ω0) 
 


