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Abstract

Equipment rental markets are growing in developing countries as means to improve access
to technology to small-scale producers, particularly in agriculture. Yet, the efficiency and
distributional implications of these markets are not well understood. We propose a novel
theory of these markets with two sided heterogeneity: demand varies by hours requested,
location, and the returns from service; while supply varies by the technology for service
provision. Profit maximizing providers prioritize large-scale demand, because the cost of
moving equipment in space dilutes with scale; as well as small-scale demand in dense loca-
tions, because it maximizes machine-capacity utilization. We assess the merits of different
market arrangements quantitatively, leveraging unique transaction level data from a rental
market in India to calibrate our model. We show that deregulating service provision to
induce providers to behave as profit maximizers can increase aggregate productivity by 2%
while maintaining service finding rates for small-scale farmers in line with those obtained
when dispatchers are induced to prioritize them. We also show that an increase in the supply
of capital has non-linear effects on productivity gains, which taper off; and service finding
rates for small-holder farmers, which accelerate in service capacity. Ultimately, efficiency
gains depend on the joint spatial and productivity distribution of demand.
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1 Introduction

Equipment rental markets are becoming popular in developing countries as a means to im-

prove access to technology to small-scale producers. Yet, the efficiency and distributional

implications of these markets are not well understood. This paper fills the gap by answering

the following questions: Is the expansion of equipment rental markets beneficial to aggregate

productivity in agriculture and welfare? A key margin to answering this question is that

agricultural production is highly time-sensitive and delays in service provision are costly for

farm output. A related and equally important question is what are the distributional impli-

cations of alternative empirically-relevant market arrangements? Two margins are relevant

to answering this question. First, equipment travels in space to provide service and hence,

larger orders help dilute travel costs. Second, unused machine-service capacity is costly for

providers, and hence, servicing demand of small magnitude in spatially dense areas, maxi-

mizes utilization. These features generate economies of density; and congestion in demand,

because demand for equipment is synchronous.

We propose a frictional model of search and matching in the allocation of capital services.

Such a model is the natural framework to study queueing, as well as sorting and rental rate

dispersion, which are empirically relevant features of these market. As in the labor search

tradition, the main friction built into the model is that it takes time for an agent to find an

equipment provider willing to provide service at a price that is acceptable for both parties.1

Formally, we model directed search with two sided heterogeneity: demand varies by hours

requested, location, and the returns from service; while supply varies by the technology

for service provision. Providers set prices with commitment and agents build expectations

about the queue lengths when deciding where to stand in line. Providers can accommodate

multiple services per period and face service capacity constraints in terms of machine hours,

the two main generalization relative to Shi (2002). The first feature allows us to discuss

compositional changes in serviced orders across demand size (hours) as well as to optimize

service provision in space. The second feature, paired with discreteness in hours demanded,

speaks directly to the role of small-scale orders in maximizing capacity utilization within a

period. Farmers understand that providers offering lower equipment rental rates are those

1As highlighted by Lagos (2000) and Sattinger (2002), queueing models are powerful to micro-found a
matching process between, in this case, farmers’ orders and service providers.
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where waiting times for service provision are longer, and they trade-off the probability of

service, with the cost of service. Once they commit to a provider, they stand in line for a

period.

We model providers’ dispatch technologies following two prevalent methods in the markets

that we study: profit-maximizing dispatchers (“market” providers), and first-come-first-

served dispatchers (“fcfs” providers). While the former ranks orders by profitability, the

latter does not and is closer to provisions often seen in markets subsidized by government

funds, where distributional concerns are salient. The main predictions of the model are that

when small- and large-scale farmers are equally distributed in space, small-scale farmers are

more likely to approach the fcfs providers than the market provider. Travel costs imply that

smaller orders are more costly to serve so a profit-maximizing dispatchers would shy away

from them. Conversely, large-scale farmers are more likely to approach market providers.

At the same time, small orders could be beneficial to providers, whenever located in dense

locations, since they help maximize machine-capacity utilization. Sorting induces disparities

in service finding rates between small and large-scale farmers but in equilibrium, rental rates

adjust so that farmers face identical expected profits from either provider.

Salient features of the market that we study are delays in service provision, which the

model rationalizes through endogenous heterogeneous service rates. In our own survey of

7000 households in the state of Karnataka, we show that farmers list delays in service provi-

sion as the most prevalent problem in accessing equipment rental services, a more prevalent

barrier than lack of credit or financing. This data also reveals that delays are dispropor-

tionally borne by small-scale farmers, and that this disparity is partly driven by the spatial

distribution of plots, i.e. farther away from service providers. This pattern of delays is fully

rationalized by the model, through the density of demand channel. Delays in access are

a relatively understudied barrier in accessing technology and particularly relevant in rental

markets where returns are time-sensitive, as in agriculture.

We can use our model economy to study the equilibrium implications of alternative

market arrangements for aggregate productivity and service findings rates to small-holder

farmers. Before doing so, we augment our stylized theoretical framework to more hetero-

geneity in equipment demand, spatial location and productivity distributions, and work with

simulated outcomes. We do so consistently with the empirical distribution of demand for
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rental services that we observe in the state of Karnataka India. This is a useful environment

for our assessment because equipment ownership rates are low, small-scale producers are

prevalent, and travel times could be large across locations. Perhaps most importantly, rental

markets for equipment are active.

We discipline the model in two stages: in the first stage we target the queue lengths

for small-scale farmers, as observed in the transaction level data from hubs; the share of

large scale farmers in each market, as inferred from the Census data; and the observed

average profitability of hub providers. Hub providers are have a technology for provision that

resemble the FCFS. The reason is that the set up of these hubs was partially subsidized by

the government with the intent of granting access to technologies to small-scale producers.

With these targets, we jointly calibrate the composition of farmers in each market along

large and small scales, the ratio of farmers per provider and the cost of service provision

as parameterized by the wage of equipment drivers. The main outcome of this calibration

exercise are the endogenous queues by provider and farmer type, and the equilibrium rental

prices per hour of equipment.

In the second stage, we augment the model to acommodate further heterogeneity. We

bootstrap queues from the empirical joint distribution of service-hours demanded, productiv-

ity and plot location, and the assess service finding rates, and equilibrium productivity costs.

In the simulated economy, we also test the implications for efficiency and distributional out-

comes of alternative market arrangements, as well as technologies to optimize service routes

given the realization of queues.

First, we ask how does the current equilibrium where FCFS and market providers coexist

compare to allocations where only equipment owners are allowed to supply rental services.

One could interpret this counterfactual as measuring the effect of a government induced

increase in supply consistent with the creation of service hubs in the locations under analysis.

We find that service capacity increased dramatically relative to ownership rates, and that

lead to two-to-three fold increase in service findings rates, and declines in the cost of service

provision of more than 20% per hour serviced.

Second, we investigate alternative market deregulation scenarios, where we allow providers

in hub to maximize profits, irrespective of its distributional consequences. The short run

response of the economy (with no endogenous entry or exit of providers) implies higher ser-
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vice finding rates for large-scale farmers relative to the FCFS provision. However, service

finding rates for large-scale farmers are below those of small scale farmers, suggesting no

detrimental effect on market access to small scale access. This small scale producers are

drawn to the market in response to the increased supply of services. While service findings

rates for small-holder farmers do not change relative to the baseline, the rental costs increase

for all farmers in the short run.

In the long run, once the number of providers can adjusts through entry and exit, rental

costs fall again towards their baseline levels, and service findings rates are still higher for small

holder farmers than large holder farmers. Importantly, we show that aggregate productivity

costs from delays are 2% lower than in the benchmark equilibrium, suggesting that the

deregulation improves allocations. To model entry and exit into the market, we assume

that in the deregulated markets providers pay an operating cost equal to an annuity of the

expected profitability of a provider. Hence, in equilibrium, the measure of providers in the

market is such that they exactly cover the operating cost.

Third, we ask what happens to allocations as we increase the overall supply of equipment

services. We can show that service finding rates for small scale farmers are non-linear in

the supply of services and that they demand on the joint spatial and size distribution of

demand. Only large enough increases in supply benefit small-holder farmers relatively to

large-scale farmers. Indeed, we show that market suppliers have comparable wait times to

a fcfs service dispatch for plots that entail lower travel costs, irrespective of their size. The

largest differences in service wait times, and productivity costs associated to delays across

providers are concentrated in farms operating farther away from service hubs, i.e. where

spatial density is lower.

Literature Review Delays are often overlooked as a barrier to technology adoption,

yet they are a potentially important mechanism in sectors like agriculture, where returns are

extremely sensitive to the timing of activities.2 The role of barriers to technology adoption in

agriculture as a source of low productivity in poor countries has received extensive attention

(see Suri and Udry, 2022 for a review). We contribute to a growing literature that highlights

2Other markets with similar features include the market for perishable products, or the allocation of
personal shoppers. There is an extensive literature that studies taxi markets which also feature frictional
meetings between customers and providers Frechette et al. (2019), however, costs bared by consumers from
delays in service provision are typically abstracted away.
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the importance of adopting mechanized practices, Caunedo and Keller (2020); Caunedo

and Kala (2021), by drawing attention to rental markets, which could be disruptive in

lowering adoption costs relative to labor, (Yang et al., 2013; Manuelli and Seshadri, 2014;

Yamauchi, 2016). We also contribute to the literature that emphasizes geography, as a

driver of productivity disparities in agricultural production, e.g. Adamopoulos and Restuccia

(2021).

To our knowledge, this is the first paper to study the distributional consequences of

rental markets for productive capital. In particular, we focus on heterogeneous access by

scale of production and spatial allocation. A novel dimension of our problem is that service

capacity constraints bring value to small-scale service orders because they improve capacity

utilization. The value of small-scale producers in bringing density to demand has been mostly

overlooked in the literature. We propose a tractable model that expands the seminal work

of Shi (2002), along two relevant dimensions: multiple service provision within a period and

service capacity constraints.

The notion that there might be scale economies associated to concentrating production

in certain locations goes back to Marshall (1890). Holmes and Lee (2012) explore it in the

context of crop choices of adjacent plots, where agglomeration economies rely on economies

of scale in output. In our application, agglomeration economies stem from lower transport

costs for service provision as in models of trade, Rossi-Hansberg (2005), as well as from the

indivisibility of capital purchases, which generates incentives for sharing services through

rental markets. Duranton and Puga (2004) review the micro-foundations for agglomeration

economies and classifies them into three mechanisms: “sharing”, “matching” and “learning”.

In our framework the first two mechanisms are at play. A paper that studies the “sharing”

mechanism is Bassi et al. (2022), with an application to rental markets for door producers in

urban Uganda, where they argue frictions are relatively limited. In contrast, we document

substantial price dispersion in rental rates paired with unused service capacity, a common

symptom of matching frictions. We document higher price dispersion for farmers operating

lower scales, consistently with our theory, where smaller farms face more variation on the

probability of service across providers. We are explicit about the role of “matching” in

generating service transactions between providers and input demanders, and how they affect

rental prices and queueing behaviour.
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Finally, our quantitative results are of relevance to rationalize the seemingly contradicting

and heterogeneous impact of mechanization policies throughout Africa, LatinAmerica and

Asia. Pingali (2007) argues that “public sector run (...) tractor-hire operations have neither

been successful nor equitable”. He suggests that mechanization attempts have failed because

market infrastructure and economic incentives that induce production response were not

there. Our theory and quantitative assessment suggests that the success of increases in

equipment supply in improving accessibility to capital and ultimately, productivity, depend

on the joint spatial and size distribution of farms.

2 A model of capital rental services in space

We build a model of capital rental services where farmers of different plot sizes and loca-

tions search for equipment providers with different technologies for service provision. Some

providers prioritize high value requests whereas others simply use a first-come-first-serve dis-

patch system. The latter, simpler dispatch system, may service requests that would otherwise

be rationed out from provision. Formally, we model a two-sided heterogeneity directed-search

framework, Shi (2002), where farmers request different hours of service, and where providers

use alternative technologies for service provision. We further extend this framework along

two dimensions. First, we allow for multiple orders to be served within each period; enabling

the study of optimal service routes and the role of travel time in assessing value across or-

ders. Second, we build-in providers’ service-hours capacity constraints, enabling the study

of congestion and equilibrium service delays as a function of the composition of the service

queue along the size and geographical location of demand.

2.1 Environment

Consider an economy populated by F farmers, heterogeneous in their service-hours demand

and location; and H service providers (machines), heterogeneous in their dispatch technology

and location. A market is defined as a catchment area around any of these providers, and

locations are exogenously given. A fraction s of farmers are large-scale farmers and demand

ks hours, while the remaining (1−s) fraction are small-scale farmers, and demand ks− hours.
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Hours demanded are determined by land holdings, and plots are either mechanized or not,

bringing discreteness in demand.3 A fraction h of providers use a first-come-first-served (fcfs)

dispatch technology, while the remaining fraction 1− h has access to a selection technology

that allows them to prioritize high value service requests (mkt).4 For simplicity, we assume

no depreciation or capital accumulation and no maintenance costs. Service providers have

machine-hours capacity constraint k̄ per day, which has implications for the number of orders

that can be served within a day.

Denote the ratio of farmers to service providers, f = F
H

, and focus on the case where the

market is large, i.e. F,H →∞ and neither side is infinitely larger than the other, f ∈ (0,∞).

Providers post prices rij indexed by the scale of demand i and the type of provider j; and

a selection criteria (with commitment) χj ∈ [0, 1] simultaneously at the beginning of each

period. The selection rule is a technology only available to the mkt provider, and applies

whenever he receives requests from both types of farmers. The provider prefers the large

scale farm if χj = 1, prefers a small scale farm if χj = 0, and he is indifferent between

them for χj ∈ (0, 1). When the mkt provider receives requests from a single farmer type, he

randomly selects one farmer for service. The fcfs provider serves orders as they arrive in the

queue.

Geographical considerations for service provision are included into the opportunity cost

of moving equipment from a provider to the plot, which includes the value of time for the

equipment driver, i.e. his wage; as well as the value of the foregone services that could have

been provided if the equipment would have not travelled, i.e. the shadow value of time as

per the capacity constraint of the provider.

Farmers decide whether and which provider to approach, with commitment, generating

queues for each available provider. Providers decide which orders to serve given their selection

criteria and capacity constraint. Service provision takes place and farmers produce. Delays

in provision occur in equilibrium inducing productivity costs for certain farmers. Given the

large number of providers and farmers we focus on a symmetric mixed-strategy equilibrium

where ex ante identical providers and farmers use the same strategy and farmers randomize

3The capital demand for a farmer is given exogenously. We could trivially model the link between land-
holdings and capital demand through a Leontief production function between capital and land.

4Albeit h and H are assumed exogenous, both of them can be easily endogenized with a costly set up of
providers and an associated free-entry condition.
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over the set of preferable providers.

A type i-farmer’s strategy is a vector of probabilities Pi ≡
(
pi,fcfs, ....; pimkt, ....

)
where

pij is the probability of applying to each type j-provider. Each farmer maximizes expected

profits from farming trading off the probability of obtaining a rental service and the cost of

such a service.

2.2 Queue lengths as strategies.

A convenient object for analysis is the queue length, i.e., the expected number of farmers

requesting a service from a given provider.5 Let qij be the queue length of type i farmers

that apply to a type j provider, where i ∈ {s, s−} and j ∈ {fcfs,mkt}. Then, qsj = sFpsj

and qs−j = (1 − s)Fps−j. The farmer type i is determined by its service-hours demanded

and location.

Assumption 1: Service-hours demanded satisfy ks > ks−. The expected travel time to

servicing small-holder farmers is weakly higher than that for large-scale farmers, ds ≤ ds−.

The probability of approaching different providers for a single farmer should add up to

one, which leads to the following feasibility constraints

H
(
hqs,fcfs + (1− h)qs,mkt

)
= Fs (1)

H
(
hqs−,fcfs + (1− h)qs−,mkt

)
= F (1− s) (2)

A farmer of scale i that requests service from provider j gets served with probability

∆ij. This conditional probability depends on the provider’s selection criteria, its capacity,

machine-hours demanded ki and the expected travel time for service di. Hence, ∆ij is the

sum across all possible number of orders of type i being served, ōi, of the probability of

servicing ōi type i farmers , φij(ōi), times the probability that a certain farmer of type i is

chosen, ∆̃ij(ōi),

∆ij =
∑

ōi∈{1,2,3}

φij(ōi)∆̃ij(ōi).
6 (3)

5From a theory standpoint, when the number of providers and firms grow large, the probability of re-
questing a service to a given provider approaches zero and it is inconvenient to work with. From an empirical
standpoint, queues are observable in our administrative data, while probabilities are not.

6The full derivation can be found in Appendix A.

9



The probability of type i being served (weakly) declines in the queue length of type i′ 6= i

farmers. For the first-come-first-served provider the result is straightforward because service

probabilities decline with the number of machine-hours in the queue, irrespective of their

type. For the market provider with a selection criteria that favours type i′ farmers, the

decline in the probability of service for type i 6= i′ is strict as the number of type i′ farmers

in the queue increases. The service probability for type i′ farmers is independent of the

queue length of type i 6= i′ due to the selection criteria.

2.3 Farmer’s decisions.

We follow Burdett et al. (2001) and describe a farmer’s decision as a function of the market

price it would get for the rental service, rij, which in turn determines its expected “market”

profit, Ui. Farmers take the value of the market profit as given when the number of agents

in the economy is large, F,H → ∞. Each farmer chooses a service provider to minimize

costs given Ui and the production technology:

min
j
rijki

subject to

πij(zij, ki, rij) ≡ ∆ij

(
zijk

α
i − rijki

)
≥ Ui,

where πij are the expected profits of the farm when requesting service from provider j and

zij ≡ E(z(∆ij)) is the expected productivity in the farm, which is a function of expected

service probability, through equilibrium delays.

Farm’s productivity depends on the realization of a random shock that yields the timing

of agricultural activities. We summarize the optimal timing for agricultural activities by

the optimal “land preparation” date, θ?, and relate deviations from this optimal timing to

productivity costs. The realization of the land preparation date is a random draw, θ, from

a known distribution G(θ̄(∆ij)) with mean θ̄(∆ij) that depends on provider j’s probability

of service. We assume that
∂θ̄(∆ij)

∂∆
< 0 so that a high probability of service induces shorter

wait times. If the realization of the preparation date differs from the optimal, the farmer

faces a productivity cost proportional to the delay relative to the optimal date as follows,
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z = z̄(1 − η(θ − θ?)Iθ?≤θ), where η is the productivity cost per delayed service day in

percentage points. Expected productivity is

zij(z(∆ij)) = z̄(1− η(θ̄(∆ij)− θ?)Iθ?≤θ̄(∆ij)).

The expected productivity is independent of the choice of provider whenever the expected

wait time is relatively low, i.e. the probability of service is high. Finally, because the draw

of the service provision is idiosyncratic, there is no aggregate uncertainty in the economy

and factor prices are time independent.

A type i farmer requests a service from a type j firm with positive probability if the

expected profits are weakly larger than Ui. The strict inequality cannot hold because then

a type i farmer would apply to that provider with probability 1, yielding qij → ∞ as the

number of farmers grows large. Then, ∆ij → 0 contradicting that πij(zij, rij, ki) > Ũi.

The farmers’ strategy is

qij ∈ (0,∞) if πi(zij, rij, ki) = Ũi (4)

qij = 0 if πi(zij, rij, ki) < Ũi

This expression summarizes the tradeoff between lower provision cost and higher farming

profits; and a lower probability of service. Given the shape of the probability function (which

enters into expected profits, π) there exist a unique queue q(rij, Ui) that satisfies the problem

of the farmer. The farmer decides his queueing strategy as a function of his capital demand,

ki, expected productivity zij and market prices rij.

2.4 Service provider’s decisions.

A service provider j maximizes expected returns. The cost of servicing a farmer depends on

its location relative to the provider. Providers choose the cost of service rij taking the the

machine-hours demanded by each type of farmer and their locations as given. For a vector

{Ui, ki, di}i=s,s− , he chooses the queue lengths by picking the cost of service and service

strategy. The queue length is reset at the end of each period and therefore the service
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provision problem is static.7

The service capacity of providers satisfies Assumption 2.

Assumption 2: Providers hold capacity that satisfies

o(ks− + ds−) <= k̄ and o(ks + ds) > k̄,

(o− 1)(ks + ds) + ks− + ds− <= k̄,

(o− 1)(ks− + ds−) + ks + ds <= k̄.

Hence, if the provider serves only large-scale orders, it can serve (o − 1) orders, or it can

instead combine those (o − 1) orders with one-small scale order. Service capacity is also

enough to serve o − 1 small scale orders and one large scale order. In either case, the

provider serves up to o orders within a period. In computing service probabilities, we assume

an empirically relevant upper bound for the number of orders per machine of o = 3.8

The cost of travel time includes the foregone services that could have been provided if the

equipment was not traveling, as well as the opportunity cost of the driver, which commands

a wage w per hour.

First-come-first-served provider. Consider the problem of a fcfs provider. His value

is the expected return from servicing at most o = 3 orders within each period. Let ōi ≤ o

be the number of orders of type i being served within the period. The per period return Ṽ

from facing queue qfcfs depends on the number of orders of each type being served, {ōs, ōs−}
and the revenue per type net of labor and transportation costs, {ri,fcfski−wki−wdi}.9 The

value for a first-come-first-served provider is

Vfcfs(k̄) = max
{ri,fcfs}i=s,s−

Ṽ
(
{ōs, ōs−}qfcfs

, {ri,fcfski − wki − wdi}i=s,s−
)
, (5)

7This feature allow us to handle the high dimensionality of the combinatorics problem when providers
are allowed to prioritize certain farmer types.

8This value is consistent with the median number of orders served within a day in our administrative
data as we show in Section XXXX.

9We assume the revenue is separable in the number of orders and relax this assumption in the quantitative
exercise, when the provider minimizes transportation cost across orders.
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subject to farmers’ strategies, equation 4, and feasibility

∑
i∈qfcfs

ki + di ≤ k̄. (6)

Market provider. Consider now the problem of a mkt provider who, in addition to

choosing the cost of provision, rimkt, chooses a selection criteria χ. This choice in turn

determines the type of orders being served and their quantity, given service capacity. The

value of a market provider is

Vmkt(k̄) = max
χ,{ri,mkt}i=s,s−

Ṽ
(
{ōs, ōs−}(qmkt,χ), {ri,mktki − wki − wdi}i=s,s−

)
, (7)

subject to farmers’ strategies, equation 4, and feasibility

∑
i∈qmkt

ki + di ≤ k̄. (8)

The full description of the value of these providers, Ṽ , can be found in Appendix B.

Entry. Providers pay an operating cost Ij. Free entry assures that their expected

profitability equals their operating cost.

Ij = Vj(k̄). (9)

3 Symmetric Equilibrium

A symmetric equilibrium consists of farmers expected profits Us, Us− , provider strategies

rij, χ, and farmer strategies, qij for i = {s, s−} and j = {fcfs,mkt}, that satisfy:

1. given Us, Us− and other providers’ strategies, each type provider maximizes value,

equations 5 and 7;

2. observing the providers’ decisions, farmers choose who to queue with, equation 4;

3. the values Us, Us− , through qij, are consistent with feasibility, equations 1 and 2; and
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4. providers values Vfcfs, Vmkt satisfy free-entry.

Proposition 1. In all symmetric equilibria where providers serve both types of farmers, the

selection process is χ = 1 and the per period profit of servicing farmers of type i is V j
i :

V j
i = γj1i(z̃k

α
s − wks − wds) + γj2i(z̃k

α
s− − wks− − wds−),

where γj1,i, γ
j
2,i are non-linear functions of the queue lengths and the elasticity of the service

probabilities with respect to the length of the queue and z̃ ≡ z̄(1− η).10

The expected per period value of servicing large-scale farmers is higher than for low-scale

farmers, V j
s > V j

s−. If the surplus from large-scale orders is sufficiently larger than from

small-scale orders, the expected profit for large-scale farmers is greater than for small-holder

farmers, Us > Us−.11

A few characteristics are worth highlighting. First, differences in location and the cost

of travel explain disparities in the incentives to serve farmers operating different scales.

For two plots located at the same distance to the provider, the marginal cost of service is

lower for larger scale farmers. Second, small-scale farmers are useful in terms of capacity

utilization (Assumption 1) and therefore, even providers that prioritize large-scale farmers

have incentives to serve them. Third, the fcfs provider manages to attract some large-scale

farmers by lowering their rental costs relative to the mkt provider. These lower costs for both

large and small farmers compensate them for higher expected queues at the fcfs provider.

Finally, the farmers’ expected profit from equipment services depends on the return to his

own demand for services and on the equilibrium rental rates. In equilibrium, farmers that

are served by both providers shall be indifferent between them. Hence, the product between

the probability of service, conditional on machine-hours demanded, and the cost of service

should equalize across providers.

10The expected productivity z̃ is a log-linear function of an exogenous component z̄ and an endogenous
component 1 +

∂zij
∂∆ij

∆ij

zij
which depends on the elasticity of productivity to the probability of service. Under

Assumption 3 in Appendix B this elasticity is constant an equal to −η. This assumption guaranties that the
surplus from transactions is independent of the probability of service.

11The ratio of the surpluses
z̃kαs −wks−wds

z̃kα
s−

−wks−−wds−
must be larger than a constant that depends on the elasticity

of the probability of service, see equation 24 in Appendix B.
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4 Equipment rental markets: empirical evidence.

We are now ready to discuss the empirical features of the rental market for equipment. To

do so, we bring in novel data from the state of Karnataka in India, a state where equipment

ownership is low and small-holder farmers are prevalent. Due to these features, the potential

disruptive effect of equipment rental markets could be large, a question that we further

study in Section 5. Most importantly, this is an interesting market to study because its

development, partially aided by government incentives, is such that market and first-come-

first-serve providers coexist in service provision. The latter constitutes an attempt to ensure

smallholder access to mechanized services, whose effectiveness and costs, we also study in

Section 5.

4.1 Data description

We combine four sources of data. First, we use transaction level data from the universe

of equipment rentals engaged through a public-private platform, within the context of a

mechanization program in the state of Karnataka that started in 2016. Our data corresponds

to all recorded transactions during the Kharif season of 2018 (May-October). The data

contains information on number of hours requested, acreage, implement type, as well as

farmer identifiers (such as their name, village, and phone number). Second, we use our

own census of farming households covering 40,000 households across 150 villages, including

information on equipment ownership and rental market engagement. Third, we use detailed

survey data that we collected over 5500 farming households with information on ownership

and rental market engagement, including information on equipment rental pricing, delays in

service provisions, as well as output and input expenses, crop choices and land ownership.

4.2 Equipment supply

Farmers in the area rely on informal rental markets in the village. These transactions are

usually on short-term credit (1-3 weeks), and the rental price of the equipment varies across

the season, with prices increasing during peak cultivation times (which are times of higher

demand) and falling when demand is low. Most operators of equipment are farmers who
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own the equipment and rent it out to utilize the slack capacity. Equipment ownership is

relatively low and so is the supply of services from this source.

Equipment is also available through custom-hiring-centers (CHCs, or hubs). The median

hub provides a menu of equipment that ranges from sprayers to rotavators. We focus our

analysis on rentals of rotavators and cultivators, which are the pieces of equipment most

commonly used at the land-preparation stage. Land-preparation is the process where mech-

anization is prevalent in our sample (Caunedo and Kala, 2021).

LEFT HERE We start by reporting patterns of ownership (service capacity by farmers)

and rentals of equipment across the farmers in our survey (see Figure 1).12 Most farmers

report owning hand tools and animal pulled equipment. Less than 10% of the farmers

report owning larger equipment such as tractors, or rotavators and cultivators. At the same

time, tractors and cultivators are among the pieces of equipment with the highest service-

hours rented. The average hours rented in a season per farmer is 12 hours for tractors and

10 hours for cultivators. These rental transactions mostly entail relational contracts. We

collect information on the typical customer for a farmer that rents out his/her equipment.

We find that 72% of owners report to renting out to people they know from the village or

with whom they have worked with in the past.

Delays are the most common issue faced by farmers when renting equipment, with 78%

of farmers reporting it as an issue. Importantly, larger farmers (cultivating at the 75th

percentile of the land size distribution) are nearly 5 percentage points less likely to report

delays as an issue. Hence, delays in accessing mechanization are more pervasive among

smaller farmers.

Given the disparities in value of agricultural implements as well as their contribution to

production, it is useful to construct a measure of equipment services from rentals and owned

equipment. We measure these services as the product of average hours of usage during a

season hi, market rental rates, ri and the number of implements i owned or rented, Ni.

Hence, equipment services in a farm k are

k =
∑
i

Nirihi

12Appendix D reports similar statistics using data from the Census.
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Figure 1: Ownership and rentals by implement.
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The ownership rate is the share of farmers that report owning a given implement relative to the total
population surveyed. Rental hours correspond to the average hours reported for the whole season.

The main hypothesis behind this measure is that differences in rental rates across implements

shall reflect differences in the services they provide, and that therefore, more expensive

equipment provides higher services to production. The main challenge in constructing such

a measure is the availability of data on market rental rates. We exploit our transaction level

dataset to construct mean rental rates per implement at the village level. Figure 2 displays

log owned and rented services. Harvesters (the most expensive implement in our bundle) is

reported to be only rented. For those farmers using tractors, more than 60% of the services

available in the farming sector come from rentals whereas the remaining 40% stem from

ownership. Services associated with smaller and cheaper equipment, such as sprayers, are

equally accounted for by rentals and ownership.

It is worth noting that given land holdings, ownership of equipment is not cost-effective

for most farmers. For instance, the rental price of a rotavator is between |750 and |1,000 per

hour (including tractor, a driver and fuel) and the average farmer demands about 6 hours of

rotavator services in the season or between |4500 and |6000 in services. The purchase price

of a new rotavator is over |110,000 which means that, absent maintenance costs (which are

certainly non-negligible), the average farmer needs 19 years to amortize the investment. The

rental rate for an inferior technology that serves a similar purpose, i.e. a harrow, is half of the

rental rate of the rotavator (|360) and the cost of purchase is about |50000. Overall, these
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price differentials are consistent with the observed extensive engagement in rental markets

for equipment.

Figure 2: Capital services from ownership and rentals, by implement.
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Shares of log capital services by implement and ownership/rental status. Average rental rates for an hour
of service (in |) are reported next to each implement.

4.3 Equipment demand

Table 1 reports the 10 most commonly rented implements from the platform in years 2017

and 2018, the number of transactions recorded for each implement, their per-hour rental

price, and month where the implement is most commonly rented (has the highest number of

transactions).

4.4 Equilibrium outcomes

Unfortunately, we cannot directly assess the cost of these delays in service provision with

our data, because such an exercise would require high-frequency (daily) information on

agricultural activities and outcomes. To assess these costs, we bring in high-frequency data

from International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), covering
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Table 1: Summary Statistics of Commonly Rented Implements from Rental Database

Commonly Rented Implements
Number of Transactions Median Price Per Hour Peak Month

Rotavator 6 Feet 11,239 770 July
Cultivator Duckfoot 7,287 550 April
Cultivator 9 Tyne 5,245 525 May
Plough 2MB Hydraulic Reversible 3,716 450 February
Trolley 2 WD 2,436 250 January
Harvester Tangential Axial Flow (TAF)-Trac 2,048 1800 May
Rotavator 5 Feet 1,811 700 September
Blade Harrow Cross 1,793 360 March
Knapsack Sprayer 20 Litres 1,688 22.5 October
Blade Harrow 5 Blade 1,600 360 June

6,200 plots in 18 villages in India during 2009-2014, with daily detailed measures of inputs

and output in farming. We exploit data from villages with similar crop choices as those in

the state in Karnataka.

5 Quantitative implications

In this section, we bring the model to the data to characterize how allocations change with the

presence of a fcfs dispatch system relative to the market dispatch system, both in space and

across farmers of different production scales. The key outcomes of interest are the selection

of farmer types across providers, the equilibrium delays and therefore farming productivity

costs, as well as provider profitability.

We then ask whether small scale farmers are hurt by this deregulation despite efficiency

improvements in allocations. Our market deregulation consists of (i) allowing first-come-first-

serve providers to have access to a service selection technology, and (ii) allowing providers’

entry and exit in the market mimicking the “long-run” equilibrium for the deregulated mar-

ket. We show that the increase in capital supply from the subsidy is large enough to generate

a disproportionally higher increase in service probability for small-holder farmers relative to

large-scale ones. The relatively higher service probability for small-holder farmers is however

not warranted for every level of the subsidy: only large enough subsidies benefit small-holder

farmers relatively more.
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5.1 Motivating facts

We start by describing the characteristics of the service demand and farmers equipment

supply. Then, we focus on a handful of outcomes that are informative to the theory that

we describe in Section 2. First, because agricultural activities are highly time sensitive,

the timing of demand is synchronous leading to endogenous waiting times as a function of

service capacity. The service capacity includes farmers’ ownership as well as CHCs capacity.

Second, because equipment needs to travel for transactions to take place, the joint distribu-

tion between travel time and the scale of demand, i.e. service-hours per request, is a key

input when optimizing service provision. Third, we document substantial price dispersion

in rental rates after controlling for observable household characteristics and village/market

characteristics, consistent with frictional rental markets. Fourth, delays in service provision

are costly to farmers, because they affect field productivity. In what follows we document

each of these features.

5.1.1 Service Capacity and Service Demand.

5.1.2 Heterogeneous Queuing by Production Scale

The demand for equipment rental services vary by agricultural process and therefore through-

out the agricultural season. The synchronous nature of many of these processes across farm-

ers induces queuing in the market. Our transaction level data allows us to measure demand

fluctuations by computing hours outstanding for service at a daily frequency. We focus on

two commonly rented implements for land preparation, rotavators and cultivators. Indeed,

our survey data indicates that farmers are most likely to engage in the rental market for

land preparation.

Figure 3 shows hours of unfulfilled orders for each of these implements over the 2018

kharif season. Queueing peaks by the end of July for rotavators and beginning of August

for cultivators. At the peak of the season, the average provider faces 40 hours of demanded

services in queue, which account for over 12 orders on average at a point in time.

Demand moves distinctively between large and small requests, measured in service hours

(Figure 3). A large portion of hours outstanding are accounted for by small orders (less than
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Figure 3: Hours outstanding in the queue.
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Notes: Averages hours outstanding in the queue across hubs in Kharif 2018, overall (top panel) and by order
size (bottom panel).

4 hours of service), although at peak time the share of hours accounted for by large farmers

increases.

5.1.3 Delays in rental services

As demand fluctuates over the season in a somehow predictable manner, it is expected that

service supply may adjust. If supply expands proportionally to the increase in demand,

any delays in service supply could be constant across the season. We find that service rates

fluctuate during the season, and that they positively correlate with hours serviced suggesting

some adjustment in supply (see Appendix Figure 14). The relationship between hours in
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the queue and service rates is non-linear, increasing for low service rates and declining for

high-service rates, suggesting longer delays then. At peak queue hours, service rates in the

CHC are 40% on average, suggesting that it takes 2.5 days to go through a hub’s queue.

Because our queue measures and service rates exploit data from the administrative plat-

form only, we complement this analysis with delays reported by the farmers in our survey

data. Service delays are negatively associated with cultivated area suggesting that even

if the productivity costs of delays are of same magnitude between small- and large-holder

farmers, the incidence of those delays is disproportionally borne by those with small plot

sizes, columns (1) and (3) in Table 2. It is possible that these delays are explained by the

geographical location of plots since equipment needs to travel to generate services. Columns

(2) and (4) in Table 2 show that delays have an important spatial dimension, because adding

village fixed effects substantially attenuates the coefficient on the log of land size, and in-

creases the r-squared by eight or nine times (depending on whether only positive delays are

considered, or all delays are included in the regression). That is, in the surroundings to a

particular village, small and large farmers face similar delays, but if this clustering is not

accounted for, smaller farmers face longer delays.

Table 2: Delays as a Function of Land Area and Location Fixed Effects

Delays (Sum of Average Delays Over the Season)

Log(Area) -0.215* -0.144 -0.319** -0.128
(0.115) (0.0926) (0.145) (0.108)

Observations 5,615 5,615 4,345 4,345
R-squared 0.002 0.182 0.003 0.252
Village Fixed Effects No Yes No Yes
Mean Delays 2.158 2.158 2.789 2.789

Estimated coefficients from a regression of reported delays in service provision and the log(area) owned. The
first two columns include those that report zero delays whereas the last two columns only focus on those
that report positive delays.

5.1.4 How costly are these delays?

We define an optimal planting time as the date that maximizes the profits per acre in a given

village year.ICRISAT’s high frequency data is particularly suitable for this exercise. Then,

we define the cost of the delay as the difference in average value added per acre or profit
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per acre (depending on the variable of interest) as we move away from the optimal planting

date. Formally, we estimate

Yi,year = β0 + β+
1 (Planting Date-Optimal)>0 + β−1 (Planting Date-Optimal)≤0 + αXi,year + εi,year

where X are controls for plot characteristics, farmer, village and time fixed effects. Standard

errors are clustered at the village level. Our estimates for the costs in value added per acre

are reported in Table 9. They indicate that within a 5-day windows, each additional day

away from the profit maximizing date entails a cost of 3.4% in terms of value added per

acre. In the 5-day window, for farmers that plant too early relative to the optimal date,

moving closer to the optimal date by one day increases value added per acre by INR 391

per acre. Conversely, for farmers that plant too late relative to the optimal date, moving

away from the optimal date by one day reduces value added per acre by INR 215 per acre.

Therefore, moving closer to optimal date increases returns. This result is robust to enlarging

the window around the optimal planting date, with an estimate cost of delay in the planting

date of 8.5% per day.

As a robustness check, we also estimate the cost of deviation with sowing time estimated

at the weekly rather than daily level. These estimates are reported in Table ??. They

indicate a cost of delay of between 5.6% to 11.5% for an additional week’s delay in terms of

value added per acre, or between 0.8% and 1.6% per day of delay (depending on whether we

restrict delay to be within 5 or 3 weeks of optimal sowing time, respectively). These estimates

are also consistent with agronomic estimates that estimate yield losses from deviating from

the optimal planting time in other contexts - for instance, Liu et al. (2023) estimate yield

losses of about 13% for a 10-day deviation from the optimal sowing time for winter wheat

in China, or about 1.3% per day.13

5.1.5 Frictional rental markets

But why are there delays to begin with? Is this a consequence of low ownership rates and

service capacity, or rather the consequence of frictions in the rental market that prevent

13ICRISAT’s sample sizes after controlling for crops are too small to reliably estimate the effects on yields.
The point estimates for yield costs in crops such as pea are 5.3% over a five day window of the optimal
planting date.

23



farmers and providers to contract services when desired? There are two features of the

market that indicate the presence of frictions in the rental market.

The first features is that the current supply of equipment seem adequate to serve market

demand. To compute supply we turn to a Census of 150 villages from the same area, which

includes information on over 40,000 farmers. We assume that the equipment has a catchment

area of about 10km, since transporting equipment over large distances is time-consuming and

expensive, particularly for farmers whose main activity is not equipment rentals.14 We also

include machines available in the CHCs within each relevant catchment area.

On average, the number of available cultivators can serve up to 2016 orders per season,

while average demand is 1190 orders. The number of available rotavators can serve up to

1008 orders in the season while market demand is 450 orders. In these computations we

assume a six-week plant preparation season and that each piece of equipment serves three

orders a day. The latter is consistent with serviced orders per equipment per driver at peak

utilization in our transactions dataset.15 Hence, these machine-hours supply and demand

estimates within each geographical market suggests that congestion may not be related to

supply shortages. This supply shortages may exist if farmers attempt to access equipment

within a shorter span than the overall plant-preparation season, i.e. all in the same week.

While there is certainly evidence of coordination in timing of demand in late july equipment

demand is widespread throughout Kharif, a five-month span between June and October (see

Figure 3).

The second, and perhaps most important feature, is the presence of price dispersion in

rental prices of equipment within a 10km catchment area of each village. As part of our

survey we ask farmers how much did they pay for land-preparation equipment rentals during

the season prior to Kharif 2018. Plant-preparation equipment includes mostly rotavators and

cultivators, implements that rent out for similar hourly rates at the CHC. Figure 4 panel

A shows the distribution of rental rates paid per hour, controlling for village fixed effects.

That is, the variation in rental rates per hour serviced across farmers within a village.16

14This 10km cutoff was decided based on conversations with our data partner but results are robust to
enlarging the catchment area to 20km radius.

15Even if we shorten the plant preparation season to a time-span of four weeks, supply would account for
1344 orders for cultivators and 672 orders for rotavators, well over our estimated equipment demand.

16Observed dispersion is similar even after we account for total area cropped. Indeed, on average hourly
rental rates are lower for farmers with larger cropped area. These results are available upon request.
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The interquartile range is 1.71 while the coefficient of variation is 0.67. Importantly, we

find systematic disparities in average prices paid as well as price disparities between large

and small farmers (i.e. above and below the mean area cropped in our sample of 3.3 acres),

Figure 4 panel B. We also find disparities in the dispersion in prices, which small farmers

facing more dispersion in prices, consistently with higher queuing risk.

Burdett and Judd (1983) were the first to show that price dispersion could arise in an

environment with identical agents where consumers/farmers found it costly to search for

providers. Price dispersion can also be related to informational asymmetries (Varian, 1980)

or to consumer preferences for certain providers over others (Rosenthal, 1980). Overall, the

exchange of identical goods for heterogeneous prices is typically a sign of frictions in the

market. Importantly to our application, mean hourly rental rates paid for identical services

are distinct across farmers of different land-holdings (and therefore demand size), which we

entertain through the structural model that we study next.
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Figure 4: Rental rates

Notes: Hourly rental rates for equipment at land-preparation, including Cultivators and Rotavators. Panel
(a) displays the residual rental rate dispersion after controlling for village fixed effects. Panel (b) presents
these residuals for farmers with less than the average area cropped (small, < 3.3 acres); and for farmers with
more than that area cropped (large, >= 3.3). Source: Own survey data.

5.2 Bringing the model to the data

The quantitative assessment of the impact of the government intervention in the rental

markets for equipment consists of two blocks. The first block solves the model in Section 2
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for the equilibrium market rental rates and queue lengths, given the empirical supply and

demand for equipment services. The second block simulates queues and service provision

strategies for farmers with different scales and geographical locations.

Solving the first block requires taking a stand on the heterogeneity in machine-hours de-

manded. We construct two groups of farmers following their average machine-hours requests

in the transaction data: those with requests of more than 3.5 machine-hours per order are

denominated large-scale while those with requests of less than 3.5 machine-hours are denom-

inated small-scale. Then, we solve for an equilibrium in which both types of farmers are

served by both types of providers, as in the data. We call this equilibrium the “status quo”.

The second block involves finding the expected delay and subsequent productivity costs

as well as provider profitability under alternative dispatch systems using equilibrium rental

rates and queue lengths from the first block. In theory, the queue length itself yields the

expected wait time by farm type. However, we recognize that empirically, farmer hetero-

geneity is richer than the one accommodated by the stylized theoretical model both in terms

of machine-hours demanded and in the spatial allocation of demand. We simulate 1000

paths of queues of length q? and composition (q?s , q
?
s−) as dictated by the equilibrium of the

selection model. The sample paths for queues (q?s , q
?
s−) are drawn from the joint empirical

distribution of machine-hours and geographical location. Then, given the equilibrium rental

rates and the technology for dispatch, we let the provider optimize service delivery. The

optimization of service provision in space is effectively the solution to a traveling salesman

problem, conditional on the set of orders in the queue.

5.2.1 Parameterization

There are 10 parameters per hub that need to be calibrated, as shown in Table 3. Eight of

these parameters are calibrated directly from the data while the remaining two are calibrated

internally by solving the model. Consistently with the evidence in Section 4 we use data

for the Kharif season (June to October) in year 2018. We exploit four sources of data:

(1) detailed transaction data from the government subsidized service provider, (2) our own

survey of farmers, (3) our own census of farming households in the catchment area of the

subsidized service providers and (4) high-frequency data from ICRISAT.
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From those parameters measured in the data, four of them are common across hubs:

the providers’ discount factor β, and their opportunity cost of moving equipment in space

w, the productivity cost of delays η, and the curvature of the farming profit function α.

The remaining 6 parameters are hub specific and include the share of first-come-first-serve

providers relative to the total supply of equipment in the catchment area of a hub h, the

parameters characterizing the joint distribution of productivity and machine-hours demand

within the catchment area of the hub (i.e., mean and standard deviation of productivity and

the correlation between productivity and machine-hours), the ratio of farmers demanding

service to the providers in the catchment area of each hub f , as well as the share of large

farmers in the population of farmers demanding equipment in the catchment area of the

hub s. The latter two model-calibrated parameters are chosen to match the queue length of

small-holder farmers at first-come-first-served providers, and to make sure the equilibrium

displays positive queues of small and large-scale farmers with both providers, as we observe

in the data. In addition to these 10 parameters, we feed the distribution of plots in space

(and their corresponding travel-time) as measured from the platform data.

We set the discount factor to β = 0.999 with an implied daily discount rate of 0.1%. The

opportunity cost of travel time equals the hourly wage of a driver which is directly observed

from the platform data, at w =|75. The curvature of the profit function is set to 0.6, as

estimated from our own survey data on farm profitability. We exploit the fact that farming

profits are proportional to this parameter, i.e. πi = (1−α)yi and estimate α from the average

ratio of profits to value added as reported by farming households.

To discipline the productivity costs of delays, η = 3.4%, we use high frequency data from

ICRISAT as described in Section 4. We also need to calibrate the optimal planting date,

θ?. We assume enough service capacity such that farmers choose providers in a manner

that on expectation, there are no productivity losses from using mechanized services, i.e.

E(z(∆ij)) = z̄.17 Once queues are realized, productivity costs realize as a feature of the

service provision process. Finally, we need a mapping between the probability of service and

the realization of the service date, θ(∆ij). We set it to be a strictly monotonic function,

i.e. θ(∆ij) = − ln(∆it). Its logarithmic shape brings tractability to the problem because

17This is analogous to an outside option that entails no usage of mechanization services and that is large
enough so that farmers participate in this market only if on expectation, they face no productivity costs.
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Table 3: Parameterization

Parameter Description Value Source/Moment

Measured directly in the data
common across hubs

α Curvature of the profits function 0.6 Survey data
β Discount factor 0.999 Interest rate
w Travel/op. cost (INR/hr) 75 Platform data
η Productivity loss/day 3.4% ICRISAT sample

hub specific method/value

h Share of fcfs providers Table 4 Census data
µ Log-normal mean of productivity MLE Survey data
σ Log-normal s.d. of productivity MLE Survey data
ρ Correlation order size and productivity Table 4 Survey + Platform data
ki, di Joint-distribution of order size and travel time B-splines Platform data
k̄ hub-capacity (hours) Table 4 Platform data, peak

Calibrated using the model (hub-specific)

s Share of large farmers Table 4 Census data
f No. of farmers/No. of equipment Table 4 Small-scale queue, fcfs

Notes: Benchmark model parameterization. Productivity is measured as output per acre. Hub-capacity
corresponds to the hours serviced per machine within a day at the peak of service demand, i.e. the maximum
number of hours outstanding in the queue during the season.

it implies a constant elasticity of the delay time to the probability of service equal to the

productivity costs of delays η, see Appendix B.

Then, we calibrate hub-specific parameters. We use our census, to compute the share

of machinery available from government-subsidized hubs and that available from machine-

owners (i.e. we count inventory of implements per hub and implements owned by farmers

within the catchment area of each hub). To characterize the productivity of farmers request-

ing different machine-hours we use the subsample of transactions that overlaps with the

survey data (approximately, 1,300 observations) and compute the underlying correlation be-

tween farm productivity, measured as output per acre, and machine-hours requested. Their

correlation ranges from -0.28 to 0.35 displaying the wide-heterogeneity in demand character-

istics across hubs, column (5) in Table 4. When machine-hours requested are proportional to

plot sizes a negative correlation between output per acre and machine-hours follows from the

negative correlation between productivity and farm size, as has been documented by others

in the literature, e.g. Foster and Rosenzweig (2022). A positive correlation is consistent with
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more productive mechanized farms. Our data is rich enough to display both patterns. We

assume that the distribution of productivity is log-normal, ln(z̄) ∼ N (µ, σ) and fit the em-

pirical distribution of value-added per acre for survey farmers in the catchment area of each

hub via maximum likelihood. The estimated mean of productivity suggests differences in log

productivity across hubs of 36% (from 7.4 to 9.3) on average, and a log-variance ranging from

1.1 to 2.9, columns (3-4) in Table 4. Finally, we fit the joint distribution of machine-hours

demanded and travel time to services from the platform data for each hub using B-splines,

akin to a non-parametric estimation of the distribution, see Figure ?? in Appendix D. On

the travel dimension, the distribution is typically bimodal, with orders bunching at less than

10-minutes travel time from the hub and 30-minutes travel time.18

Table 4: Hub specific characteristics.

Measured Directly Calibrated
Supply Demand Farmers

Hub sh. fcfs capacity Productivity Correlation sh. large per provider
h k̄ mean variance prod - hours s f

(1) (2) (3) (4) (5) (6) (7) (8)

1 0.80 4 9.83 1.12 -0.01 0.3 5.0
2 0.86 4 8.89 1.33 -0.12 0.3 4.6
3 0.86 5 8.67 1.49 0.07 0.3 4.4
4 0.86 5 9.08 1.52 0.07 0.3 5.2
5 0.86 6 9.35 1.08 -0.20 0.5 3.3
6 0.86 6 9.08 1.52 0.07 0.5 3.3
7 0.86 7 9.08 1.52 0.07 0.4 5.3
8 0.63 8 8.85 2.56 0.16 0.4 4.1
9 0.75 11 8.85 2.56 0.16 0.4 3.4
10 0.67 11 8.15 2.89 0.01 0.4 4.7
11 0.75 14 8.85 2.56 0.16 0.3 3.4

average 0.79 7 8.97 1.83 0.04 0.4 4.3

Notes: Hub-specific parameters for each hub-implement combination, “Hub” in Column (1). Hubs labeled 3,
4 and 8 correspond to Cultivators while the remaining hubs contain information for Rotavators. Information
for hubs labeled 4-5 correspond to different implements in a single government subsidized hub, and therefore
demand characteristics are the same. Column (2) reports the share of first-come-first-serve providers in
the total equipment supply within each catchment area. Columns (3)-(5) report demand characteristics for
each hub, including the characteristics of the distribution of productivity across farmers and its correlation
between hours demanded. Columns (6)-(7) report parameters calibrated jointly in the model.

18We could have alternatively calibrated a joint distribution of productivity, machine-hours requested and
travel time. However, the overlap of the survey data and platform accounts for 20% of the survey data and
we therefore benefitted including the fullness of the distribution of machine-hours and travel time. The latter
is a key input into the costs of service and therefore the incentives to service large and small scale farmers.
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Table 5: Moments

Share of Queue Queue
large scale untargeted

s qs−fcfs qsfcfs/qs−fcfs
data model data model data model

(1) (2) (3) (4) (5) (6) (7)

1 0.29 0.45 1.5 3.0 0.5 1.4
2 0.25 0.30 2.3 3.5 1.2 3.2
3 0.19 0.30 3.3 3.3 3.3 2.9
4 0.28 0.30 4.0 4.0 4.0 3.4
5 0.12 0.40 1.3 2.0 0.7 1.8
6 0.35 0.40 2.0 2.0 2.0 1.8
7 0.19 0.25 7.3 4.3 1.5 3.8
8 0.35 0.50 1.0 2.5 0.3 2.2
9 0.39 0.40 0.7 2.0 0.2 1.9
10 0.31 0.30 2.0 4.0 0.5 4.1
11 0.28 0.35 1.0 2.0 1.0 2.0

Notes: Calibration moments, data and model counterparts, Columns (2-5). Untargeted queue length for
large-scale farmers relative to small-holder farmers, Columns (6-7).

Parameters calibrated jointly include the ratio of farmers to providers in the catchment

area of each hub, as well as the the share of large-scale requests in that catchment area.

The ratio of providers to farmers minimizes the distance between the model predicted queue

of small-holder farmers at the fcfs provider and the data. We pick the share of large-

scale requests that its closest to its empirical counterpart while generating an equilibrium

allocation that displays service request from both types of farmers to both type of providers

(as in the data). To do so, we take the stand that small-holder farmers are those with

requests of up to 3.5 machine-hours per order, and large-scale farmers are those with orders

of more than 3.5 machine-hours per order.

The calibrated ratio of farmers to providers ranges from 3.3 to 5.3, where a provider

should be interpreted as a piece of equipment, column (8) in Table 4. The calibrated shares

of large-scale farmers are higher than in the data (0.4 in the model vs. 0.27 in the data on

average across hubs).19 When there are few large-scale requests, the model generates queue

lengths for small farmers that are broadly in line in the data, Table 5. Queues that are

19Alternatively, we could have targeted the queue of large-scale farmers in the first-come-first-serve
providers which we currently report as an untargeted moment. Results are qualitatively similar to those
reported here and available upon request.
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Figure 5: Equilibrium

(a) Rental rates
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Notes: Equilibrium rental rates and service finding rates by hub for the calibrated economy. Hubs are
ordered by increasing service capacity as in Table 4.

“too short” (less than 2 orders) fail to generate equilibria where both type of farmers request

service from both providers because a queue length of 1 order for the market provider implies

that small farmers are served with probability one there, given capacity. If the queue length

is instead “too long” (more than 5 orders) the model benefits an equilibrium where small-

farmers only request service from fcfs providers, which is inconsistent with the engagement

of farmers across both types of providers, which we observe in the data.

For completeness, we report the (untargeted) ratio of queue lengths of large-scale and

small-holder farmers. On average, this ratio is lower in the data than in the model, i.e. small

scale farmers are more strongly sorted into fcfs providers than predicted by the model. This

difference is in part driven by a larger share of large-scale farmers in the model than observed

in the data, to be able to sustain equilibria where both types of farmers reach out to both

providers.

5.3 Status quo equilibrium

We solve for the rental rates and queue lengths when both types of farmers have access to

both types of providers, i.e. the status quo equilibrium. In the remainder of the analysis

we order hubs by service capacity k̄ in increasing order. The rental rates for both types of
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farmers are lower at the fcfs provider than at the mkt provider to compensate for the longer

queues, Figure 5 panel (a). Rental rates are particularly lower for small farmers queueing

with fcfs providers, which makes these providers attractive. Consistently, the service finding

rate for small-scale farmers is larger with the fcfs than with the market providers, while the

opposite is true for large-scale farmers, as shown in Figure 5 panel (b). Service finding rates

are defined analogously to findings rates in the search literature (Barnichon and Figura,

2015), i.e. the ratio between the number of serviced orders per period and the number of

farms searching for a service,
qij∆ijH

F
=

qij∆it

f
.

The level of the rental rates are higher for small-scale than for large-scale farmers due

do the higher cost of service per machine-hour rented (e.g. travel costs), see Table ?? panel

(b) in Appendix D. At the same time, rental rates weigh differences in the probability of

service across providers, with lower rental rates for the fcfs provider irrespective of scale.

This is a consequence of lower conditional probabilities of service with the fcfs on average,

∆ij, particularly for large-scale farmers. The flip side of this feature are higher queues of

small farmers with the fcfs and higher queues of large-scale farmers with the market provider,

see Table ?? panel (a) in Appendix D. It is important to highlight that despite the fcfs has

higher service probability for small-scale farmers, the conditional probabilities of service are

lower than with the market providers. In other words, a higher service probability is driven

by queue lengths. Figure ?? in Appendix D decomposes service finding rates into differences

in queue lengths and service probabilities and compares them across providers.

5.4 Accommodating empirically relevant heterogeneity

The stylized equilibrium queueing model does not capture for full extent of the observed

heterogeneity in location and machine-hours demand. We accommodate this heterogeneity

through simulation exercises where service queues to each provider are drawn from the

empirical joint distribution of location and machine-hours observed in the catchment area

of each hub. In other words, the queue lengths of small and large scale orders are the

equilibrium ones, but their composition is allowed to vary following the empirical distribution

of machine-hours and location observed in the data. We sample, with replacement, 1000

queues per provider. Each order in the queue is a three dimensional object that includes the
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machine-hours demanded, the location of the plot, and the productivity of the farmer that

requested service. This productivity level (output per acre) is then used to compute the cost

of equilibrium delays in service provision.20

On the supply side, we solve the service dispatch system through two possible delivery

routes. One follows a “hub and spoke” pattern, under which the equipment must return to

the CHC between two consecutive orders. The other allows for a solution to a “Traveling

Salesman Problem (TSP)”, where the implement travels optimally from order to order within

the day. Under fcfs, the provider follows the route that minimizes the travel time within

a given day for a given set of requests (and their order) in the queue. Under the market

allocation, the type of requests being served are jointly determined with the best service

route. The value of an order in the market allocation depends on the density of orders

around them, and the size of the order relative to serving capacity.21 We then estimate

the value function for each provider, i.e. a function that maps any queue of orders to their

service value, conditional on the dispatch system and the delivery route. As expected the

value of service when we solve the TSP problem is always higher than without it, at the

same time, the value of service provision is higher for market providers, and particularly so,

for relatively close and larger orders, see Figure ??.

5.4.1 Farmer allocation across providers

We start by describing the sorting of farmers into different providers, classifying farmers by

order size, i.e. the acreage of the plot for service; and by location, i.e. the travel time for

service, see Figure 6.

The average order size served by a market provider is 3 acres while the average order size

served by a fcfs provider is 2.2 acres. This differential is a consequence of the disparities in

the queue composition discussed before. At the same time, there are systematic differences

in the travel time to locations. During a service day, market providers travel on average

.8 hours (48 minutes), while fcfs providers travel twice as much. This differential travel

20As robustness, we simulate outcomes when we assume no correlation between farm productivity and
order sizes within the catchment area of a hub. These results are available upon request.

21As we explain in Appendix C, this is a high dimensional problem, and the number of possible combina-
tions of orders to be served within a period grows exponentially with the number of orders in the queue and
its characteristics (including hours serviced and location, i.e., latitude and longitude).
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Figure 6: Demand characteristics by provider

(a) Size: average farm acreage
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(b) Location: average hours traveled to service
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Notes: Panel (a) shows the sorting of farmers across providers by average farm acreage per order and Panel
(b) shows the travel time to the service location, in hours. Hubs are ordered by increasing service capacity
as in Table 4.

time reflects not only differences in the queue composition along the location dimension, but

also disparities in the ability to prioritize orders. While equal-access-concerns may favour a

fcfs service arrangement, it is possible to improve upon the baseline allocation by allowing

government subsidized hubs to optimize service delivery within a day. Figure 7 displays

travel times when providers are allowed to solve a TSP among the orders served within each

day. This option is particularly beneficial to fcfs providers that are not allowed to prioritize

order sizes. The average travel time (as % of service time) is 11% for the market provider

and it declines to 9% once optimizing routes. The average travel time (as % of service time)

is 15% for the fcfs provider and it declines to 11.5% once solving the TSP.

5.4.2 Effectiveness in service delivery

Figure 8 panel (a) compares waiting times across the bootstrapped samples for different

dispatch system and demand characteristics. On average, the mean wait time faced by

farmers queueing with market providers is longer that with fcfs. This feature is in part due

to differences in the composition of the queue. Market providers have higher service rates

for large-scale farmers, but those farmers are slightly more than 30% of the population of

farmers in the economy on average. For the remainder of the farmers, market providers have
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Figure 7: Travel times
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Notes: Travel time by provider and dispatch system, “with TSP” correspond to allocations where providers
are allowed to solve a traveling salesman problem for the orders serviced within a day. Travel time is
expressed as a ratio of the total service within a day. Hubs are ordered by increasing service capacity as in
Table 4.

lower service rates than fcfs providers (Figure 5), which is reflected in higher waiting time

among those queueing with market providers.

Despite the better waiting time for farmers queueing with fcfs providers, these providers

face equipment transportation costs (in terms of the opportunity cost of time) that can

double those of the market providers. In other words, their inability to prioritize order sizes

also affects their ability to service demand in space, traveling “too much” relative to their

market counterparts, see Figure 8 panel (b). It is not surprising then that the value of

optimizing service routes is higher for fcfs providers as we showed before. Finally, notice

that hubs are ordered in terms of service capacity with hub 1 holding less than a third of the

service capacity of hub 11. On average, travel time as % of service time increases as service

capacity increases, and this correlation is stronger for the market provider than it is for the

fcfs provider. We need to enlarge here what we have to say about the TSP problem, Ref1.

5.4.3 The cost of delays and of service provision in space

Delays in service provision are costly for farmers. Delays are an equilibrium outcome in

our economy given the nature of search in the market for rental equipments, the disparities

35



Figure 8: Time management by hub

(a) Farmer wait time
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(b) Travel time, % of service time
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Notes: Panel (a) shows average days waiting for service across providers for the average farm in the catchment
area of each hub. Panel (b) shows the average travel time as a ratio of the service time by provider and hub.
Hubs are ordered by increasing service capacity as in Table 4.

in service provision across providers and the spatial distribution of service demand. Figure

9 displays the distribution of waiting time for service time across farmers located near the

catchment area of a hub (less than 30 minutes of travel time, left panel) and those located far

(more than 30 minutes of travel time, right panel). Most of the excess delay in near locations

observed for market providers has to do with the sorting of demand by size, i.e. the market

providers attract relatively more large-scale farmers, which induces delays in service provision

toward smaller farmers. The difference in delays between providers is maximized for far away

locations, because market providers systematically avoid servicing those.

These delays induce costs in revenue per acre that depend on the joint distribution of

location, size and productivity. Figure 10 reports the productivity cost per acre across

providers for the bootstrapped samples. These are measured as the decline in revenue per

acre relative to the average revenue per acre in the catchment area of a hub. Despite

documented disparities in delays across providers in near locations, productivity costs per

acre are similar across dispatch systems. For example, in hub 4, the market provider induces

a delay in provision of roughly an additional day relative to the fcfs provider (from 2.5

to 4 days). In the sample, farmers that wait longer are on average less productive and

therefore the cost per acre is similar across providers, 8.4% of average revenue per acre
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Figure 9: Delays in space

(a) Near the hub
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(b) Far from the hub
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Notes: Panel (a) shows the average days waiting for service across providers for the average farm in locations
within 30 minutes of travel of the centroid of each hub. Panel (b) shows the same measure for the average
farm in locations more than 30 minutes away from the centroid of each hub. Hubs are ordered by increasing
service capacity as in Table 4.

for the fcfs provider and 9% for the market provider. Conditional on servicing far away

locations, the disparities in delays are so large across providers, that those delays induce

stronger productivity costs for those queueing with the market providers. Still, as in nearby

locations, the disparities in productivity are smaller than the disparities in delays across

providers.
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Figure 10: Productivity costs in space
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(b) Far from the hub
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Notes: Panel (a) shows the cost in revenue per acre for the average farm in locations within 30 minutes of
travel of the centroid of each hub. Panel (b) shows the same measure for the average farm in locations more
than 30 minutes away from the centroid of each hub. The cost is measured in p.p. of the average revenue
per acre in the catchment area of each hub. Hubs are ordered by increasing service capacity as in Table 4.

6 Evaluating dispatch systems

It is possible to rank allocations based on the costs in profitability incurred by farmers, as

well as the travel costs incurred by providers to service those slots.

ιj =

∫
ki,di

∆ij(z̄iη(θi − θ?)kαi + diw)ζi

where ki indexes the size of the order (in acres/machine-hours), di indexes the travel time

to a location and ζi is the joint distribution of farms in space and size as calibrated in the

model. This cost ι can also be computed per acre

ιj =

∫
ki,di

∆ij
z̄iη(θi − θ?)kαi + diw

ki
ζi
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7 The value of increased supply

7.1 The market prior to CHCs.

We now study how the status quo equilibrium compares to the equilibrium prior to the

intervention. While data for the pre-subsidy market is unavailable, we can account for this

effect by running a counterfactual analysis where we shut down the supply of equipment

stemming from fcfs, i.e. the government subsidized supply. This counterfactual is valid

under the assumption that market participants accommodated the entry of new supply in

the market. This is a plausible scenario due to the low ownership of equipment in the

population and the desire of most farmers to engage in rentals.

The substantial increase in equipment supply due to the subsidy implies an increase in

the service finding rates, moving from 15% prior to the subsidy to between 40% and 55%

after the subsidy depending on the provider, see Table 6. Gains in service findings rates are

mostly attributed to small farmers, which prior to the subsidy faced a service finding rate

of 6% and after the subsidy face a service finding rate of 56%, with a bit more than half

of it attributed to the fcfs providers. Market providers’ service probability also increases in

equilibrium because the cost of service declines in response to stronger competition. Rental

rates fall by 18% for small scale farmers and by 5% for large farmers. The differential effect

is a consequence of the implicit priority given to small-holder farmers by the fcfs subsidized

provider.

Table 6: Effect of the subsidy

prior to post subsidy
policy fcfs mkt

Service Finding Rate
average farmer 0.15 0.41 0.56
small-scale 0.05 0.28 0.22
large-scale 0.1 0.13 0.34
Rental Rate
small-scale 142 121 125
large-scale 94 93 94

Notes: This table shows the service findings rates and hourly rental rates (in rupees) across different equilib-
rium allocations. These results are presented by farmer scale of production and by provider. The “prior to
policy” equilibrium corresponds to an allocation where only the market suppliers are available. The “post
subsidy” equilibrium corresponds to our benchmark economy.
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7.2 Market deregulation

One of the findings in Section 5.4.2 is that fcfs providers could benefit from operating a

technology that allows them to optimize equipment in space as well as optimize the type of

orders being served. We study the effect of a market deregulation through counterfactuals.

Because prioritizing large-scale farmers is costless and the fcfs providers are at least as well

off as before (i.e. they can now prioritize the high marginal return orders), a profit driven

fcfs provider would choose to adopt the technology, leading to a shift in provider composition

towards h = 0.22 In other words, there is no longer any differentiation between these two

types of providers. The nature of the equilibrium may however change due to the endogenous

farmer sorting, and pricing of services.

Table 7: Effect of Market Deregulation

Benchmark Deregulation
fcfs mkt short-run long-run

Service Finding Rate
average farmer 0.41 0.56 0.49 0.5
small-scale 0.28 0.22 0.29 0.3
large-scale 0.13 0.34 0.2 0.21
Rental Rate
small-scale 121 125 122 120
large-scale 93 94 92 92

Notes: This table shows the service findings rates and hourly rental rates (in rupees) across different equi-
librium allocations. These results are presented by farmer scale of production and by provider. The “bench-
mark allocation” corresponds to the calibrate economy, whereas the “deregulated” economy corresponds to
economies where fcfs providers are allowed to prioritize orders as their market counterparts. The “short-run”
is an equilibrium without providers’ entry-and-exit whereas the “long-run” allows for it.

The short run response of the economy (without endogenous entry or exit of providers)

implies higher service finding rates for large-scale farmers relative to the fcfs provision, con-

sistently with the profit maximizing strategy of market providers (see Table 7). However,

their service finding rates are below those of small scale farmers that are drawn to the market

in response to the increased supply of services. While service findings rates for small-holder

farmers do not change relative to the baseline, the rental costs increase for all farmers. The

long run response of the economy (with endogenous entry and exit) restores rental costs

22As we pointed out before, the value of service for market providers is always above the one for first-come-
first-served providers, and therefore each provider has incentives to adopt a dispatch system that prioritizes
large orders.

40



Figure 11: Impact of Deregulation, demand characteristics

(a) Size: average farm acreage
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(b) Travel time, % service time
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Notes: Panel (a) shows the sorting of farmers by average farm acreage per order. Panel (b) shows the average
travel time to the service location as a ratio of the average service time. Hubs are ordered by increasing
service capacity as in Table 4.

to their baseline levels, and generates allocations where service findings rates are higher for

small holder farmers than large holder farmers, despite market providers prioritizing the

latter. The reason is that small-scale requests are valuable when there are service capacity

constraints because they improve capacity utilization.

Figure 11 plots the change in average farm sizes served and the travel time for service,

i.e. the change in the distribution of served location, as the market deregulates. Exit of

providers induces an increase in the average size of the farm served by each provider, and a

reduction in the travel time to service, consistently with providers prioritizing services with

low marginal cost of provision. Travel time as a proportion of the service time declines by

20%, on average across hubs.

7.3 Small-holder access and equipment supply.

An extensive literature in agricultural economies has studied the effect of government sub-

sidies for equipment. Two conclusions arise: (a) equipment subsidies are regressive because

they benefit relatively wealthier farmers; (b) the impact of these subsidies in mechanization

is widely heterogeneous, with only a handful of successful cases (see review in Pingali, 2007).
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Figure 12: Impact of Deregulation, delays

(a) Near the hub
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(b) Far from the hub
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Notes: Panel (a) shows the average days waiting for service across providers for the average farm in locations
within 30 minutes of travel of the centroid of each hub. Panel (b) shows the same measure for the average
farm in locations more than 30 minutes away from the centroid of each hub. In purple we include outcomes
for the deregulated economy, i.e. where fcfs providers can prioritize orders. Hubs are ordered by increasing
service capacity as in Table 4.

Our results suggest a different interpretation of the heterogeneity in the effectiveness of

subsidies. First, small-holder farmers can benefit disproportionally more from these subsidies

than large-scale farmers (at least in terms of service findings rates), as they do in our bench-

mark result. Their ability to do so depends on their value in terms of capacity utilization,

or the density of their location in space; and the generosity of the subsidy, or the increase in

the supply of machine-hours. Indeed, if the supply increase is relatively low, service finding

rates for small-holder farmers are below that of large-scale farmers as we show in Table 8.

One could erroneously interpret this results as the subsidy being regressive.

Table 8 also highlights that heterogeneity in the success of these government programs

for generating long-term shifts in mechanization may have been related to heterogeneity in

the subsidy amounts, and the joint spatial and size distribution of farms.
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Table 8: Service finding rates across supply of machine-hours, H.

Hps H relative to Hps

1 1.4 2 3.3 5

average farm 0.15 0.21 0.28 0.39 0.47
small-scale 0.05 0.08 0.12 0.19 0.26
large-scale 0.10 0.13 0.16 0.19 0.20

Note: Column Hps corresponds to the level of pre-subsidy supply of machine-hours. The pre-subsidy supply
level is estimated as the equipment supply absent CHC’s machine hours, see Section 7.1. Service finding
rates are computed as described in the text.

8 Conclusion

Rental markets hold considerable promise in expanding mechanization access and increasing

productivity in the farming sector. However, the spatial distribution of demand in space and

its synchronous nature, as well as the fixed supply capacity, poses important policy-relevant

trade offs for service provision. The returns to these rental markets depend crucially on

factors such as spatial density, i.e. the proximity of suppliers to farmers, the overall supply

capacity, and the ability to optimize traveling equipment time. In this paper, we document

and quantify how these factors determine the distributional effects of rental markets.

We find that when the government increases service capacity by subsidizing the purchase

of equipment for rental service provision, and at the same time imposes a first-come-first-

serve dispatch system to allocate services, it induces misallocation in service provision. When

equipment owners are allowed to maximize their profits by prioritizing larger scale orders, the

equilibrium allocation may induce higher finding rates for small-scale producers. The reason

is that small-scale orders are valuable in terms of service capacity-utilization, particularly

when located in high-density areas.

We provide a parsimonious framework to study the allocation of shared services across

heterogenous demand and spatial allocations. The framework can be readily extended to

study similar markets where capacity utilization and geography are important determinants

in service provision. Finally, while we take the location of service providers as given, a

natural step forward would be to study the properties of the endogenous location of providers

in space, as in Oberfield et al. (2020).
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A Characterization of the probability of service.

A.1 Probability of service for a particular farmer

The probability that a provider chooses a particular farmer given that he chooses one of type

i is ∆̃ij(1), i.e.

∆̃ij(1) =

fi−1∑
n=0

(
fi − 1

n

)
pnij(1− pij)fi−1−n 1

n+ 1
,

where fi is the number of farmers of type i searching for a provider, fs = sF and fs− =

(1− s)F and
(
fi−1
n

)
= fi−1!

n!(fi−1−n)!
. Hence,

∆̃ij(1) =
1− (1− pij)fi

fipij
.

As the number of agents in the economy gets large, and using the definition of queue lengths

above, the service probability simplifies to

∆̃ij(1) =
1− e−qij

qij
.

That is, the probability that at least one farmer of type i has requested a service, 1− e−qij ,
divided by the number of requests of a given type, qij.

Next, consider the probability of a particular farmer being served when the provider

serves ō = 2 orders of type i, ∆̃ij(2). Similar computations to those above yield a service

probability as follows

∆̃ij(2) = 2(
1− e−qij

qij
)− e−qij .

Finally, consider the probability of a particular farmer being served when the provider

serves ō = 3 orders of type i, ∆̃ij(3), which follows

∆̃ij(3) = 3(
1− e−qij

qij
)− 2e−qij − e−qijqij.

A.2 Probability of service of a farmer of type i

Next, we characterize the probability that a provider of type j services a farmer of type i

given that a farmer of type i is standing in the queue.

First-come-first-served. The fcfs provider only considers feasibility and the position

of the farmer in the queue. Let the probability of serving ō farmersof type i be φi,fcfs(ō).
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Given the queue lengths at this provider, there are qs+qs−Po =
qs+qs− !

(qs+qs−−o)!
possible permuta-

tions for the o-tuple, (the provider identifier has been dropped for notational convenience).

Under Assumption 1, a fcfs provider serves a single large-scale farmer if one of the large-

scale farmers are among the first three positions in the queue, which occurs with probability

φ̂s,fcfs(1) ≡ 3qs
q
s−P2

qs+q
s−P3

; and at least one has applied.

φs,fcfs(1) = ψs,fcfs(1)φ̂s,fcfs(1), 23

where ψs,fcfs(1) ≡ (1−e−qs−,fcfs−qs−,fcfse−qs−,fcfs) is the probability of having at least three

orders in the queue of which at least two are of type s−, when a single farmer of type s has

requested service. To this probability we should add the probability of service when less than

3 farmers apply for service. The latter is ψ̂s,fcfs(1) ≡
(
e−qs,fcfs(e−qs−,fcfs + qs−,fcfse

−qs−,fcfs)
)
,

i.e. the probability of service of large scale order when there are no other service request or

there is exactly one additional order requested.

A fcfs provider services 2 large-scale farmers if there are two or more large-scale orders in

the first o positions of the queue and at least two large scale farmers have requested service.

Let the first probability be φ̂s,fcfs(2) ≡ 3qs(qs − 1)
qs−2+q

s−P1
qs+q

s−P3

φs,fcfs(2) = ψs,fcfs(2)φ̂s,fcfs(2),

where ψs,fcfs(2) = (1 − e−qs,fcfs − e−qs−,fcfsqse
−qs,fcfs) is the probability that there are at

least three orders in the queue conditional of a farmer of type s requesting service, of which

at least two are of type s (including the one requesting service).24 To this probability

we should add the probability that there are only two large-scale farmers in the queue

ψ̂s,fcfs(2) ≡
(
qs,fcfse

−qs,fcfse−qs−,fcfs
)
.

Given feasibility, the fcfs provider never serves 3 large-scale orders, φs,fcfs(3) = 0.

A fcfs provider serves a single small-holder farmer if there is one of them in the first o

positions of the queue. This probability is defined analogously to its counterpart for large

scale orders,

φs−,fcfs(1) = ψs−,fcfs(1)φ̂s−,fcfs(1),

and adding the probability ψ̂s−,fcfs(1) when there are less than three orders.

A fcfs provider services 2 small-holder farmers if at least two small-scale orders in the

23Note that φ̂s,fcfs(i) are not the expected probabilities, but rather the probability conditional on the
observed queue length. We can numerically show that when F,H →∞ these two are arbitrarily close.

24This is the probability that at least another large scale and at least one small scale farmer request service,
or at least two other large scale farmers request service.
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first o positions of the queue, φ̂s−,fcfs(2) ≡ 3
qs− (qs−−1)qs
qs+q

s−P3

φs−,fcfs(2) = ψs−,fcfs(2)φ̂s−,fcfs(2),

where ψs−,fcfs(2) = (1−e−qs,fcfs)(1−e−qs−,fcfs) is the probability that there are at least three

orders in the queue conditional of a farmer of type s− requesting service, of which at least

one is of type s and at least two are of type s− (including the one requesting the service). To

this probability we should add the probability that there are only two orders in the queue,

ψ̂s−,fcfs(2) defined analogously than for large-scale farmers.

A fcfs provider services 3 small-holder farmers if there are three small-scale orders in the

first o positions of the queue. This probability is defined as φ̂s−,fcfs(3) =
q
s−P3

qs+q
s−P3

φs−,fcfs(3) = ψs−,fcfs(3)φ̂s−,fcfs(3),

where ψs−,fcfs(3) is the probability of having at least two other small scale requests, i.e.

ψs−,fcfs(3) = (1− e−qs−,fcfs − qs−,fcfse−qs−,fcfs).
The general form for the probability of service is,

∆i,fcfs =
3∑
ō=1

ψ̂i,fcfs(ō) + φi,fcfs(ō)∆̃i,fcfs(ō), (10)

where we have defined ψ̂s,fcfs(3) ≡ 0 to ease notation.

The main difference in the probability of service for large and small relies on the queue

lengths. If the queue lengths are identical, then a first-come-first-served provider serves both

types of farmers with the same probability,
∑3

ō=2 φs−,fcfs(ō) =
∑3

ō=2 φs,fcfs(ō).

Market. The market provider has a technology that allows him to prioritize farmers

of either type. The probability of interest is the probability that exactly ō farmers of type i

are served conditional on the farmer under consideration having applied.

Conditional on a large farmer having applied, a single large-scale farmer is served by

a market provider if the provider does not prioritize large scale farmers and there is one

large-scale order among the first o available positions, which happens with probability (1−
χ)φ̃s,mkt(1) = (1−χ)φs,fcfs(1); or if the provider prioritizes large scale farmers and no other

large-scale farmer requested service, χψs,mkt(1) = χe−qs,mkt(1 − e−qs−,mkt − qs−,mkte−qs−,mkt).
These service probabilities add up to,

φs,mkt(1) = χ(ψs,mkt(1)) + (1− χ)φ̃s,mkt(1),
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the latter assumes that at least three orders have been requested. We should add to these

the event that there are less than three orders, which happens with probability ψ̂i,mkt(1) =

ψ̂i,fcfs(1) for any i=s, s− by definition.

Two large-scale farmers are served by a market provider if he does not prioritize large or-

ders and they stand in the first 3 positions, which happens with probability (1−χ)φ̃s,mkt(2) =

(1−χ)φs,fcfs(2); or if the provider prioritizes those orders and there is at least one additional

large-scale service request, which happens with probability χψs,mkt(2) = χ(1 − e−qs,mkt −
e−qs−,mktqse

−qs,mkt).25 These service probabilities add up to

φs,mkt(2) = χ(ψs,mkt(2)) + (1− χ)φ̃s,mkt(2).

We then add the probability when less than three orders are in the queue, ψ̂s,mkt(2) defined

analogously to the fcfs provider.

Feasibility prevents three large-scale orders to be served within the period and therefore,

φs,mkt(3) = 0.

Analogous arguments can be used to describe the probabilities of service of small scale

farmers. A single small-holder farmer is always served by a market provider (conditional

on a request) if it prioritizes high-scale requests and at least two large scale farmers have

requested service, which occurs with probability χψs−,mkt(1) = χ(1− e−qs,mkt − qs,mkte−qs,mkt ;
or if the provider does not prioritize high-scale requests and there is a single small-scale order

among the first three orders in the queue, (1− χ)φ̃s−,mkt(1), where φ̃s−,mkt(1) = φs−,fcfs(1).

The reason for always serving a small scale order even when prioritizing large scale is that

capacity constraints allow the provider to serve at most o− 1 orders leaving always and idle

slot. Finally, we add the probability that there are less than two large-scale orders in the

queue.

φs−,mkt(1) = χ(ψs−,mkt(1)) + (1− χ)φ̃s−,mkt(1),

and ψ̂s−,mkt(1).

Two small-holder farmers are served by a market provider if it prioritizes high-scale re-

quests and exactly one large-scale farmer requests service and at least another small scale

farmer requests service, which occurs with probability χψs−,mkt(2) = χqs,mkte
−qs,mkt(1 −

e−qs−,mkt). Alternatively, two small-holder farmers are served if the provider does not prior-

itize large-scale orders and there are two small-scale orders among the first three orders in

25If there are more large-scale orders the provider still serves two because of its capacity constraints.
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the queue.

φs−,mkt(2) = χ(ψs−,mkt(2)) + (1− χ)φ̃s−,mkt(2).

To these probabilities we add those associated to the event when there are strictly less than

two orders in the queue, ψ̂s−,mkt(2).

Three small-holder farmers are served by the market provider if it prioritizes high-scale

requests and no large-scale farmer requests service and there are at least three small requests,

which occurs with probability χψs−,mkt(3) = χe−qs,mkt(1− e−qs−,mkt− qs−,mkte−qs−,mkt), or if it

does not prioritize them and there are three small-scale orders among the first three in the

queue,

φs−,mkt(3) = χψs−,mkt(3) + (1− χ)φ̃s−,mkt(3).

In sum, the probability of service for a market provider follows

∆i,mkt =
3∑
ō=1

ψ̂i,mkt(ō) + φi,mkt(ō)∆̃i,mkt(ō). (11)

Following equations 10 and 11, the probability of being served for a given type i (weakly)

declines in the queue length of the other type of farmers. In the first-come-first-served

provider the result is straightforward. For the market provider, the decline in the probability

of service is strict for the small scale farmers and independent of the queue length of small-

scale orders when the provider prioritizes large-scale orders.

A.3 Unconditional probabilities of service.

The unconditional probabilities of service are important in characterizing the value of service

for each provider. We consider alternative scenarios, i.e. when the provider serves at capacity

(o = 3 orders) and when the provider serves less than capacity.

The first-come-first-served provider can serve three orders of small scale (given feasibility)

with a service probability of

Φs−,fcfs(3) =

(
1− e−qs−,j(1 + qs−,j +

1

2
q2
s−,j)

) qs−,jP3
qs,j+qs−,jP3

;

or to serve two orders of one type and one of another, with probability

Φ̄i,fcfs(1) = (1− e−qi,j)(1− e−qi′,j − qi′,je−qi′,j)
3qi,jqi′,j(qi′,j − 1)

qi,j+qi′,jP3

,
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and Φ̄i′,fcfs(2) = Φ̄i,fcfs(1) for i′ 6= i.

The provider can also serve two orders of large size, (either because he received only two

orders, or because all orders in the queue are of large scale)

Φ̃s,fcfs(2) =
(
1− e−qs,fcfs − qs,fcfse−qs,fcfs

)
e−qs−,fcfs ,

or it can receive exactly two orders of small size and serve those,

Φ̃s−,fcfs(2) =
1

2
q2
s−,je

−qs−,j(e−qs,j).

Finally, the provider can serve two orders, one of each type

Φ̃i,fcfs(12) =
(
qi,je

−qi,jqi′,je
−qi′,j

)
.

or only one order, with occurs with probability

Φ̃i,fcfs(11) =
(
qi,je

−qi,je−qi′,j
)
.

The probabilities for the market provider are similar to the ones above, except that we

need to account for the market provider’s ability to select large scale orders.

The market provider can serve three orders of small scale,

Φ̄s−,mkt(3) = χe−qs,mkt(1−e−qs−,mkt−qs−,mkte−qs−,mkt−
1

2
q2
s−,mkte

−qs−,mkt)+(1−χ)Φs−,fcfs(3),

(12)

or the orders of large scale and one small,

Φ̄s,mkt(2) = χ((1− e−qs,mkt − qs,mkte−qs,mkt)(1− e−qs−,mkt) + (1− χ)Φ̄s,fcfs(2), (13)

or two orders of small scale and on large,

Φ̄s−,mkt(2) = χqs,mkte
−qs,mkt(1− e−qs−,mkt − qs−,mkte−qs−,mkt) + (1− χ)Φ̄s−,fcfs(2). (14)

When there are less than three orders in the queue there is no need to prioritize orders,

and therefore the probabilities of service are identical to those characterized for the FCFS

problem, i.e. Φ̃i,mkt = Φ̃i,fcfs.

Expected value of service provision The characterization of the probability allows
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us to compute the expected value of service provision:

Ṽ
(
{ōs, ōs−}qfcfs

, {(ri,fcfs − w)ki − wdi}i=s,s−
)
≡∑

i=s,s−

Φ̄i,fcfs(2)
[
2
(
(ri,fcfs − w)ki − wdi

)
+ (ri′,fcfs − w)ki′ − wE(di′)

]
+

Φ̃i,fcfs(11)
(
(ri,fcfs − w)ki − wdi

)
+

+Φ̃i,fcfs(12)
(
(ri,fcfs − w)ki − wdi + (ri′,fcfs − w)ki′ − wE(di′)

)
+

Φ̃i,fcfs(2)2
(
(ri,fcfs − w)ki − wdi

)
Φs−,fcfs(3)3((rs−,fcfs − w)ks− − wds−), (15)

Ṽ
(
{ōs, ōs−}(qmkt,χ), {(ri,mkt − w)ki − wdi}i=s,s−

)
≡∑

i=s,s−

Φ̄i,mkt(2)
[
2
(
(ri,mkt − w)ki − wdi

)
+ (ri′,mkt − w)ki′ − wE(di′)

]
+

Φ̃i,mkt(11)
(
(ri,mkt − w)ki − wdi

)
+

+Φ̃i,mkt(12)
(
(ri,mkt − w)ki − wdi + (ri′,fcfs − w)ki′ − wE(di′)

)
+

Φ̃i,mkt(2)2
(
(ri,mkt − w)ki − wdi

)
Φs−,mkt(3)3((rs−,mkt − w)ks− − wds−). (16)

where the first two terms in either expression correspond to the expected value of serving

three orders or different types, while the remaining terms correspond to the expected returns

of serving strictly less than three orders.

B Proofs

B.1 Proposition 1

First, we solve for the equilibrium value of service when both farmers queue with both

providers. Then, we show the value when the service provider serves a single type of farmers.

Then we show that the guess that the selection criteria for the market provider should be

to prioritize large scale orders. Finally, we show that the expected value of service is higher

for large scale farmers.

Value of service when serving both type of farmers.

Proof. Using the definition of the expected value of service provision (equations 15 and 16)

and rearranging terms, as well as the participation constraint for the farmers, equation 4,
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the problem of the provider is

max
qs,j ,qs−,j

∑
i=s,s−

Φi,j(2)[zijk
α
i −

Ui
∆ij

− w(ki + di)] +

∑
i=s,s−

Φi,j(1)[zijk
α
i′ −

Ui′

∆i′j
− w(ki′ + E(di′))] +

Φs−,j(3)3[zijk
α
s− −

Us−

∆s−j
− w(ks− + ds−)],

where Φi,j(2) = (Φ̄i,j(2)2 + Φ̃i,j(2)2 + Φ̃i,j(11) + Φ̃i,j(12)) and Φi,j(1) = (Φ̄i,j(2) + Φ̃i,j(12)).

Let V̄ij be the profit per order of type i for provider j, i.e. V̄ij ≡
(
(ri,j − w)ki − wdi

)
.

The optimality condition swith respect to the queue length of large-scale and small-holder

farmers are

∑
i=s,s−

(
∂Φi,j(2)

∂qs,j
V̄i +

∂Φi,j(1)

∂qs,j
V̄i′

)
+ 3

∂Φs−,j(3)

∂qs,j
V̄s− +

∑
i=s,s−

(
Φi,j(2)

∂V̄i
∂qs,j

+ Φi,j(1)
∂V̄i′

∂qs,j

)
+ Φs−,j(3)3

∂V̄s−

∂qs,j
= 0, (17)

∑
i=s,s−

(
∂Φi,j(2)

∂qs−,j
V̄i +

∂Φi,j(1)

∂qs−,j
V̄i′

)
+ 3

∂Φs−,j(3)

∂qs−,j
V̄s− +

∑
i=s,s−

(
Φi,j(2)

∂V̄i
∂qs−,j

+ Φi,j(1)
∂V̄i′

∂qs−,j

)
+ Φs−,j(3)3

∂V̄s−

∂qs−,j
= 0, (18)

where

∂V̄i
∂qi,j

= −

 V̄i + w(ki + di)− zijkαi (1 +
∂zij
∂∆ij

∆ij

zij
)

∆ij

(∂∆i,j

∂qij

)
.

Assumption 3. Let θ̄(∆ij) = − ln(∆ij), a strictly decreasing function of the probability

of service.

Given Assumption 3 elasticity of productivity to the probability of service equals −η.

We can define

z̃ ≡ z̄(1− η),

as the “adjusted” productivity, and the envelope condition reads
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∂V̄i
∂qi,j

= −(V̄i + w(ki + di)− z̃kαi (1− η))
1

∆ij

(
∂∆i,j

∂qij

)
.

Let the elasticity of the probability of service with respect to the queue length be ζq∆(o) ≡
−∂∆sj

∂q

qsj
∆sj(o)

, let the elasticity of the value of service to the queue length be ζV̄ q ≡ ∂V̄
∂qij

qij
V̄

and

that of the probability of arrival of o orders to the queue length be ζqψ(o) ≡ ∂ψ
∂q

q
ψ(o)

. The

envelope condition indicates that the elasticity of the value of service to the queue length is

an inversely proportional function of the elasticity of the probability of service to the queue

length, ζ∆ij.

ζV̄i =

(
1 +

w(ki + di)− z̃kαi
V̄i

)
ζ∆ij.

Equations 17 and 18 form a system of linear equations that can be solved for the two

unknowns V̄s− , V̄s as a function of the queue lengths.26

Γ

[
V̄s

V̄s−

]
= a

[
z̃kαs − w(ks + ds)

z̃kαs− − w(ks− + ds−)

]

where Γ =

[
Γ1Γ2

Γ3Γ4

]
, for

Γ1 =
∂Φs,j(2)

∂qs,j
+
∂Φs−,j(1)

∂qs,j
+ ζ∆sqs(

Φs,j(2)

qs,j
+

Φs−,j(1)

qs,j
)

Γ2 =
∂Φs−,j(2)

∂qs,j
+
∂Φs,j(1)

∂qs,j
+ 3

∂Φs−,j(3)

∂qs,j
+

ζ∆s−qs(
Φs,j(1)

qs,j
+

Φs−,j(2)

qs,j
+ 3

Φs−,j(3)

qs,j
)

Γ3 =
∂Φs,j(2)

∂qs−,j
+
∂Φs−,j(1)

∂qs−,j
+ ζ∆sqs−(

Φs−,j(1)

qs−,j
+

Φs,j(2)

qs−,j
)

Γ4 =
∂Φs−,j(2)

∂qs−,j
+
∂Φs,j(1)

∂qs−,j
+ 3

∂Φs−,j(3)

∂qs−,j
+

ζ∆s−qs−(
Φs,j(1)

qs−,j
+

Φs−,j(2)

qs−,j
+ 3

Φs−,j(3)

qs−,j
)

26Note that equation 17 reduces to 21 when there are no small-scale orders.
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and in the LHS

a =

[
a11 a12

a21 a22

]
=

 ζ∆sqs(
Φs,j(2)

qs,j
+

Φs−,j(1)

qs,j
) ζ∆s−qs(

Φs,j(1)

qs,j
+

Φs−,j(2)

qs,j
+ 3

Φs−,j(3)

qs,j
)

ζ∆sqs−(
Φs−,j(1)

qs−,j
+

Φs,j(2)

qs−,j
) ζ∆s−qs−(

Φs,j(1)

qs−,j
+

Φs−,j(2)

qs−,j
+ 3

Φs−,j(3)

qs−,j
)


The last vector on the LHS corresponds to the surplus from trade for each farmer type.

Standard matrix algebra implies that expected value to the providers satisfies

V̄ j
s = γj1s(z̃k

α
s − wks − wds) + γj2s(z̃k

α
s− − wks− − wds−) (19)

V̄ j
s− = γj1s−(z̃kαs− − wks− − ds−) + γj2s−(z̃kαs − wks − wds) (20)

for γj1s− = Γ1a22−a12Γ3

Γ1Γ4−Γ2Γ3
and γj2,s− = a21Γ1−a11Γ3

Γ1Γ4−Γ2Γ3
while γj1,s = a11Γ4−Γ2a21

Γ1Γ4−Γ2Γ3
and γj2s = a12Γ4−Γ2a22

Γ1Γ4−Γ2Γ3
.

Notice that the denominator of each of the γ parameters shifts depending on the provider

as a function of the probability of service. This heterogeneity changes the value for the

derivatives in Γ.

Value of service when serving only large scale farmers.

If a provider j attracts only large-scale farmers, i.e. qs−j = 0, then the expected

per period profit of the provider satisfies

V̄s = γ(qsj, ζ∆q, ζψq, α)(z̃kαs − w(ks + ds))

where the second term corresponds to the surplus associated to the transaction and γ ∈ (0, 1)

is a non-linear function of the queue length, the elasticity of the service probability with

respect to the length of the queue, ζ, and the share of capital in farming production.

Proof. The problem of the supplier when it only receives large scale orders is

max
qsj ,rsj

ψV̄s

subject to

∆sjπs(rsj, ks) ≥ Us∑
i∈q̂j

ks(i) + E(ds(i)) ≤ k̄

where ψ = 2
(
1− e−qs,mkt(1 + qs,mkt)

)
+ e−qs,mktqs,mkt because there are no small-scale orders

and either the supplier serves one or two orders of large scale.
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Using the definition of profits to the farmers, equation 4, we can replace the cost of

capital into the objective function. Replacing the rental price of capital as a function of the

expected profits, the provider solves

max
qsj

ψ

[
z̄kαs −

Us
∆sj

− w(ks + ds)

]

Note that the properties of the probabilities ψ and ∆ (decreasing and convex in the queue

length) imply that the first order conditions to the problem are necessary and sufficient for

an optimum. The optimality condition for the queue length is

∂ψ

∂q
V̄s − ψ

[
V̄s + w(ks + ds)− z̃kαs

∆̃sj(2)

]
∂∆̃sj(2)

∂q
= 0. (21)

Let the elasticity of the probability of service with respect to the queue length be ζq∆(o) ≡
−∂∆sj

∂q

qsj
∆sj(o)

and let the elasticity of the probability of arrival of o orders to the queue length

be ζqψ(o) ≡ ∂ψ
∂q

q
ψ(o)

. Finally, let γ(qs,j, ζ∆q, ζψq, α) ≡ ζq∆
ζqψ+ζq∆

,

V̄s = γ(qsj, ζ∆q, ζψq, α)(z̃kαs − w(ks + ds)) (22)

which proves the result. For the value to be positive we require γ > 0 which is true by

construction. The provider takes a fraction of the surplus from the transaction.

If a provider j attracts only small-holder farmers, i.e. qs,j = 0, then the expected

per period profit of the provider satisfies

V̄s− = γ(qs−j, ζ∆q, ζψq, α)(z̃kαs− − w(ks− + ds−))

where γ ∈ (0, 1) is a non-linear function of the queue length, the elasticity of the service

probability with respect to the length of the queue, ζ, and the share of capital in farming

production.

The derivations when the provider serves only small-scale providers follow the same steps

as the ones above, so we omit them for brevity.

The market provider wants to prioritize large scale orders: Compute ∂Πmkt

∂χ
,

which are strictly positive, given the definition for the unconditional probabilities of service,

12 to 14, and the value of the provider, equations 7 and 16. Then, the optimal selection rule

is at the corner, χ = 1.
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Expected profits to the farmers The expected profits to the farmers depend on the

equilibrium being realized, i.e. whether providers serve both type of farmers or providers

specialize in a single type. The reason is that the expected profits to the farmer depend on

the cost of service, which can be in turn expressed as a function of the value of service using

the definition of the value per period, z̃kαi − Ui
∆ij
− w(ki + di) = V̄ j

i

Ui = (z̃kαi − w(ki + di)− V̄ j
i )∆ij (23)

Replacing the values of expected profits for the providers we obtain

1. If providers serve both type of farms,

Us = ∆sj((1− γj1s)(z̃kαs − wks + wds)− γj2s(z̃kαs− − wks− + wds−))

Us− = ∆s−j((1− γj1s−)(z̃kαs− − wks− + wds−)− γj2s−(z̃kαs − wks + wds))

2. If a provider serves only large scale farmers,

Us = ∆̃sj(1− γ(qsj, ζ∆q, ζψq, α))(z̃kαs − wks + wds)

3. If a provider serves only small scale farmers,

Us− = ∆̃s−j(1− γ(qs−j, ζ∆q, ζψq, α))(z̃kαs− − wks− + wds−)

When the providers specialize in service provision, they determine the expected profits to

the farmer.

Equilibrium queue lengths. In an equilibrium where farmers reach out to both

providers, they should be indifferent across them and the feasibility constraints of the

economy should be satisfied.27 We describe the indifference condition for large scale

farmers, the ones for small scale farmers are analogous.

∆smkt

∆sfcfs

=
(1− γfcfs

1s )(z̃kαs − wks − wds)− γfcfs
2s (z̃kαs− − wks− − wds−)

(1− γmkt
1s )(z̃kαs − wks − wds)− γmkt

2s (z̃kαs− − wks− − wds−)

27If they choose to reach out to a single provider, then the equilibrium queue length is determined by
feasibility only, which in turn determines the expected value for farmers.
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When small scale farmers queue only with fcfs providers, the indifference condition for

the large farmer is

∆smkt

∆sfcfs

=
(1− γfcfs

1s )(z̃kαs − wks − wds)− γfcfs
2s (z̃kαs− − wks− − wds−)

(1− γmkt
s )(z̃kαs − wks − wds)

These indifference conditions jointly with the feasibility constraints of the economy,

equations 1 and 2, yield the optimal queue lengths by provider and type.

Rental rates The rental rates can be computed from the definition of U once the

optimal queues have been solved for.

Value of service for farmers Us ≥ Us− whenever the different in the surplus of

service for large-scale providers is large enough. Because in equilibrium the market

value of service is the same irrespective of the provider, it is w.l.o.g. to use the values

from the fcfs providers.

Us − Us− ≥ 0

(∆sj(1− γj1s) + ∆s−jγ
j
2s−)(z̃kαs − wks − wds)−

(∆sjγ
j
2s + ∆s−j(1− γj1s−))(z̃kαs− − wks− − wds−)) ≥ 0

If the surplus is weakly higher for large scale farmers, z̃kαs −wks−wds ≥ z̃kαs−−wks−−
wds− , then it is sufficient that

(∆sj(1− γj1s) + ∆s−jγ
j
2s−)

(∆sjγ
j
2s + ∆s−j(1− γj1s−))

≥
(z̃kαs− − wks− − wds−)

(z̃kαs − wks − wds)
. (24)

The above is a condition on the elasticities of the probability of service to the queue

lengths (in γ) relative to the values of the surplus.

Value of service for providers The value of serving large farmers is higher than

the value of serving small-farmers for any provider For V̄s > V̄s− it is sufficient that

(γ1s − γ2s−) > 0 and (γ2s − γ1s−) > 0, see equations 19 and . This is the same as

a11(Γ4 + Γ3)− a21(Γ2 + Γ1)

a12(Γ4 + Γ3)− a22(Γ2 + Γ1)

If the queue lengths are the same Γ4 + Γ3 = Γ2 + Γ1 and also a11 > a21 and a12 > a22

because the elasticity of the probability of service to the queue large farmers is higher

than for the queue of small farmers. By continuity, if the queue lengths are not too
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different the above result holds. Intuitively, the reason is that if there are no systematic

differences in travel time across farmers, then the provider’s marginal cost of provision

is higher for the smaller farmers and therefore the provider finds them less valuable.

C Numerical Solution and Output

C.1 Value function computation

The value function maps an ordered queue to the expected present value of this queue.

Each order i in the queue comprises two dimensions: hi, the number of hours demanded

discretized to 6 bins, and di the travel hours to and from the hub that represents a

variable cost of service. For a queue length equal to 3, the value function is a mapping

from R6 to R1.

V ({(k1, ν1), (k2, ν2), (k3, ν3)}) : R6 → [0,∞]

The relatively high dimensionality of the problem prompts us to implement the sparse-

grid method proposed by Smolyak (1963) (see Judd et al. (2014) for details). The grid

points are selected for an approximation level of 2, which results in 85 grid points. We

then construct a Smolyak polynomial consisting 85 orthogonal basis functions, which

belong to the Chebyshev family. The integration nodes are selected by applying the

tensor product rule to the one-dimensional Smolyak grid points at the approximation

level of 2. Integration is carried out using Newton-Cotes quadrature.

C.2 Simulations

We simulate the expected wait time and productivity cost under the fcfs arrangement

and the market arrangement respectively for three cases: when productivity is uncorre-

lated, negatively correlated or positively correlated to the number of hours demanded.

Productivity, measured in revenue per acre, is simulated and assigned to each order ob-

served in the actual data. We make a large number of draws of productivity sequences,

each with length equal to the number of actual orders, from a log normal distribution

where the parameters are obtained by fitting the actual productivity information to a

log normal distribution by hub. We then choose a sequence for each simulation case

that produces a correlation with hours demanded in the data that is the closest to

a target correlation for that case, and assign that sequence to the actual orders. In

the uncorrelated case, the target is zero; in the negatively correlated case, the target
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is the actual correlation for that hub; in the positively correlated case, the target is

symmetric to the negative correlation.

We use bootstrap sampling of the actual orders for the simulation and assume each

bootstrap sample represents an actual queue.

We compute the wait time for the first three orders in each bootstrap sample under

the fcfs arrangement and the market arrangement respectively. In any period if one

or more out of these three orders are not served, the queue is filled going through the

bootstrap sample. The productivity cost is calculated by multiplying the simulated

productivity by the wait-time and the percentage productivity loss per day as described

in the table 3.

D Additional Tables and Figures

Figure 13: Ownership and rentals by implement.
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Notes: The ownership (rental) rate is the share of farmers that report to own a given implement relative to
the total population surveyed.
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Figure 14: Service rates.
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Notes: Service rates and queueing behavior in CHCs, Kharif 2018. Each data point corresponds to the
average queue or hours served across hubs per day in the season. The bottom panels include a polinomial
fit of the series. Source: Own computations and CHC admin data.

Table 9: Costs of Delays Relative to Optimal Planting Time, Value Added per Acre

Cost per day, value added per acre

Whole Sample 5-day around optimal 10-day around optimal
Before After Before After

β1 -41.97 391.1** -215.7 1,166*** -931.1***
(26.33) (140.2) (146.9) (338.7) (298.5)

Observations 6,034 1,461 1,882 1,010 1,221
R-squared 0.408 0.625 0.584 0.706 0.659
Mean of Value Added per acre 10228 11425 10694 11921 10998

Notes: The optimal date is a village-year measure, and is the sowing date that maximized mean value added
per acre in the village in a given year. Standard errors clustered at the village-level in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01, **** p < 0.001.
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